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ABSTRACT 
 
This paper addresses the use of continuous indoor motor current to detect filter blockage in HVAC system. A 
commonly known phenomenon exists in the loading of a typical indoor motor blower that results in a power 
consumption decrease and hence less current draw for PSC motor, and power and currant draw increase for constant 
torque motor. Testing using Akaike information criterion (AIC), classification and regression tree (CART) models, 
and using both fixed radius basis function and linear basis function was described and performed against field of 
installed systems to determine if candidate data filter was sufficient, or to motivate use of Mann-Kendall to determine 
trend existence, strength, and transition in existence or strength.  The bases, commonly used in practice, were found 
to have cumulative effectiveness against only 50.4% of installed systems, and were strongly differentiated in 
performance against motor type.  The Mann-Kendall approach was found to have performance of ~88% of evaluated 
systems. This approach calculates the confidence trending level corresponds to the nonparametric correlation 
coefficient for the indoor current daily averages. Trend levels will be accumulated over time and will be used to declare 
filter blockage once they suggest a strong trend in the direction of filter blockage.  
 

1. INTRODUCTION 
 
Most heating, ventilation, and air-conditioning (HVAC) systems in commercial buildings and residential homes are 
equipped with air filters to improve indoor air quality. Filter is intended to be used to collect dirt, debris, and dust and 
prevent their accumulation anywhere else. To prevent excessive dirt accumulation and possible HVAC performance 
degradation and malfunction, air filters need to be replaced once in periodically.  The problem is that there is wide 
variation, even in the nearby houses, in the rate of accumulation of debris in the air filter.  This can be driven by pets, 
by construction (infiltration rate), or by exposure.  Current manufacturer recommendation a replacement of air filter 
every 3 months per inch of filter.  While this approach minimizes the worst case, it also allows the inference with 
uniform rate of deposition, that one average day of use consumes less than an average of about 1.1% of filter capacity. 
In this work, however, we developed a framework to warn the need for filter replacement based on scientific data 
rather using the 3 months rule.   
 
The impact of filter quality and its current conditions on HVAC system performance has received great deal of 
attention in the literature. For example, Yang et al. (2007) studied this impact using different filter types (six different 
level of filtration) on three different HVAC systems. Two series of tests were performed while the filters are in healthy 
and dirty states. The study showed that a dirty filter could cause significant reduction in HVAC cooling capacity, 
increase in the pressure drop across the filter, and increase in the indoor fan power usage. Another study (Stephens et 
al., 2010) was performed on a residential home in Austin, Texas. While the HVAC system energy use was monitored, 
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different filters MERV (MERV < 4, MERV 8. and MERV 11) were tested in two different HVAC systems. The study 
shows that energy consumption increases with dirty filter but did not differ much with high-efficiency filters compared 
to low-efficiency filters. 
 

2. DIRTY FILTER DETECTION ALGORITHMS  
 

2.1 Hardware and Experiment Set-up   
 
A sample of 225 HVAC systems that are installed in real homes were used in this investigation.  Of these systems, 
118 were charged with R410A refrigerant and the rest were charged with R-22 refrigerant. The tonnage size and 
SEER information for this sample size is given in Figure 1. The hardware that is used to collect data from these 
systems is shown in Figure 2 and is described in extensively in (Alsaleem et al., 2016). Few key points are to be 
mentioned about the hardware.  (1) It consists of an indoor kit that is equipped with voltage and current sensors as 
well as temperature sensors to track air supply, air return, indoor liquid line, and suction line temperatures. The 
outdoor kits measure the aggregate outdoor current and voltage. (2) the data for each system run is transmitted in 
chunks, each of fifteen minutes maximum length and at sampling rate of one sample per five seconds (0.2 HZ),(3) a 
cloud structure is built to host algorithms to receive and processes the data from the indoor and outdoor  kits.   

 
                   

                 
 

(a) (b) 
 

Figure 1: The tonnage size (a) and SEER ratting (b) for the 225 HVAC systems used in this study 
 
 
 
 

 
 

Figure 2: Hardware shows the indoor and outdoor kits to gather and send sensors data to the cloud 
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2.2 Dirty Filter Detection Basic Idea   
A commonly known phenomenon exists in the loading of a typical indoor motor blower that results in a power 
consumption decrease for PSC motor and power increase for constant torque motor. A dirty filter-detection algorithm 
benefits from this simple fact to capture filter blockage over time by monitoring the daily averaged indoor motor 
power. Figure 3(a) illustrates the normalized daily average of the indoor current of one of the filed monitored HVAC 
system correlated to the expected airflow percentage drop as the filter developed dirt over time. The figure 
demonstrates that filter degradation over time can be detected only by using current measurement. This chart also 
shows the time when the homeowner changed the filter, by the sudden jump by the end of September. Figure 3(b) 
visually confirms the predicted poor filter performance before replacement.    
 

 
                                                                       (a)                                                                              (b) 

Figure 3:  Indoor current correlation to filter blockage, (a) data of the normalized indoor current over time correlated 
to the airflow reduction, (b) the dirty filter before replacement. 
 
 
In order to reduce the effect of special cause variation on disposition some level of signal conditioning precedes 
analysis. The major axes of variation in indoor current measurement are going to include run-to-run, solar hour-of-
day, week-of-year, by year, conditioning-mode (AC/HP, number stages, etc.), by indoor temperatures (wet and dry 
bulb), by equipment make/model/manufacturer, by installed configuration, by installer and installation, by home 
size/insulation/exposure, by geographic location, by maintenance history, by operation history, and by current 
homeowner configuration and operation.  The following examples are around air filter health, so the variables most 
strongly related to that are considered.     
  
Common types of variation that confound with air filter indication include variation of load by hour of day, by indoor 
temperatures, by operation (count of stages) and by changes to configuration including occlusion of returns or changes 
to registers by the homeowner.  The first is accounted for by averaging across a full day, including both daytime and 
nighttime use.  The second is accounted for using normalizations like using historic data to approximate the 
relationship between indoor current and indoor temperature as a polynomial.  The third can be accounted for by 
tracking control signal.  The fourth has the challenge that there is no leading variable, and that it is a discontinuous 
jump.  On either side of the discontinuity, the polynomial relationship between power and time is consistent, and acts 
as if one added a scaled unit step at that point in time.  When there is a fundamental change, such as a replacement of 
a dirty filter with a clean one, the coefficients of the polynomial, after accounting for the jump, change in a sustained 
manner. 
 
 
2.3 Linear and Redial Fitting Approaches  
Two simple but effective bases for “appropriate function” to model filter behavior over time included fixed variance 
radial clustering (a cousin of k-means), and purely linear least squares fit.  The assumption of the constant diameter 
radial model is that jumps outside the “radius” were not indication of filter behavior.  The background, derivation, and 
proper use AIC or corrected AIC as used herein is more comprehensively described in (Akaike, 1992). 
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The “Information Criteria” measures of fit are derived from Kullback-Leibler divergence and via approximations for 
log-likelihood, and account not only for error as R2, but model complexity and sample size.  One condition of use to 
compare two or more models is that the same data must be used for all model evaluations.  A lower value of criteria 
is indicative of higher likelihood.  The AIC was used to compare the performance of radial clustering and linear fitting. 
 
The expressions for AIC used in this work was:  
 

𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑛𝑛 ⋅ 𝑙𝑙𝑙𝑙 �𝑅𝑅𝑅𝑅𝑅𝑅
𝑛𝑛
� + 2 ⋅ 𝑘𝑘        (1) 

 
Where “RSS” is the residual sum of squares (or sum of squared error), “n” is the number of observations, and “k” is 
the number of parameters in the model.  Each split was considered a piecewise Heaviside function, so it has only the 
parameter of the location of the split plus the sum of parameters of the fit-model within each split.  A three term linear 
expression would then be described as: 
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡) = (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙1 + 𝐻𝐻(𝑡𝑡1) ∗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2) ⋅ �1 − 𝐻𝐻(𝑡𝑡2)� + 𝐻𝐻2 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙3  (2) 
 
This expression has two parameters for each linear expression and the two parameters for the two Heaviside functions 
for a total “k” value of “8”.  Number of samples was large enough that correction was not required in this case. 
 
A Classification and Regression Tree (CART) model was used to evaluate performance of these for ability of the basis 
to account for jumps by testing non-split then split transformations for AIC.  In another words, as sudden jump in 
indoor current are expected to happen, the CART model will be used to remove the effect of jumps in the accuracy.   
The premise of the CART is that the leaf-tip is constant, and splitting can be single axis at a time to improve either 
GINI coefficient or accuracy.  While the CART premise is incompatible with detection of slope, the greedy splitting 
is optimal for detection of univariate jumps.  In analogy to nontransitive dice, while this CART approach is inadequate 
for directly filtering the data, it is sufficient for evaluation of the filtering algorithms.  While a full discussion of CART 
models is substantially beyond the scope of this text, there are excellent references including (Breiman et al 1984). 
 
If the CART imposed splits improved the AIC by a factor less than 2.198, then the basis was deemed "capable" 
otherwise, it was deemed "incapable".  This means that if the CART imposed splits did not make the old model contain 
any less than 25% of the weight, then the old model was considered "capable".  This balanced, non-greedy approach 
to the setting of the weight threshold was made in consideration of the technical confidence of high levels of noise in 
the overall system and using the game-theoretic idea of "equal division of the contested value" (Talwakar 2014). 
 
The log of the likelihood of a model given a difference in AIC compared to a model with minimum AIC is negative 
one half the difference; the weight for addition of models is the likelihood of the individual divided by the sum of 
likelihoods in the ensemble and the constant of proportionality divides out.  A delta AIC of 5.882, as can be seen in 
Table 1, indicates a relative (Akaike) weight below 5%.  Table 1 indicates a few common AIC thresholds and weight, 
and then indicates common weights and their thresholds, for 2-component weighted mixture of models.   
 

∆ AIC Weight  Weight ∆ AIC 
0 50.0%  33% 1.416 

0.5 43.78%  25% 2.198 
1 37.75%  10% 4.395 
2 26.89%  5% 5.889 
3 18.24%  1% 9.191 

 
Table 1: Useful list of values relating difference in AIC with component weight in additive model when there are 

two components under consideration. 
 

It was found, using the above criteria, that the linear was capable for 39.0% of 225 HVAC systems and not capable 
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for 61.0% of them. Similarly, the radial approach was capable for 27.5% of systems but was incapable for 72.5% of 
them, the details of these calculation are beyond the scope of this paper and will be discussed in a separate work.  
When combined they were capable for 50.4% of all systems.  These very simple bases, while easy in practice to 
execute, are substantially incapable of handling the naturally occurring variation.  This motivates the use of the Mann-
Kendall test. 

 
For the remainder of this section, we first review the Mann-Kendall test, and then discuss the trending analysis use in 
warning of dirty filter.   

 
2.4 Mann-Kendall Trending Test 
The purpose of the Mann-Kendall test is to assess for a given data if there is a monotonic trend over time. It has been 
used in many applications, such as water quality monitoring (McLeod et al., 1990) and more recently for weather 
trending and prediction (Soltani et al., 2013). Its advantages over linear regression approach include it does not require 
a normal distribution for the data, it is independent of the data magnitude, and it can deal well with missing or 
irregularly spaced data. The trending test compares each data point to all subsequent values. If the data from newer 
values is greater than earlier data, then the Mann-Kendall statistics value S is increased by 1.0; otherwise, it decreased 
by 1.0.  In mathematical terms, this could be described as: 

 

𝑆𝑆 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 �∑ ∑ �
1 𝑖𝑖𝑖𝑖 �𝑇𝑇𝑗𝑗 − 𝑇𝑇𝑖𝑖� > 0
0 𝑖𝑖𝑖𝑖 �𝑇𝑇𝑗𝑗 − 𝑇𝑇𝑖𝑖� = 0
−1 𝑖𝑖𝑖𝑖 �𝑇𝑇𝑗𝑗 − 𝑇𝑇𝑖𝑖� <  0

𝑚𝑚
𝑗𝑗=𝑖𝑖+1

𝑚𝑚−1
𝑖𝑖=1 �    (3) 

 
where 𝑇𝑇𝑖𝑖 ,𝑇𝑇𝑗𝑗 are the daily average values for a given measurement at a given day where j > i.  A very high positive S 
value indicates an increasing trend, whereas a very low negative value indicates a decreasing trend. The sign function, 
introduced by the authors, adjusts the sign of the S value to always indicate a positive value if the measurement trend 
direction support the fault. 
  
To account for sample size, the magnitude of S was adjusted by the following scale (assuming sample data are not 
similar) as follow (HydroGeoLogic, 2004): 

 
𝑆𝑆𝑁𝑁 = 𝑆𝑆∓1

𝑔𝑔(𝑆𝑆)1/2         (4) 
 
where,  𝑔𝑔(𝑆𝑆) =  1

18
[𝑛𝑛(𝑛𝑛 − 1)(2𝑛𝑛 + 5)], and n is the sample size.  

 
Mann-Kendall use for dirty filter detection  
Figure 4 shows a flowchart for the algorithm of performing the Mann-Kendall to detect dirty filter. The process starts 
when the filter detection algorithm receives a new daily average for the indoor motor current data. Next, the algorithm 
adds the data to the existing dataset of previous data and applies the Mann-Kendall analysis described above. Based 
on the Mann-Kendall analysis, the algorithm calculates the trend confidence level, in the range of -1 to 1. The trend 
confidence level corresponds to the nonparametric correlation coefficient (𝑆𝑆𝑁𝑁) described above. 

   
The algorithm scales the estimated value based on duration in time of the new data set and then adds it to a cumulative 
sum. The scaling is based on the time duration represented by the current data sample being added to the data set 
versus the time duration represented by the existing data set of previous data. For example, a confidence level 
corresponding to one week will be appropriately scaled or weighted when added to, for example, previous data 
corresponding to six weeks. Next, the algorithm determines whether the absolute value of the trend confidence sum 
is greater than a predetermined threshold. In this implementation, the predetermined threshold used is 2.0. This value 
was chosen based on correlation analysis between the empirically confirmed amounts of dirt for multiple filled and 
dirty filters to the absolute trend sum. When the absolute value of the trend confidence sum is greater than 2.0, the 
algorithm generates a dirty filter alert, resets the trend confidence cumulative to 0.0, and loops back to starts the trend 
analysis again. On the other hand, if the absolute value of the trend confidence sum is less than 2.0, the algorithm 
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applies a new filter detection algorithm. In this case, the algorithm determines whether the current data is within three 
sigma (standard deviation) of the average data over time. When the current data is not within three sigma of the average 
data, and has stayed outside of three sigma of the average data for a predetermined duration of two days, the algorithm 
determines that the filter has been replaced and generates a new filter acknowledgment and resets the trend confidence 
sum to 0.0.  
 
With reference to Figure 4, a graphical representation of using the Mann-Kendall algorithm, depicted in the flowchart 
of Figure 5, in warning of dirty filter is illustrated for a sample unit data. Figure 5(a) shows a plot of daily averages of 
indoor blower fan current over time in which each square represents one full day’s average value. Similar to Figure 
5(a), the plot indicates that the filter has been replaced with a new filter when the current spiked from 6.05 Amp to 
6.50 Amp, seven days before the last recorded day average. Figure 5(b), shows a plot of the trend confidence levels, 
calculated using the Mann-Kendall analysis for the data of Figure 5(a), over time. As depicted in the figure, the trend 
confidence level is generally a negative number, indicating a downward trend, until the last trend confidence level, 
when the trend confidence level moves to a positive level, corresponding to the filter being replaced with a new filter. 
 

 
 

Figure 4: Flowchart for using the Mann-Kendall of warning dirty filter 
 
At Figure 5(c), a graphical representation of the trend confidence sum over time is shown. As shown in the figure, the 
time interval for which each trend confidence sum is made generally corresponds to the width of each step in the 
graph. However, the trend confidence sum can be updated more frequently, or less frequently, as desired. The figure 
shows that the trend confidence sum increases in negative magnitude until it reaches a point at which the trend 
confidence absolute sum is greater than the predetermined threshold, which in this case is 2.0. With the trend 
confidence absolute sum greater then 2.0, a dirty filter alert is generated, and the trend confidence sum is reset to 0.0. 
The trend confidence sum again begins to increase in negative magnitude, until it reaches the point when the 
homeowner finally responded to the alert and changed the filter. The algorithm detected this filter change event and 
the trend confidence sum is reset to 0.0. The logic to detect the need for a new filter is built to search for a sudden 
change in the trend with a direction opposite to the normal direction of filter dirt development. Specifically, a moving 
average of the standard deviation for the indoor current is calculated. If at any given time the current measured value 
jumped from the previous day value a threshold of at least three times the current averaged standard deviation, then 
this is reason for a potential reset. If the values for at least three new days in a row still deviate by that threshold, then 
a trend reset is triggered.  The three-day condition is to eliminate a false reset trigger due to measurement noise. 
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(a) Daily averaged indoor current 

 
        (b) Trend confidence level 

 
(c)Trend confidence sum over time 

 
Figure 5:  A graphical representation of using the Mann-Kendall based algorithm, depicted in the flowchart of 

Figure 4, in warning of dirty filter for a sample unit, (a) is the indoor current daily average values over time, (b) is 
the corresponding trend confidence level using the Mann-Kendall test, (c) is the trend sum that is used to compare 

with a predetermine threshold for potential filter alert. 
 
 

3. RESULTS AND DISCUSSION 
 

Figure 6 show results for the application of the Mann-Kindle algorithm over the daily averaged indoor current of a 
HVAC system for more than a year. The system has a PSC motor type. In the figure, the averaged current is in white, 
the weekly based trend measure is in green, the weekly trend sum accumulation is in red, and the actual filter 
replacement signal is in blue. The figure demonstrates the idea of using trends confidence level sum to trigger the 
dirty filter alert.  As shown in the figure, the filter alert is triggered if the trend sum exceeds a threshold value of -2 or 
its mutiples. These events are marked by purple arrows.  In average, the filter alert for this system is triggered for at 
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least 1 time per two months.  The trend sum accumulation is only rested to zero if the algorism detect a new filter 
replacement.   
 
The charts in Figure 7 show the filter alerts status generated in a month for the 225 systems. The filter alerts status 
were obtained from homeowners responses to an online survey, immediately sent after receiving the filter alert.   The 
survey responses reveal that 88% of the filter alerts were valid. System with electrostatics filter is among the highest 
population for invalid filter alert. Due to the unique dynamics for dirt accumulation and its effect on indoor current, a 
different algorithm might be needed to tackle electrostatics filter.  

 
 

 
 

Figure 6: Results for the application of the Mann-Kindle algorithm over the daily averaged indoor current of a 
HVAC system for more than a year 

 
 

 
 

Figure 7: Trending filter alert statistics 
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4. CONCLUSIONS 
This paper addressed the use of continuous indoor motor current to detect filter blockage in HVAC system. Different 
filter-detection algorithms were designed to capture filter blockage by monitoring the daily averaged indoor current 
over time. 225 HVAC field units were used in this investigation. An indoor kit that is equipped with current sensor 
was used to transmit these units’ data for each system run in chunks, each of fifteen minutes maximum length and at 
sampling rate of one sample per five seconds (0.2 HZ). For the candidate models within the duration of the analysis, 
the Mann-Kendall approach was found to be sufficient for alerting dirty filter. The accuracy of this approach can be 
further enhanced by combining the trends of other indoor measurements such as the split and evaporator suction 
temperatures.   
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