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ABSTRACT

Deng, Nianpei. Ph.D., Purdue University, December 2014. Transport Studies of Reen-
trant Integer Quantum Hall States Forming in The Two-dimensional Electron Gas.
Major Professor: Gábor A. Csáthy.

The two dimensional electron gas subjected to a magnetic field has been a model

system in contemporary condensed matter physics which generated many beautiful

experiments as well as novel fundamental concepts. These novel concepts are of broad

interests and have benefited other fields of research. For example, the observations of

conventional odd-denominator fractional quantum Hall states have enriched many-

body physics with important concepts such as fractional statistics and composite

fermions. The subsequent discovery of the enigmatic even-denominator ν = 5/2

fractional quantum Hall state has led to more interesting concepts such as non-Abelian

statistics and pairing of composite fermions which can be intimately connected to

the electron pairing in superconductivity. Moreover, the observations of stripe phases

and reentrant integer quantum Hall states have stimulated research on exotic electron

solids which have more intricate structures than the Wigner Crystal.

In contrast to fractional quantum Hall states and stripes phases, the reentrant in-

teger quantum Hall states are very little studied and their ground states are the least

understood. There is a lack of basic information such as exact filling factors, temper-

ature dependence and energy scales for the reentrant integer quantum Hall states. A

critical experimental condition in acquiring this information is a stable ultra-low tem-

perature environment. In the first part of this dissertation, I will discuss our unique

setup of 3He immersion cell in a state-of-art dilution refrigerator which achieves the

required stability of ultra-low temperature. With this experimental setup, we are able

to observe for the first time very sharp magnetotransport features of reentrant integer

quantum Hall states across many Landau levels for the first time. I will firstly present



xii

our results in the second Landau level. The temperature dependence measurements

reveal a surprisingly sharp peak signature that is unique to the reentrant integer

quantum Hall states. Such a peak signature allows us to define the energy scale of

reentrant integer quantum Hall state. An analysis of the energy scales indicate the

collective nature of electron solid states. In the following I will present our results in

the third Landau level and higher Landau levels which are used in testing the bubble

theory predictions for the reentrant integer quantum Hall states. Currently there is

no direct experimental probe of the microscopic structures of the reentrant integer

quantum Hall states. Instead, by contrasting their energy scales, we find that cer-

tain predictions of the bubble theory are at odds with experimental data in the low

Landau level limit. Furthermore, an orbital dependent energy scale from the second

Landau level to the fifth Landau level is found which will provide useful insights in

determining the bubble structures of these reentrant integer quantum Hall states.

It must be appreciated that the reentrant integer quantum Hall states have only

been observed in the cleanest GaAs/AlGaAs samples. While the highest electron

mobility has been achieved in this system by Molecular Beam Epitaxy technique,

further improvements are still necessary to facilitate the study of fragile many-body

ground states. However, it is little understood that how different disorder which

limits the electron mobility affects the strength of the many-body ground states. In

the second part of this dissertation, I will present our work on the impact of alloy

disorder on the ν = 5/2 fractional quantum Hall state. This work is conducted in a

series of specially engineered GaAs/AlGaAs samples with controllable alloy disorder.

We are able to quantitatively measure the suppression of the ν = 5/2 fractional

quantum Hall state by alloy disorder scattering. Surprisingly, the ν = 5/2 state

is found to develop at significantly reduced mobility compared with the empirical

mobility threshold according to prior experiments. An analysis of the results indicates

that the short-range alloy disorder and the long-range Coulomb disorder play different

roles in the formation of the ν = 5/2 fractional quantum Hall state.
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1. INTRODUCTION TO THE GROUND STATES OF THE

TWO DIMENSIONAL ELECTRON GAS

The two dimensional electron gas (2DEG) subjected to a magnetic field has been

a fascinating system which exhibits astonishingly rich ground states that embody

important physics concepts. In 1980, Klaus von Klitzing and his collaborators dis-

covered the integer quantum Hall effect in a 2DEG confined to a silicon field effect

transistor [1]. As shown in Fig 1.1 the Hall resistance displayed a series of plateaus

of values quantized exactly to:

Rxy = h/Ne2 = RK/N ;N = 1, 2, 3, . . . (1.1)

The exact quantization of Rxy allows a precise measurement of the RK called the von

Klitzing constant. Quite remarkably the RK constant relates to the fine-structure

constant α = μ0c/2RK from quantum electrodynamics to an accuracy of 3×10−7 [2].

The von Klitzing constant is adopted as a resistance standard in metrology. The exact

quantization of Hall plateaus of the integer quantum Hall effect is a consequence of

a gapped energy spectrum of single electron (Landau levels) and disorder induced

single electron localization known as Anderson localization.

In 1982, D.C. Tsui, H.L. Stormer, and A.C. Gossard observed a similar Hall

plateau but quantized at Rxy = h/(1
3
e2) in a 2DEG confined to a GaAs/AlGaAs

heterostructure (see Fig 1.2) [3]. The newly emerged Hall plateau corresponds to the

fractional quantum Hall effect (FQHE) whose underlying physics completely differs

from that of the integer quantum Hall effect. Since the ν = 1/3 FQHE cannot be

explained by the single electron physics, it aroused instantly the theoretical interest

in searching for many-body solutions in which electron-electron Coulomb interaction

is taken into account. R.B. Laughlin firstly described the ground state of the ν = 1/3

FQHE with a particular many-body wavefunction and found its elementary excitation
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Figure 1.1. Magnetotransport data measured by Klaus von Klitzing
in a silicon MOSFET. The integer quantum Hall effect corresponds to
plateaus in Hall resistance UH and zero longitudinal resistance UPP .
The magnetic field was fixed while the gate voltage linearly changes
the electron density. Picture is taken from Ref. [1]

to be fractionally charged [4]. As more FQHEs at other fractions were discovered in

experiments, J.K. Jain proposed a different approach known as composite fermion

approach to account for a whole class of FQHE [5]. The existence of composite

fermion was further supported by numerous experiments and its many properties

such as effective mass, spin can be measured [7].

The discovery of ν = 5/2 FQHE further complicates the physics of 2DEG since

the ν = 5/2 FQHE does not belong to the conventional class of FQHE that originates

from the composite fermion approach [8]. Intensive theoretical study of the ground

state of ν = 5/2 FQHE has given rise to many profound concepts such as paired

composite fermions with Pfaffian correlations, non-Abelian quasiparticles [9–18] and

topologically protected quantum computing [19]. However, verifications of these con-
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Figure 1.2. Hall resistance ρxy and longitudinal resistance ρxx taken
by D.C. Tsui et al. at different temperature. The ν = 1/3 FQHE can
be clearly observed around a magnetic field of 150kG. The Picture is
taken from Ref. [3]

cepts are difficult tasks for experiments and research on the ν = 5/2 FQHE remains

very active.

While the ground states of integer quantum Hall effect, conventional and exotic

FQHE bear the general characteristics of a quantum liquid, a set of electronic solids

can also form in the 2DEG and receive wide interests. A typical example of elec-

tron solids is the two dimensional Wigner Crystal formed at extremely high magnetic

fields [21]. Such a periodic ground state is simply stabilized by strong Coulomb inter-

action between electrons. In relatively weak magnetic fields, more intricate electrons

solids such as stripe phase and bubble phase [22] can form and are believed to result

in peculiar transport phenomena, namely anisotropic resistivity and reentrant inte-

ger quantum Hall effect [23–25]. Among these transport phenomena, the reentrant
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integer quantum Hall effect has only been observed in GaAs/AlGaAs quantum well

structures. Strong phase competitions between the reentrant integer quantum Hall

effect with both stripe phase and FQHE render it a very attractive correlated ground

state to study.

In the following, a detailed introduction of creating quantum well in device as well

as 2DEG confinement is given in section 1.1; A theoretical background of the physics

of single electron subjected to a magnetic field is given in section 1.2; A review of the

theory on two dimensional electron solids in weak magnetic fields is given in section

1.3; A history of experimental study of electron solids is given in section 1.4; A brief

review of the composite fermion theory for the conventional FQHEs is given in section

1.5; A review of both experimental discoveries and theoretical research on ν = 5/2

FQHE is given in section 1.6; A discussion of GaAs/AlGaAs system in engineering

the cutting-edge 2DEG devices is given in section 1.7; Finally, an outline of the body

of this dissertation is given in section 1.8.

1.1 Confining An Electron Gas To A Quantum Well

The confinement of an electron gas to two dimensions is achieved by band en-

gineering. The first step of band engineering is to draw the band diagram of the

designed device structures composed of different materials. Since we only consider

the lowest energy state in each material, the complex band structure can be simpli-

fied with only two energies: one at the conduction band edge Ec and the other at

the valence band edge Ev. The energy difference Ec − Ev is equal to the band gap

Eg. Moreover, each material has a corresponding vacuum level. The vacuum level is

associated with the electron affinity χ which measures the energy required to excite

an electron from the conduction band to the vacuum level.

For one kind of charge neutral crystal material, the band diagram can be rep-

resented by three horizontal lines: two at Ec and Ev and one at the vacuum level.
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Vacuum levels 

Conduction band 

Valence band 

AlxGa1-xAs AlxGa1-xAs GaAs 
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Free 
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Figure 1.3. The band diagram of a sandwich structure
AlxGa1−xAs/GaAs/AlxGa1−xAs. The conduction band, valence band
and vacuum level are marked aside. Eg stands for the band gap and
χ is the electron affinity. The donor atoms as well as the excited elec-
trons are also drawn to demonstrate the modulation doping scheme.

When joining two different materials, the whole band diagram can be obtained by

aligning their vacuum levels according to Anderson’s rule [2]. As a consequence, the

band diagram may have a discontinuity in both Ec and Ev at the interface.

In the experiments described in this dissertation, all devices contain a sandwich

structure consisting of two materials: GaAs and AlxGa1−xAs. The latter is an inter-

mediate alloy between GaAs and AlAs. The physical properties of AlxGa1−xAs such

as lattice constant and bang gap can be approximated by linear interpolation between

that of the GaAs and AlAs. At a typical value of x = 0.3, such an alloy has a band

gap of 1.8eV which is larger than the band gap of 1.4eV in GaAs. Fig 1.3 sketches

the band diagram of this device structure AlxGa1−xAs/GaAs/AlxGa1−xAs. Since the

χ of GaAs and AlxGa1−xAs is 4.07eV and 3.74eV respectively, we can calculate the
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discontinuity in the conduction band to be 0.33eV. Therefore, a quantum well of a

height of 0.33eV is achieved in this device to confine the electrons in the direction

perpendicular to the interface.
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Figure 1.4. A simulated band diagram of an actual device using soft-
ware NextNano3. Only the conduction band is shown here by the blue
curve. In this device the silicon doping layers are grown at both sides
of the quantum well. The silicon doping is achieved by short-period
superlattice doping scheme. The modulus of the electron wavefunc-
tion of the lowest subband in the quantum well is shown by the red
curve.

The next step is to introduce the electrons into the quantum well. Instead of

placing Si donors directly into the quantum well, they are placed away from the

quantum well in a small region in AlxGa1−xAs. As indicated by the schematics in Fig

1.3, the excited electrons can then migrate to the quantum well and get trapped. This

doping scheme is called the modulation doping as the electrons are separated from

the donors [103]. A non-zero spatial charge distribution due to the ionized donors

and trapped electrons can modify the band diagram. A self-consistent simulation
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including both Si doping layers as well as electron gas in the quantum well is shown

in Fig 1.4 for a typical device used in experiments. In addition, the wavefunction of

the lowest energy subband of the quantum well is also shown in Fig 1.4, from which

we can see that electrons are mostly situated in the middle of the quantum well.

1.2 The Two Dimensional Electron Gas Subjected To A Magnetic Field

   
E 

N(E) 

N(E) 

E 

N=0 N=1 N=2 

Spin  
Gap 

Figure 1.5. The density of states for an electron confined to two
dimensions and subjected to a magnetic field. The upper plots shows
the density of states of a clean 2DEG where thick lines represent δ-
functions. Each Landau level numbered by N has two spin branches
separated by the spin gap. The lower plot shows the disorder induced
broadening of the density of states. The green part in the middle of
each density of states represents the extended electron states whereas
the red parts at both tails are the localized states.
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When the interface of a heterostructure is subjected to a magnetic field, the kinetic

energy of an electron confined to two dimensions becomes quantized at discrete energy

levels:

EN = (N + 1/2)hω;N = 0, 1, 2, . . . (1.2)

These energy levels are called Landau levels with N=0 referring to the lowest Landau

level, N=1 referring to the second Landau level and so on. When this system has an

area of S, the number of states in each Landau level shares the same value expressed

as:

2eBS/h (1.3)

Number 2 in the expression represents the spin degeneracy. The perpendicular mag-

netic field lifts the spin degeneracy and breaks the two dimensional density of states

into a sequence of δ-functions as shown in the sketch of Fig 1.5. By considering a

2DEG of density n in a unit area, the filling fraction of Landau levels can be derived

as:

ν = nh/eB (1.4)

The integer part of ν indicates the number of filled Landau levels whereas ν∗ = ν− [ν]

indicates the partial filling fraction of the topmost Landau level. In real systems, the

scattering of electron by disorder or other mechanisms is inevitable and the δ-function

density of states is consequently broadened with a width of Γ. Disorder not only

causes the broadening of the energy levels of electron but also induces localization of

many of the states in a Landau level (as shown in Fig 1.5). Such a localization caused

by random potential disorder is called Anderson localization [26]. Since a localized

state does not contribute to the currents, it is of great importance in explaining the

existence of quantized Hall plateaus in the integer quantum Hall effect.

Another important concept in the 2DEG subjected to a magnetic field is the edge

state. For convenience, the Landau gauge is adopted and the electron wavefunction

is solved as:

φnk = Hn−1

(
x− xk

lB

)
exp

(
−(x− xk)

2

2l2B

)
exp(iky); xk = −h̄k/eB (1.5)
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Figure 1.6. The bending of Landau levels as a function of the position
in x direction. The bending in x direction is caused by confinement
potential and the dash line represents the center in x direction. The
red dots at the crossing of Fermi level and energy levels represent edge
states.

Here the Hn are Hermite polynomials. Such a wavefunction describes an electron

traveling in y direction with a momentum of h̄k but localized at xk in the x direction.

While the electron density is uniform in the bulk, it gradually becomes depleted at

the edges so that the density gradient can create a large confining potential in the

x direction shown in Fig 1.6. The electronic potential is hence flat in the bulk but

increases rapidly at the edges. When the Fermi energy level lies between Landau

levels, the two crossings of it with each energy band correspond to the edge states.

The two edge states in each energy band are current carrying states with opposite

momenta. Due to the space separation, no back scattering will occur in the transport

of the edge states. Such a property of edge state results in a vanishing longitudinal

resistance in the integer quantum Hall effect.
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1.3 The Theory Of Two Dimensional Electron Solids In Weak Magnetic

Fields

In a weak magnetic field, the two dimensional electron solids (or strictly speaking

charge density waves) were firstly predicted by a Hartree-Fock study in 1996 [22].

In this study, three types of electron solids, i.e. stripe phases, bubble phases and

Wigner Crystal were found as the ground states in different filling factors. Subsequent

magnetotransport measurements in a 2DEG in 1999 indeed revealed new transport

features such as anisotropic resistivity and reentrant integer quantum Hall effect which

could be understood based on the predicted electron solids [23, 24]. The Hartree-

Fock theory of two dimensional electron solids is hence one of the few examples to

successfully predict many-body ground states in the two dimensional electron gas.

Guiding 
center RC 

Stripe phase Bubble phase Wigner Crystal 

Figure 1.7. The schematic drawing of the crystal pattern of three
types of electron solids predicted in the 2DEG. Each dot represents
the guiding center of an orbiting electron of radius RC . The stripes
represent a uniform distribution of electrons.

In a classical three dimensional crystal, each atom or molecule is arranged in a

position specified by fixed coordinates. In contrast, the two dimensional electron

solids subjected to a magnetic field consists of orbiting electrons whose individual

position can only be described by a wavefunction. In particular, the wavefunction

of electrons in the topmost Landau level has a ringlike shape with a radius of Rc

as shown in Fig 1.7. Rc is the cyclotron radius defined as h̄kF/eB where kF is the
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Fermi wave vector of the 2DEG. Such a wavefunction description of electron makes it

difficult to describe the electron solids with the location of electron itself. Instead, the

guiding center of the electron orbit is treated as the classical object in describing the

crystal order. A unique feature of the electron solids is that while their guiding centers

form a crystal, the actual charge density can have a relatively uniform distribution.

Such a distribution of charge density in turn lowers the Hartree energy.

The essential idea of Hartree-Fock theory is to minimize the energy for a many-

body wavefunction with variable parameters. In the study of two dimensional electron

solids, the guiding center density is the designated parameter function. The results of

the guiding center density function turn out to exhibit three types of crystal patterns

as shown in Fig 1.7 [22]. Here, we only consider the electrons in the partially filled

topmost Landau levels by using the partial filling factor ν∗. The remaining electrons

in the N filled Landau levels are considered inert. At ν∗ close to 0.5, the high density

of electrons results in a large overlap between adjacent electron orbits, and the pattern

is an alternation between uniform electron stripes and empty stripes. At ν∗ << 1/N ,

the electrons are quite sparse, and the pattern is a Wigner crystal with only one

electron in each unit cell. At ν∗ between above two limits, the electrons form a new

crystal (named bubble phase) similar to the Wigner crystal but with more than one

electron condensing into each unit cell. The cases of ν∗ > 0.5 can be related to that

of 1 − ν∗ by particle-hole symmetry. One important distinction between the stripe

phase and bubble phase as well as Wigner crystal is that the first one is anisotropic

while the latter two are isotropic.

The Hartree-Fock theory is not the only one to predict the formation of two

dimensional electron solids. Following works by numerical methods including exact

diagonalization [27] and density matrix renormalization group [28] also support the

existence of stripe phases and bubble phases in the third Landau level and even higher

ones. Moreover, the Hartree-Fock theory has been extended to the regime of relatively

high magnetic fields where the second Landau level is occupied [29]. The reentrant
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integer quantum Hall effect in the second Landau level, however, is quite different

than those in the higher Landau levels and remains to be an interesting topic.

1.4 Transport Signatures Of Electron Solids Discovered In Experiments

Figure 1.8. Longitudinal resistivity measured in the lowest Landau
level by R.L. Willet et al. At magnetic fields higher than the ν =
1/5 fractional quantum Hall effect, the resistivity increases rapidly
with lowering temperature. Such an insulating behavior is interpreted
as the formation of magnetically induced Wigner crystal. Picture is
taken from Ref. [20]

The Wigner crystal is the earliest electron solid believed to form in a two di-

mensional electron gas subjected to magnetic fields [21]. As shown in Fig 1.8, at

magnetic fields beyond the ν = 1/5 FQHE, the resistivity is large and increases with

lowering temperature [20]. The insulating behavior at such high magnetic fields can

be explained by the localization of the magnetically induced Wigner crystal. Due to

the strong magnetic field, each electron can be confined to an area of h/eB which

is occupied by a single magnetic flux. Therefore, the filling factor ν = nh/eB indi-

cates the ratio of the dimension of magnetically induced confinement to the average

inter-electron distance. At small ν and high magnetic fields, such a confinement is

much smaller than the inter-electron distance and the Coulomb interaction is able to
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stabilize the spatial crystal order of the 2DEG. In experiments, evidences of gapless

magnetophonon excitation as well as an electric-field threshold conduction were found

to support the existence of Wigner crystal in the limit of high magnetic fields [21].

Figure 1.9. Original data of stripe phase and reentrant integer quan-
tum Hall effect from R.R. Du et al. The largely anisotropic stripe
phases can be identified at ν = 9/2 and ν = 11/2 in the third Landau
level. The reentrant integer quantum Hall effect showed up at the
vertical dotted lines. Picture is taken from Ref. [24]

In weak magnetic fields, the first evidence of electron solids was found in the

magnetotransport measurements by two different groups [23, 24]. From the data

shown in Fig 1.9 [24], two prominent features can be observed in the third Landau

level of filling factor range 4 < ν < 6. The first one is the large anisotropy in the

longitudinal resistances Rxx at ν = 9/2 and ν = 11/2. The solid and dotted lines

were measured in mutually perpendicular directions or specifically crystalline axes

[110] and [11̄0]. The Rxx reaches a large maximum in one direction but vanishes in

the other direction. Such a feature is attributed to the formation of stripe phases
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at ν = 9/2 and ν = 11/2 such that the 2DEG can easily conduct in the same

direction of the stripes but hardly conduct in perpendicular direction to the stripes.

The underlying origin of the hard conducting direction is a pinning of stripe phases

by random disorder potentials. The second one is four emergent new Hall plateaus

at four vertical dotted lines drawn in Fig 1.9. These features were called reentrant

integer quantum Hall effect because the new Hall plateaus are separate from those

of the integer quantum Hall effect. Regardless of the direction of the measurements,

the regions of the reentrant integer quantum Hall effect look the same indicating

that they correspond to isotropic ground states. It has been widely believed that

bubble phases form in the reentrant regions. The discoveries of both stripe phases

and reentrant integer quantum Hall effect were not limited to the third Landau level.

In fact, depending on the quality of the 2DEG, these two effects can persist to very

high Landau levels.

More surprisingly, the reentrant integer quantum Hall effect was also discovered

in the second Landau level in 2002 [25]. One important difference between reentrant

integer quantum Hall effect in the second Landau level and that in higher Landau

levels is the number of reentrant integer quantum Hall effect. There are four reentrant

integer quantum Hall effects developing in each spin branch of the second Landau

level whereas there are only two reentrant integer quantum Hall effects developing in

each spin branch of higher Landau level (see Fig 1.10). According to the Hartree-

Fock theory, the reentrant integer quantum Hall effect in the second Landau level

are associated with two types of bubble phases: one-electron bubble phase and two-

electron bubble phase [29].

As shown in Fig 1.10, when the filling factor is close to ν = 3, the integer quantum

Hall effect occurs where electrons are randomly distributed and localized individually.

However, increasing the filling factor leads to the formation of the one-electron bubble

phase which is localized collectively due to a pinning by disorder potential. Therefore,

the bubble phases result in an insulating state in the bulk. Only the two edge states

can still contribute to the current flow and the Hall resistance remains the same as
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Figure 1.10. The discovery of reentrant integer quantum Hall effect
in the second Landau level from J.P. Eisenstein et al. In this plot
the upper spin branch of the second Landau level is shown and four
reentrant integer quantum Hall effects can be observed. Picture is
taken from Ref. [25]

that of the integer quantum Hall effect. At even higher filling factor, the electrons in

the topmost Landau level become more dense and they form the two-electron bubble

phase. The corresponding Hall features can be explained by the same reasoning for

the one-electron bubble phase.

The magnetotransport measurement is not the only experimental study of reen-

trant integer quantum Hall effect and stripe phase. It must be acknowledged that

other techniques such as nonlinear I-V characteristics, surface acoustic wave, mi-

crowave resonances have been applied to their studies [30–33]. Among these tech-

niques, the microwave resonance has been very powerful in probing the collective

pinning mode of the reentrant integer quantum Hall effect. However, so far none of

these experiments are able to probe the microscopic structures of the bubble phases.
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Figure 1.11. On the left is the strain dependent resistivity measured
in the reentrant integer quantum Hall effect in the third Landau level.
On the right are the topological textures around two different charge
defects which are predicted to cause such a strain dependent resistivity
of reentrant integer quantum Hall effect. Picture is taken from Ref.
[34]

Very recently, the strain effects have been investigated in the reentrant integer quan-

tum Hall effect in the third Landau level which reveal intriguing results on other

aspects of the bubble phases [34]. As seen in the Fig 1.11, the two resistivity peaks at

the boundary of each reentrant integer quantum Hall effect demonstrate very differ-

ent strain dependence. This experimental observation is explained by topologically

non-trivial textures which form around different charge defects. Such a theory of topo-

logical defects is likely of great importance in understanding the peculiar temperature

dependence of the reentrant integer quantum Hall effect.

Despite these experimental efforts devoted to the study of RIQHE, many im-

portant properties of RIQHE such as exact filling factors, temperature behaviors or

energy scales are still unknown. Furthermore, the reentrant integer quantum Hall
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effect in the SLL requires stringent experimental conditions like low temperature to

develop and very few data has been taken in this region. These topics hence become

the focus of part of this dissertation.

1.5 The Composite Fermion Theory

A powerful approach to account for the conventional fractional quantum Hall

effects is the weakly interacting composite fermion theory [6]. This approach is able

to map the fractional quantum Hall effect to the integer quantum Hall effect by a flux

attachment scheme. By binding each electron with a even number of flux quanta h/e,

a new particle called composite fermion is used to describe the 2DEG. In analogy

with the integer quantum Hall effect, the composite fermions occupy a set of new

Landau level and the filling fraction is ν
′
. The actual electron filling fraction ν can

be related to ν
′
by equation:

ν = ν
′
/(2pν

′
+ 1) (1.6)

where 2p is the number of flux quanta being attached. When ν
′
is an integer, it

corresponds to the fractional quantum Hall effect at ν of odd-denominator. For

example, the ν = 1/3 fractional quantum Hall effect can be explained by the ν
′
=

1 integer quantum Hall effect of 2-flux composite fermions. The 2-flux composite

fermions can be considered weakly interacting particles and experience a reduced

effective field of Beff = B − 2nh/e with n being the density of the 2DEG. When

B = 2nh/e or ν = 1/2, the effective field is zero and the ground state corresponds

to a fermion sea of composite particles. Indeed, this composite fermion sea has been

confirmed in experiments [6].

1.6 The ν = 5/2 Fractional Quantum Hall Effect

While the weakly interacting composite fermion theory has achieved great suc-

cess in constructing the hierarchy of odd-denominator FQHEs, the existence of even-

denominator ν = 5/2 FQHE becomes a direct violation of this theory. The composite
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fermion theory expects a composite fermion sea at ν = 5/2 which is similar to what

has been observed at ν = 1/2. However, R. Willett et al. discovered an incipient

FQHE at ν = 5/2 in 1987 as shown in Fig 1.12 [8]. The realization of an exactly

quantized Hall plateaus at ν = 5/2 was achieved by W. Pan et al. twelve years later

to corroborate the existence of ν = 5/2 FQHE [35].

Figure 1.12. Observation of ν = 5/2 FQHE by R. Willett et al. It
was noted that although a dip appears at ν = 5/2, it did not develop
further with decreasing temperature. Picture is taken from Ref. [8]

The Moore-Read Pfaffian wavefunction is believed to be the most prominent can-

didate in describing the ground state at ν = 5/2 [9]. The Pfaffian wavefunction has

intimate connection with the wavefunction of spin-polarized p-wave BCS supercon-

ductivity. It was found that in the medium of electrons of the two fully filled Landau

levels, the 2-flux composite fermions in the topmost Landau level can form a stable

pair state [15]. Due to the pairing of composite fermions, a gapped energy spectrum

appears instead of a continuous energy spectrum of composite fermion sea. It is noted
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that the pairing mechanism of composite fermions is different than the phonon me-

diated pairing of electrons in superconductivity. Such a composite fermion pairing is

an intrinsic property of strongly interacting 2DEG in magnetic field.

The Moore-Read Pfaffian wavefunction itself is a very interesting topic which has

attracted considerable theoretical attentions [10–18]. One important property of this

wavefunction is that the quasi-particles from the excitations of its ground state obey

non-abelian statistics. This is fundamentally different than the fractional statistics

of the quasi-particles in the conventional FQHEs. In fractional statistics, the inter-

change of two particles only results in a change of phase factor in the wavefunction.

However, in non-abelian statistics, the interchange of two particles leads to a new

wavefunction. The corresponding interchange can be regarded as a non-commutable

matrix operation. The non-abelian property of Moore-Read Pfaffian wavefunction

can be further utilized in a fault-tolerant topological quantum computation [19].

One important thing to mention is that it is very difficult to prepare a fully

quantized ν = 5/2 FQHE in experiments. Due to a small energy gap, one has to

fabricate a high quality device and to cool the device to very low electron temperature

(under 100mK). Although the theories predict an intrinsic energy gap of order of

Kelvins, the largest experimental value is only around 600 mK [36]. The reduction of

energy gap is mostly caused by disorder broadening of the energy levels. Therefore, in

order to increase the energy gap of ν = 5/2 FQHE and to then facilitate subsequent

experiments, the disorder effects on ν = 5/2 FQHE need to be elucidated.

1.7 Advantages Of The GaAs/AlGaAs System In Two Dimensional Elec-

tron Physics

The progress of discovering new ground states in the 2DEG is paralleled by contin-

uous improvements of its host devices. A key parameter in measuring the quality of
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Figure 1.13. History of the developments in the Molecular Beam
Epitaxy technique by L.N. Pfeiffer and K.W. West. The continuous
developments of MBE technique almost increased electron mobility
by a factor of 104 over the years. Picture is taken from Ref. [37]

the device is the electron mobility μ. The electron mobility is related to the transport

scattering time τ by expression:

μ =
eτ

m∗ (1.7)

where m∗ is the effective mass of electron. The mobility has a strong temperature

dependence due to temperature dependent phonon scattering rate but tends to satu-

rate at low temperature when phonons freeze out. Therefore we usually refer to the

low temperature mobility of the devices in studying 2DEG ground states.

The original device in which integer quantum Hall effect was discovered is a silicon

field effect transistor with an electron mobility limited to 10cm2/Vs. The interface

roughness between Si and amorphous SiO2 can cause strong scattering of electrons

which severely limits the electron mobility. By comparison, the observation of frac-

tional quantum Hall effect was achieved in a GaAs/AlGaAs heterostructure of which

the electron mobility reached 100cm2/Vs. Because the lattice constant of crystal

GaAs and AlAs differs less than 0.15%, layers of GaAs can be grown onto any inter-
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mediate alloy AlxGa1−xAs and the resultant interface is much cleaner to confine the

2DEG. Moreover, the free moving electron gas is introduced to the confinements by

modulation doping. One benefit of this doping scheme is that the electrons migrate

away from the ionized donors which further reduces the scattering due to ionized

impurities.

In order to engineer such a heterostructure, a sophisticated technique called Molec-

ular Beam Epitaxy is used to grow the desired structures with a precision of one

mono-layer of atoms [38]. Fig 1.13 recorded a series of developments to the Molecular

Beam Epitaxy technique which lead to significant increase of electron mobility [37].

As electron mobility of the device increased, more fragile fractional quantum Hall

effects such as ν = 5/2 fractional quantum Hall effect and reentrant integer quan-

tum Hall effect were discovered. Samples used in this dissertation have mobility over

107cm2/Vs in order to observe more robust ν = 5/2 fractional quantum Hall effect

and reentrant integer quantum Hall effect.

1.8 Outline Of This Dissertation

The dissertation is divided into following chapters: Chapter 2 describes the ex-

perimental setups. In this chapter I will briefly introduce the principles of dilution

refrigerator and the cooling procedures I routinely performed in the lab. The tem-

perature measurements were performed using two different thermometry: a resistor

thermometer and a quartz tuning fork viscometer. The electrical measurements setup

will be mentioned in the end.

In chapter 3 I will present a study of the temperature dependence of the magne-

toresistance of the reentrant integer quantum Hall effect in the second Landau level.

We find a unique peak signature which can be used to define the onset temperature

of the reentrant integer quantum Hall effect. From an analysis of the onset temper-

ature, we find that the Coulomb energy is the relevent energy scale of the reentrant

integer quantum Hall effect in the second Landau level. Such a finding indicates the
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collective nature of the reentrant integer quantum Hall effect in the second Landau

level.

In chapter 4 I will discuss the drastically different onset temperatures of the reen-

trant integer quantum Hall effect in the second and third Landau level. This finding

is in quantitative disagreement with the Hartree-Fock theory of the bubble phases

which is thought to describe these reentrant states. Our results indicate that the

number of electrons per bubble in either the second or the third Landau level is likely

different than predicted.

Chapter 5 continues the study of the reentrant integer quantum Hall effect in the

fourth and the fifth Landau levels. I will report a strong Landau level dependence

of the energy scales of reentrant integer quantum Hall effect. We find the cyclotron

energy scale becomes important in these reentrant integer quantum Hall effects in

high Landau levels. The Landau level dependence is possibly linked to the different

microscopic structures of bubble phases predicted in different Landau levels.

In chapter 6 I will report a separate study on the impact of alloy disorder on the

ν = 5/2 fractional quantum Hall effect. Alloy disorder is controlled by the aluminum

content x in the AlxGa1−xAs channel of a quantum well. We find that the ν = 5/2

state is suppressed with alloy scattering. To our surprise, in samples with alloy

disorder ν = 5/2 state appears at significantly reduced mobilities when compared

to samples in which alloy disorder is not the dominant scattering mechanism. Our

results highlight the distinct roles of the different types of disorder present in these

samples, such as the short-range alloy and the long-range Coulomb disorder.
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2. EXPERIMENTAL SETUP

Low electron temperature is a pivotal experimental condition in studying the corre-

lated ground states in a two dimensional electron gas. For example, early magneto-

transport data has shown that the reentrant integer quantum Hall effect (RIQHE)

develops at temperature lower than 50mK and has sensitive response to the temper-

ature changes [25, 39]. In order to reliably measure their magnetotransport features

and especially their temperature dependence, there are two major challenges: to cool

the actual electron temperature below 10mK; and to create a stable temperature en-

vironment of the sample. We overcome the challenges by implementing a home-made

3He immersion cell in a dilution refrigerator. In this chapter, I will review the basic

principles of dilution refrigerator and the setup of 3He immersion cell which we uti-

lize to further improve the base temperature of the refrigerator. I will discuss several

benefits of the 3He immersion cell to our experiments. One important benefit is that

the 3He immersion cell enables a quartz tuning fork viscometry. Such a quartz vis-

cometer can be used to accurately measure the temperature with a short relaxation

time. The 3He immersion cell can also create a stable temperature environment by

advantage of the large thermal mass of liquid 3He. The temperature stability is a

critical experimental condition in studying the fine transport features of the RIQHE

as well as their rapid temperature dependence.

Following the cooling of the samples, the magnetotransport data was obtained by

electrical measurements with standard lock-in technique. It is important that low

excitation is used in the measurements to avoid self-heating. I will describe our setup

of the electronics which satisfies these experimental conditions.
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2.1 The Dilution Refrigerator And Its Cooling Procedures

The 3He/4He dilution refrigerator has been an indispensable tool in studying low-

temperature quantum phases because of its capability to provide continuous cooling

in the milli-Kelvin regimes. The principle of dilution refrigerator was historically

proposed by Heinz London with a simple physics core: below 0.87 K the 3He/4He

mixture undergoes a phase separation into 3He concentrated phase and 3He dilute

phase and the enthalpy of the 3He in each phase is different [40]. Therefore, pumping

on the dilute phase causes the 3He to migrate from the concentrated phase into the

dilute phase. 3He absorbs energy in this process which leads to the cooling of the

environment. The finite concentration of 3He in the dilute phase at absolute zero

temperature limit is the key to an effective cooling in the milli-Kelvin regimes. In

contrast, pumping on the pure 4He liquid can only cool the system down to about 1

Kelvin since the vapor pressure vanishes exponentially as temperature decreases to

absolute zero.

Practically in our refrigerator, the cooling system consists of four stages specified

in Fig 2.1. The first stage is called 1 K pot where temperature is usually kept at

∼1.4 K by continuous pumping on the liquid 4He. With 1 K pot running steadily,

the mixture is condensed into the mixing chamber and filled up into the still. In

order to reduce the mixture temperature to below the phase separation point, we

start to pump on the still where the 3He evaporates more preferentially due to its

large vapor pressure compared to that of the 4He. The still hence serves as the second

cooling stage and is maintained at ∼600 mK by an attached heater for better cooling

power. As the phase separation continues, the cooling at the 3He/4He interface sets

in which can bring the mixing chamber temperature down to a base temperature

of ∼5 mK. The mixing chamber is the third cooling state and also the coldest part

in our refrigerator. To maintain the base temperature in the mixing chamber, the

evaporated mixture has to be liquified and cooled again through the first two stages

in their circulation path back into the mixing chamber.
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Figure 2.1. Schematic diagram of our custom-designed dilution re-
frigerator in Oxford Instruments. Dilute and concentrated phases of
3He/4He mixture are marked in the still and mixing chamber. The
yellow part represents the copper tail. See references in the Operator’s
Handbook of Oxford Instruments [43]

2.2 The 3He Immersion Cell

Although base temperature is already achieved in the mixing chamber, a direct

attachment of sample to mixing chamber fails to cool the actual electronic temper-

ature down to the base temperature. One of the main mechanisms responsible for

this is the Kapitza boundary resistance between the sample and its thermal environ-

ment [40]. The Kapitza boundary resistance mainly results from acoustic mismatch



26

which leads to the scattering of the phonon at the interface of different materials.

Since the Kapitza boundary resistance scales with T−3, it becomes increasingly diffi-

cult for the thermal energy to dissipate out of the samples at ultra low temperature.

One way to reduce this thermal resistance is to increase the contact area between the

two different materials.

5c
m

 

sample 

Heat exchanger 

Main Heat 
exchanger 

3He capillary 
(a) 

(b) 

(c) 

Figure 2.2. (a) The photo of 3He immersion cell; (b) The schematics
of the cell. The brown color represents copper, the black color repre-
sents silver and the translucent region represents the polycarbonate.
The quartz tuning fork viscometer is colored red. The heat exchang-
ers, sample and 3He capillary are marked aside; (c) The photo of a
GaAs/AlGaAs sample with eight heat exchangers soldered on corners.
This picture is taken from Ref. [41]

To solve this problem in our setup, we installed the fourth home-made cooling

stage, i.e. the 3He immersion cell. As seen in the Fig 2.1, the cell is connected to the

mixing chamber via a copper tail with a heat exchanger at its bottom [41]. The heat

exchanger contains compressed silver powder which ensures a large surface area in

contact with the outside. Fig 2.2 shows a more detailed schematics of the immersion

cell along with the actual photo of it. In addition to the main heat exchanger, there

are a dozen similar heat sinks to be soldered onto the indium contacts of the sample.
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Finally, the cell can be filled with liquid 3He condensed through a capillary which is

in good thermal contacts with the first three cooling stages.

There are three benefits of implementing the 3He immersion cell in our dilution

refrigerator. First, as a good thermal conductor the liquid 3He can take advantage of

the large surface area of all the silver powdered heat exchangers which are immersed

into it. Therefore the Kapitza boundary resistances between the sample and the cell

as well as the cell and the copper tail can be effectively reduced. A good thermal

equilibrium can be established between the sample and the mixing chamber through

the copper tail to cool the sample electrons to the mixing chamber temperature.

Therefore, the electron temperature in our sample can reach a record low value of

∼5 mK. Second, the 3He liquid is viscous at ultra low temperature and its viscosity

has a strong temperature dependence. By installing a quartz tuning fork in the 3He

immersion cell, we are able to measure the cell temperature or equivalently sample

temperature from a calibrated temperature-viscosity curve [41]. Since the viscosity

is magnetic field independent, the quartz tuning fork can accurately measure the

temperature in a strong magnetic field in our magnetotransport experiments. Third,

due to its large heat capacity, the 3He liquid can serve as a thermal ballast which

stabilizes the sample temperature. A stable temperature environment is a critical

experimental condition in capturing the sharp features of the RIQHE and in studying

their rapid temperature dependence.

2.3 Temperature Measurements

One of the main goals in our experiments is to measure the small energy gap of

the fragile fractional quantum Hall effect such as the ν = 5/2 fractional quantum

Hall effect. The largest contribution in experimental error of the energy gap comes

from temperature measurement since it is very difficult to determine the temperature

in ultra-low temperature regimes. For example, the Kapitza boundary resistance can

create a significant temperature difference between the thermometer and the environ-
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ment. In another words, it may take a long relaxation time for the thermometer to

reach equilibrium with the environment.

In our experiments we use two thermometers in temperature measurements: one is

the quartz tuning fork viscometer [41] and the other one is a calibrated Speer carbon

composition resistor [42]. The quartz viscometer is immersed in the 3He cell and the

Speer thermometer is installed onto the mixing chamber stage. As described above,

when the system is in equilibrium and the magnetic field is zero, both the quartz

viscometer and Speer thermometer should measure the same temperature. However,

when we are scanning temperature, the readouts of both thermometers can be quite

different. This is because the 3He immersion cell has a large thermal mass and its

temperature changes much slower than the mixing chamber. Nonetheless, since the

quartz thermometer is located near the sample, it can measure the sample tempera-

ture in real time. Consequently, we trust the readout of the quartz thermometer in

temperature scan experiments.

For magnetotransport measurements which are done at a constant temperature,

we use both thermometers but in different temperature regimes. Below 100 mK, we

choose the quartz viscometer by virtue of the strong temperature dependent viscosity

of the liquid 3He as well as zero magnetic field dependence. In contrast, the Speer

thermometer has weak magnetic field dependence and corresponding error may be-

come significant in such a low temperature regime. Close to 100 mK, however, the

viscosity of liquid 3He tends to be less sensitive with respect to temperature change al-

though we can still use the quartz viscometer through a nonlinear calibration. Above

200 mK, the viscosity of liquid 3He stays nearly independent of temperature. Instead,

we turn to the Speer thermometer for more accurate temperature measurements. It

is noted that the relative error of the Speer thermometer is very small in this tem-

perature regime. Fortunately, most many-body states such as RIQHE and ν = 5/2

fractional quantum Hall effect studied in this dissertation develop below 200 mK and

the quartz viscometer alone can satisfy all our needs for temperature measurements.
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While there are many methods to measure the viscosity of the liquid 3He, the

usage of quartz viscometer ensures a very fast measurement. The ideal model of the

quartz viscometer can be treated as a LRC circuit [41]. As related to the dissipation

component or namely resistor of this circuit, viscosity is found to be inversely pro-

portionate to the square root of the quality factor. Moreover, the quality factor is

linearly proportionate to the current specifically at resonance frequency. Therefore,

a relation between the resonance current of the quartz viscometer and the viscosity

of the liquid 3He can be established. By further converting the viscosity into tem-

perature, we are able to relate the resonance current directly to the temperature. In

reality, we find that the calibration curve of resonance current versus temperature for

a 20KHz quartz is almost linear under 100 mK.

The calibration of the quartz viscometer is very essential in each measurement.

During the calibration, we drive the quartz viscometer by an AC voltage genera-

tor [41]. Ideally, the in-phase component of the current of a RLC circuit should

have a frequency response function of a perfect symmetric Lorentzian shape. At

resonance, the in-phase current component reaches maximum while concomitantly

the out-of-phase current component becomes zero. However, the actual model of the

quartz involves a small capacitor in parallel with the LRC circuit which leads to an

asymmetry of the in-phase frequency response function. The resonance current in

this non-ideal model has no simple relation to the viscosity which can introduce sys-

tematic error on temperature measurements. To correct this asymmetry, we add a

cancellation capacitor by using a transformer [41]. We tune the cancellation capac-

itor to zero the out-of-phase current component at resonant frequency. This tuning

process is done once in zero magnetic field before the temperature calibration of the

resonance current of the quartz.

A practical issue of the quartz viscometer is that the new resonance frequency

needs to be located whenever the temperature changes. The frequency scanning

method can locate the resonant frequency but in a very time consuming way. In-

stead we turn to a self-lock circuit in measuring the quartz viscometer after tuning
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the cancellation capacitor [41]. This self-lock technique can instantly measure the

in-phase current at the resonant frequency by always locking the quartz viscometer

to its resonance point. In this self-lock mode, we then calibrate the quartz viscometer

by the Speer thermometer at several different temperature. We note that calibra-

tion coefficients have been very reproducible for the same quartz tuning fork during

different cooldowns.

2.4 Electric Setup For Resistance Measurements

The electrical measurements are performed after cooling down the sample in our

refrigerator. The most important elements in our electronic setup are lock-in ampli-

fiers. The lock-in amplifier is a very powerful electronic device in recovering a small

signal from a noisy environment. By using a reference signal of sinusoidal function,

the lock-in amplifier can measure the input signal in a very narrow frequency domain

at the reference signal frequency. Since the noise usually has a broad band width,

the lock-in amplifier is able to reject most of the noise to obtain the low-noise level

signal. Two lock-in amplifiers are used to measure the Hall voltage signal and longi-

tudinal voltage signal respectively while another lock-in amplifier is used to measure

the quartz tuning fork viscometer. In order to avoid self-heating effect in ultra-low

temperature, the sample is biased with a very low excitation current of 2nA. Since

the longitudinal voltage signal is normally very small, we further amplify it with

a low-noise preamplifier of gain 100 before the signal being input into the lock-in

amplifier.

We also note that a large noise can also come from the ground loop of our electron-

ics. The ground loop refers to a noisy potential difference between different grounds.

In our experiment, a ground loop can exist between the sample and the lock-in am-

plifier which adds a corresponding noise signal to the sample excitation. To break

the ground loop, we use a transformer of gain 1 to pass only the AC excitation signal

from the source module.
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The sample we measured in the refrigerator is a 4mm×4mm square with eight

indium-tin contacts on the four corners and the middle points of the four edges (shown

in Fig 2.2). To make the Ohmic indium-tin contacts, indium-tin is firstly deposited

onto the surface of the sample and then annealed in a forming gas atmosphere at 400

Celsius degrees for 10 minutes. Such a symmetric geometry of the contacts allows us

to measure the Hall resistance and longitudinal resistance in different configurations.

In reality, some of the contact configurations can produce a ”bad” trace of the mag-

netoresistance. For example, it is found that in measuring the longitudinal voltage,

one of the two sides can have a magnetic field dependent offset [44]. We test different

contact configurations to find an optimal one which exhibits the best features of the

magnetoresistance.

Finally, it is very convenient to measure the electron mobility of the sample in

this square geometry. In zero magnetic field, we use the Van der Pauw methods to

measure the electron mobility. This measurement can be done with the four corner

contacts. We drive a larger excitation current of about 1μA through one edge and

measure the voltage over the opposite edge. By rotating this configuration, we can

obtain four resistivity R1, R2, R3, R4 successively. When these four resistivity are of

close values, the sheet resistivity RS of the 2DEG can then be calculated from the

equation below:

RS =
π

ln2
×RA;RA = (R1 +R2 +R3 +R4)/4 (2.1)

The electron mobility can be calculated using equation μ = 1
neRS

. Here n is the areal

density of the 2DEG and e is the electron charge.

2.5 Conclusions

To sum up, in this chapter I describe the dilution refrigerator and the 3He immer-

sion cell installed in it. 3He immersion cell helps to cool the electron temperature to

as low as 5mK and to create a stable temperature environment. These experimental

conditions are critical in the study of the reentrant integer quantum Hall effects. I
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also describe our temperature measurements with both a quartz tuning fork viscome-

ter and the Speer resistor thermometer. The quartz tuning fork viscometer enables

magnetic field independent temperature measurements. In the end, I describe the

low excitation, low noise electronic setup in measuring the magnetoresistance of the

sample.
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3. THE COLLECTIVE NATURE OF REENTRANT

INTEGER QUANTUM HALL STATES IN THE SECOND

LANDAU LEVEL
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Figure 3.1. The Hall and longitudinal resistance measured from zero
magnetic field up to the second Landau level. The second Landau
level is measured at 6.9mK while the data at higher magnetic fields is
measured at 77mK. The lowest six Landau levels are labeled on top
axis with number 6 representing the sixth Landau level. The integer
quantum Hall states are marked at corresponding integer filling fac-
tors. The reentrant integer quantum Hall states are shaded by yellow
stripes and the stripe phases are marked by symbol S. The red trace
and the green trace are measured in mutually perpendicular direc-
tions along crystalline axes [110] and [11̄0]. This data is measured
in a high quality sample of mobility 15 × 106cm2/Vs grown by M.J.
Manfra group at Purdue. Part of the data is published in Ref. [114]
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There is an astonishingly large number of ground states discovered in the two

dimensional electron gas subjected to a magnetic field. In Fig 3.1, examples of rich

ground states in this system are shown in our best magnetotransport trace measured

in a high quality sample grown at Purdue. Among such a wide region of magnetic field

from 0 Tesla to nearly 6 Tesla, the second Landau level is so far the most interesting

region where correlated ground states of possible exotic nature keep emerging. Fol-

lowing the first observation of exotic even-denominator fractional quantum Hall state

(FQHS), several other FQHSs at ν = 2 + 1/3, ν = 2 + 2/3, ν = 2 + 1/5, ν = 2 + 4/5

and ν = 2 + 2/5 were also found to be fully quantized [35, 45]. Most recently, the

ultra-low temperature achieved in our lab has led to a discovery of exotic FQHS at

ν = 2 + 6/13 [36]. The eight reentrant integer quantum Hall states (RIQHSs) form

another set of prominent ground states in the SLL. They were historically discovered

by J.P. Eisenstein et al. at temperature below 50 mK and in a sample of electron

mobility over 3×107cm2/Vs [25]. Although their transport signatures are consistent

with electron localization in the topmost energy level [25], the nature of the local-

ization is not yet well understood. Depending on the relative importance of the

electron-electron interactions, the ground state can be either an Anderson insulator

or a collectively pinned electron solid.

FQHSs owe their existence to the presence of the inter-electronic Coulomb inter-

actions [4, 5]. Since FQHSs and RIQHSs alternate in the SLL, it was argued that

Coulomb interactions must be important and, therefore, the RIQHSs in the SLL

must be electron solids [25]. Subsequent density matrix renormalization group [46]

and Hartree-Fock calculations [29] also favored the electron solid picture and pre-

dicted the solid phase similar to the Wigner crystal, but having one or more electrons

in the nodes of the crystal. Recently reported weak microwave resonances in one

such RIQHS are suggestive of but are far from being conclusive on the formation of

a collective insulator [33]. Our understanding of the RIQHSs in the SLL, therefore,

is still in its infancy and the collective nature of these states has not yet been firmly

established.
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To understand the nature of RIQHSs, we conduct magnetotransport measure-

ments with varying temperatures. We discover a feature in the temperature depen-

dent magnetoresistance which so far has only been observed in the RIQHSs in the

SLL and which we use to define the onset temperature of these states. The scaling of

onset temperatures with the Coulomb energy reveals that Coulomb interactions play

a central role in the formation of RIQHSs and, therefore, these reentrant states are

exotic electronic solids rather than Anderson insulators. We also find an unexpected

trend of the onset temperatures within each spin branch. This trend is inconsistent

with current theories and can be understood as a result of a broken electron-hole

symmetry. Explaining such a broken symmetry of the RIQHSs is expected to impact

our understanding of a similar asymmetry of the exotic FQHSs of the SLL, including

the one at ν = 5/2.

3.1 Magnetotransport Signatures Of Reentrant Integer Quantum Hall

States In The Second Landau Level

We performed magnetotransport measurements on a high quality GaAs/AlGaAs

sample of density n = 3.0 × 1011cm−2 and of mobility μ = 3.2 × 107cm2/V s. The

sample is immersed into a 3He cell equipped with a quartz tuning fork viscometer

used for B-field independent thermometry.

In Fig 3.2 we show the dependence of the Hall resistance Rxy and longitudinal

resistance Rxx in the SLL on the magnetic field B (bottom scale) and on the Landau

level filling factor ν (top scale). Because of the lifted spin degeneracy, the lower of

the two energy levels of the SLL is occupied for 2 < ν < 3 hence the term lower spin

branch. 3 < ν < 4 corresponds to the occupation of the upper spin branch. Shown

in Fig 3.2 there are several regions of ν for which Rxy has plateaus quantized to an

integer, i.e. Rxy = h/ie2 with i = 2, 3, and 4. Of these plateaus the ones stretching at

ν < 2.17, 2.83 < ν < 3.17, and ν > 3.83 are quantized to h/2e2, h/3e2, and h/4e2 and

contain the filling factors ν = 2, 3, and 4, respectively. These regions are to the well
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Figure 3.2. The Hall and longitudinal resistance of the eight RIQHSs
in the SLL at 6.9 mK. The data of Hall resistance is published in Ref.
[113] and the data of longitudinal resistance is published in Ref. [117]

known integer quantum Hall plateaus. In contrast, other eight plateaus of Fig 3.2 are

quantized to an integer but are not centered around an integer ν. For example the

shaded region of Fig 3.2 labeled R2a exhibits Rxy = h/2e2 and it stretches between

2.26 < ν < 2.32, a region which does not contain ν = 2. These eight states are the

RIQHSs [25] and we label the ones located between 2 < ν < 3 with R2a, R2b, R2c,

and R2d and the ones betwee 3 < ν < 4 with R3a, R3b, R3c, and R3d. RIQHSs

have historically been predicted [22] and observed [23,24] in high Landau levels (i.e.,

ν > 4), but in contrast to the SLL, in high Landau levels there are only four RIQHSs

in each Landau level.
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Because of the delicate nature of the RIQHS in the SLL [25,36,39,45,47–54] there

is only scarce information available on their temperature dependence [39, 50, 53]. In

Fig 3.3(a) and 3.3(b) we show the detailed temperature evolution of the longitudinal

resistanceRxx andRxy ofR2b, respectively. TheRxx(B)|T=6.9mK curve has a wide zero

flanked by two sharp spikes. As the temperature is raised, the spikes in Rxx persist

but they move closer to each other and the width of the zero decreases. At 32.6 mK

Rxx(B) does still exhibit the two spikes but instead of a zero it has a nonzero local

minimum. The location in B field of this minimum is T independent and it defines

the center νc = 2.438 of the R2b state. At 35.7 mK the two spikes of Rxx(B) have

moved closer to each other and between them there is still a local minimum, albeit

with a large resistance. A small increase in T of only 2 mK leads to a qualitative

change. Indeed, in contrast to curves at lower T , Rxx(B)|T=37.7mK exhibits a single

peak only. As the temperature is further raised, this single peak rapidly decreases
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until it merges into a low resistance background. Simultaneously with the described

changes of Rxx, Rxy evolves from the quantized value h = 2e2 to its classical value

B/ne = h/νce
2.

3.2 Onset Temperatures And Stability Diagram Of Reentrant Integer

Quantum Hall States

The behavior seen in Fig 3.3 can be better understood by measuring T dependence

at a fixed ν. In Fig 3.4 we show Rxy versus T near the center νc of the various RQIHSs.

It is found that Rxy assumes the classical Hall resistance at high T and it is quantized

to h = 2e2 or h = 3e2 at low T . Since 80% of the change in Rxy between these

two values occurs over only 5 mK, this change is very abrupt and it clearly separates

the RIQHS at low T from the classical gas at high T . We interpret the inflection

point in Rxy versus T as being the onset temperature Tc of the RIQHS. For reliable

measurements in the vicinity of Tc the temperature is swept slower than 10 mK/h.

A transition from the classical Hall value to a quantized Rxy with decreasing

T is observed not only for the RIQHSs in the SLL but also in the vicinity of any

developed integer or fractional quantum Hall state and it is due to localization in the

presence of a B field. As seen in Fig. 4, the Rxx(T )|ν=fixed curves for the RIQHSs

are nonzero at high T , they vanish at low T , and they exhibit a sharp peak at the

onset temperature Tc defined above. In contrast, Rxx(T )|ν=fixed of a quantum Hall

state changes monotonically without the presence of a peak. We found no reports in

the literature of a similar peak in any other ground state of the 2DEG. The sharp

peak in Rxx(T )|ν=fixed is, therefore, a signature of localization so far only observed

in the RIQHSs of the SLL and the peak temperature can be used as an alternative

definition for the onset temperature Tc.

Fig 3.5 represents the stability diagram of the RIQHSs in the ν∗ − T plane. Here

ν∗ = ν − 2(3) is the partial fill factor of the lower (upper) spin level. As described

earlier, at a given ν the RIQHSs develop below the temperature of the peak in the
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Rxx(T )|ν∗=fixed curve. Such peaks are shown in Fig 3.4 for ν∗ ≈ ν∗
c , but similar peaks

are also present for nearby filling factors (not shown). Open symbols in Fig. 5 are

the temperatures of the peak as plotted against ν∗. Similarly, the RIQHSs develop

between the spikes of the Rxx(ν)|T=fixed curves, such as the ones shown in Fig 3.3(a)

The filling factors ν∗ of the spikes for each RIQHS measured at a given temperature

are marked with closed symbols in Fig 3.5. The excellent overlap of the two data

sets in Fig 3.5 shows that the two definitions used above selfconsistently define the

stability boundary of each RIQHS. The shaded areas within each boundary of Fig

3.5 represent the RIQHSs. FQHSs can develop only outside these shaded areas. The

locations ν∗
high and ν∗

low of the spikes of the Rxx(ν)|T=fixed curve measured at the

lowest T = 6.9 mK of our experiment are listed in Table 3.1.
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We note that the R2a state is different from the rest of the RIQHSs as it splits

into two RIQHSs with a decreasing temperature. Such a split is signaled by an Rxy

deviating from h = 2e2 as well as a nonzero Rxx in the vicinity of ν = 2 + 2/7 and

it has already been reported in Ref. [45]. The split-off RIQHS is marked as R2ã and

with a darker shade in Fig 3.5. We note that our data are similar to that in Ref. [25]

in that the Ria, i = 2, 3 is the most stable state. Other studies find the R2c state to

be the most stable of RIQHSs [33,39, 47–54].
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3.3 Particle-Hole Asymmetry

Each stability boundary shown in Fig 3.5 can be fitted close to their maxima with

a parabolic form Tc(ν
∗) = Tc(ν

∗
c ) − β(ν∗ − ν∗

c )
2. The obtained parameters are listed

in Table 3.1. Tc obtained from the fit is within 1 mK from the peak temperature

obtained from Fig 3.4. The centers ν∗
c of the RIQHSs in the upper spin branch

are in excellent agreement with the earlier reported values [25]. Those of the upper

spin branch, however, have not yet been documented and they differ significantly

from those of the lower spin branch. Indeed, ν∗
R2α �= ν∗

R3α for α = a, b, c, or d, the

difference being the largest for the states a and d. Such a difference is not expected

from the theory [29,46] and we think it is due to the interaction of the electrons in the

topmost Landau level with those in the filled lower levels. Furthermore, we establish

that the centers ν∗
c of RIQHSs in both spin branches obey particle-hole symmetry,

as assumed by the theory [29, 46]. In short ν∗
c,Ria = 1 − ν∗

c,Rid, ν
∗
c,Rib = 1 − ν∗

c,Ric for

i = 2, 3, relations which hold within our measurement error for the filling factor of

±0.003.

In contrast to the centers of RIQHSs, other parameters of RIQHSs from Table

3.1 do not obey particle-hole symmetry. These parameters are the maximum onset

temperatures Tc(ν
∗
c ), the fit parameter β describing the curvature of the stability

diagrams near Tc(ν
∗
c ), and the widths Δν = ν∗

high − ν∗
low of the stability regions of the

Table 3.1
Parameters extracted from the ν∗-T diagram. Tc and β are in units of mK.

R2a R2b R2c R2d R3a R3b R3c R3d

ν∗
c 0.300 0.438 0.568 0.701 0.284 0.429 0.576 0.712

Tc(ν
∗
c ) 53.0 37.1 45.8 38.0 46.3 32.3 36.1 33.8

β × 10−4 10 3.9 2.4 8.5 2.1 2.0 1.6 2.3

ν∗
high 0.317 0.461 0.613 0.719 0.324 0.463 0.621 0.742

ν∗
low 0.258 0.407 0.523 0.684 0.245 0.388 0.540 0.677
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RIQHSs at T = 6.9 mK Indeed, particle-hole symmetry within a spin branch would

imply a scaling of Tc with the Coulomb energy EC and, therefore, a monotonically

decreasing Tc(ν
∗
c ) with an increasing ν∗

c . Here EC = e2/εlB and lB =
√
h̄/eB is the

magnetic length. Data from Table 3.1, however, clearly show that contrary to this

expectation Tc(ν
∗
c = 0.568) > Tc(ν

∗
c = 0.438) [39]. We thus find that the particle-hole

symmetry within one spin branch assumed in current theories [29,46] is violated. The

nonmonotonic dependence of Tc on ν∗
c is, furthermore, at odds with the sequence of

the one- and two-electron bubbles suggested [29,46]. These findings are puzzling and

they show that there is still much left to be understood about the RIQHSs. Possible

causes include Landau level mixing, disorder, or finite thickness effects. The origin

of the broken symmetry described above is most likely related to and, therefore, it

will influence the understanding of a similar symmetry breaking of the Pfaffian and

anti-Pfaffian construction for the ν = 5/2 FQHS [55–62].

3.4 Scaling Of Coulomb Energy Between Two Spin Branches

The onset temperatures Tc(ν
∗
c ) in the higher spin branch are consistently smaller

than those in the lower spin branch. We notice, however, a startlingly similar depen-

dence within each spin branch. A particularly revealing plot is that of the reduced

onset temperatures Tc(ν
∗
c )/EC against the filling factor ν∗

c . As shown in Fig 3.6, there

is a surprisingly good collapse of Tc(ν
∗
c )/EC for the different spin branches. This col-

lapse shows that Coulomb interactions play a central role in the formation of the

RIQHSs in the SLL and provides direct evidence that these states reflect collective

behavior of the electrons rather than single particle localization. The lack of collapse

of Tc(ν
∗
c )/h̄ωC (not shown) means that Tc(ν

∗
c ) does not scale with the cyclotron energy

h̄ωC .

In a recent study an activated dependence of Rxx(T ) is found for the R2c state [53].

In our sample we find a significant deviation from such a dependence and, as a

consequence, the definition of an activation energy is no longer possible. Fig 3.7
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shows such a plot for the R2c state, together with the activated resistance of a suitably

chosen FQHS measured in order to rule out thermometry artifacts. Our data suggest

that nonactivated behavior might be an inherent property of the RIQHSs. The peak

in the Rxx(T )|ν=fixed curves could be due to interpenetrating RIQHS, a collective

low T insulator and the high T classical electron fluid. In such an interpretation the

nonactivated behavior seen in Fig 3.7 is a consequence of the coexistence of these two

phases.

3.5 Conclusions

In this chapter I report an unexpected sharp peak in the temperature dependence

of the magnetoresistance of the RIQHS in the second Landau level. This peak defines

the onset temperature of these states. We find that in different spin branches the

onset temperatures of the reentrant states scale with the Coulomb energy. This
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scaling provides direct evidence that Coulomb interactions play an important role in

the formation of these reentrant states evincing their collective nature
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4. CONTRASTING ENERGY SCALES OF THE

REENTRANT INTEGER QUANTUM HALL STATES

We continue similar investigation of reentrant integer quantum Hall states (RIQHSs)

in the third Landau level (TLL). In contrast to RIQHSs in the SLL, the RIQHSs in

the TLL develop in much higher temperature regimes (> 100 mK) and in a Landau

level where no FQHSs exist [23,24]. The number of RIQHSs also differs between the

two Landau levels since only four RIQHSs form in the TLL whereas eight RIQHSs

form in the SLL [25]. However, despite of these differences, their dc and microwave

transport data share similar features [23–25,31,33].

The theoretically predicted origins of RIQHSs in both Landau levels are associated

with the bubble phases but of different electronic structures, i.e. number of electrons

per bubble. In the second Landau level (SLL) both two and one electron bubble

phases are predicted to form [29] while in the third Landau level (TLL) only two

electron bubble phases are expected [27–29,63,65]. These theories, however, have their

limitations. The Hartree-Fock approach, the only one used for bubble phases both the

TLL [29,63] and the SLL [29], is exact only in the limit of large LL occupation [64,66],

and may therefore not capture all aspects of bubbles at the lowest LL occupation,

i.e. those in the second and third LLs. In addition, the presence of competing nearby

fractional quantum Hall states in the SLL [36,45] is likely to enhance fluctuations and

may therefore influence electron ordering. Finally, none of the theoretical techniques

include LL mixing, an electron-electron interaction effect known to strongly affect the

energy gaps of fractional quantum Hall ground states in the SLL [55,56,59,61,62,69,

70].

In this chapter, we will report sharp peaks in the temperature dependent longitu-

dinal resistance of the RIQHSs in the TLL which are similar to those of the RIQHSs in
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the SLL, highlighting their common origin. These sharp peaks allowed us to extract

the onset temperatures of the RIQHSs in the TLL which enabled a quantitative com-

parison of the RIQHSs forming in the TLL with those in the SLL as well as with the

theoretically predicted bubble phases. Our measurements of the onset temperatures

are at odds with the cohesive energy calculations obtained within the Hartree-Fock

approximation and indicate that the assignment of the RIQHSs to the various bubble

phases is likely different than predicted.

4.1 Magnetoresistance Of Reentrant Integer Quantum Hall States In The

Third Landau Level
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We measured a high quality 2DEG confined to a 30 nm wide GaAs/AlGaAs

quantum well with a density n = 2.8× 1011cm−2 and mobility 15× 106cm2/Vs grown

at Purdue.

In Fig 4.1 we show the longitudinal magnetoresistance Rxx and the Hall resistance

Rxy plotted against B and filling factor ν in the SLL and TLL. Here ν = nh/eB,

where h is Planck’s constant and e is the elementary charge. It is important to

appreciate that a completely filled orbital Landau level is spin-split into two distinct

energy levels and, hence, its filling factor is ν = 2. Therefore the lowest Landau level

corresponds to filling factors ν < 2, the SLL corresponds to 2 < ν < 4, while the TLL

to 4 < ν < 6.

The well known integer quantum Hall states are seen in Fig 4.1 as plateaus in

Rxy quantized to h/ie2, with i = 2, 3, 4, 5, and 6. Each of these plateaus straddle

the corresponding integer filling factor ν = i. As B is varied, Rxy deviates from

these plateaus. There are, however, other regions for which Rxy returns to an integer

quantization but, in contrast to the plateaus of the integer quantum Hall states,

these plateaus develop at ranges of ν which do not contain any integer values. These

features define the RIQHSs [23–25, 30]. As an example, the RIQHS labeled R2c in

Fig 4.1 has Rxy = h/3e2 and it stretches between 2.54 < ν < 2.60, a region which

does not contain any integers. Quantization of Rxy is accompanied by a vanishing

Rxx. Altogether, in the SLL there are eight RIQHS labeled R2a, R2b, R2c, R2d,

R3a, R3b, R3c, and R3d [25], while in the TLL there are only four such states labeled

R4a, R4d, R5a, and R5d [23,24]. The RIQHSs are clearly marked and shaded in Fig

4.1.

In Fig 4.1 we also identify anisotropic ground states called stripe phases [22,66] in

the vicinity of ν = 9/2 and 11/2 [23,24], a very strong fractional quantum Hall state

(FQHS) at ν = 5/2 [8] with a gap of 0.50 K, a well quantized ν = 2+2/5 FQHS, and

we discern developing FQHSs at ν = 2+ 6/13, 2 + 2/9, 2 + 7/9, and 2 + 3/8 [36,45].

We also observe a split-off RIQHS at B-fields exceeding that of the R2a state which

was discovered in Ref. [45] and studied in detail in previous chapters. In addition to
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these known aspects, we observe a new feature in the Hall resistance at B = 5.196 T

or ν = 2.214. This feature is a clear deviation from the classical Hall line and it may

signal the development of another RIQHS.

4.2 Common Transport Signatures In The First Two Excited Landau

Levels
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Figure 4.2. The evolution with temperature of the R4a RIQHS of the
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another and the reentrant region is shaded. This data is published in
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In the following we establish two common transport signatures of the RIQHSs in

the SLL and TLL: spikes flanking the vanishing regions of the Rxx versus B curves

and a peak in the temperature dependent Rxx. These findings further strengthen the

argument that the RIQHSs of different LL have similar origins.

One similarity between the RIQHSs in the SLL and TLL we find is the presence of

two sharp spikes in the flanks of the vanishing region of the Rxx versus B curves, i.e.

the edges of the shaded areas of Fig 4.1. Such spikes are known to be present in the

flanks of the RIQHSs in the SLL [36,45] and now we observe them in the TLL as well.

With the exception of the data in Ref. [71], earlier Rxx versus B curves showed a single

broad peak in the region separating the RIQHS from the nearby integer plateaus; the

width at half height of this peak for RIQHSs near ν = 9/2 was measured to be about

0.05 T. In contrast, our data in Fig.1 at the corresponding fields, i.e. in the range of

2.7 ÷ 2.85 T, has a more complex structure which exhibits a sharp spike at 2.72 T

of width 0.016 T. We think that the richer structure in Rxx and the presence of the

sharp spikes are due to an improved sample uniformity.

Contrary to a previous report [72], in our sample there are no magnetoresistance

features which may be associated with a FQHS in the TLL. We find that the ν =

4 + 1/5 and 4 + 4/5 filling factors, as seen in Fig 4.1 and in Fig 4.2, are part of the

complex behavior of Rxx described above. Local minima do develop, but they are not

located at ν = 4 + 1/5 or 4 + 4/5 and, furthermore, they are not accompanied by a

quantized Hall plateau in Rxy (not shown) in the 6.9 to 300 mK temperature range.

Thus, in our sample there is no evidence for the formation of any FQHS in the TLL.

We find that the temperature evolution of Rxx of the RIQHS in the TLL and that

of RIQHSs in the SLL share the following common features: at the lowest temper-

atures there are two well separated spikes of finite resistance flanking the vanishing

Rxx, with increasing T these two spike merge into a single peak, and this peak diss-

apears into a smooth background with a further increase in T . Such a temperature

dependence for the R4a state of the TLL is shown in Fig 4.2. We define the center of

a RIQHS as the location νc at which the extent of the vanishing Rxx plateau is nearly
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zero. For example, the curve at 128 mK of Fig 4.2 exhibits a R4a state of nearly zero

width at νc = 4.287. The partial filling factor ν∗
c is the decimal part of νc, and values

for the various RIQHSs are summarized in Table 4.1.

A second shared feature of the RIQHSs in the TLL and in the SLL is the similar

Rxx and Rxy versus T curves measured at a fixed ν. In Fig 4.3 we show such curves

for the R4a and R4d states of the TLL in close vicinity to their respective central

filling factors. As the temperature is increased the Hall resistance undergoes an

extremely abrupt change from the nearest integer quantized value to the classical Hall

value B/ne = h/νe2. Simultaneously with the sharp change in Rxy the longitudinal

resistance Rxx for the R4a state exhibits a sharp peak of width at half height of
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only 10 mK. We have recently reported similar dependences of both Rxy and Rxx of

the RIQHSs in the SLL of a higher density sample and have interpreted the peak

temperature as the onset temperature Tc of the RIQHSs. We thus find that a peak in

the Rxx versus T curves accompanied by a sharp transition of Rxy from the classical

Hall to a quantized value is not specific to the SLL, but is also a property of the

RIQHSs forming in the TLL.

The Rxx and Rxy versus T curves for the R3a, R3b, R3c and R3d states of the

upper spin branch of the SLL are also shown in Fig 4.4 while those for the R5a and

R5d states of the upper spin branch of the TLL are shown in Fig 4.5.

4.3 Contrasting Energy Scales

As we mentioned in the beginning, there are severe differences between RIQHSs

in the SLL and TLL which need to be quantatively examined.

We firstly compare the locations, i.e. the filling factors of the RIQHSs. Surpris-

ingly, the filling factors of the RIQHSs in the TLL have not yet been measured with

high precision [23–25, 30]. Inspecting Table 4.1 we find that R2a, R3a from the SLL

and R4a, and R5a from the TLL develop at similar partial filling factors. Indeed,

ν∗
c |R3a = ν∗

c |R4a = ν∗
c |R5a within our measurement error of ±0.003. Furthermore, this

common value is in close proximity to ν∗
c |R2a. Nonetheless, we measure a significant

Table 4.1
Central filling factors ν∗

c and onset temperatures Tc of the RIQHSs measured.

R2a R2b R2c R2d R3a R3b R3c R3d

ν∗
c 0.300 0.438 0.568 0.700 0.288 0.430 0.576 0.713

Tc[mK] 45.3 29.8 39.9 29.5 38.1 25.4 31.0 25.5

R4a R4d R5a R5d

ν∗
c 0.287 0.714 0.286 0.714

Tc[mK] 145 125 111 100
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difference between the common value of ν∗
c |Ria, with i = 3, 4, 5 and ν∗

c |R2a. This is seen

in Fig 4.6 as an alignment of data points associated with R3a, R4a, and R5a onto

a vertical dashed line and a slight horizontal departure of the point associated with

R2a from this line. A similar alignment occurs for the particle-hole symmetric states
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R2d, R3d, R4d, and R5d. We summarize thus that RIQHSs Ria with i = 2, 3, 4 and

5 form at similar partial filling factors and yet theory favors different types of order

for these states: one-electron bubbles or WS at R2a and R3a [29] and two-electron

bubbles for R4a and R5a [27–29,63,65].

As a further test we examine the energy scales of the RIQHSs. The cohesive

energy of the bubble phase Ecoh is readily obtained from the Hartree-Fock theories

[22, 29, 63, 65, 66]. It is customary to calculate the reduced cohesive energy ecoh =

Ecoh/Ec, where Ec = e2/4πεlB is the Coulomb energy and lB =
√
h̄/eB the magnetic

length. Experimentally we measure the onset temperature Tc and we consider the

reduced onset temperature tc = kBTc/Ec. Fig 4.6 summarizes the tc of the RIQHSs in

the SLL and TLL as function of ν∗
c . We assume that, within the bubble interpretation,
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the onset temperature of a RIQHS is a measure of its cohesive energy [67]. We find

that the reduced onset temperatures tc of the RIQHSs in the SLL and TLL are more

than 2 orders of magnitude smaller than the reduced cohesive energies ecoh = Ecoh/Ec

of the associated bubble phases [22, 29, 63, 65, 66]. We think this difference is most

likely due to disorder and Landau level mixing effects which are not included in

the Hartee-Fock estimations [22, 29, 63, 66]. Furthermore, similarly to the results in

previous chapter, in the SLL we find a good collapse of tcs from different spin branches

and a non-monotonic dependence of tc of ν∗
c . As shown in Fig 4.6, tc in the TLL is

in the vicinity of 16 × 10−4, but the collapse of values from the two different spin

branches is not as good as for the RIQHSs in the SLL.
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Our most remarkable finding is the disproportionately large energy scales of the

RIQHSs in the TLL as compared to those in the SLL. The most striking disagree-

ment is between the RIQHSs R4a and R2b believed to be two-electron bubbles. The

theory predicts similar cohesive energies eR4a
coh /e

R2b
coh ≈ 1.2 [29]. In contrast to these

predictions, we measure a large difference in the onset temperatures tR4a
c /tR2b

c = 6.4.

We also find eR4a
coh /e

R2a
coh ≈ 1 [29], while we measure tR4a

c /tR2a
c = 4.3. Taken together,

we conclude that there are clear quantitative inconsistencies between the measured

and calculated energy scales of the RIQHSs. We note that, within the SLL, the mea-

sured and theoretical energy scales of R2a and R2b states compare surprisingly well:

tR2a
c /tR2b

c = 1.5 and eR2a
coh /e

R2b
coh ≈ 1.2 [29].

One scenario which could account for our onset temperature data is that, contrary

to the theory [29], all of the RIQHSs in the SLL are bubble phases of the same type

and those in the TLL are bubbles of a different kind. We cannot, however, discard the

possibility that the RIQHSs of the second and third LLs are the same type of bubble

phases. The large difference in onsets could be caused by an effect dependent on LL

occupancy. Because of the presence of one extra filled LL, screening of the disorder

potential in the TLL is expected to be more effective than that in the SLL [22, 73].

The substantially larger onsets of the RIQHSs in the TLL as compared to those in

the SLL could thus be a consequence of a smoother effective disorder potential due

to screening of one extra filled LL.

Finally we note that there are two recent reports of reentrant behavior in the

lowest LL in 2DEGs forming in GaAs/AlGaAs hosts. One such observation is made

in a heterostructure which has short range neutral scattering centers [101]. Another

experiment was performed on wide quantum wells [68]. In both of these experiments

reentrance has been associated with the formation of electron solids similar to the

WS since electron-electron interactions in the lowest LL are not expected to promote

electronic bubble phases [63]. However, the relationship between these electron solids

and those in higher LLs we have studied is not understood at this time.
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4.4 Conclusions

To conclude, the reported common features in the transport of the RIQHSs both in

the TLL and SLL, together with the reentrant behavior and radiofrequency response,

support the idea that the RIQHSs belong to the same family of ground states, ir-

respective of the LL they form in. These features are qualitatively consistent with

the bubble interpretation of these phases. We found, however, that the very differ-

ent energy scales of the RIQHSs in different LLs are inconsistent with quantitative

predictions of the theory of the bubbles. This disagreement is suggestive of an as-

signment of the RIQHSs to bubble phases different than that proposed by the theory.

Our results call for further work in order to elucidate the nature of the RIQHSs.
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5. ORBITAL DEPENDENCE OF THE REENTRANT

INTEGER QUANTUM HALL STATES

In previous two chapters, I have discussed the reentrant integer quantum Hall states

(RIQHS) in both the second Landau level (N = 1) and the third Landau level (N =

2). The RIQHSs are not only developing in the first two excited Landau levels (LL),

but can develop in much higher Landau levels. In fact, the ground states of RIQHSs,

i.e. the bubble phases were historically predicted in high Landau level limit [22, 66].

However, in current dc as well as microwave transport experiments on RIQHSs, the

highest Landau level being measured is only the lower spin branch of the fourth or

N = 3 Landau level [23, 24, 30, 31]. Therefore, there is a lack of data to study how

these electron solids evolve with different Landau levels. For instance, the Landau

level dependence of the number of electrons per unit cell remains largely unknown.

Furthermore, as mentioned in the introduction, there is very little work in under-

standing finite temperature behavior of the RIQHSs. The peaks we have observed

in the temperature dependence of the RIQHSs indicate an unusual melting mecha-

nisms of these special electron crystals [74]. Interestingly, a recent experimental and

theoretical study of the RIQHSs in the third Landau level (N = 2) claims that the

topological defects play an important role in the melting [34]. It therefore raises an

question whether such a theory can be generally applied to other RIQHSs both in

the second Landau level and in even higher Landau levels.

In this chapter we study the temperature dependent magnetoresistances of fully

developed RIQHSs in Landau levels of N = 1, 2, 3 and 4. The capability of preparing

RIQHSs in Landau level as high as N = 4 in our system enables an examination of

the evolution of RIQHSs with Landau levels. Combining with our previous data of

RIQHSs in the N = 1 and the N = 2 Landau levels, we find the sharp peaks are
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universally present in the temperature dependent longitudinal resistance of RIQHSs

in all four Landau levels. By utilizing these peaks, we can extract onset temperature

Tc to characterize the energy scales of their ground states. We find an intriguing trend

of Tc that it changes smoothly within each LL but increases abruptly at the transitions

between successive Landau levels. More strikingly, in scales of cyclotron energy, the

reduced Tc is nearly independent of ν within each Landau level but strongly depends

on the Landau level index N . We interpret such a function of reduced Tc versus N

to be the first evidence of the Landau level dependence of the internal structures of

bubble phases. Further comparison between the Landau level dependence of Tc and

cohesive energy predicted in Hartree-Fock theory indicates the melting of RIQHSs is

unusual which can not be simply explained by thermal dislocation in crystal phases.

5.1 Magnetotransport Signatures Of Reentrant Integer Quantum Hall

States In High Landau Levels

The sample we used in this study is the same as the one in which we contrast

the energy scales of the N = 1 and N = 2 Landau levels. In Fig 5.1 we plot the

longitudinal resistivity Rxx and Hall resistivity Rxy of the sample against B field

(bottom scale) and ν = nh/eB (top scale) measured in a filling facotr range of

4 < ν < 10 at 58 mK. In this filling factor range, there are three Landau levels: the

N = 2 LL spans 4 < ν < 6; the N = 3 LL spans 6 < ν < 8; and the N = 4 LL

spans 8 < ν < 10. Due to the large B field, each Landau level contains two split spin

branches. There are two types of quantum Hall ground states identified in these high

LLs by their well-defined features in Hall resistivity Rxy. The first one is the integer

quantum Hall state (IQHS) with Hall plateau centered at each integer i. At ν = i,

the quantization of corresponding plateau accurately assumes the value h/ie2. The

second one is the reentrant integer quantum Hall states associated with the other Hall

plateaus which do not cross any integer [23,24]. Away from each ν = i, the Rxy firstly

deviates towards the classical Hall line and then returns to such plateaus quantized
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Figure 5.1. The magnetoresistances in the third (4 < ν < 6), the
fourth (6 < ν < 8) and the fifth (8 < ν < 10) Landau levels are mea-
sured at 58 mK with RIQHSs in shaded regions. The Rxx traces are
longitudinal resistivity measured in mutually perpendicular crystal
axes [110] and [11̄0]. This data is taken from Ref. [116]

exactly at h/ie2. Simultaneously, the Hall plateaus in both IQHS and RIQHS is

accompanied by vanishing Rxx. For example, the RIQHS labeled R4a in the N = 2

LL shows a Hall plateau and vanishing Rxx centered at ν = 4.287 which is separate

from those of the IQHS at ν = 4. We note that in the N = 3 and N = 4 LLs the

separation of the Hall plateaus of neighboring IQHS and RIQHS is less discernible

while a distinct peak in Rxx still separates them. The RIQHSs are shaded green and

labeled as R4a, R4d, R5a, R5d in the N = 2 LL, R6a, R6d, R7a, R7d in the N = 3

LL and R8a, R8d, R9a, R9d in the N = 4 LL. The well developed reentrant features

in the Landau level as high as N = 4 demonstrate very high quality of this sample.

Besides the RIQHSs, the stripe phases are also identified by their large anisotropy in

Rxx measured in perpendicular crystal axes [110] and [11̄0] and shaded in yellow in

Fig 5.1 [23, 24].
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Figure 5.2. A comparison of the magnetoresistance of the lower spin
branch between N = 1 at 6.9 mK and N = 2, 3, and 4 Landau levels
at 58mK. Dotted trace in N = 2 Landau level is measured at 128mK,
showing the typical evolution of the Rxx with respect to temperature.
This data is taken from Ref. [116]

Fig 5.2 shows a direct visualization of the filling factors of RIQHSs in different

Landau levels from N = 1 to N = 4. Since the RIQHSs in the N = 1 LL develop
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at much lower temperture, the trace of N = 1 LL was taken at 6.9 mK while those

of N = 2, 3,and 4 were taken at 58mK. For simplicity due to particle-hole symmetry,

only the lower spin branch of each Landau level is plotted against the partial filling

factor ν∗ where ν∗ is the fractional part of ν. From Fig 5.2, we clearly observe that

the filling factors of R2a, R4a, R6a and R8a overlap with each other around ν∗ = 0.3,

indicating a similar origin of bubble phase. The filling factors of their particle-hole

conjugate states R2d, R4d, R6d and R8d overlap around ν∗ = 0.7. In the N = 1

LL, however, there are two extra RIQHSs R2b and R2c while in higher Landau levels

the corresponding filling factors are occupied by stripe phases. While Hartree-Fock

theory predicts the same two-electron bubble phase in the R2b and R4a but one-

electron bubble phase in the R2a [29], our comparisons of their energy scales reveal

a contradiction to this assignments. Indeed, the energy scale of R4a is found to be

five times larger than those of R2a and R2b which share similar values. Accordingly,

we propose a different scenario that all RIQHSs in the N = 1 LL are bubble phases

of the same type and those in the N = 2 LL are bubble phases of a different kind.

5.2 Evolution Of Transport Signatures With Landau Levels

We have established a generic evolution pattern of Rxx with temperature T for

the RIQHSs in both N = 1 and N = 2 LLs. At the lowest temperature, there are

two spikes of finite resistance flanking the vanishing Rxx. With increasing T , the

two resistance spikes move towards each other and the vanishing region of Rxx turns

into a local minimum. Such a minimum is shown in the dotted trace of elevated

T = 128mK in the R4a in Fig 5.2. We define the filling factor at the minimum as

the central filling factor νc of corresponding RIQHS. As T increases further, the two

resistance spikes merge into a single peak and the single peak disappears rapidly into

a smooth background at higher T . For the RIQHSs in the N = 3 and N = 4 LLs, we

observe similar temperature evolution pattern in their Rxx so that exact νcs can be

measured for the total eight RIQHSs and are summarized in Table 5.1. Additionally,
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Figure 5.3. The magnetoresistance Rxx and the Hall resistance Rxy

of two RIQHSs in the lower spin branch of the N = 3 Landau level
measured at ν = 6.31 and ν = 6.72. This data is taken from Ref. [116]

the T -dependent Rxx in RIQHSs in the N = 3 LL has demonstrated more complex

features which are discussed in the end.

The temperature evolution pattern can be equivalently demonstrated by perform-

ing temperature scans at any fixed ν in the RIQHSs. Fig 5.3 shows both Rxx and

Rxy versus T for the R6a and R6d in the N = 3 LL at ν near their respective central

filling factors. As the temperature increases, we observed a sharp change in Rxy from

integer quantized value to the classical Hall value B/ne = h/νe2. Simultaneously,

with the sharp change in Rxy, a peak of width at half height of only 15 mK is observed

in Rxx for the R6a. Such a peak has been a unique signature of RIQHS and has not

been demonstrated in the temperature dependence of any IQHS or FQHS. Similar
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curves for the R7a and R7d states in the upper spin branch of the N = 3 LL are also

shown in Fig 5.4.
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Figure 5.4. The magnetoresistance Rxx and the Hall resistance Rxy

of two RIQHSs in the upper spin branch of the N = 3 Landau level
measured at ν = 7.32 and ν = 7.72. The dots in the Rxy on the right
panel are not experimental data but extrapolation of the solid curve.

In order to study the evolution of this peak signature with respect to the Landau

level, we include in Fig 5.5 similar data measured in the N = 1 and N = 2 LLs.

For clarity, only the first RIQHS in each Landau level, namely R2a,R2b, R2c and

R2d, are selected to show in the Fig 5.5. From Fig 5.5, we find that RIQHS in the

N = 1 LL is obviously distinct from the RIQHSs in higher Landau levels in terms

of very low Tc as well as the narrowest peak of width at half height of only 5 mK.

Such an extremely sharp peak indicates a first-order transition from crystal phase to

liquid phase which agrees with the findings from recent thermoelectric study of the
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RIQHSs in the N = 1 LL [74]. In the N ≥ 1 LLs, with increasing LL index N , Tc

consistently decreases while the width of the peak is broadened. By viewing their

peak signatures as the thermal resonances of the bubble phases, the broadening of

the peak may suggest a less rigid crystal or increased sensitivity of these crystals to

disorder with increasing Landau levels [65].
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Figure 5.5. The temperature dependence of magnetoresistance mea-
sured near the center νc of reentrant states R2a, R4a, R6a, R8a. This
data is taken from Ref. [116]

The T -dependent Rxx at fixed filling factor near νc allows us to extract the onset

temperature Tc with high precision. Tc is defined at the peak which corresponds to

the transition temperature from the bubble phases to the classical electron liquids.

We summarize the values of Tc measured in the N = 3 and N = 4 LLs in Table

5.1 while those in the N = 1 and N = 2 LLs can be found in Table 4.1 in previous

chapter. We plot Tc measured near νc against magnetic field for the RIQHSs in all

four Landau levels in the Fig 5.6. We find that Tc decreases nearly linearly with

increasing Bc within each LL except for a relatively large fluctuation of Tc in the

N = 1 LL which contradicts the particle-hole asymmetry. Between successive LLs,
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however, there is an abrupt change of Tc. For instance, from N = 2 to N = 3 LL, Tc

of the R6a at Bc = 1.825T has a sudden increase of 23 mK compared with Tc of the

R5d at Bc = 2.013T. Such a discontinuity at successive Landau levels clearly shows

a strong Landau level dependence of Tc.
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Figure 5.6. Onset temperature Tc measured near the center filling
factor νc of each RIQHS. The Tc is plotted against the magnetic field.
This data is taken from Ref. [116]

Table 5.1
Center filling factors νc and onset temperatures Tc of RIQHSs in the
fourth and the fifth LLs.

R6a R6d R7a R7d R8a R8d R9a R9d

νc 6.302 6.703 7.298 7.709 8.299 8.727 9.283 9.731

Tc(νc) 123 116 106 102 110 109 100 101
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5.3 Landau Level Dependence Of The Energy Scales Of Reentrant Inte-

ger Quantum Hall States

In the following, we analyze the energy scales of the RIQHSs by using their onset

temperatures Tc. We assume that under bubble phase interpretation, the Tc can be

used as a measure of the cohesive energy predicted by theory. We note that the

theoretical study of cohesive energy in high Landau level limit adopts a characteristic

energy unit of cyclotron energy Ecyc = h̄eB/m∗ where m∗ = 0.067me is the effective

electron mass in GaAs. Surprisingly, after scaling Tc with Ecyc in Fig 5.7a, we find it is

nearly independent of ν within each Landau level but depends strongly on the Landau

level index N . This is consistent with the linearity of Tc against Bc within each LL

observed in the inset of Fig 5.6. Such a scaling with Ecyc is clear in N ≥ 1 Landau

levels which indicates the particle-hole symmetry of the four RIQHSs is preserved.

In the N = 1 Landau level, however, we found Tc scales better with Coulomb energy

and reported a particle-hole asymmetry. One possible explanation for this difference

given by Ref. [63] is that in high Landau levels (N ≥ 1) the length scale of the crystal

ground state is determined by cyclotron radius of valence LL electrons instead of the

magnetic length. Consequently, the new length scale sets an effective Coulomb energy

which is proportional to the cyclotron energy. However, we cannot rule out the other

possibility that the melting mechanism of RIQHSs in the N = 1 LL is fundamentally

different than that of the RIQHSs in higher LLs and Tc measured in N = 1 LL scales

with a different energy scale.

To better understand the Landau level dependence of Tc/Ecyc, we average Tc/Ecyc

over each LL and plot it against N in Fig 5.7b. An increasing trend of Tc/Ecyc

with respect to N can be obviously seen in this dependence and it is opposite to the

predicted dependence of cohesive energy in the largeN limit [22]. Such a disagreement

between experiment and theory is puzzling and may result from several possibilities.

One is that our highest measured Landau level is still much under the theoretical high

Landau level limit and hence can not be captured by Hartree-Fock approximation.
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Second, the Hartree-Fock models do not consider the effects of disorder or LL mixing

which can have great impacts on the energy scales of many-body states such as

FQHSs. Despite of the disagreement, our data rigorously shows a strong Landau

level dependence of the energy scales of RIQHSs. This Landau level dependence may

indicate that the internal structure of RIQHS (specifically number of electrons per

bubble) changes with Landau levels, contributing to their different energetics.

We note that a recent study suggests a very unique melting mechanism of bubble

phases which may account for the peak signature observed in our temperature depen-

dence measurements of RIQHSs [34]. Instead of classical melting due to dislocation,

the topological defects in the bubble phases can lead to an early onset of the melting

with increasing temperature. Quite remarkably, this theory predicts an onset tem-

perature of about 100 mK for the RIQHSs in the N = 2 LL which is in the range

of our measured values. However, to establish this theory in other RIQHSs, similar

calculations of Tc in other Landau levels are need to compare with our data.

Finally we have observed a possible phase split in the RIQHSs of N = 3 LL. Fig

5.7 shows the temperature dependence of Rxx for the R6a of the N = 3 LL as an

exemplary case. Similar to the lowest temperature features of RIQHSs in the N = 1

and N = 2 LLs, only one vanishing region of Rxx is flanked by two spikes at 58 mK.

However as T is increased by 20 mK, a new spike marked c emerges at ν = 6.246 while

the original two spikes evolve into a and b. We interpret the new spike as a separation

of reentrant regions that they corresponds to two different bubble phases. The split-

off RIQHS centered around a different νc 6.227 is labeled R6ã and the two RIQHSs

are shaded accordingly. The subsequent temperature dependence of both R6a and

R6ã follow the established evolution pattern of RIQHSs in the N = 1 and N = 2 LLs.

As to R6a, the merging of two spikes into a single peak can be clearly seen in the

trace of 121 mK. Since R6ã is much weaker than R6a, however, the expected single

peak is obscured by the high resistance background of R6a. Quite interestingly, we

note that the Hartree-Fock theory indeed predicts two different bubble phases in the
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N = 3 LL. The temperature dependence of RIQHSs of the N = 3 LL are reminiscent

of a phase split reported in the R2a of N = 1 LL [45].

5.4 Conclusions

To sum up, in this chapter, I study the RIQHSs in the fourth and the fifth Landau

levels. By including the data in the second and the third Landau level, a strong

Landau level dependence of the energy scales of RIQHE is found. Their energy scales

normalized by cyclotron energy shows nearly no dependence on filling factors within

each Landau level but strong dependence on the Landau orbital index N. Such a clear

Landau orbital dependence is likely associated with different microscopic structures
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of bubble phases predicted in different Landau levels. Furthermore, a comparison

of our data and Hartree-Fock theory hints an unusual melting mechanism of these

intricate bubble structures and provides inputs to its understanding.
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6. THE ν = 5/2 FRACTIONAL QUANTUM HALL STATE

IN THE PRESENCE OF ALLOY DISORDER

While in previous three chapters I have reported the study of reentrant integer quan-

tum Hall states in many different Landau levels, I will turn to discuss our experiments

in the same system of two dimensional electron gas but on a different topic: how dis-

order in our samples affect the exotic ν = 5/2 fractional quantum Hall state (FQHS)

in the second Landau level.

In the temperature regimes of fractional quantum Hall states, the acoustic phonon

scattering of electron is negligible. The low temperature electron scattering in a high

quality GaAs/AlGaAs samples are mainly due to the disorder introduced during

growth such as the remote ionized silicon donors, unintentional background impurity

or interface surface roughness [38]. The ionized silicon donors are randomly dis-

tributed in a thin layer at a setback distance from the quantum well and can create

fluctuating Coulomb potential. Such a disorder potential has a relatively long range

with a length scale set by the setback distance of ∼100nm. The unintentional back-

ground impurity can be either charged or neutral and are uniformly distributed in the

GaAs/AlGaAs lattice. Although it has a low concentration on the order of 1013/cm2

in the best samples, it can have more influence on the electrons in the quantum well.

In fact, in the state-of-the-art samples grown by MBE, the unintentional background

impurity becomes the dominant disorder mechanism [38]. It has been predicted that

electron mobility will exceed 100×106cm2/Vs if the concentration of unintentional

background impurity is below 1012/cm2 [75]. Finally, the surface roughness at the

interface of the quantum well is usually modeled as neutral and short range disor-

der of sub-nanometer length scale. Similarly, the neutral unintentional background

impurity also has a short range but strong scattering potential. This short range dis-
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order potential is responsible for the large-angle scattering of the electrons compared

with the small-angle scattering due to a slow varying, long range Coulomb disorder

potential.

In general, the disorder effects on single particle states are well understood. Exam-

ples of fundamental importance are Anderson localization [26] and universal plateau-

to-plateau transition in the integer quantum Hall effect [76]. Localization in the

presence of the disorder is also important in topological insulators [77] and in atomic

condensates [78]. In contrast, understanding disorder in correlated electron systems

continues to pose serious challenges. The interplay of disorder and interactions has

witnessed renewed interest in the two-dimensional electron gas (2DEG) in connection

to the stability of the exotic fractional quantum Hall states [79–81] and in graphene

due to the observation of a wealth of FQHSs using local detection [82].

The FQHS at Landau level filling factor ν = 5/2 is one example of a correlated

ground state which has attracted considerable attention [8, 25, 35, 36, 39, 45, 47, 49,

51, 83–91]. This is because of the putative exotic Pfaffian-like correlation in the

ground state at ν = 5/2 and of the non-Abelian quasiparticle excitations [9, 10, 12].

Non-Abelian quasiparticles may be used to realize topological qubits, building blocks

of fault-tolerant quantum computers [19]. Furthermore, since the Pfaffian can be

mapped into a paired wavefunction with a p-wave symmetry [9, 10, 15], the ν = 5/2

FQHS is intimately connected to p-wave superconductors [92], Majorana physics in

superconductor-semiconductor hybrid devices [93], and superfluid 3He [94].

The effect of the disorder on the ν = 5/2 FQHS remains largely unknown [79–81].

Disorder is a key factor in limiting Δ5/2, the energy gap of the ν = 5/2 FQHS, to

less than 0.6 K [36, 39, 83]. Measurements of this state must therefore be conducted

at either dilution or nuclear demagnetization refrigerator temperatures, which render

these studies time consuming [35, 95]. However, in the disorder-free limit Δ5/2 is

predicted to be as high as 2 K at the typical electron density of n = 3 × 1011/cm2

[60,70,96–98]. Understanding disorder in the ν = 5/2 FQHS is thus expected to lead

to an increased energy gap with the following benefits toward fundamental tests of
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the nature of this state: a) experiments may be conducted at higher temperatures,

possibly in 3He refrigerators, with shorter turn-around times allowing for extensive

investigations b) improved signal-to-noise ratio in experiments on nanostructures in

which the edge states of the ν = 5/2 FQHS are probed [47,88–90] and c) exponentially

enhanced topological protection in qubits [19].

Studies of disorder require the capability of its control. In this Letter we report

on a quantitative inquiry of the impact of a specific type of short-ranged disorder,

alloy disorder, on the ν = 5/2 FQHS. We investigated a series of specially engineered

samples in which all parameters but the alloy disorder remain constant by design [99].

Specifically, we measured Al0.24Ga0.76As/AlxGa1−xAs/Al0.24Ga0.76As quantum wells

in which the electrons are confined to the AlxGa1−xAs alloy and which have different

values of the aluminum molar fraction x [99]. Since the disorder is added to the

electron channel during the Molecular Beam Epitaxy (MBE) growth, it is controlled

and precisely quantified. Disorder is found to suppress the energy gap of the ν = 5/2

FQHS. However, to our surprise we find strong ν = 5/2 FQHSs in alloy samples at

values of the electron mobility at which this state does not develop at all in the highest

quality alloy-free samples. The mobility threshold for the formation of the ν = 5/2

FQHS in the alloy samples is thus much reduced as compared to that in the alloy-free

samples. Our results indicate that the engineering of the exotic FQHSs, such as the

one at ν = 5/2, is critically dependent on the different length scales of competing

disorders present in the 2DEG: the short-range alloy and interface roughness disorder

and the long-range Coulomb disorder.

6.1 Impact Of Alloy Disorder On The Magnetoresistance Of The Second

Landau Levels

A sketch of the active region of our alloy-free reference sample and of a sample

containing alloy disorder are shown in the insets of Fig 6.1. The sample growth

procedure and characterization of our samples at T = 300 mK can be found in
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Ref. [99]. Some important common parameters of the samples are listed as following:

1. the width of the quantum well is 30 nm; 2. the capping GaAs layer is 10 nm

thick; 3. the electron gas is 200 nm deep under the sample surface; 4. the setback

distance between the dopants and the quantum well is 75 nm on both sides of the

well [99]. The alloy content x, electron density n, electron mobility of different samples

are summarized in Table 6.1. By varying x between 0.00057 to 0.0046, we estimate

the average Al-Al distance within the electron channel of our samples ranges from

5.3-2.7 nm. In comparison, the unintentionally added charged impurities during the

MBE growth are estimated to have a concentration of about 1013/cm3, therefore their

average separation is close to 0.5 μm [38,79].

The preparation of the electronic state is the same for each sample. Samples

are cooled in our wet dilution refrigerator to about 5 K in the dark. Samples are

then heated up to 10 K and are illuminated for 10 minutes with a red light emitting

diode (LED). In order to maintain the same conditions for the LED illumination in

different measurements, the LED is placed in a similar position with respect to each

sample and the same bias current of 1 mA is used. After illumination, the sample is

Table 6.1
A summary of alloy content x, electron density n(1011/cm2), mobility
μ(106cm2/Vs), scattering rate 1/τ(1/ns), energy gap Δ5/2(mK) of the
ν = 5/2 FQHS, and R150mK

5/2 (Ω) of the measured samples.

x n μ 1/τ Δ5/2 R150mK
5/2

0 3.08 20 1.3 569 27

0.00057 2.91 6.5 4.0 543 48

0.00075 2.88 5.0 5.2 360 83

0.0015 2.90 3.6 7.3 347 131

0.0026 2.70 2.7 9.7 199 209

0.0036 3.08 2.2 12 127 198

0.0046 2.82 1.7 15 - -
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slowly cooled to 5 K over 2 hours, after which we proceed to condensing the He3-He4

mixture. Once most of the mixture is condensed, we start filling our He3 immersion

cell.

We note that MBE-controlled alloy disorder was first introduced to 2DEGs in

Ref. [100]. However, in these samples [76, 100, 101] the ν = 5/2 FQHS has not

been observed. In contrast, our samples have several essential features which are

optimized for a strong ν = 5/2 FQHS even in the presence of the disorder. First,

the 2DEG is confined to a symmetrically doped quantum well rather than a single

heterointerface. This allows for a higher electron density, enhancing therefore fragile

FQHSs. Second, we use a reduced Al content 0.24 in the Al0.24Ga0.76As barriers, which

enhances the ν = 5/2 FQHS [25, 81, 102]. Third, we use a short period superlattice

doping scheme [103], which is known to yield a strong ν = 5/2 FQHS [38,79,102].

It is important to appreciate that only the alloy disorder is different in each sample.

All other sample parameters, however, are left virtually unchanged. In order to

avoid any density dependent effects the electron density is kept constant, close to

n � 2.9 × 1011/cm2. Specifically, in our samples 2.70 × 1011/cm2 ≤ n ≤ 3.08 ×
1011/cm2. Furthermore, the alloy content x of the electron channel AlxGa1−xAs is low

when compared to that in the confining Al0.24Ga0.76As. There is therefore virtually

no variation of the electronic effective mass m and of the electronic confinement in

the direction perpendicular to the plane of the 2DEG [104]. Other parameters held

constant include the position of the 2DEG relative to the sample surface and the

thickness of the capping layer [105].

Fig 6.1 shows the magnetoresistance Rxx and the Hall resistance Rxy of the alloy-

free reference sample, i.e. for which x = 0, measured at T = 7 mK in a van der Pauw

geometry. The figure is limited to magnetic fields B for which the filling factor ranges

between 2 < ν < 3, commonly referred to as the lower spin branch of the second

Landau level. Because of the high quality growth and sample design described earlier

we observe strong FQHSs at ν = 5/2, 2+1/3, and 2+2/3 as indicated by vanishingRxx

and quantized Rxy [8, 106]. Other more fragile FQHSs are also seen in Fig.1 [36, 45].
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Figure 6.1. Magnetoresistance Rxx and Hall resistance Rxy in the
reference sample with x = 0 (top panel) and the alloy sample with
x = 0.0036 (bottom panel) as measured at 7 mK. Numbers indicate
the filling factors of various FQHSs and insets are sketches of the
sample structure. This data is published in Ref. [115]

Alloy disorder strongly affects magnetoresistance. This can be seen in the traces

of the sample with x = 0.0036 gathered at 7 mK, which are also shown in Fig.1.

The most fragile FQHSs, such as the ν = 2 + 2/5, 2 + 1/5, and 2 + 4/5 FQHSs,

are destroyed. The FQHS at ν = 5/2, however, remains fully quantized in spite of
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the presence of alloy disorder. Indeed, at this ν there is a vanishing Rxx and the

rigorously quantized Rxy = 2h/5e2, which holds to a precision of 1 part in 103.

6.2 Activated Temperature Dependence In Alloy Samples

Next we have investigated the temperature dependence of the ν = 5/2 FQHS.

Thermalization of electrons in our experiment is assured by the use of a 3He immer-

sion cell [35, 41] and temperature measurements of the 3He bath below 100 mK are

performed with the aid of a tuning fork viscosity thermometer [41]. At the lowest

temperatures T the magnetoresistance of the ν = 5/2 FQHS follows an activated

form Rxx ∝ exp(−Δ5/2/2T ), from which we extract the energy gap Δ5/2. The Fig

6.2 shows the temperature dependence of Rxx at ν = 5/2 on an Arrhenius plot, i.e.

lnRxx as function of 1/T . The presence of the linear segment indicates that trans-

port is activated. In the alloy-free reference sample we find a record high energy gap

Δ5/2 = 569 mK [36].

The Fig 6.2 also shows the T -dependence of Rxx at ν = 5/2 in two representative

alloy samples with x = 0.00075 and x = 0.0036. The presence of linear segments

at non-zero x means the survival of activated transport even in the presence of alloy

disorder. It is, therefore, meaningful to extract energy gaps in the alloy samples as

well. Values found are summarized in Table 6.1 and are plotted as function of x in

Fig 6.3. We find the Δ5/2 has a decreasing trend with an increasing x. At the largest

value of x = 0.0046 we studied, we no longer observe a FQHS at ν = 5/2. A linear

fit to the data passing through the point associated with the x = 0 reference sample

shows that the gap closes at the extrapolated value of x � 0.0042. We note that the

error in Δ5/2 as determined from the Arrhenius fits is estimated to ±10%. However,

in Fig.2 there is also scatter in the data possibly caused by small variations in the

sample densities and slight variations from the target value of the alloy content x.
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6.3 Impact Of Alloy Disorder On The Energy Gap Of The ν = 5/2 State

The aluminum fraction x in our alloy samples is clearly a measure of the added

disorder. In the literature the most commonly used metric for the disorder is the

mobility μ. Early work on the ν = 5/2 FQHS found that the energy gap of the state

correlates well with the mobility. It was found that a higher μ resulted in a larger

Δ5/2 and the ν = 5/2 FQHS does not develop for mobility less than the threshold

value μC � 10 × 106cm2/Vs. Later it became apparent that there is in fact a poor

correlation between Δ5/2 and μ [81, 84]. Nonetheless, a threshold μC below which a

ν = 5/2 FQHS does not develop was still identified. The shaded area of Fig 6.4 shows

the stability region of the ν = 5/2 FQHS in high quality alloy-free samples at densities

2.65× 1011 ≤ n ≤ 3.2× 1011/cm2 close to that of our samples [25,36,39,80,81,83,84].
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hence the excluded shaded area. This data is published in Ref. [115]

These data are taken from the literature. A threshold value μC � 7× 106cm2/Vs for

these alloy-free samples is clearly seen.

Fig 6.4 also shows that a strong ν = 5/2 FQHS with Δ5/2 = 127 mK develops in

the alloy sample with μ = 2.2 × 106cm2/Vs. This is surprising, since at such a low

mobility a ν = 5/2 FQHS has never been observed. Indeed, this mobility is much

below the the previously established μC � 7 × 106cm2/Vs threshold in high quality

alloy-free samples. We thus found that the mobility threshold for a fully quantized

ν = 5/2 FQHS is significantly lowered in the presence of alloy disorder and, therefore,

the ν = 5/2 FQHS is robust to the presence of alloy disorder. Furthermore, we

conclude that alloy disorder does not appear to be as detrimental to the development

of the ν = 5/2 FQHS as the residual disorder unintentionally added during sample
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growth. The gap Δ5/2 for our alloy samples closes at an extrapolated new threshold

of μalloy
C � 1.8× 106cm2/Vs.
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Figure 6.4. The dependence of Δ5/2 on inverse mobility 1/μ and
the electronic scattering rate 1/τ of our samples (closed symbols)
and of alloy-free samples from the literature with densities near
2.9 × 1011/cm2. In our alloy samples the ν = 5/2 FQHS survives
at surprisingly high 1/μ and, therefore, low μ. The arrow indicates a
sample in which the ν = 5/2 FQHS does not develop. This picture is
taken from Ref. [115]

It is important to appreciate that not only our samples have controllably added

alloy disorder but, with the exception of the sample with x = 0.00057, alloy disorder is

the dominant scattering mechanism. This is the case because the electron scattering

rate in our alloy samples 1/τ exceeds the residual scattering rate of the alloy-free

reference sample 1/τresidual = 1.3ns−1 [99]. Here τ = μm/e is the transport scattering
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time. As seen in Fig 6.3, Δ5/2 is linearly decreasing with 1/τ with the slope of

41 mK·ns. Furthermore, we find that the gap extrapolates to zero near 1/τ � 15 ns−1.

Since Al is a neutral impurity, when added to a perfect GaAs crystal, it perturbs

the crystal potential on sub-nanometer length scale. The alloy disorder we study

thus generates a short-range scattering potential [100]. In a recent experiment a

different type of short-range disorder, that due to surface roughness scattering, was

investigated [80]. It was found that in a heterojunction insulated gate field-effect

transistor Δ5/2 increases with a decreasing mobility, a result which is opposite to our

findings. One reason for this discrepancy is that in Ref. [80] the electron density

is increased as the mobility is decreasing. The quantitative effect of the disorder

on the energy gap in Ref. [80], therefore, remains difficult to extract. Indeed, the

dominance of the short-range scattering could not be ascertained and the gap altering

effects of the combination of changing density and wavefunction confinement were not

disentangled from that of the disorder [80]. In two other experiments, the effect on the

ν = 5/2 FQHS of a different type of disorder, that due to the remote ionized dopants

was investigated [79,81]. It was found that increasing the level of the remote dopants

leads to the strengthening of the ν = 5/2 FQHS [81]. A systematic dependence of the

energy gap on overdoping, however, remains unavailable to date. Our results thus

highlight the effect of the short-range alloy disorder on the stability of the ν = 5/2

FQHS, whereas the effect of other important types of disorder, such as those of

the long-range Coulomb potentials of dopants and of background impurities, remain

unknown.

The lack of correlation of Δ5/2 and μ in alloy-free samples reported in the literature

remains an outstanding puzzle [81, 84]. We propose that such a lack of correlation

between Δ5/2 and μ appears because a) a well defined Δ5/2 versus μ correlation

exists when only one type of disorder dominates and a single heterostructure design

is employed and b) for each kind of disorder the Δ5/2 versus μ functional relationship

is different. In other words, because high quality alloy-free samples most likely have

a different mix of the various disorders and because Δ5/2 and μ track differently
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for each specific type of disorder, the result is a lack of correlation of Δ5/2 and μ

when an analysis of dissimilar samples is undertaken. In contrast, when in a series

of similar samples one type of disorder dominates, such as in our experiment, Δ5/2

and μ should be correlated. We suggest that the quasi-linear correlation of Δ5/2

and μ in our alloy samples shown in Fig 6.3 supports the above hypothesis. This

hypothesis, however, remains to be tested in instances in which various other types of

disorder are dominant. A natural consequence of our analysis is that μ measured at

zero B-field, and the single-particle lifetime measured in the low B-field semi-classical

regime [107] are poor measures of the impact of the disorder on many-body ground

states developed at large B-fields [38, 79–81]. We note that we have measured the

single-particle lifetime τq for our series of samples and found no obvious correlation

with Δ5/2.

6.4 Correlating Low Temperature Resistivity With The Energy Gap Of

The ν = 5/2 State

As seen in the Fig 6.2, above 100 mK there is little or no change with temperature

in the magnetoresistance Rxx at ν = 5/2. According to the CF description, in this

regime the system is described by a Fermi sea of the CFs in a zero effective magnetic

field [5,108]. We find the temperature-independent Rxx value above 100 mK correlates

with the amount of disorder. The values of R150mK
5/2 , the saturation value of Rxx at

150 mK measured at ν = 5/2, are listed in the Table 6.1. We notice that, R150mK
5/2

increases with an increasing x. According to the CF theory, R150mK
5/2 is a measure of

the scattering of the CF with the impurities [5,108–110]. We conclude that the linear

increase of R150mK
5/2 with x is a direct consequence of enhanced scattering rate of the

CFs as x increases. We thus find that at ν = 5/2 an increasing alloy disorder has two

independent concurring effects: it reduces the energy gap of the state and it enhances

R150mK
5/2 , the T -independent Rxx at ν = 5/2 in the limit of high temperatures.
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In an effort to speed up the screening of the samples and to characterize them

at 3He refrigerator temperatures at which the ν = 5/2 FQHS does not yet develop,

it was proposed that strong ν = 5/2 FQHSs develop in samples with low values

of the T -independent Rxx measured at ν = 5/2 [38]. We thus found that such a

hypothesis has a natural explanation within the framework of the composite fermion

theory and, furthermore, that the hypothesis works in samples with alloy disorder.

This hypothesis, however, remains to be further tested in samples with different types

of dominating disorder.

We note that recently an alternative method of extracting the energy gap has been

proposed [111]. This model, however, is formulated for the slowly varying potential

generated by the remote dopants and it yet remains to be extended to alloy scattering.

There is also effort in understanding short-range scatterers, albeit so far only for the

ν = 1/3 FQHS [112].

6.5 Conclusions

In conclusion, I study the effect of alloy disorder on the ν = 5/2 FQHS in a

regime in which alloy disorder dominates. The gap of the ν = 5/2 FQHS closes

at unprecedentedly low mobility which indicates that alloy disorder may not be as

detrimental to the formation of the ν = 5/2 FQHS as other types of disorder. Our

quantitative results will be useful in understanding the nature of the ν = 5/2 FQHS

and in engineering a stronger ν = 5/2 FQHS.
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