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ABSTRACT 
 

Calibration of building energy models is important to ensure accurate modeling of existing buildings. Typically this 

calibration is done manually by modeling experts, which can be both expensive and time consuming. Additionally, 

biases of the individual modelers will creep into the process. Many methods of automated calibration have been 

developed which reduce costs, time and biases, including optimization using genetic or swarming algorithms, 

machine learning methods, and Bayesian methods. Bayesian methods differ significantly from the other 

optimization and machine learning methods in that inputs are assumed to be uncertain and main goal is not to match 

the prediction to the measured data as closely as possible, but to reduce the uncertainty in the inputs in a manner 

consistent with the measured data. Bayesian methods are particularly useful when there are model inputs that have 

high sensitivity and high uncertainty and where there is limited measured data to use for calibration. In this paper, 

the basic concepts of Bayesian calibration are explained and a typical application and results are demonstrated.   

 

1. INTRODUCTION 
 

With the desire for higher performance building designs, the use of building energy models (BEMs) for retrofit 

analysis has been growing and the accuracy of building energy models has become critically important.  When 

models are used for designing high performing retrofits or improving building operation, models should be 

calibrated to measured performance to ensure an accurate model. Conventional calibration methods have several 

shortcomings that may counteract the goal of the calibration procedure, including overfitting and amplification of 

model errors.  Bayesian calibration is a method of calibration that overcomes the majority of the disadvantages of 

conventional calibration methods. 

 

2. BUILDING ENERGY MODELS 
 

Over the past several decades, building energy models have dramatically evolved into the dynamic, highly detailed 

BEMs of today.  Modern full fluid dynamic BEMs, such as Energy Plus, contain several hundred parameters.  Each 

of these parameters has an associated uncertainty, and thus the uncertainty inherent in the total system can be 

enormous.  Errors also exist in the model itself as the complex heat and moisture balance equations need to be 

approximated at time intervals in order to improve model run time as these balances are approximating a steady state 

solution in a non-steady state condition.  While modern BEMs offer a significant improvement over hand 

calculations and early generation BEMs in the sense that they more accurately model the thermodynamics and loads 

of buildings systems, they present a new challenge in the level of information needed to inform the hundreds of 

model parameters.  The uncertainties in model parameter quantities and errors in modeling must be considered at a 

minimum and ideally quantified such that a modeler can have a certain level of confidence in the predictive power 

of a BEM. 
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Estimating BEM parameter values is a time consuming and challenging process.  For new construction, parameters 

generally fall into one of three categories.  The first category is BEM parameters that are known with little-to-no 

uncertainty when the modeler begins assembling the BEM, such as building dimensions and climate parameters.  

The second category is parameters that have a high level of uncertainty when the modeler begins creating a BEM 

but become known with little uncertainty by the end of the design phase.  BEM parameters in this category include 

parameters related to building systems (lighting, plumbing, structural) whose design is incomplete (or not started) 

when the modeler begins assembling the BEM and become known with little uncertainty as the building systems’ 

designs progress and are finalized.  Finally, a third category of BEM parameters exists which have a high level of 

uncertainty throughout the entire design process such as BEM parameters related to occupant behavior. 

 

For existing buildings, BEMs are often utilized for exploring the energy savings potential of various energy 

efficiency measures (EEMs).  As the building being modeled in retrofit building energy modeling is an existing 

building, most of the BEM parameters could be determined with little uncertainty.  However, obtaining these 

parameters through field measurements and testing can be prohibitively expensive, disruptive, and time consuming, 

and thus these parameters are often estimated with a moderate to high level of uncertainty. 

 

2.1 Need for Calibration 
When the building energy model is for retrofit of existing construction, the model should undergo calibration in 

order to improve the predictive power of the model (reducing the error between model outputs and observed data), 

presumably by decreasing the error in model parameters.  This calibration is critically important for accurately 

assessing the energy savings potential of various EEMs.  Observed data is readily available in the forms of natural 

gas, electricity, and water bills showing energy and water consumption.  New construction buildings are not often 

calibrated, as the design is finalized prior to construction and system performance data will not become available 

until after construction is complete.  This means that calibrating new construction BEMs will not provide better 

model predictions at a time when they matter (i.e. during design phase), and thus is rare in practice.  When new 

construction BEMs are calibrated, this calibration comes during the initial commissioning of building system.  

Building commissioning is the process of ensuring all building automation, sensors, and controls systems are 

properly functioning and of tuning building systems for peak performance.  This process is especially important for 

high performance buildings as even small deviations from peak performance or improper operation of building 

automation systems can lead to significant shortcomings in expected building efficiency.  This is particularly true 

when the building has a performance based contract in which threshold energy efficiencies must be satisfied to avoid 

significant economic penalties.  Buildings trying to achieve certain green building certifications, such as from the 

Leadership in Energy and Environmental Design (LEED), often are required to validate BEM designs using 

commissioning. 

 

3. CONVENTIONAL CALIBRATION 
 

Conventional calibration generally involves an expert modeler iteratively adjusting BEM parameters to minimize the 

difference between observed data and model outputs (Reddy et al., 2007).  This process can be very labor intensive 

and inherently introduces modeler biases into the calibrated model.  More recently, optimization schemes have been 

implemented to automate calibration (New and Chandler, 2013; Raftery et al., 2011).  These schemes determine the 

combination of model parameters that minimize the error between data and model outputs. 

 

3.1 Advantages 
Conventional calibration methods offer certain advantages.  Expert based conventional calibration draws on the 

wealth of experience and success of expert modelers to reduce the error between model outputs and data.   

Optimization based calibration methods explore parameter domains to find local minimum error and can find 

multiple parameter combinations that provide local minimum errors.  Optimization based calibration often results in 

lower error than expert based calibration.  Optimization calibration methods are generally less labor intensive but are 

much more computationally expensive, especially when there are numerous calibration parameters. 

 

3.2 Disadvantages 
It is an underlying assumption of conventional calibration that minimizing the difference between real world data 

and model outputs minimizes the error in the model outputs, and thus the calibrated model is more predictive of 

future observable data.  This assumption implies that no uncertainty exists in real world data and that all uncertainty 
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exists in model output due to uncertainties in model parameters that are reduced during the calibration process.  

However, uncertainty exists in measured data itself and neglecting to account for this uncertainty can introduce 

biases into the calibrated model.  Additionally, conventional calibration methods cannot address modeling errors.  In 

fact, by neither considering data uncertainty nor modeling error, conventional calibration methods may actually 

amplify model output uncertainties if the data is biased.  Another problem with conditional calibration is that if 

multiple combinations of calibration parameters yield nearly identical minimal error, there is no way to determine 

which of these calibrated parameter combinations is the most probable.  Finally, as most conventional calibration 

methods do not attempt to quantify uncertainties in model parameters or in the model itself, they are unable to 

estimate how much better predictive the calibrated model is relative to the uncalibrated model.  Even when 

uncertainties are quantified in conventional calibration, total model output uncertainty may not be reduced during 

calibration as the goal of calibration is not to reduce uncertainty but rather to make the model more aggregable with 

observed data.  This limitation means that conventional calibration is unable to quantify how much more likely the 

calibrated model parameters and outputs are than the uncalibrated model parameters and outputs.  Modelers are 

unable to express any quantitative confidence level in the accuracy of the calibrated model. 

 

3.2.1 Overfitting: Overfitting is a problem in regression analysis, multi-objective optimization, and machine learning 

when the fitting/optimization routine fits the model to the noise in measured data (Dietterich, 1995). This most 

commonly occurs when a model has more degrees of freedom than the underlying physics (Cawley and Talbot, 

2010). One indicator of overfitting would be when the when the error in the fit is less than the uncertainty in the 

underlying measured data. 

 

4. BAYESIAN CALIBRATION 
 

Bayesian calibration is a method of calibration that is fundamentally different than conventional calibration 

methods. Bayesian calibration has a long history within computer modeling in general (Dunsmore, 1968; Racine-

Poon, 1988; Kennedy and O’Hagan, 2001) and has been adapted to building energy models by Heo et al. (2011). 

Bayesian calibration is an iterative process of updating uncertainty distributions on the BEM parameters in a way 

that is consistent with the observed data.  This process does not minimize the difference between observed data and 

model outputs, but rather determines the most likely uncertainties for input parameters that yield an output 

uncertainty in which the observed data is most likely.  Bayesian calibration is an application of Bayes Theorem, 

which relates prior information with uncertainty to future information based on the likelihood of observed outputs 

from the model (Bergerson and Muehleisen, 2015). 

 

4.1 Advantages 
As each iteration of the Bayesian calibration updates the probability density functions (PDFs) of BEM parameters in 

a way that is most likely to yield the observed data, the PDFs determined after a sufficiently large number of 

iterations are the most probable calibration of the system.  This means that a BEM calibrated with Bayesian 

calibration is best able to predict future real world observations by determining the best estimate of parameter 

uncertainties.  One of the primary advantages of Bayesian calibration is that as uncertainty is integral to the model 

definition and calibration procedure, a modeler can quantify a confidence level in the calibrated model.  

Additionally, a probabilistic risk analysis can be performed and competing retrofits can be ranked according to a 

desired risk level, based on mean values, variances, etc.  Finally, Bayesian calibration reduces the tendency to 

overfit the model to the observed data.  Bayesian methods tend to reduce this potential problem as they are not 

trying to minimize the difference between the model output and the measured data but rather are trying to maximize 

the likelihood that the model output is statistically consistent with the measured data. This consistency naturally 

takes into account the uncertainty in the measured data (Heckerman, 1998). 

 

4.2 Disadvantages 

One of the disadvantages of all calibration methods, both conventional and Bayesian, is that they require observed 

data from the physical system being modeled against which to compare model outputs.  The collection of this data is 

typically very challenging, and as such is generally the most time consuming and expensive step of model 

calibration.  Another disadvantage of Bayesian calibration is that as the calibration process is iterative, calibration 

may require a significant number of iterations to converge to the most likely PDFs.  This is especially true if the 

prior probability density functions are poorly chosen (and thus require significant updating during the calibration 

process).  Additionally, due to the high computational demand of Bayesian calibration, Bayesian calibration often 
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requires a parameter screening and selection process in order to select the most significant parameters to use in the 

calibration process in large models with numerous parameters to improve model run time. 

 

4.3 Methodology 

The general methodology of Bayesian calibration is 1) define uncertainty PDFs for uncertain model parameters, 2) 

collect real system performance data for known input parameter values, and 3) calibrate (assumed) prior parameter 

PDFs based on the observed data by iteratively using Bayes Theorem until iterations converge to an acceptable level 

(Kennedy and O’Hagan, 2001).  Establishing prior uncertainty PDFs for input parameters generally involves both 

expert opinion solicitation and literature review.  When only a range of appropriate values can be determined for a 

parameter, a uniform distribution may be assumed (Riddle and Muehleisen, 2014).  When a range of values and a 

most likely value can be determined, a triangular distribution may be used.  As previously mentioned, when the 

model is large, the calibration is done on a subset of parameters in order to dramatically decrease both the data 

collection and computational demands of the calibration.  Collecting data is usually the most financially expensive 

step in calibration.  As the goal of the calibration is to improve the predictive power of the model for future model 

outputs by arriving at the most likely calibration parameter uncertainty distributions, it is critical to sample data from 

across calibration parameters’ uncertainty ranges.  Intelligent sampling strategies can significantly reduce the 

quantity of data required for calibration and thus reduce the expense of data acquisition.  The final step of Bayesian 

calibration is iteratively updating the selected calibration parameters prior uncertainty PDFs based on the collected 

data using Bayes Theorem.  Usually a random subset of the observed data is utilized in each iteration of the 

calibration. 

 

5. NUMERICAL EXAMPLE 
 

A case study was undertaken at the National Renewable Energy Laboratory (NREL) in Golden, CO.  The study 

developed a building energy model for an existing 850ft² one story building, built in 1994.  The building is a site 

entrance building, and thus is occupied 24 hr/day by one to four people.  The space conditioning is provided by a 

split system direct expansion (DX) cooler with a natural gas furnace.  Auxiliary baseboard electric heaters are 

utilized by the operable badging window.  Figure 1 shows a screen shot of the BEM and plan view of the building. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: BEM (left) and plan (right) views of the site entrance building at NREL examined in the numerical 

example 

 

5.1 Building Energy Model and Parameter Screening 

A building energy model was developed for the building using OpenStudio.  Bayesian calibration was utilized to 

improve the predictive power of the BEM.  In order to reduce the computational demand of the calibration 

procedure, a sensitivity analysis was undertaken using the enhanced Morris method (Campolongo et al., 2005). The 

sensitivity analysis evaluated the BEM output electricity and natural gas consumption sensitivity to a large subset 

BEM parameters considered to be uncertain.  The four most significant parameters determined from the parameter 

screening are infiltration rate, plugload power density, lighting power density, and occupant density, and thus these 

four parameters were selected as calibration parameters. 

 

5.2 Results 

The four calibration parameters were calibrated using Bayesian calibration using monthly electricity and natural gas 

consumption.  The prior probability density functions and calibrated PDFs are shown in Figure 2 by dashed lines 
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and vertical bars respectively.  It is clear from Figure 2 that the uncertainty distributions for both the infiltration rate 

and plugload power density BEM parameters calibrated well using Bayesian calibration, with both having 

significantly reduced uncertainty (variance) at the end of the calibration process.  The lighting power density and 

occupant density parameters were less sensitive to calibration, with both the mean and variance of the prior and final 

PDFs being relatively constant for both parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Prior (dashed line) and posterior (vertical bars) probability density functions for selected calibration 

parameters 

 

The results of the calibration on the BEM projected electricity and natural gas consumption are given in Figure 3, 

which shows the monthly pre-calibrated and calibrated BEM output consumption against the monthly metered data. 

It is clear from Figure 3 that Bayesian calibration dramatically reduces the error between metered and BEM 

projected monthly electricity consumption.  The calibration also reduced the error between metered and BEM 

projected monthly natural gas consumption, but moderate error still exists.  This is primarily due to the fact that a 

nearly linear relationship exists between the plugload power density and lighting power density calibration 

parameters and the BEM projected electricity consumption. 
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Figure 3: Pre-calibrated and calibrated building energy model projected monthly electricity (above) and natural gas 

(below) consumption relative to monthly metered consumption 

 

6. CONCLUSION 
 

Bayesian calibration is a method of calibration that is fundamentally different than conventional expert based, 

multivariate optimization, or machine learning calibration methods which overcomes a majority of the shortcomings 

of conventional calibration schemes.  The primary advantage of Bayesian calibration is that it provides a most 

probable quantification of the uncertainty inherent in the calibration parameters and thus in the model outputs, 

allowing for probabilistic analysis, risk assessment, and confidence interval determination.  This provides a greater 

level of information than conventional deterministic calibration procedures.  Additionally, a model calibrated with 

Bayesian calibration yields the most probable uncertainty PDFs for the calibration parameters that is consistent with 

the observed data and prevents overfitting.  This means that future model outputs from the calibrated model should 

have minimal error with respect to future observed data, given that the future combination of parameters for 

observed data are within the uncertainty bounds of the calibration parameters in the model. Parameter screening and 

efficient sampling methods help reduce the cost of data collection and computational demand of Bayesian 

calibration.  A numerical example was included that highlights the application of Bayesian calibration to building 

energy modeling. 

 

NOMENCLATURE 
 

The nomenclature should be located at the end of the text using the following format:   

BEM building energy model   
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NREL National Renewable Energy Laboratory 

PDF probability density function 
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