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ABSTRACT 

Dash, Susmita. Ph.D., Purdue University, December 2014. Droplet Behavior on 
Superhydrophobic Surfaces: Interfaces, Interactions, and Transport. Major Professor: 
Suresh V. Garimella, School of Mechanical Engineering. 
 
 

The primary objective of the present work is to study droplet dynamics on smooth 

hydrophobic and textured superhydrophobic surfaces, and to understand the dependence 

of interfacial interaction mechanisms on surface morphology. 

A detailed understanding of the dynamics of droplet response to an applied electric 

field is essential for implementation of electrowetting techniques in various devices. In 

the first part of the thesis, a systematic study of the transient response in terms of contact 

angle and contact radius of a sessile droplet on a smooth hydrophobic surface under 

electrical actuation is presented. A scaling analysis predicts the response time of a droplet 

during step actuation. It is shown that during time-varying electrical actuation of a droplet, 

in addition to the primary frequency response at the electrical forcing frequency, the 

droplet oscillation exhibits sub-harmonic oscillation at half the forcing frequency. 

The remaining part of the thesis focuses on the design, fabrication and 

characterization of superhydrophobic surfaces, and droplet behavior on such surfaces. A 

simple yet highly effective concept of fabricating hierarchical structured surfaces using a 

single-step deep reactive ion etch process is proposed. The surfaces show enhanced anti-

wetting characteristics, and lower contact angle hysteresis compared to single-roughness 



xviii 

 

surfaces. A novel hybrid surface morphology incorporating communicating and non-

communicating air gaps is proposed to enhance capillary pressure. The pressure balance 

during droplet impingement indicates that the effective water hammer is dependent on the 

surface morphology, and is significantly lower compared to that on smooth surfaces. 

The last part of the thesis includes evaporative phase change on flat and textured 

surfaces. An understanding of the evaporation characteristics of the droplet, and 

accompanying convection flow field on hydrophobic and superhydrophobic surfaces is 

important to several applications. In this dissertation, droplet evaporation characteristics 

on unheated and heated hydrophobic and superhydrophobic surfaces with negligible 

contact angle hysteresis are investigated systematically. A vapor-diffusion-only model is 

shown to overpredict the rate of evaporation on superhydrophobic surfaces, and the 

disparity increases with substrate heating. The evaporation characteristics are explained 

in terms of the evaporative cooling, and vapor buoyancy induced convection. 

Improved understanding of the convective flow mechanism inside an evaporating 

droplet can assist in non-intrusive particle manipulation inside a micro-droplet. The 

recirculating convective flow field inside a water droplet evaporating on hydrophobic and 

superhydrophobic surfaces is attributed to the thermal buoyancy induced convection. The 

flow pattern inside the droplet enables understanding of the dependence of flow behavior 

on the nature of the substrate.  High recirculating flow velocity in droplets evaporating on 

superhydrophobic surfaces is proposed to enable ‘on-the-spot’ mixing in droplets for 

microfluidics application. 
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CHAPTER 1. INTRODUCTION 

Microfluidics-based devices have applications in diverse areas including ‘lab on a 

chip’ systems, biomedical devices and MEMS-based sensors and detectors.  Handling 

fluids at the microscale presents significant challenges, as conventional fluid handling 

techniques do not apply well to the microscale.  Electrowetting-based control for the 

actuation of droplets has received significant recent attention because of its lack of 

moving parts, low power consumption and amenability to on-chip integration.  

Understanding of the transient response of a droplet when subject to electrical actuation 

is important for accurate estimation of response time of the devices implementing 

electrical actuation of droplet. 

At length scales on the order of micro- and nano- meter, surface tension forces 

surpass the body forces, and play a significant role in resisting fluid flow.  One approach 

to mitigate this resistance is designing special surfaces that reduce the solid-liquid contact, 

and minimize surface energy. These special surfaces are termed as ‘superhydrophobic 

surfaces’.  Devising cost efficient and scalable methods for fabricating superhydrophobic 

surfaces is important for widespread applications of these surfaces.  Robust 

superhydrophobic surfaces should be designed so that they retain superhydrophobicity 

under dynamics conditions.  Superhydrophobic surfaces, being structured surfaces exhibit 

different evaporation characteristics compared to smooth surfaces.  The exact nature of  
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flow behavior in a liquid during evaporation on such surfaces is not well-studied and 

requires careful attention.   

1.1 Electrowetting-Induced Droplet Actuation 

Electrowetting on a dielectric (EWOD) refers to electrowetting on a conducting 

surface separated from the droplet by an insulating layer, either using AC or DC 

actuation voltages.  Microscale manipulation of droplets by electrical actuation has 

significant applications in the areas of microfluidics and lab-on-chip devices.  

Electrowetting-based control for the actuation of droplets has received significant recent 

attention because of its lack of moving parts, low power consumption and amenability to 

on-chip integration.  The steady-state contact angle of a droplet under DC actuation has 

been well studied and has been shown to follow Lippmann’s equation [1] at lower 

voltages.  Most of the available literature on DC EW has targeted prediction of the 

steady-state contact angle, while the transient response of the droplet is less well 

understood.  Detailed analysis of the transient response of the droplet under DC actuation 

is necessary for regulating the response time of EW-based devices.  The flow field 

generated during droplet oscillation under actuation at low AC frequencies can be utilized 

for enhancing the mixing in a droplet which has potential biomedical applications.  The 

oscillation of the contact line of the droplet has been employed to avoid the pinning of the 

contact line, as will be explained later in this report.  The wide range of applications of 

the oscillation induced by time-varying electrical actuation necessitates careful 

investigation of the oscillation dynamics.  
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1.2 Superhydrophobic Surfaces 

Superhydrophobic surfaces refer to surfaces that repel water.  These surfaces are 

characterized by a very high contact angle (> 150 deg), and allow droplets to roll off at a 

very low inclination angle.  A common example of a superhydrophobic surface found in 

nature is the lotus leaf.  Figure 1.1 shows a SEM image of the lotus leaf [2].  The 

hierarchical surface morphology and the paraffin layer covering the surface of the lotus 

leaves make them repel water and thus remain dry [2, 3].  These surfaces occurring in 

nature have been the motivation for extensive research towards the design and fabrication 

of artificial superhydrophobic surfaces. 

 

Figure 1.1. SEM images of Lotus (Nelumbo nucifera) leaf surface consisting of 
microstructure formed by papillose epidermal cells covered with epicuticular wax tubules 

on surface, which create a nanostructure [2]. 
 

The contact angle of a liquid droplet on a surface is determined by the surface energy 

as well as the surface morphology [4].  The morphology of the surface determines 

whether a droplet will remain in a Cassie (non-wetting) or a Wenzel (wetting) state 

(Figure 1.2a and Figure 1.2b respectively).  Superhydrophobicity may be imparted to a 

surface by carefully engineering the surface topology and controlling the ratio of areas of 

the top surface of the pillars to the total base surface (ϕ), thereby controlling the extent of 

the liquid-air interface [5].  This property of superhydrophobic surfaces helps reduce the 
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drag force offered to fluid transport, and is being studied extensively for microchannel-

based and other applications [6].  These surfaces have a wide range of applications, for 

example in water-proof wind shields, resisting icing, corrosion, and microarray biochips, 

owing to the high contact angle and extremely low roll-off angles. 

 

Figure 1.2. Schematic illustration of droplet wetting states: (a) Cassie, and b) Wenzel. 
 

Very high contact angles may be obtained by increasing the liquid-air interfacial area 

when a droplet is placed on the surface, i.e., by increasing the air gap between the 

roughness elements.  However, larger air gaps result in reduced capillary pressure; with a 

corresponding reduction in the external actuation force required for the Cassie-to-Wenzel 

transition.  The transition to a Wenzel state due to external forces displaces the air gaps 

with liquid and significantly increases the drag force incurred in transporting a droplet on 

the surface.  Surface designs must therefore be optimized such that they sustain high 

contact angles with low contact angle hysteresis, without compromising the anti-wetting 

property of the surfaces. 

Higher capillary pressures can be achieved by scaling down the feature size of the 

roughness elements on the surface, as well as by employing hierarchical roughness 

structures.  The challenge is to design surfaces that enhance the capillary pressure at the 

(a)             (b)
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level of single roughness elements for a particular feature size while preserving a high 

contact angle.  This will be addressed in the present work. 

1.3 Evaporation on Superhydrophobic Surfaces 

Droplet evaporation is relevant to a variety of applications including inkjet printing 

[7], hot spot cooling [8, 9], surface patterning [10], droplet-based microfluidics [11], 

paints [12, 13], and DNA mapping [14, 15].  The nature of deposition of solute particles 

in an evaporating droplet is dependent on the evaporation dynamics, which in turn 

depends on the wettability and roughness of the surface.  Droplet evaporation 

characteristics depend on surface wettability [16], contact angle hysteresis (CAH) [17], 

and surface roughness [18].  An understanding of the evaporation characteristics of a 

droplet in terms of the rate of evaporation, localized solute-deposition on a substrate, 

flow pattern in the droplet, and variation of contact angle (CA) and contact radius (CR) is 

necessary for the design of practical droplet-based applications.   

Although droplet evaporation on smooth surfaces has been widely studied with 

liquids of different properties, and some work has been reported on superhydrophobic 

surfaces with very high contact angle hysteresis, droplet evaporation on 

superhydrophobic surfaces with negligible contact angle hysteresis (CAH) with and 

without substrate heating has not received much attention.  Recently, evaporation-based 

solute localization was proposed on superhydrophobic surfaces [ 19 ].  Potential 

application of droplet evaporation on superhydrophobic surfaces necessitates 

understanding of dynamics of evaporation on superhydrophobic surfaces.   
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1.4 Flow Behavior in Droplets Evaporating on Hydrophobic and Superhydrophobic 

Surfaces 

The non-uniform evaporation rate along the interface of a sessile droplet, and nature 

of the substrate and the liquid droplet affect the internal fluid convection inside an 

evaporating droplet.  The fluid convection influences the rate of evaporation, and the 

evaporative particle deposition in a sessile droplet.  Prediction and control of 

evaporation-driven convection patterns, and the resulting spatial distribution of 

particulate deposits, during droplet evaporation is crucial for colloidal crystallization [20], 

ink jet printing [21], paint drying [12,13], nanofabrication [22,23], sensors [24,19], and 

bioengineered tissues [25].  Improved understanding of the physics of flow inside an 

evaporating sessile droplet and its dependence on the substrate properties can assist in the 

development of non-intrusive methods for manipulating particles inside micro-droplets to 

control deposit morphologies. 

1.5 Objectives 

The objective of this dissertation is to study the dynamics of droplets on a smooth 

hydrophobic surface under electrical actuation, and to explore various aspects of the 

robustness of superhydrophobic surfaces and the droplet behavior on such surfaces.  The 

primary objectives and the approach pursued are as follows: 

1. Understanding the transient dynamics of microliter-sized droplets under 

electrowetting-induced actuation.  The response under step actuation and time-

varying actuation is studied.  The characteristic time scale for droplet response to 

electrical actuation is predicted based on experimental observations and theoretical 
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analysis.  This data is useful for devices which rely on electrowetting of liquid drops 

as the working principle, such as liquid-based displays. 

2. Devising simple methods for fabrication of hierarchical superhydrophobic surfaces.  

Hierarchical roughness surfaces comprise two levels of roughness, usually attained 

using multiple fabrication steps.  A methodology for fabrication of hierarchical 

surfaces using a single step is proposed.  The benefits of using hierarchical surfaces 

compared to single roughness surfaces are experimentally demonstrated.  Careful 

experiments to determine the roll-off angle, contact angle hysteresis, characteristics of 

droplet evaporation and impact are carried out on the superhydrophobic surfaces. 

3. Investigation of surface designs that maximize superhydrophobicity by enhancing the 

anti-wetting pressure.  Hollow pillars which incorporate both communicating and 

non-communicating air gaps are analytically shown to exhibit higher capillary (or 

non-wetting) pressure compared to solid pillars with only communicating air gaps 

and are fabricated.  Based on pressure based transitions during droplet impingement 

tests, the water hammer pressure is predicted.  The mechanics of water hammer 

pressure on superhydrophobic surfaces is explained.  The results can aid in more 

accurate estimation of the robustness of air gaps of surfaces subject to liquid impact. 

4. Study of evaporation dynamics of droplets on unheated and heated superhydrophobic 

surface that display very high contact angle (CA ~ 160 deg) and negligible contact 

angle hysteresis (< 1 deg).  The rate of evaporation on a superhydrophobic surface is 

shown to be underpredicted by the isothermal vapor-diffusion model, across all 

droplet volumes.  The disparity increases with increase in substrate temperature.  A 

simple diffusion model taking into account the thermal conduction through the 
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droplet is used to understand the transport phenomena in play during droplet 

evaporation. 

5. Physics-based analysis and quantification of the recirculating flow field inside a 

sessile droplet evaporating on a heated smooth hydrophobic surface and textured 

superhydrophobic surface using Particle Image Velocimetry.  The dependence of the 

convective flow behavior inside the droplet on the surface wettability is determined.  

The evaporative particle localization on smooth hydrophobic surface and 

superhydrophobic surface is explained in terms of the mode of evaporation, and flow 

field inside the droplet.  Evaporation-induced convection inside a sessile droplet is 

shown to be suitable for droplet mixing applications. 

1.6 Organization of the Thesis 

The report is organized as follows.  Chapter 2 contains a review of the literature in the 

areas of electrowetting-based actuation on smooth and structured surfaces, design and 

fabrication of superhydrophobic surfaces, and the various applications.  The transient 

response of a droplet to an applied electrical actuation force with step and time-varying 

actuation is presented in Chapter 3.  Chapter 4 discusses the fabrication of hierarchical 

superhydrophobic surfaces using a single-step methodology.  The surface is characterized 

in terms of dynamic pressure, evaporation properties of droplets on the surfaces.  A novel 

design of hybrid superhydrophobic surfaces implementing both communicating and non-

communicating air gaps so as to enhance anti-wetting pressure is discussed in Chapter 5, 

followed by analysis of pressure balance during droplet impingement.  Chapter 6 presents 

the diffusion-driven evaporation on unheated and heated, hydrophobic and 

superhydrophobic surfaces with a constant contact angle mode, and discusses the unique 
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properties that contrast with hydrophilic surfaces.  In Chapter 7, an evaporative flow field 

visualization and analysis is reported for droplets evaporating on heated hydrophobic and 

superhydrophobic substrates.  A summary of the present work and avenues for future 

research are provided in Chapter 8  
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CHAPTER 2.  LITERATURE SURVEY 

2.1 Electrical Actuation of Liquid Droplets 

Electrical actuation serves as a viable option for droplet manipulation in microscale 

devices [1].  Droplet transport, breakup and merging using electrowetting-based actuation 

have been demonstrated for lab-on-chip applications in the literature [26-30].  Other key 

applications that exploit enhanced control of droplet morphology include electrowetting-

based optics [31] and liquid displays [32].  Electrowetting (EW) also has application in 

altering the wetting characteristics of a surface [33-35].  The use of EW in conjunction 

with changes in surface morphology provides enhanced control of droplet wetting states.  

The relative stabilities of the Cassie and the Wenzel states on rough surfaces may be 

manipulated through EW [34, 35]. 

The steady-state contact angle of a droplet under DC actuation has been well studied 

and has been shown to follow Lippmann’s equation [1] at lower voltages.  Saturation of 

the contact angle occurs when the applied voltage exceeds a certain value depending on 

the liquid and dielectric properties [36,37].  Within the working range of actuation 

voltage, DC electrowetting has been employed in the design of optical displays [38].  In 

recent studies, the unsteady motion of a sessile droplet under DC actuation has been 

reported in terms of the contact radius [39,40].   
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Electrowetting using AC actuation voltages has also drawn attention [41-43].  The 

main advantages of using AC over DC voltage include reduction of the chemical 

reactions in the droplet [28] and decrease in the contact-angle hysteresis [44].  Kumar et 

al. [42] studied the contact angle variation of aqueous salt droplets under an AC voltage.  

Time varying electrical actuation of a droplet can be implemented in enhancing mixing in 

a droplet for lab on chip applications.  Mugele et al. [ 45 ] studied the frequency 

dependence of the internal flow field in a droplet using tracer particle tracking.  Paik et al. 

[ 46 ] studied the mixing caused by droplet motion between parallel plates, while 

Miraghaie et al. [47] focused on the shape oscillations to study the internal mixing 

pattern.  Mixing inside a droplet can also be effected by changing the droplet morphology 

[48]: the droplet is initially in contact with a top electrode when not actuated and 

detaches from this electrode when actuated.  Upon detachment, the droplet is no longer 

actuated and returns to its original shape at which time it touches the top electrode again.  

Repetition of this cycle can cause continuous droplet oscillation.  Recently, Sen and Kim 

[40] reported contact angle and radius variations at lower AC frequencies but the 

experiments were performed for a single actuation voltage.  Ko et al. [49] used particle 

image velocimetry to visualize the flow field inside a conducting droplet oscillating under 

the influence of an AC voltage and attributed the flow at low frequencies to the 

oscillation of the contact line. 

In summary, electrical actuation of droplet is a powerful tool for manipulation of 

droplet shape, and for facilitating droplet motion at small length scales.  Inspite of the 

vast literature on the topic, there are fundamental questions regarding droplet dynamics 

during incipience of electrowetting induced motion that need careful study.  Investigation 
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of physical parameters of a droplet during time-varying actuation electrical actuation can 

provide significant insight into the induced mixing in the droplet. 

2.2 Hierarchical Superhydrophobic Surfaces 

The development of superhydrophobic surfaces has attracted significant attention 

over the past decade because their promise in applications such as hydrophobic 

windshields, microfluidics-based technologies such as lab-on-chip devices [50,51,52], 

microelectromechanical systems (MEMS), water-proof clothing [53], and ice-repellent 

surfaces [54].  The ability of superhydrophobic surfaces to repel water and provide 

minimum drag resistance is contingent on the retention of air gaps; i.e., the Cassie state 

must be sustained.  Dynamic switching from the Cassie to the Wenzel state may be 

attained by means of electrical actuation [34, 35,-56, 57], application of pressure on the 

droplet, or dropping the droplet from a height [58]. 

Superhydrophobic surfaces are non-wetting surfaces characterized by high contact 

angles (> 150 deg), a low sliding angle, and low contact angle hysteresis (CAH) [59-62].  

A large droplet contact angle is not the sole criterion to characterize the 

superhydrophobicity of a surface.  It is important to design surfaces such that they are 

also robust enough to prevent impalement by droplets.  A higher capillary pressure 

enhances the robustness of the air gap between the roughness elements of a surface [63].  

Sub-micron scale roughness coupled hierarchically with microscale roughness can render 

a surface superhydrophobic and impart improved non-wetting properties relative to 

single-tier roughness.  Hierarchical roughness is commonly encountered in nature; the 

extreme water-repellent characteristic of lotus leaves arises from a double-roughness 

structure consisting of nanoscale waxes on microscale bumps [3]. 
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Surfaces with such extreme hydrophobicity have important applications in the 

development of artificial self-cleaning surfaces and water-proof clothing [64], and offer a 

wide range of promising applications including their use in microfluidic-based 

technologies such as lab-on-chip devices, microelectromechanical systems (MEMS), and 

microarray biochips.  An important heat transfer application lies in the development of 

surfaces for dropwise condensation.  Dropwise condensation is desirable since the 

associated heat transfer coefficient is an order of magnitude higher than that with 

filmwise condensation.  Dropwise condensation is, however, not readily achieved on 

single-tier roughness structures [65].  It was recently demonstrated that condensation on 

hierarchical roughness structures leads to condensation in the form of drops [66].  Since 

hydrophobic surfaces resist the formation of a liquid film, surface corrosion is also 

mitigated. 

The wide range of applications of hierarchical hydrophobic surfaces has encouraged 

active research in this field.  Different methods of fabricating such hierarchical surfaces 

[59, 67 ] to attain superhydrophobicity have been demonstrated in the literature.  

Fabrication of double-roughness structures typically involves the fabrication of the larger 

features on a substrate (by standard lithography methods) followed by the deposition of 

smaller roughness elements on these larger features [59, 67, 68].  Efforts at fabricating 

and testing robust superhydrophobic surfaces which can be easily fabricated and 

commercially used continue to be reported. 

In summary, hierarchical superhydrophobic surfaces have their applications in 

numerous areas.  The challenge is devising scalable and cost effective methods of making 

such surfaces, which requires significant research efforts. 
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2.3 Hybrid Surface Design for Robust Superhydrophobicity 

A high contact angle is not the sole criterion that characterizes the 

superhydrophobicity of a surface.  It is important to design surfaces that are sufficiently 

robust to prevent impalement by droplets when subjected to external force.  A higher 

capillary pressure within the interstices of roughness elements on a surface enhances the 

stability of the air gaps therein [63,69].  Higher capillary pressures can be achieved by 

scaling down the feature size of the roughness elements on the surface, as well as by 

employing hierarchical roughness structures [70,71].  However, scaling down feature size 

(thinner pillars) may compromise with mechanical robustness of the structures, and 

shorter feature sizes render the surface susceptible to a wetting transition, since the 

hanging curvature allows a droplet to more readily contact the bottom surface [72].  The 

challenge, therefore, is to design surfaces that enhance the capillary pressure at the level 

of single roughness elements for a particular feature size.  Park et al. [73] reported the use 

of a cylindrical nanoshell array to generate a superhydrophobic surface, even without the 

use of a hydrophobic coating.  Bahadur and Garimella [74] demonstrated that structured 

surfaces with non-communicating craters offered greater resistance to electrowetting-

induced droplet transition compared to equivalent communicating pillared structures. 

Analytical and experimental research has corroborated the strong effect of surface 

morphology on the impact behavior of a water droplet and its ability to bounce off the 

surface [ 75 - 78 ].  Bhushan et al. [59] demonstrated improved water-repellence on 

hierarchical surfaces as compared to single roughness elements.  Based on the Laplace 

pressure and the Bernoulli pressure, they formulated an expression for the critical 

velocity of the droplet beyond which it transitions to a Wenzel state on textured surfaces.  
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Deng et al. [63] developed a pressure-balance model to arrive at a condition for droplet 

infiltration into the air gaps in the surface structures.  They accounted for the water 

hammer pressure that acts on the surface during droplet impingement.  Denser textured 

surfaces were expected to provide greater capillary pressure and superior resistance to 

Wenzel wetting of impacting droplets. 

The water hammer pressure was first proposed by Cook [79] as WHP cV  where ρ 

is the density of the impinging droplet, c the speed of sound in the liquid, and V the 

velocity of impingement.  This expression was validated by Engel [80] through droplet 

impingement experiments on different substrates and by the use of a Schlieren technique 

to determine the time dependence of the impact force.  He proposed a correction to 

Cook’s expression: WHP k cV , where the coefficient k varies depending on the type of 

the substrate and impact velocity.  While the water hammer pressure is relatively well 

defined for a flat, rigid surface [80,81], it is less well understood during droplet impact on 

superhydrophobic surfaces. 

In summary, it is important to ensure sufficient anti-wetting pressure so that the 

superhydrophobicity of the surface is retained under dynamic conditions.  This can be 

attained by exploring alternate surface designs that enhance capillary pressure.  Accurate 

estimation of the pressure based Cassie-Wenzel transitions requires knowledge of the 

coefficient of the water hammer pressure, which has not been studied for 

superhydrophobic surfaces in the literature. 
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2.4 Droplet Evaporation Dynamics on Hydrophobic and Superhydrophobic Surfaces 

A liquid droplet suspended in air evaporates uniformly at a rate proportional to its 

radius, and its size continuously diminishes [82].  Evaporation characteristics of a sessile 

droplet placed on a substrate, on the other hand, are influenced by the wettability as well 

as the roughness of the substrate.  Picknett and Bexon [82] were among the first 

researchers to study the evaporation of a droplet placed on a substrate in still air.  They 

identified two modes of evaporation of a droplet resting on a smooth homogeneous 

surface, namely, the constant contact angle (CCA) mode and the constant contact radius 

(CCR) mode.  The rate of evaporation in both modes of evaporation was reported to be 

dependent on the contact radius and the contact angle of the droplet.  A theoretical 

solution for the evaporation rate was derived based on a similarity between the diffusive 

concentration field around a droplet and the electrostatic potential field of a conducting 

body of the same size and shape as the droplet [82].  Evaporation was reported to occur in 

a CCR mode until the droplet reached its receding contact angle, at which point it 

continued in a CCA mode [82].  The duration of each phase varied depending upon the 

substrate and liquid used [82]. 

The interplay between factors such as interface temperature and saturated vapor 

concentration coupling, conduction through the substrate, droplet, and gas phases, 

convection in the liquid and gas domains, and the spherical-cap shape of the droplet, all 

complicate the determination of an exact solution for droplet evaporation rate.  Most 

models in the literature treat evaporation as being induced only by vapor diffusion under 

isothermal conditions, subject to several simplifications in terms of the evaporative flux 

[16, 83, 84].  McHale et al. [83] concluded that the evaporation rate on a hydrophobic 
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surface is proportional to the droplet height during evaporation and that the mode of 

evaporation is determined by the initial contact angle of the droplet.  Yu et al. [84] also 

reported the droplet evaporation rate on a hydrophobic surface to be proportional to the 

droplet height.  Deegan [12] and Popov [13] drew attention to the non-uniformity of 

evaporative flux along the droplet surface.  Popov [13] developed a closed-form solution 

to describe the rate of evaporation by vapor diffusion valid over the entire range of 

contact angles.  In recent studies, the substrate conductivity has been identified as being 

important in determining the evaporation rate of pinned sessile droplets [85,86].  Dunn et 

al. [86] proposed a model that included the effect of substrate thermal conductivity for a 

pinned sessile droplet with very low contact angle.  Although the model could predict 

evaporation rates of volatile droplets, it under-predicted the evaporation rate for a water 

droplet. 

Evaporation on an ‘ideal’ surface with no surface deformities is expected to occur in a 

CCA mode.  However, molecular-scale interactions between the liquid and substrate, as 

well as inherent roughness/deformities of real surfaces, induce contact angle hysteresis 

which inhibits the CCA mode of evaporation.  The transient evaporation of a droplet is 

affected by the initial contact angle of the droplet [13] as well as the contact angle 

hysteresis [17].  Most prior studies have focused on droplet evaporation in a CCR mode 

[9,12,13,87].  Deegan et al. [88] suggested that the peripheral deposition of suspended 

particles in a droplet by the ‘coffee-ring’ effect is attributable to a pinned contact line 

during evaporation and a non-uniform evaporation flux on the droplet surface 

(concentrated near the contact line).  In many applications including inkjet printing [7], 
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spotting of biofluids [89], and surface coating [90], the highly inhomogeneous solute 

deposition resulting from capillary-induced flow [12] is undesirable. 

Methods such as AC electrowetting [91] have been demonstrated to suppress this 

effect.  One other way to manipulate the deposition of particles suspended in sessile 

droplets may be by employing a superhydrophobic surface with low contact angle 

hysteresis.  De Angelis et al. [19] demonstrated the use of superhydrophobic surfaces 

combined with plasmonic nanostructures to allow molecule detection in femtomolar-

concentration solutions by localizing the molecule in a specific position.  The droplet in 

this case remained in the Cassie or non-wetted state during most of the period of 

evaporation.  Such application in bio-sensors requires a detailed understanding of the 

droplet evaporation dynamics on superhydrophobic surfaces as well as an accurate 

estimation of the total time of evaporation. 

McHale et al. [ 92 ] and Dash et al. [71] reported droplet evaporation on a 

superhydrophobic surface to follow three distinct phases: Constant contact area mode, 

constant contact angle mode in which the contact angle remains almost fixed and the 

droplet interface slides, and mixed mode in which both the contact angle and contact 

radius change.  An initial high droplet CA on a surface was earlier reported to be the 

criterion for droplet evaporation in the CCA mode [ 93 , 94 ].  However, droplet 

evaporation on superhydrophobic lotus leaves and biomimetic polymer surfaces, in spite 

of exhibiting a high contact angle (~ 150 deg), has been reported to follow the constant 

contact area mode [95].  Indeed, the mode of evaporation of a droplet has been shown to 

depend instead on the contact angle hysteresis of the surface rather than the initial contact 

angle of the droplet [17].  The mode of evaporation is instrumental in determining the 
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various physical parameters of the droplet (height, contact radius, and contact angle) 

during evaporation, the rate of mass loss, and the total time for evaporation.   

The vapor diffusion model proposed by Popov [13] has been shown to predict the 

evaporation dynamics of droplets on hydrophilic substrates [12], hydrophobic substrates 

with sliding [96] and pinned [97] contact lines, and superhydrophobic substrates with 

pinned contact line [98].  However, the diffusion-only model of Popov [13] has not been 

experimentally validated on superhydrophobic surfaces with negligible contact angle 

hysteresis.  Recently, Erbil [99] presented a comprehensive review of droplet evaporation 

on different surfaces and emphasized the need to study droplet evaporation on relatively 

unexplored superhydrophobic surfaces. 

A survey of the literature indicates that studies concerning the concentration of 

suspended particles by means of droplet evaporation on superhydrophobic surfaces rely 

on diffusion-driven evaporation from an unheated substrate [19,100].  This results in long 

evaporation times (on the order of thousands of seconds).  Applications such as molecule 

detection in biosensors [19] require a detailed understanding of the droplet evaporation 

dynamics on superhydrophobic surfaces, viz., the rate of evaporation and transient 

variation of contact angle or radius.  Detection time can be reduced significantly upon the 

application of external heat to the droplet, but requires characterization of the evaporation 

characteristics (e.g., evaporation rate and transient droplet geometry) under heated 

conditions.  

In summary, although droplet evaporation on smooth surfaces has been widely 

studied with liquids of different properties, and some work has been reported on 

superhydrophobic surfaces with very high contact angle hysteresis, droplet evaporation 
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on superhydrophobic surfaces with negligible contact angle hysteresis (CAH) has not 

received much attention.  There has been limited investigation of the effect of substrate 

heating on the evaporation characteristics of droplets with a sliding contact line on 

hydrophobic and superhydrophobic substrates in the literature.  The potential applications 

of droplet evaporation on superhydrophobic surfaces necessitate knowledge of the 

physics of evaporation dynamics on such surfaces.  

2.5 Flow Behavior inside Droplet Evaporating on Hydrophobic and Superhydrophobic 

Surfaces 

For hydrophilic surfaces, a non-uniform evaporative flux along the surface of the 

droplet with the highest value at the contact line, in combination with a pinned contact 

line, leads to an outward capillary flow within the droplet [12] and a ring-like deposition 

pattern.  The second flow pattern that may be observed is driven by recirculating 

Marangoni convection caused by a surface tension gradient along the droplet interface 

due to a non-uniform temperature [101,102].  The direction of the interface temperature 

gradient, which determines the direction of flow, depends on fluid type, size, and droplet 

contact angle [12], as well as the ratio of substrate-to-liquid thermal conductivity [103] 

and the shape of the particles inside the droplet [104].  While Marangoni convection has 

been theoretically predicted to occur in several fluids, its realization in water has not been 

consistently validated in experiments [101,105,106].  Marangoni flow-based recirculation 

in an organic liquid droplet was reported to arrest peripheral deposition, instead causing a 

localized deposition pattern [101,105,107].  Besides these capillary- and Marangoni-

driven flows, a third possible kind of flow in the droplet is buoyancy-driven Rayleigh-

Benard convection resulting from a temperature- or concentration-induced density 
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gradient inside the droplet [108].  Solutal density-driven Rayleigh convection in a binary 

mixture has been reported in several studies [108,109,110].  An oscillatory behavior was 

observed in the convection pattern when buoyancy forces affected Marangoni convection; 

this was explained by the coupling between interfacial temperature gradients and the flow 

within the liquid [111]. 

The recirculating flow inside droplets can be used as a means for mixing and 

manipulating particles.  Efficient mixing is extremely important in various microfluidic 

devices for biological and chemical applications [112].  However, the low Reynolds 

numbers characteristic of microfluidic flows [48] renders mixing of particles in a 

microscale droplet challenging.  In lab-on-a-chip devices, the rate of chemical reactions is 

often limited by the mass diffusion.  Different mechanisms that achieve fast mixing by 

promoting chaotic advection include flow through irregularly winding channels [113], 

magnetic stirring [114], and acoustic excitation [115].  Obtaining ‘on-the-spot’ mixing in 

droplets, which is of significant importance to digital microfluidic systems, is even more 

challenging.  Convection arising from electrowetting-induced oscillation of a droplet was 

recently reported to enhance mixing [45].  Manipulation of the recirculating flow field in 

an evaporating droplet through modification of the surface wetting properties has not 

been investigated to date as a method for enhancing mixing. 

A majority of the studies investigating the flow pattern inside a droplet and the 

resulting deposition have been restricted to hydrophilic substrates featuring a pinned 

contact line.  The literature related to droplet evaporation on hydrophobic or 

superhydrophobic surfaces, for which a minimal contact angle hysteresis causes 

evaporation to predominantly occur in a constant contact angle mode, is limited and 
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includes the studies done as a part of the present thesis.  Studies have indicated a 

localized, central deposit being formed during evaporation on hydrophobic surfaces [116], 

a phenomenon that has been employed in aptasensors for protein detection [24].  

Localized deposition was reported during evaporation on superhydrophobic surfaces 

[116]; tuning of surface geometry achieved a minimum deposit size as small as 0.9% of 

the initial droplet base area [116].  A quantitative estimate of the internal flow 

characteristics, and identification of the governing mechanism that establishes the flow 

field inside a droplet evaporating on non-wetting surfaces, are needed to understand the 

relationship with the localized deposition pattern realized.  Tam et al. [117] derived an 

analytical solution for droplet evaporation on a superhydrophobic surface based on the 

assumption of Marangoni convection in the droplet.  The governing mechanism that 

establishes the flow field inside a droplet evaporating on a heated hydrophobic surface 

has not yet been experimentally investigated. 

In summary, the goal of the present work is to determine qualitatively as well as 

quantitatively the flow behavior inside droplets evaporating on smooth hydrophobic and 

superhydrophobic substrates.   
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CHAPTER 3. FREQUENCY-DEPENDENT TRANSIENT RESPONSE OF AN 
OSCILLATING ELECTRICALLY ACTUATED DROPLET 

This chapter reports an investigation of the transient nature of the step response of 

droplets as well as the important characteristics of the frequency response of the droplet 

over a range of applied voltages.  The first set of experiments maps out the transient 

response of a millimeter-sized sessile droplet under DC actuation.  The response of the 

droplet, in terms of contact angle (CA) and contact radius (CR) measurements before it 

attains a steady-state profile, is studied and the characteristic time scale of a droplet 

during step response analyzed.  Droplet dynamics under low-frequency AC actuation are 

then investigated in detail in terms of the time-varying CR and CA with the root-mean-

square voltage (Vrms) varying from 40 V to 80 V and frequencies ranging from 5 Hz to 

200 Hz.  The characteristics of the droplet behavior upon contact angle saturation are 

discussed.  The experimental observations map out the different modes of oscillation and 

also identify the distinct droplet dynamics corresponding to each intermediate frequency 

regime between two consecutive oscillation modes.  The principal as well as the sub-

harmonic frequency response of the droplet are identified.  The sub-harmonic response is 

explained in terms of the parametric electrowetting force that governs the droplet 

oscillation. The material presented in this chapter was published in Journal of 

Micromechanics and Microengineering (22(7), 075004, 2012) [118]. 
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3.1 Experimental Setup 

A schematic diagram of the experimental setup used for droplet actuation and data 

acquisition is shown in Figure 3.1.  A highly conducting silicon wafer with a 1 µm thick 

thermally grown oxide layer was utilized as the substrate.  The substrate was spin-coated 

with a 1% Teflon solution (DuPont) to impart hydrophobicity.  An aluminum wire of 125 

μm diameter is inserted into the droplet from the top as shown in Figure 3.1.  A voltage 

difference applied between the silicon wafer and this wire actuates the droplet.  De-

ionized (DI) water droplets of volume 5 ± 0.1 µl are used in all the experiments.  The 

initial contact angle and the contact radius of the droplet under no electrical actuation are 

119° ± 2° and 0.97 ± 0.03 mm, respectively.  The gravitational effects on the droplet 

shape are negligible as the Bond number (Bo, the ratio of the gravitational and surface 

tension forces) is approximately 0.17 and hence the droplet can be assumed to be a 

spherical cap. 

The DC voltage for droplet actuation was provided using a high voltage DC power 

supply (Kepco BHK 2000- 0.1MG), while the AC voltage was supplied by a variable-

frequency signal generator (Tektronix AFG 3022) and a voltage amplifier (Piezo 

Amplifier EPA-104, Piezo Systems Inc.).  The droplet response to the applied actuation 

was recorded at 1000-2000 fps using a high speed camera (Photron 1024 PCI).  All the 

images were processed using an in-house MATLAB [119] program to determine the 

dynamic contact angle and interfacial contact radius.  The code includes an algorithm to 

determine the edge of the droplet.  The intersection of the droplet image with the 

corresponding reflected image is used to define the point of contact.  A second-order 

polynomial fit to the detected edge near the contact point gives the best estimate of the 
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droplet profile near the contact.  The derivative of the tangent to the curve at the contact 

point is subsequently used to determine the contact angle.  The reported contact angle is 

the average of the right and the left contact angles.  The pixel resolution is 10 microns per 

pixel.  The experimental uncertainties in the measured contact angle and contact radius 

arising from the imaging and image processing are approximately ± 2° and ± 0.03 mm, 

respectively.  Each experiment was repeated three times, and the variation in 

measurements was found to be within experimental uncertainty; results from 

representative cases are presented in the following section.  Liquid loss due to 

evaporation is negligible since the time period of each experiment is on the order of 

milliseconds. 

 

Figure 3.1. Schematic diagram of the experimental setup. 
 

3.2 Results and Discussion 

3.2.1 DC Actuation 

The transient step response of a sessile droplet under DC voltage actuation is studied 

in the first set of experiments.  DC voltages in the range of 40 V to 120 V (in increments 
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of 10 V) are applied to the droplet.  The measured steady-state contact angle θ at each 

voltage is lower than Young’s contact angle θY as predicted by Lippmann’s equation, 

21
cos cos

2Y c V 


  .                                               (3.1) 

where V is the applied actuation voltage, γ is the surface tension of the liquid (0.072 N/m 

for water), and 0 rc
d

 
  is the capacitance of the dielectric layer, with ε0 being the 

vacuum permittivity, εr the permittivity constant of the dielectric layer (3.9 for the oxide 

layer), and d the dielectric thickness (1 μm  in the present work).  Equation (3.1) can be 

written as
2

cos cos Y
L

V

V
 

 
   

 
, in which VL refers to the voltage up to which the 

Lippmann equation can be used to predict the steady-state droplet contact angle during 

electrowetting.  VL is defined as 2

c

  and is the characteristic voltage scale [48], equal 

to 65 V for the given experimental conditions.  Equation (3.1) does not apply to the 

transient variation of droplet contact angle (prior to its attaining a steady shape). 

A quantitative comparison of the different dissipation forces involved in 

electrowetting by Ren et al. [120] determined that the contact line friction contributes the 

dominant dissipative effect.  The transient response of the droplet can be modeled in 

terms of the major horizontal forces acting on the contact line, i.e., surface tension forces, 

electrowetting force and contact line friction.  A simplified mathematical model to 

understand the transient radial motion of the droplet contact line was developed by 

Annapragada et al. [121].  The droplet transport equation is obtained by equating the rate 

of change of momentum per unit length to the sum of all the forces acting at the contact 

line per unit length. 
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Figure 3.2a and Figure 3.2b show the transient step response of droplet contact angle 

and contact radius (normalized with respect to the initial contact radius), respectively.  

The normalized contact radii are used to provide the relative magnitude of droplet 

spreading with respect to the initial contact radius.  At each of the actuation voltages, the 

contact angle decreases to a steady-state value that depends on the applied DC voltage; 

the contact radius correspondingly increases during the transient period.  The steady-state 

contact angle decreases as the applied voltage is increased to 80 V, beyond which it 

saturates.  The average steady-state contact angles corresponding to 80 V, 100 V and 120 

V are 72.4 ± 0.6°, 73.2 ± 0.3°, and 71.2 ± 1.2°, respectively.  Thus the average saturated 

contact angle of the droplet is 72.2° ± 1.2°.  The contact radius has a similar trend, with 

the steady-state droplet radius reaching approximately 1.54 ± 0.03 mm at voltages higher 

than or equal to 80 V.  The time taken for the droplet to attain a steady shape is 

approximately 35 ms and varies somewhat depending upon the magnitude of actuation 

voltage. 

An interesting phenomenon of droplet oscillation is observed at high DC voltages.  

Figure 3.2b shows that the contact radius increases monotonically to 1.1 mm and 1.4 mm, 

respectively, at the lower actuation voltages of 40 and 60 V; however, at actuation 

voltages of 80 V and higher, the contact radius overshoots its equilibrium wetted radius 

due to higher inertia and induces oscillation in the contact radius and contact angle.  

Droplet shapes at the actuation voltage of 100 V at different time instances are included 

in Figure 3.2b to illustrate this oscillation.  For this case, the droplet displays a maximum 

contact radius of 1.58 mm at t = 9 ms and then recoils to a smaller radius of 1.44 mm at t 

= 13 ms.  The contact line oscillation continues until the droplet attains its equilibrium 
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contact radius of 1.5 mm at t = 25 ms.  Similar observations have been made by Oh et al. 

[39] and Sen et al. [40].  Independent of the applied voltage, the droplet takes 8 to 9 ms to 

attain a maximum contact radius, which we define as the characteristic time scale (τ). 

The dependence of the characteristic time scale ( ) on the governing parameters – 

liquid surface tension (γ), liquid density (ρ), droplet radius (R), coefficient of contact line 

friction (ξ), contact line velocity (vCL), and applied electrical force (Fe) – is determined 

using the Buckingham Pi theorem with , ,R  as the recurring variables.  The resulting 

nondimensional terms are

1 1 1
2 2 2

3

1 1
, , ,CL e

R
v F

R R R

  
   

       
       
       

.  After minor 

rearrangements, the time scale can be represented as a product of 

1
3 2R


 
  
 

 and a function 

of the ratios of electrical force and contact line friction with respect to surface tension as: 

1
3 2

,e CLF vR
f

R


  

   
        

, where Fe/R is the electrical force per unit length and CLv is 

the contact line friction per unit length.  The contact line velocity  CLv increases with 

increasing actuation voltage (Figure 3.2).  Since the actuation force and the friction force 

act against each other, it can be assumed that the effect of increased voltage is nullified 

due the increased friction resulting in ,e CLF v
f

R


 
 
 
 

to be more or less a constant.  This 

explains the observed voltage independence of the time scale.  A constant prefactor 

multiplied with 

1
3 2R


 
  
 

 describes the experimentally observed time scale for maximum 
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wetted diameter reasonably well.  The characteristic time (τ) of the droplet under the 

present experimental conditions is ~ 9 ms, from which the constant of proportionality is 

deduced to be ~ 2.4.  Thus the characteristic time constant can be written as

1
3 2

2.4
R


 
  
 

.  

It is interesting to note here the similarity in the expression of this characteristic time 

scale and the contact time of the droplet impinged on a surface.  Richard et al. [122] used 

a scaling analysis between kinetic energy per unit volume of droplet and pressure 

gradient to study the contact time when a droplet is impinged on a surface and 

determined the time scale to be independent of its velocity.  The time scale was 

determined to be proportional to 

1
3 2R


 
  
 

as well and was independent of the velocity of 

impingement. 

At voltages lower than 60 V (a value that agrees well with the predicted characteristic 

voltage of 65 V), the electrical actuation force quasi-statically balances the net contact 

line friction and surface tension, whereas at higher voltages (> 60 V), the higher inertia 

causes the contact line to overshoot its equilibrium position and undergo damped 

oscillation under the action of contact line friction.  While the contact radius is essentially 

pinned after one cycle of oscillation, the contact angle continues to oscillate for a longer 

period as seen in Figure 3.2a.  This can be explained in terms of the two different 

damping mechanisms namely the contact line friction and viscous dissipation.  The 

contact radius oscillation is damped significantly by the contact line friction, 

accompanied by a dampening of the contact angle oscillation.  The internal flow 

generated within the droplet due to motion of the contact line and capillary waves on the 
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surface of the droplet takes a much longer time to reach a steady state due to the low 

viscous dissipation in water resulting in under-damped oscillations of the contact angle 

and height of the droplet even when the contact radius is pinned.  The viscous dissipation 

is extremely low in comparison to the contact line friction and the ratio is given as 

2

2

0.4 . .
400

0.001 . .water

N s m

N s m






  , where ξ is the coefficient of friction; ξ = 0.4 Ns/m2 is based 

on the experimental data for the water/Teflon combination from Wang and Jones [123].  

This value was also used by Annapragada et al. [121] for numerical modeling of droplet 

dynamics during DC actuation and gave excellent agreement with the present 

experimental results.  The effect of both contact line friction and viscous dissipation in 

overall dampening as well as suppression of contact angle oscillation due to hysteresis 

effects explains the time scale for contact angle oscillation not being 400 times greater 

than the time scale over which the contact radius oscillates before attaining a constant 

value.  The time required to attain the steady-state droplet profile depends on the extent 

of contact line oscillation which varies with the applied voltage; for example the contact 

angle oscillation continues for a longer period when actuation voltage is greater than 60 

V. 
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Figure 3.2. Transient (a) contact angle, and (b) contact radius of the droplet illustrating 
the step response.  The insets on the right show the zoomed-in data points for actuation 

voltages of 80 V and greater, at which contact angle saturation occurs. 
 

3.2.2 AC Actuation 

3.2.2.1 Contact Angle and Contact Radius  

Droplet oscillation at sinusoidal AC actuation voltages of 40, 60, and 80 Vrms is now 

explored to determine the combined effects of frequency and applied voltage.  The range 
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of frequency of the electrical signal used for the experiments is such that the droplet is 

able to respond to the electrical force acting at the triple contact line (TCL).  The 

frequency is varied from 5 Hz to 200 Hz in steps of 5 Hz.  Results are presented here at 

representative frequencies of 5, 20, 60, 80, and 120 Hz which reveal the characteristic 

droplet behavior in the frequency range. 

Figure 3.3a and Figure 3.3b show the time variation of contact angle and normalized 

contact radius, respectively, for the three actuation voltages at a frequency of 5 Hz.  

Results are shown after the first half cycle of droplet oscillation to omit uncertainties 

involved during the initiation of droplet motion.  The symbols show the experimental 

data and the dashed lines show Fourier-series based curve-fits to the data.  At the low 

frequency (5 Hz), the droplet follows the sinusoidal signal well as the characteristic time 

scale (9 ms) is much smaller than the time period of the applied electrical force (100 ms).  

As the electrical forces are proportional to the square of the applied voltage, one cycle of 

applied signal produces two cycles of droplet oscillation.  For the case of 40 Vrms the 

contact angle variation has a sinusoidal shape with a minimum contact angle of 84⁰ 

(Figure 3.3a).  This lower contact angle compared to the measured value of 107⁰ for 40 V 

DC actuation (as seen in Figure 3.3a) is due to the higher peak voltage of 56 V in the AC 

signal.  As the actuation voltage is increased to 60 Vrms, the contact angle is seen to 

saturate at approximately 70⁰ when the instantaneous voltage exceeds 80 V (between 240 

ms and 260 ms in Figure 3.3b).  The contact angle saturation occurs at a higher actuation 

voltage compared to the case of DC actuation (70 V).  The saturation effect is more 

prominent at the higher voltage of 80 Vrms (Figure 3.3b) between the instantaneous values 

of 80 V and 113 V (corresponding to the time interval from 225 ms to 275 ms).  During 
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this period, the CR and CA remain relatively unchanged with time. The main difference 

in the characteristics of the contact line of the droplet at the 60 Vrms and 80 Vrms actuation 

voltages is the velocity at which the droplet reaches its maximum contact radius as 

derived from the slope of the graph as the droplet reaches the maximum wetted radius 

(Figure 3.3.b). The measured droplet contact radii for the three cases follow similar 

trends as the contact angles, as shown in Figure 3.3b.  The contact radius is in phase with 

the contact angle, i.e., the contact radius increases with a decrease in contact angle.  The 

insets in Figure 3.3b show the droplet shapes at 150 ms for all three actuation voltages; 

this time instant corresponds to the maximum spreading. 

The non-dimensional contact radius is slightly greater than 1 at the instant of zero 

actuation due to the effect of contact angle hysteresis.  The higher inertia at 60 Vrms and 

80 Vrms as compared to 40 Vrms results in a non-dimensional CR equal to 1.01 ± 0.02 as 

compared to 1.05 ± 0.02 in the latter case (Figure 3.3b). 
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Figure 3.3. Transient variation of (a) contact angle, and (b) contact radius for an AC 
frequency of 5 Hz and Vrms = 40 V, 60 V, and 80 V; insets in (b) show the corresponding 

droplet shapes at 150 ms. 
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To understand the effect of actuation frequency on droplet oscillation, the transient 

contact angles and contact radii for droplet actuation at frequencies of 20, 60, 80, and 120 

Hz with AC actuation voltages of 40 Vrms and 60 Vrms are shown in Figure 3.4a and 

Figure 3.4b, respectively.  As before, the plot is shown after the first cycle of the droplet 

oscillation to omit uncertainties during droplet motion initiation; the symbols show the 

data as obtained from the experiments, while the dashed lines are Fourier-series fits.  

While the droplet oscillations are periodic in nature because of the sinusoidal voltage 

applied, a number of interesting effects of the actuation frequency are observed.  At a 

constant voltage, the amplitude of oscillation decreases with increasing frequency since 

the decreased time period of oscillation increases the influence of the characteristic 

response time.  From the step response of the droplet, it is seen that the droplet takes ~ 9 

ms to reach its maximum wetted position (Figure 3.2b).  It can be interpreted that the 

droplet can respond fully to the applied force till a forcing frequency of 111 Hz (with a 

corresponding signal frequency of 55 Hz).  This explains the higher wetted diameters 

reached at lower actuation frequencies (5 Hz and 20 Hz) as compared to those at 

frequencies higher than 60 Hz.  For example at 120 Hz, the time before the droplet can 

attain its maximum electrowetted radius is 2.1 ms and is lower than the characteristic 

time scale.  Moreover, oscillation of the droplet is manifested not only as movement of 

the contact line but also as shape oscillations [125].  Hence the quasi-static response of 

the contact line to the electrical force as the voltage increases from 0 V to the maximum 

value in each signal cycle may no longer be assumed.  The spherical cap assumption is no 

longer valid during the droplet oscillation.  The plot of the variation of the contact radius 

with time (Figure 3.4) suggests an overlap of multiple frequency responses. 
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At 60 Hz, the contact angle and contact radius are out of phase by a finite angle of 

0.75 radians.  On the other hand, droplet oscillations at close to resonant frequencies 

significantly influence the droplet response as will be discussed in the next section.  For 

example, the amplitude of the contact radius oscillation at 120 Hz is seen to be higher 

than that at 60 Hz (normalized values of 0.08 and 0.06, respectively, for 40 Vrms).  

Moreover, the droplet contact radii and contact angles are in-phase at 80 Hz and out-of-

phase by approximately 0.94 radians at 120 Hz, for both 40 Vrms and 60 Vrms.  The 

contact radius always follows the applied signal; a small time delay is observed at the 

highest actuation voltage, consistent with the characteristic time constant for complete 

response.  The analysis to follow presents the phase lag between the contact angle and 

contact radius.  It is also noted that the phase lag does not depend on the applied actuation 

voltage, but only on the actuation frequency; however there is some difference in the 

behavior of the contact radius at 40 Vrms and 60 Vrms corresponding to 60 Hz and 80 Hz 

actuation frequency in terms of the magnitude, but the phase difference remains 

unchanged.  More details regarding the droplet shape dependence on frequency are 

discussed in the next section. 
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Figure 3.4. Variation of contact angles and contact radii for actuation frequencies of 20, 
60, 80 and 120 Hz at (a) 40 Vrms, and (b) 60 Vrms. 
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3.2.2.2 Sub-harmonic Oscillation  

An interesting feature seen in the droplet oscillation (Figure 3.4) is the sub-harmonic 

behavior of the droplet contact radius; i.e., the maximum contact radii in successive 

droplet spreading cycles oscillate between two values.  For example, at 40 Vrms and 20 

Hz, the two values of the maximum contact radii are 1.3 and 1.24 as highlighted in Figure 

3.4.  The relative difference between these pairs of maximum contact radii increases as 

the actuation is AC frequency increased at the same actuation voltage.  It is also observed 

that this behavior is not as pronounced in the contact radius variation at 40 Vrms and low 

frequencies of 20 Hz; however, at 40 Vrms with 80 Hz and 120 Hz, the contact radii do 

clearly exhibit such sub-harmonic behavior.  Such behavior was also noted by Sen et al. 

[40] for one frequency, but was not explored in detail.  Ko et. al. [124] observed the 

primary response of the droplet at the actuation frequency, i.e., at half the frequency of 

the applied electrical force during electrowetting driven oscillations of bubble.  However 

such a droplet response has not been fully explained. 

A Fast Fourier transform is performed on the raw data for contact angle and contact 

radius corresponding to the cases in Figure 3.4.  The results are plotted in Figure 3.5 in 

order to capture the frequency response of the droplet oscillation under electrical 

actuation.  The quality of the FFT plots is influenced by the finite number of data points 

used in the analysis.  An integer number of oscillations are considered during the analysis, 

and random chopping off of the response data is avoided.  All contact angles and radii 

have a maximum response at the frequency corresponding to that of the electrical force 

acting on the droplet, which is twice the applied actuation frequency (i.e, 2fv where fv is 

the actuation frequency).  However, a significant response is also seen at the frequency (fv) 
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of the imposed signal in most cases.  A super-harmonic response (less dominant than the 

sub-harmonic component) is observed in cases with high actuation voltage; the droplet 

response corresponding to 5 Hz and 60 Vrms demonstrates a stronger super-harmonic than 

40 Vrms.  At higher frequencies, the super-harmonic oscillation is suppressed.  The ratios 

of the harmonic and the sub-harmonic responses for all cases are listed in Table 3.1 

which clearly shows that the sub-harmonic response at the actuation frequency fv 

increases with frequency and actuation voltage and is stronger in the contact radii traces 

as compared to the contact angle traces.  Table 3.1also includes the ratio of frequency 

responses corresponding to actuation at 5 Hz, 80 Vrms and 80 Hz, 80 Vrms which are not 

shown in Figure 3.4 and Figure 3.5 to avoid cluttering of the data points. 
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Figure 3.5. Fast fourier transforms for droplet response corresponding to actuation 
frequencies of 5, 20, 60, 80, 120 Hz at applied voltages of 40 Vrms and 60 Vrms. 
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Table 3.1. Droplet response at forcing and sub-harmonic frequencies. 

Frequency (Hz) 
Applied Voltage 

(Vrms) 

Ratio of frequency 
response of CR at 
sub-harmonic (fv) 

and harmonic 
frequencies (2fv ) 

 Ratio of 
frequency 

response of CA at 
sub-harmonic (fv) 

and harmonic 
frequencies (2fv ) 

5 

40 0.06 0.04 

60 0.05 0.04 

80 0.10 0.10 

20 
40 0.23 0.19 

60 0.22 0.22 

60 
40 0.29 0.11 

60 0.70 0.14 

80 40 0.69 0.20 

60 0.69 0.05 

80 1.90 0.06 

120 40 0.60 1.13 
 

In order to investigate the reason for the sub-harmonic oscillation observed, 

experiments are carried out under the application of both positive as well as negative 

potential at the substrate to determine the dependence of the polarity of the substrate on 

the electrowetted contact angle.  The dependence of contact angle on the polarity at the 

substrate during electrowetting is determined by the material of the dielectric, which in 

our experiments is silicon dioxide.  The contact angle variations with respect to applied 

voltage for both the polarities almost overlap (Figure 3.6).  The average contact angle 

once saturation is reached is 72.9° ± 1.5° with positive potential at the substrate, and 73.9° 

± 1.2° with negative potential at the substrate, which are essentially identical.  This 
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polarity independence of contact angle with the substrate used in the experiments is in 

agreement with the work of Cho et al. [26] who also observed the polarity-independence 

of a silicon dioxide substrate coated with Teflon.  Hence it is unlikely that the electrical 

force has a secondary component. 

 

Figure 3.6. Contact angle of the droplet with the substrate maintained at positive and 
negative potentials. 

 

When the electrical force acts at the TCL, it drives droplet oscillation and may excite 

several modes [125] depending upon the frequency of actuation.  We present here an 

approach similar to that by Baret et al. [126] to determine the governing equation for 

droplet oscillation at the TCL and give a possible explanation for the sub-harmonic 

response of the droplet.  The terms accounting for the modes (n) are neglected so as to 

give a simple expression for the transport equation.  The Navier-Stokes equation 

representing balance of forces acting on the droplet can be written as 
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where   is the droplet volume, fe the electrical body force density and Ff the contact line 

friction.  For water, the viscous dissipation can be neglected in comparison to the other 

forces acting during electrowetting [126].  For small oscillation, i.e., when the 

displacement of the contact line (x) is very small compared to the initial droplet radius (x 

<< Rc), the non-linear convection term can be neglected [126].  The pressure gradient 

across the drop ( p ) can be approximated as 2

2
1

cc

x
p

RR

  
   

 
.  With an assumption 

that significant voltage drop occurs across the dielectric layer, the negative derivative of 

the stored energy (E) gives the electric force (Fe) acting on the droplet as 

2
0 ( )

2
r A r V

E
d

 
        (3.3) 

' (1 cos (2 ))e
dE

F k r t
dr

     .      (3.4) 

where r is the contact radius  cr R x  , A(r) is the instantaneous interfacial area, 

sin ( )V U t is the applied voltage; U is the amplitude of applied voltage, and

0 2'
2

r
k U

d

  
 ; the contact line friction is proportional to the velocity of the contact line 

[120, 123] ( (2 )fF x r   ), where ξ is the contact line friction coefficient. 

Assuming that a constant mass, m is involved in the oscillation of the droplet, the 

final simplified expression for the droplet oscillation at the contact line, i.e., at 
2

   

takes the form, 
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As is obvious from Eq. (3.5), the force acting on the TCL is parametric, i.e., it is a time-

dependent force which also depends upon the magnitude of displacement (x).  

This governing equation (Eq. (3.5)) is in the form of a parametrically excited and 

nonlinearly damped nonlinear equation [127].  The damping force, which is contact line 

friction in this case, as well as the forcing term are dependent on the instantaneous 

displacement of the contact line with respect to the initial contact radius.  Depending 

upon the forcing amplitude (a function of the applied voltage), the governing equation is 

expected to have a sub-harmonic frequency as a solution together with the response at the 

forcing frequency (which is twice the frequency of the periodic input applied) in a 

particular range of frequency.  The most convincing explanation for the sub-harmonic 

response of the droplet with periodic actuation at certain frequencies (> 20 Hz) is the 

Faraday instability [128], which is a characteristic outcome of the parametric excitation at 

the contact line.  In the modified Pellat’s experiment by Wang and Jones [123], a 

vigorous side-to-side sloshing motion of the liquid surface was observed when an 

electrical signal with frequency < 200 Hz was used to actuate the liquid (DI water) 

column.  This phenomenon might be attributed to the parametric nature of the electrical 

force.  Sub-harmonic oscillations have been studied in liquid droplets when a vertical 

oscillation is provided [129] and also in the case of magnetic actuation [77].  The 

important implication of this finding is that this phenomenon must be considered in 

droplet dynamics models for unsteady electrowetting-driven actuation 
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3.2.2.3 Droplet Oscillation Regimes  

The droplet contact line motion is significantly influenced by the frequency of 

actuation and the modes of oscillation as discussed in the previous section.  In this section 

we determine the resonant frequencies of the droplet using Lamb’s expression [130] and 

compare the values against the experimentally observed resonant frequencies, and 

determine the length scale appropriate for the determination of the same.  The frequency 

regimes for in-phase and out-of-phase behavior of the droplet contact radius and contact 

angle are reported. 

The bulk of the liquid can be treated as inviscid due to the low kinematic viscosity of 

10-6 m2/s of water.  The natural oscillation of an inviscid liquid droplet in a gaseous 

medium has been well studied in the literature and the resonant frequency for the nth 

mode oscillation is given by Lamb’s expression [130] given by 

1
2

3

1
( 1) ( 2 )

2
f n n n

l


 

 
   

  
.                                        (3.6) 

where ρ is the liquid density and l the characteristic droplet length.  The characteristic 

droplet length for a droplet resting on a solid surface is not well-defined and hence, three 

lengths are considered: the droplet contact radius (Rc), the initial droplet radius before 

actuation (Ro), and the initial droplet height (h).  For a droplet of volume 5 µl, using 

droplet contact angle as 120°, Rc = 0.9722 mm, Ro = 1.123 mm and h = 1.68 mm.  All the 

length scales used are calculated using the spherical cap assumption of the droplet.  

Resonance occurs when the frequency of the electrical force (which is twice the 

frequency of the applied signal) matches the natural frequency of the droplet.  The 
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resonant frequencies for a 5 μL water droplet corresponding to these characteristic lengths 

are given in Table 3.2. 

Table 3.2. Natural frequencies for the nth oscillation mode using Lamb’s expression. 

Mode, n 

l = Rc l = Ro l = h 

Resonant 
frequenc
y of the 
droplet 

(Hz) 

Correspo
nding 

freq. of 
the 

applied 
voltage 

(Hz) 

Resonant 
freq. of 

the 
droplet 

(Hz) 

Correspo
nding 

freq. of 
the 

applied 
voltage     

(Hz) 

Resonant 
freq. of 

the 
droplet 

(Hz) 

Correspo
nding 

freq. of 
the 

applied 
voltage     

(Hz) 

2 126.0 63.0 101.6 50.8 55.3 27.6 

3 244.0 122 196.7 98.3 107.0 53.5 

4 378.0 189.0 304.7 152.3 165.8 82.9 

5 527.1 263.6 424.8 212.4 231.2 115.6 

6 690.2 345.1 556.2 278.1 302.8 151.4 
 

Droplet oscillation at 60 Vrms and frequencies from 5 Hz to 200 Hz in steps of 5 Hz is 

documented in Figure 3.7 to show the distinct frequency regimes and the effect of 

resonance on droplet oscillation dynamics within each regime.  The figure shows four 

quantities as function of the frequency of the applied signal:  the maximum displacement 

in the contact radius (defined as difference between the maximum and minimum contact 

radii for a given applied frequency; the CR prior to actuation is not used as the reference 

since a lower minimum contact radius is observed at frequencies close to resonance); the 

maximum contact radius attained; the instantaneous contact angle observed at the time 

instant when the maximum displacement in the contact radius is attained; and the 

minimum contact angle corresponding to each frequency.  The displacement of the 
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contact radius was used to experimentally determine the resonance frequencies.  

Intuitively, the instant of maximum contact radius of the droplet should correspond to the 

minimum contact angle (and vice versa).  This in-phase behavior of the CR and CA is 

observed, for example, when the frequency is between 5 and 30 Hz.  At these low 

frequencies (5 - 20 Hz), the droplet oscillates quasi-statically in response to the sinusoidal 

signal; a spherical cap assumption can be made for the droplet shape during oscillation.  

During the initiation of droplet motion, video recordings reveal that the bulk of the liquid 

droplet moves downwards, thereby increasing contact radius.  The droplet oscillation 

increases drastically at 40 Hz.  Interestingly, the oscillation is more prominent in the 

height of the droplet rather than the radius of the droplet although the main electrical 

force is concentrated at the TCL. 

The non-overlapping plots of instantaneous CA corresponding to maximum CR and 

the minimum CA at certain frequencies indicate the phase lag between the contact line 

motion and the contact angle.  For actuation frequencies between 40 Hz and 70 Hz, the 

contact radius and contact angle become out-of-phase with the droplet oscillating in its 

2nd mode (as shown in the droplet shape at 40 Hz in the inset in Figure 3.7).  The arrows 

around the droplet photograph show the nodal points.  This is in agreement with the 

results of Lai et al. [131] who also observed out-of-phase behavior between the applied 

voltage and the droplet motion at the droplet resonant frequencies.  The droplet reverts to 

its in-phase behavior at a frequency of approximately 70 Hz.  However, the contact line 

oscillation is much reduced at these frequencies.  The magnitude of oscillation is at its 

minimum until the frequency of the AC signal is increased to a value of approximately 

100 Hz, at which the contact line movement increases significantly and the droplet 
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continues to oscillate with the contact angle being in-phase with the contact radius.  

Beyond 100 Hz, a prominent 4th mode of oscillation is observed in the droplet (Figure 

3.7).  The droplet oscillation exhibits out-of-phase behavior beyond a frequency of 115 

Hz until the 6th mode of oscillation becomes dominant at frequencies higher than 180 Hz.  

Figure 3.7 shows the droplet oscillating in the 6th mode of oscillation at a frequency of 

190 Hz.  The closest agreement between the experimentally obtained resonance 

frequencies and those predicted using Eq. (3.6) is found when droplet height is selected 

as the characteristic length; this is consistent with the experimental observations of Kim 

[132]. 

An interesting correlation is seen between the contact angle and contact radius as a 

function of the frequency of AC actuation.  After the droplet attains a resonance 

frequency, the CR and CA go out of phase; this continues till the next higher level of 

resonance frequency is dominant.  The change in phase is accompanied by minimal 

contact line movement; the contact line is almost pinned during this time and the 

oscillation takes the form of varying contact angle.  Whether the droplet oscillates in-

phase or out-of-phase is a characteristic of the droplet that is directly related to the 

resonance phenomenon.  The magnitude of oscillation and the phase angle between the 

CR and CA is also a result of the interaction between the different modes of oscillation of 

the droplet.  Accordingly, droplets of different volumes will show in-phase or out-of-

phase behavior corresponding to different values of actuation frequencies.  Further study 

of the interaction between different modes during oscillation of a constrained droplet 

would help in understanding the detailed dynamics in terms of analytical determination of 

the exact magnitude of oscillation and corresponding contact angle. 
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Figure 3.7. Droplet oscillation at 60 Vrms over a 5 Hz to 200 Hz frequency range.  The 
images shown as insets demonstrate distinct modes of droplet oscillation corresponding 

to three different frequencies (40 Hz, 100 Hz and 190 Hz). 
 

3.3 Summary 

The transient response of a droplet to step actuation has been experimentally 

demonstrated.  The local oscillations induced in the droplet result in a finite delay in the 

droplet achieving its steady-state profile.  The droplet takes approximately 9 ms for a 5 µl 

droplet to reach the maximum contact radius irrespective of the voltage applied.  It is 

demonstrated that the characteristic time scale is dependent upon the radius, density and 

surface tension of the droplet and should be taken into account in designing practical 

systems that exploit electrowetting actuation. 

A detailed experimental study of the droplet dynamics reveals the dependence of the 

contact angle and contact radius on the applied frequency and voltage of a periodic 

sinusoidal signal.  The droplet follows the signal at low AC frequencies and the 
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oscillations are mostly electrowetting-induced.  At higher frequencies, distinct shape 

oscillation modes are induced which, along with resonance, determines the magnitude of 

oscillation and phase angle between contact angle and contact radius.  The contact angle 

and contact radius show an alternating in-phase and out-of-phase behavior between 

successive resonant frequencies.  The experimentally determined resonance frequencies 

are shown to be well estimated by Lamb’s expression for natural frequency of a droplet 

when the height of the droplet is taken as the characteristic length scale in the prediction.  

Sub-harmonic oscillations of the droplet contact radius and contact angle during 

electrowetting are identified and are explained in terms of the parametrically excited 

nonlinear equation governing the droplet oscillation.  These sub-harmonic oscillations are 

attributed to the nonlinear damping forces and the parametric excitation force acting on 

the droplet during electrowetting. 
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CHAPTER 4. ONE-STEP FABRICATION AND CHARACTERIZATION OF 
HIERARCHICAL SUPERHYDROPHOBIC SURFACES 

This chapter describes a one-step fabrication methodology for hierarchical, two-tier 

roughness surfaces.  This methodology eliminates the complexities of producing the 

second sub-micron roughness layer.  Pillars of square cross-section are carefully 

engineered so that the single-roughness features inherently maintain the droplets in a 

stable Cassie state.  The double-roughness surfaces are fabricated with the same primary 

roughness as the single-roughness pillars using a single-step Deep Reactive Ion Etch 

(DRIE) method.  The hydrophobicity enhancement imparted by the second roughness 

layer is quantified by comparing the properties of the double-roughness (DR) surfaces to 

those of single-roughness (SR) surfaces.  The static contact angle and the roll-off angle of 

millimeter-sized sessile droplets on such surfaces are experimentally determined and 

compared to the results from the corresponding single-roughness substrates.  The 

behavior of the contact angle and the contact diameter during the evaporation of sessile 

droplets on both single- and double-roughness surfaces is investigated in the absence of 

surface heating.  Droplet impingement experiments are then conducted on the double-

roughness surfaces to test the robustness of their hydrophobicity and understand droplet 

dynamics on single tier and double tier roughness surfaces.  The material presented in 

this chapter was published in Journal of Micromechanics and Microengineering (21, p. 

105012, 2011) [71]. 
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4.1 Sample Preparation and Experimental Setup 

4.1.1 Sample Preparation 

The fabrication procedure developed in the present work circumvents the 

conventional two-step process to create double-roughness structures.  Silicon pillars 

constitute the larger roughness element.  Photoresist residue forms on the pillars during 

the DRIE process; this residue is in the form of ~1 µm strands stacked on top of the 

silicon pillars and provides the second-tier roughness.  The advantage of this method is 

that a double-roughness surface is obtained with a single deep reactive ion etching step.  

All fabrication for this work was carried out at the Birck Nanotechnology Center at 

Purdue University. 

Silicon wafers with 1 µm thermally grown oxide layers were used as the substrates.  

A layer of positive photoresist AZ 1518 was spin-coated and lithographically patterned 

on the wafer.  A wet-etch process is used to selectively etch the oxide layer from the 

surface.  The oxide layer along with the photoresist acts as the etch mask for the deep 

reactive ion etch (Bosch) process.  The Bosch process uses SF6 for etching and C4F8 for 

the passivation steps.   During etching the silicon is selectively etched to form the pillars.  

A higher passivation time and a lower O2 gas flow during etching aids in retaining a 

fraction of the polymers formed during passivation.  This results in the small roughness 

elements on the pillars which lead to the second-tier roughness.  Table 4.1 lists the 

process parameters used for fabrication of the double-roughness surfaces.  The etch rate 

for silicon was observed to be approximately 4 µm per minute.  A minimum of 4 minutes 

of etch time was required for the formation of the second-tier roughness structures. 
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Table 4.1. DRIE process parameters. 

Parameters 
Value 

etching passivation 

Switching time 5 sec 3 sec 

Gas flow 
450 sccm SF6 

15 sccm O2 
200 sccm C4F8 

RF coil power 1500 W 1000 W 
 

The surfaces are then spin-coated with 0.1% solution of Teflon-AF 1600 (DuPont, 

Wilmington, DE) in FC-77 (3M, St. Paul, MN) to impart hydrophobicity.  The thickness 

of the Teflon layer is approximately 50 nm and hence the overall roughness of the 

primary roughness as well as the sub-micron roughness is not affected by the Teflon 

coating.  The single-roughness surfaces SR-1, SR-2, and SR-3 used for comparison 

against the results from double-roughness surfaces are fabricated with the primary 

geometrical parameters held identical to those for the double-roughness surfaces DR-1, 

DR-2, and DR-3, respectively, using the negative photoresist SU-8 with standard 

lithography.  The pillars are subsequently coated with Teflon to impart 

superhydrophobicity.  The pillar geometry of the double-roughness surfaces fabricated is 

outlined in Table 4.2.  The table also shows the two parameters utilized to quantify the 

primary surface roughness, namely, 
2

2
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p
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 
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41m
ahr

p
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, where a is the 

width of the square pillars, p is the pitch, b is the width of the air gap between the pillars 

such that p a b  , and h is the height of the primary roughness elements.  The 

dimensions of the pillars are chosen such that the Cassie state is energetically more 
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favorable [34].  Figure 4.1 shows SEM images of the double-roughness surfaces 1, 2, and 

3. 

Table 4.2. Parameters of the hierarchical surfaces. 
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DR-1 27 42 32 0.41 0.56 2.96 0.33 

DR-2 13 25 32 0.27 0.92 3.66 0.27 

DR-3 33 47 32 0.49 0.42 2.9 0.33 

 

Figure 4.1. SEM images of hierarchical surfaces (a) DR-1, (b) DR-2, and c) DR-3.  The 
images to the right show the static shape of a 3 μL water droplet placed on the 

corresponding surface. 

(a) 

(b) 

(c) 
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4.1.2 Experimental Setup 

Deionized (DI) water droplets of volume 3 μL ± 0.1 μL are used for all the 

characterization experiments (except the droplet impingement tests).  The static contact 

angle of the droplets on the surfaces is measured using a goniometer (Model 290, Rame 

Hart), equipped with an automated tilt stage.  For the droplet roll-off experiments, the 

stage is tilted slowly (0.8 deg/sec) to prevent inadvertent addition of momentum to the 

droplet.  Images are simultaneously captured to analyze the advancing and the receding 

contact angles and the roll-off angle (α, the tilt angle at which droplet motion is initiated) 

of the droplet on the substrate (Figure 4.3).  Three sets of tests are carried out on each 

substrate.  The reported static contact angle is the average of the contact angles measured 

at five different locations on the substrate.  The deviation in static contact angle is within 

± 2⁰.  The roll-off results are repeatable to within the standard deviation as described in a 

later section. 

The droplet evaporation experiments help to characterize the behavior of the droplet 

contact line and the contact angle during evaporation on the hierarchical surfaces.  

Experiments are carried out without external heating under controlled temperature and 

humidity conditions of 21⁰ C and 32%, respectively.  A 3 μL droplet of water dispensed 

using a carefully calibrated microsyringe on to the test surfaces is visualized using the 

goniometer imaging system till it evaporates completely.  A cold light source used for 

backlighting ensures improved contrast but does not affect the droplet evaporation rate.  

The contact diameter and the contact angle are measured during evaporation on the DR 

surfaces and compared to the evaporation characteristic of a droplet on the SR surfaces. 
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Finally, droplet impingement tests are carried out on the double- and the single-

roughness surfaces to quantify the enhanced superhydrophobicity under impact imparted 

to the substrate by the secondary roughness layer.  Droplet impingement was also tested 

with a smooth hydrophobic silicon substrate coated with Teflon to provide a baseline for 

comparison.  A single droplet of volume 4.40 μL ± 0.25 μL is released from a height of 

10 mm and 100 mm by means of a high-precision automated dispensing system fitted 

with a micro-syringe as shown in Figure 4.3.  The impact dynamics of the droplet are 

visualized with a high-speed camera (1024 Photron PCI) at 3000 to 3750 frames per 

second.  As in evaporation experiments, backlighting is used along with a diffuser for 

improved contrast.  The images are subsequently analyzed using MATLAB [119] and 

Image J (an image processing program available from the National Institutes of Health).  

The advancing and the receding interface of the droplet, as well as the velocity at which 

the droplet leaves the substrate, are tracked. 

 

Figure 4.2. Schematic diagram of the sessile droplet and the angles measured. 
 



57 

 

 

Figure 4.3. Experimental setup for droplet impingement test. 
 

4.2 Results and Discussion 

4.2.1 Static Contact angle and Roll-off Angle 

When a droplet gently placed on a substrate is in its Cassie state (Figure 1.2a), the 

static contact angle θc can be approximated using the Cassie equation [4] as 

  1
0cos 1 1 cosc      .   (4.1) 

where θ0 is the Young’s contact angle on the smooth surface (measured to be 120⁰ for 

water droplet on a smooth surface coated with Teflon).  Table 4.3 lists the predicted and 

experimentally observed static contact angles of the droplet on the single-roughness 

surface and the observed static contact angles on the double-roughness surfaces.  Good 

agreement is observed between the theoretical contact angles from the Cassie expression 

(Eq. (4.1)) and the experimentally observed contact angles.  The observed value of 

contact angle on the double-roughness surfaces is greater than 160⁰.  This significant 

increase in the static contact angle of the droplet on the double-roughness surfaces 
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relative to the single-roughness surfaces (Table 4.3) is the first proof of their enhanced 

ultrahydrophobicity due to the presence of the sub-micron features. 

 

Table 4.3. Static contact angle measured on the test surfaces. 

 
Static contact angle 

predicted observed 

SR-1 142⁰ 142⁰ ± 3.5⁰ 

SR-2 150⁰ 147⁰ ± 3.0⁰ 

SR-3 139⁰ 144⁰ ± 2.0⁰ 

DR-1 _ 161⁰ ± 2.5⁰ 

DR-2 _ 160⁰ ± 2.0⁰ 

DR-3 _ 161⁰ ± 1.5⁰ 
 

Before a droplet begins to move on an inclined surface, the droplet shape changes 

such that the forces acting at the triple contact line balance the gravitational force.  The 

roll-off angle (α) decreases with an increase in droplet volume due to the increase in the 

gravitational force (mg) acting on the droplet [133].  Droplet roll-off experiments are 

carried out both on the double-roughness and single-roughness surfaces to determine the 

reduction in the contact angle hysteresis as well as enhancement in the roll-off 

characteristics due to the second layer of roughness.  The capillary length of a water 

droplet defined as  1/2

g

  is equal to 2.7 mm.  The characteristic length scale (diameter) 

of the 3 μL water droplet used in the experiments is approximately equal to 1.79 mm and 

is less than the capillary length.  This implies that the effect of gravity can be considered 

negligible and the droplet assumed to be of spherical-cap shape [134].  Also, this results 
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in the surface forces being more dominant in comparison to the gravitational forces in 

determining the rolling tendency of the droplets.  

The roll-off angle is observed to be very high on the single-roughness surfaces.  For 

SR-2 (b/a = 0.92), the roll-off angle is 51° ± 3°, while for SR-1 (b/a = 0.56) and SR-3 

(b/a = 0.42), the droplet did not roll off even at an inclination angle of 90°.  For the very 

small droplets employed in the experiments, the gravitational force is unable to overcome 

the surface tension force acting at the triple contact line of the droplet.  This is consistent 

with the observations of Deng et al. [63] who reported that for a b/a ratio less than 1, a 1 

μL droplet did not roll off.  The test was repeated for SR-1 and SR-3 using a larger 

droplet volume of 5 μL.  In this case the droplet did roll off, but again, at a very high roll-

off angle of 37°.  For SR-2, the roll-off angle reduced to 32° when a droplet volume of 5 

μL was used, which is consistent with the observation of Bhushan and Jung [133]. 

The droplet rolled off at a much lower tilt angle on the double-roughness surfaces.  A 

3 μL droplet rolled off at an inclination angle of 8.3° from DR-1, 9.5° from DR-2, and 3.7° 

from DR-3.  Thus the presence of the secondary roughness layer reduces the roll-off 

angle drastically in all cases.  Figure 4.4a shows a comparison between the roll-off angle 

of water droplets on the single roughness and double roughness surfaces.  It is noted that 

3 μL droplets were used in all experiments, with the exception that a 5 μL droplet was 

used for SR-1 and SR-3. 
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Figure 4.4. (a) The roll-off angle, and (b) contact angle hysteresis for the single-
roughness surfaces (SR-1, SR-2, SR-3) and the double-roughness surfaces (DR-1, DR-2, 

DR-3). 
 

Contact angle hysteresis refers to the difference between the advancing and the 

receding contact angles of a droplet and depends upon the surface 

roughness/irregularities.  When the substrate is inclined, the advancing and receding 

angles of the droplet modulate so as to overcome the surface tension force acting at the 

(a) 

(b) 
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triple contact line and the contact line pinning due to surface structures.  This explains the 

lower contact angle hysteresis shown in Figure 4.4b for SR-2 which has a b/a ratio higher 

than SR-1 and SR-3.  The contact angle hysteresis (CAH) provides an estimate of the 

energy loss due to impact/interaction with the structured surface.  The CAH is reduced 

significantly; for the DR-2 surface, this reduction is by 12.4° for a droplet of 3 μL volume 

(Figure 4.4b).  The CAH is due to the pinning of the contact line on some of the sub-

micron roughness features during initiation of rolling.  The temporal evolution of the 

advancing and the receding contact angles on the double-roughness surfaces prior to roll-

off illustrates that the advancing contact angle remains almost fixed at its static contact 

angle value while the receding contact angle decreases prior to the droplet roll-off (Figure 

4.5).  For the single-roughness surfaces, the advancing contact angle increases while the 

receding contact angle decreases before the droplet starts rolling. 

 

Figure 4.5. Temporal evolution of advancing and receding contact angles of the droplet 
during roll-off on single-roughness surfaces (SR-1, SR-2, SR-3) on the left and double-

roughness surfaces (DR-1, DR-2, DR-3) on the right. 
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4.2.2 Droplet evaporation 

The double-roughness surfaces were further characterized via droplet evaporation 

experiments under controlled environmental conditions without bottom heating as 

previously described.  An initial droplet volume of 3 μL was used in all the experiments.  

The experimental observations are reported in terms of the non-dimensional contact 

diameter (normalized with respect to the initial contact diameter) and contact angle of the 

droplet as it evaporates.  Figure 4.6a and Figure 4.6b show the time evolution of the 

evaporating droplet on SR-1 and DR-1, respectively.  The experimental observation are 

reported in terms of the non-dimensional time τ; τ = t/T, where t is the time instant and T 

is the total time taken for the complete evaporation of the droplet. 

 

 

Figure 4.6. Instantaneous images of an evaporating sessile droplet placed on (a) SR-1, 
and (b) DR-1. 

 

      (b) DR-1 

(a) SR-1 

  t = 0 min    t = 10 min    t = 20 min       t = 30 min    t = 35 min        t = 37.5 min 
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The droplet evaporation on the single-roughness surfaces (SR-1, SR-2, and SR-3) 

occurred in three distinct phases: constant contact area mode, constant contact angle 

mode and the mixed mode (Figure 4.7a, Figure 4.8a) as discussed in [92].  In the first 

phase the droplet contact angle reduces while the droplet contact line is pinned.  

Subsequently the contact line is de-pinned; the droplet interface starts sliding with a 

constant contact angle.  The interesting observation here is that sliding of the contact line 

begins when the contact angle is equal to the receding contact angle.  This observation is 

similar to that in the case of hydrophilic surfaces [9] and smooth hydrophobic surfaces.  

For all the three surfaces under consideration this angle is in close agreement with 

receding angles obtained from the roll-off experiments (Table 4.4).  In case of the single-

roughness surfaces the droplet remains in the Cassie state while evaporating except at the 

very end of the process when the droplet enters the air gaps and goes into the Wenzel 

state.  Such an effect is delayed with two-tier roughness. 

On the double-roughness surfaces, the droplet evaporates in the mixed mode, that is, 

the contact diameter as well as the contact angle change continually during the entire 

evaporation process.  The change in contact angle is minimal; on DR-2, the CA varies 

from 165° to 157° till τ = 0.87, after which the contact angle rapidly reduces.  For DR-1, 

the contact angle reduces to 142° (corresponding to τ = 0.89) in contrast to the behavior 

of SR-1 in which the contact angle decreases to 125° within a time of τ = 0.41.  Hence the 

reduction in contact angle is smaller compared to that of the single-roughness surfaces 

(Figure 4.8, Figure 4.9).  The contact diameter has a continuous sliding motion as 

illustrated by the time evolution of the surface profiles in Figure 4.7.  The contact angle 

behavior is qualitatively similar to that observed on lotus leaf surfaces [95]. 
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Figure 4.7 shows the superposed images of droplet profiles to illustrate the behavior 

of the wetted diameter of the droplet as it evaporates on the two different types of 

surfaces (SR-2, DR-2).  As can be seen from Figure 4.7, the droplet contact diameter 

continuously shrinks while evaporating on the double-roughness surface, whereas the 

contact line is pinned during the first phase on the single roughness surface.  The 

asymmetry in the latter case (SR-2) is due to pinning of droplet contact line on one side.  

Among the three double roughness surfaces considered in the study, DR-2 exhibits the 

minimum resistance to sliding of the contact line while evaporating (Figure 4.9). 

Table 4.4. Comparison of the contact angle corresponding to the initiation of sliding of 
droplet interface and the receding contact angle. 

Single-
roughness 

surface 

Contact angle corresponding to 
contact line sliding during 

evaporation (deg) 

Receding contact angle 
from roll-off experiments 

(deg) 

SR-1 125 128 

SR-2 133 129 

SR-3 122 122 
 

 

Figure 4.7. Evolution of the surface profile of a droplet evaporating on (a) SR-2 and (b) 
DR-2 (the numbers represent the time instant in min). 

 

(a) (b) 
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Figure 4.8. Variation of contact angle and contact diameter with respect to non-
dimensional time (τ) during evaporation on (a) single-roughness and (b) double-

roughness surfaces. 
 

 

Figure 4.9. Variation of contact angle with non-dimensional contact diameter on (a) 
single-roughness and (b) double-roughness surfaces. 

 
4.2.3 Droplet Impingement Dynamics 

Droplet impingement is the most demanding test of the water repellency of a surface 

under dynamic conditions.  During droplet impingement on a structured surface the 

(a) (b) 

(a) (b) 
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forces acting on the droplet that are responsible for wetting the air gaps are the Laplace 

pressure (PL) and the Bernoulli or dynamic pressure (PD), which can be written as  

2
LP R

       (4.2) 

21

2DP V ,     (4.3) 

where γ is the surface tension of the liquid, R is the radius  of the droplet, ρ the density of 

the liquid, and V is the velocity of the droplet just before impact.  The capillary pressure 

(Pc) of the air gap in the surface offers the main resistance to droplet impalement of the 

surface and is inversely related to the space between the pillars, 

0 2 2

4
cosC

a
P

p a
  


,     (4.4) 

where θ0 is the initial contact angle, a is the width of the pillars and p is the pitch.  The 

transition criterion from the Cassie to Wenzel states upon droplet impingement is 

determined by the relative magnitude of PC, PL, and PD.  While surfaces with larger solid 

fraction (ϕ) have higher capillary pressure owing to the decreased air gap, the larger solid 

fraction also results in a lower contact angle and a lower roll-off tendency of the droplet 

on such surfaces as observed in the roll-off experiments.  It is therefore essential to select 

an optimum value of ϕ while designing surfaces for higher contact angle and the required 

water repellency.  The presence of a second layer of roughness elements helps enhance 

the static contact angle and water repellency of surfaces. 

The study of droplet impact was carried out on the six superhydrophobic surfaces 

using droplets of volume 4.40 ± 0.25 μL in all the tests and impingement heights of 10 

mm and 100 mm.  The relative importance of the kinetic energy of the impinging droplet 
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and the surface tension force may be compared using the Weber number [78] defined as 

2V RWe 
 .  For the droplet impingement heights of 10 mm and 100 mm, We is equal to 

2.8 and 27.6, respectively. 

The behavior of the droplet upon impact can be understood based on two main stages.  

In the first stage, the droplet interface advances to attain the maximum wetted diameter.  

During this phase the kinetic energy of the droplet is stored as deformation energy in the 

droplet.  In the second stage, the droplet retracts and the stored energy helps it rebound 

off the surface.  The first stage (spreading of the droplet) is an inertia-driven 

phenomenon.  Subsequent retraction and bouncing of the droplet off the surface is the 

basic test for the water repellency of the surface.  Figure 4.10 shows images of the droplet 

at different instants when the droplet impingement height is 10 mm.  For this 

impingement height with We = 2.8, the droplet bounced off both the single- and double-

roughness surfaces, but there are differences between these sets of surfaces in terms of 

the contact angle of the droplet while it is retracting on the substrates, the contact time 

(total time the droplet is in contact with the substrate), and the droplet height attained 

after it bounces back. 
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Figure 4.10. Images of the droplet profile at different time instants upon impingement 
from a height of 10 mm on the (a) hydrophobic surface, (b) SR-2, and (c) DR-2. 

 

Figure 4.11 shows the temporal variation of the wetted diameter of the droplet when it 

is in contact with the surface corresponding to the impingement height of 10 mm.  The 

time instant at which the droplet is just about to touch the substrate is taken as the initial 

time instant (t = 0).  The droplet takes 2.67 ± 0.33 ms to reach its maximum wetted 

diameter irrespective of the surface parameters and the maximum wetted diameter is 

approximately equal to 1.2 times the droplet diameter as shown in Figure 4.11.  However, 

the rate at which the interface of the droplet retracts before bouncing off the surface 

varies depending on the nature of the surface.  This reflects the correlation between the 

contact angle hysteresis and the residence time of the droplet on the surface during 

impact.  The droplet takes the least time to detach from surface DR-2 (t = 10 ms) and the 
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contact time is maximum for SR-3 (t = 12.3 ms).  The higher the CAH, the longer is the 

time the droplet takes to detach from the substrate.  For tests with the 10 mm drop height, 

the droplet takes 12.27 ± 0.76 ms to bounce off the single-roughness surface whereas the 

time is reduced to 10.33 ± 0.67 ms for the double-roughness surfaces (DR-1, DR-2, DR-

3).  This difference is mainly attributed to the higher energy loss upon impact on SR 

surfaces (resulting from greater CAH) as compared to DR surfaces.  As stated earlier, the 

hysteresis is greater when only one tier of roughness elements is present, with a 

correspondingly higher loss of energy.  The contact time varies between surfaces and is 

slightly different from the characteristic time scale (based on the balance between inertia 

and capillarity) given as
1/ 23

(2.6 0.1) R 
    
 

 by Okumura et al. [ 135 ].  The 

characteristic time scale for the droplet is 10.1 ms.  The deviation from this time scale 

primarily in case of the single roughness surfaces is mainly because of the contact angle 

hysteresis on the surfaces.  This is because the energy loss due to contact angle hysteresis 

is neglected in the derivation of the contact time.  A more sparse distribution of pillars 

than those considered in the present work would yield contact times closer to the 

characteristic time scale due to the corresponding decrease in the contact angle hysteresis, 

as has also been observed by Li et al. [136]. 
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Figure 4.11. Variation of the wetted diameter of the droplet on the SR and DR surfaces 
corresponding to the droplet impingement height of 10 mm. 

 

The other difference between the single and double-roughness surfaces is observed in 

the contact angle that the droplet interface makes with the substrate while retracting, and 

the wetted diameter of the droplet just prior to detachment from the surface.  Table 4.5 

summarizes the contact angle and the wetted diameter of the droplet before it detaches 

from the double-roughness and single-roughness surfaces.  The droplet bounces off the 

hierarchical surfaces at a much higher contact angle than in case of single-roughness 

surface, thus indicating a Cassie jump.  This further explains the lower energy loss of the 

droplet upon impact on the double roughness surfaces.  The lower wetted diameter and 

the lower contact angle prior to detachment indicates the pinch-off phenomenon on the 

single roughness surface (Figure 4.10b) which is not seen in case of the double-roughness 

surfaces. 
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Table 4.5. Droplet contact angle and wetted diameter prior to detachment from the 
substrate. 

Double-
roughness 

surface 

Contact angle 
prior to 

detachment 
(deg) 

Wetted 
diameter 

(mm) 

DR-1 146.5 0.23 

DR-2 144.7 0.27 

DR-3 135 0.13 

SR-1 124.4 0.20 

SR-2 125.3 0.20 

SR-3 113.9 0.13 
 

The coefficient of restitution is defined as 2

1

h
COR

h
 where h2 is the height to which the 

droplet bounces up and h1 is the initial height from which the droplet is released.  h2 is 

given by the maximum distance between the center of mass of the droplet bouncing off 

the surface and the substrate.  The coefficient of restitution of a surface is used as a 

quantitative measure of the reduction in energy loss of the droplet on the double-

roughness surface.  Figure 4.12 shows the maximum height attained by the droplet when 

it is dropped from a height of 10 mm on to the DR surfaces, SR surfaces, and a smooth 

surface (silicon wafer coated with Teflon).  The droplet height follows a parabolic profile 

with respect to time after rebounding from the surface.  The droplet oscillates in air 

(determined in terms of the position of its center of mass) after bouncing off the surface, 

suffering energy loss due to viscous dissipation as observed by Richard and Quéré [78].  

A frequency analysis of the droplet oscillation in air can predict one primary oscillation 

frequency which varies according to the substrate; such analysis is, however, beyond the 
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scope of the present study.  The height h2 reached by the droplet after impingement and 

the corresponding COR are shown in Table 4.6.  The COR for DR-2 is 0.67, as compared 

to a value of 0.54 for SR-2 and 0.52 of SR-1.  The droplet did not bounce off the smooth 

surface at the droplet impingement height of 10 mm (resulting in a COR of 0 for this 

surface).  The higher coefficient of restitution on the double-roughness surfaces as 

compared to the single-roughness and the smooth surfaces illustrates their superior 

hydrophobicity.  This is a cumulative effect of the reduction in the viscous dissipation of 

the droplet, and lower contact angle hysteresis during droplet retraction. 

 

Figure 4.12. Maximum height attained by the droplet after recoil from the surface for a 
droplet impingement height of 10 mm (t – instantaneous time; tcontact – time instant when 

the droplet just detaches from the substrate). 
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Table 4.6. Droplet impingement summary on the textured surfaces. 

Surface Coefficient of Restitution 

1 2 3 

DR 0.66 0.67 0.62 

SR 0.52 0.54 0.49 
 

The droplet impingement experiments are repeated with the droplet being released 

from a height h1 of 100 mm, resulting in an impingement velocity of 1.4 m/s and a 

corresponding We = 27.6.  Figure 4.13 shows the instantaneous images of droplet impact 

on DR-3 and SR-3 for this droplet release height; time t is defined as zero when the 

droplet is just about to touch the substrate.  At this impingement velocity the droplet 

deforms significantly as it spreads on the surface.  Figure 4.14 shows the temporal 

variation of the diameter of the droplet on surfaces 2 and 3, both for single- and double-

roughness.  As for the smaller release height of 10 mm, the droplet interface attains its 

maximum wetted diameter and then recedes.  The droplet takes 2.27 ± 0.15 ms to reach 

its maximum wetted diameter in this case.  This maximum wetted diameter on both 

single- and double-roughness surfaces is 2.3 times the initial droplet diameter, which is 

significantly larger than in the case of the shorter release height (h1 = 10 mm), where the 

ratio was 1.2.  The subsequent retraction profiles of the droplet interface on the single- 

and double-roughness surfaces are, however, different, and the secondary roughness on 

the DR surfaces serves to reduce the contact time. 

Prior to bouncing off the surface, the droplet is highly elongated for h1 = 100 mm, 

and the non-uniform energy distribution in the droplet results in smaller droplets being 

detached from the elongated droplet while bouncing off the substrate.  While the droplet 
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bounces off completely from the double-roughness surfaces (at t = 10.4 ms for DR-3), a 

pinch-off is observed in the case of the single-roughness surfaces: a very small part of the 

droplet is stuck to the single-roughness surface (SR-3) as shown in Figure 4.13 at t = 12.8 

ms.  The higher retraction time (difference between the time instant of maximum spread 

and time instant when the droplet finally detaches from the substrate) on single-roughness 

surfaces, i.e., 8.13 ms on SR-2 and 10.53 ms on SR-3 compared to 6.73 ms on DR-2 and 

8.13 ms on DR-3, indicates the reduction in total energy loss on the double-roughness 

surfaces fabricated. 

Fragmentation occurs at the top of the droplet to form smaller droplets while 

bouncing off the substrate at this high Weber number (= 27.6).  The smaller droplets 

formed (Figure 4.13) are released at a much higher velocity reaching a much larger 

height, and are not captured in the window size of the images.  Hence the coefficient of 

restitution, which depends upon the final height of the center of mass of the droplet, is not 

calculated for this droplet release height.  

 

Figure 4.13 Instantaneous images of droplet impingement corresponding to a droplet 
release height of 100 mm on (a) SR-3, and (b) DR-3. 
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Figure 4.14. Wetted diameter corresponding to the droplet impingement height of 100 
mm on (a) SR-2, and DR-2, and (b) SR-3, and DR-3. 

 

4.3 Summary 

A simple, one-step fabrication methodology for developing superhydrophobic 

double-roughness surfaces is presented.  A single-step deep reactive ion etch method is 

employed to fabricate the hierarchical roughness structures; the second layer of 

roughness caused by the photoresist residue is stable and is an easy way to enhance the 

surface hydrophobicity.  Significant improvement of the surface hydrophobicity is 

observed in terms of the non-wetting characteristics when the second layer of roughness 

elements is introduced as compared to surfaces with a single level of roughness in the 

form of micropillars.  Larger static contact angles with a water droplet, smaller roll-off 

angles, and reduced contact angle hysteresis are demonstrated with the hierarchical 

surfaces relative to the single-roughness surfaces.  The surfaces are also shown to better 

(a) (b) 
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withstand the impact pressure from an impinging water droplet.  A coefficient of 

restitution of approximately 0.65 is achieved with the double-roughness surfaces when 

the droplet impingement height is 10 mm.  The double-roughness nature of the fabricated 

surfaces preserves the robustness of the air gap between pillars even under impingement 

of a droplet released from a height of 100 mm. 
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CHAPTER 5. HYBRID SURFACE DESIGN FOR ROBUST 
SUPERHYDROPHOBICITY 

The focus of research presented here is not only on the development of surfaces that 

exhibit superhydrophobic properties, but also on ensuring that they are robust and can 

maintain the superhydrophobic state against external forces that tend to induce wetting.  

The project was done in collaboration with Marie Theresa, an undergraduate intern from 

Karlsruhe Institute of Technology. Germany.  In this chapter, we present and discuss two 

major findings.  First, we show through analysis that hollow square pillars used as 

roughness elements demonstrate a higher anti-wetting pressure as compared to solid 

pillars of similar dimensions, both with communicating air gaps.  Second, we 

characterize the hybrid surfaces fabricated in this work in terms of the static contact angle 

of a sessile droplet, and test their robustness with droplet impingement tests.  We explain 

the droplet impingement behavior on the superhydrophobic surfaces using a dynamic 

pressure model.  We then use the experimental results to determine the water hammer 

pressure during impact.  We show the water hammer pressure acting on the 

superhydrophobic substrate during droplet impingement to be dependent on the surface 

morphology.  The material presented in this chapter was published in Langmuir (28(25), 

pp. 9606–9615, 2012) [137]. 
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5.1 Hybrid Superhydrophobic Surfaces: Design and Fabrication 

The intrinsic contact angle, or Young’s contact angle (θY), of a droplet when placed 

on a smooth surface is given by the relative surface energies of the solid-liquid (γSL), 

solid-air (γSA), and liquid-air (γLA) interfaces as 

1cos SA SL
Y

LA

 


  
  

 
.      (5.1)  

On a structured surface, on the other hand, the droplet contact angle depends on 

whether it is in a Cassie or a Wenzel state on the substrate; this droplet state can be 

predicted using an energy minimization approach [134].  A droplet gently deposited on a 

rough surface that favors the Cassie state energetically stays in the Cassie state with a 

high contact angle as given by [134] as 

  1cos 1 1 cosc Y      ,    (5.2) 

where θY is Young’s contact angle of the droplet on a smooth surface (= 120⁰ for a water 

droplet on a Teflon coated smooth surface [71]), and   is the solid area fraction defined 

as the ratio of the projected area to the base area of the surface

2

2
oa

p

 

 
 

, with ao being 

the feature size and p the pitch of the pillars (Figure 5.1a).  The apparent contact angle of 

a droplet in the Cassie state thus depends on Young’s contact angle and the solid fraction. 

An alternative situation is realized when the droplet homogeneously wets the micropillars 

and is in the Wenzel state; the contact angle in this case is given by  

 1cos cosW m Yr  ,      (5.3) 
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in which rm is the roughness given by 
2

4
1 o

m

a h
r

p
  , and h is the height of the roughness 

elements.  

 

Figure 5.1. Schematic of (a) superhydrophobic surfaces with communicating air gaps, 
and (b) hollow-pillared hybrid surfaces. 

 

It is possible to attain two different contact angles (corresponding to the Cassie and 

Wenzel states) on the same rough surface depending on how the droplet is formed [134].  

The important condition for the Cassie state to be the more stable configuration on a 

superhydrophobic (SH) surface is for the Cassie state of the droplet to have a lower 

energy than the Wenzel state [35, 134].  That is, the contact angle obtained from the 

Cassie expression (Eq. (5.1)) must be smaller than that obtained using the Wenzel 

expression (Eq. (5.2)) [134]. 

The non-wetting Cassie state of a SH surface is attributed to the high capillary 

pressure (PC) resulting from their small-pore structure.  The capillary pressure depends 

on Young’s contact angle (θY) of the droplet on a smooth surface, the capillary perimeter 

(Lc) and area (Ac), and is given as [69] 

ai 
a0 b

a0 

p 

(a) (b) 
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cos C
C LA Y

C

L
P

A
   .      (5.4) 

in which γLA is the surface tension of the liquid (= 0.072 N/m for water).  For a structured 

surface with a solid-pillared pattern as shown in Figure 5.1a, the capillary pressure takes 

the form  

4 cos
(1 )C LA Y

o

P
a

 


 


.    (5.5) 

The transition between the Cassie and Wenzel states was explained in terms of the 

energy barrier between the two states by Patankar [134].  The energy barrier may be 

understood as the energy required to wet the sides of the surface elements on SH surfaces 

[138].  An alternative approach is to interpret the energy barrier in terms of the work 

done by capillary force, which is the product of capillary pressure and liquid-air 

interfacial area (= p2 – ao
2), to displace the air gaps through a height h within the 

roughness elements.  For the SH surface geometry of Figure 5.1a, with feature size a0 and 

height h, the energy barrier between the Cassie and Wenzel states of the droplet 

corresponding to one pillar (area p2) is given by 

2
0 0 0

0

( ) 4 cos (1 ) 4 cos
(1 )C W C C LA LAper pitch

E E P A h p h a h
a

    


         
.  (5.6) 

The total energy barrier between the two states of a droplet of radius Rc (assuming 

the space beneath the droplet to be wetted homogeneously) may be determined by 

multiplying the energy with the total number of pillars (n) beneath the droplet (n = 

πRc
2/p2) as 

2
2

0 0 02
0

4 cos 4 cosC
C W L A C L A

R h
E E a h R

p a

          .   (5.7) 
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This expression is analogous to the energy barrier inherent in the change in surface 

energy during Cassie-to-Wenzel transition as proposed by Patankar [134] (simplified 

form of equation 6 in reference [134]).  The energy barrier between the Cassie and 

Wenzel state can be overcome by the kinetic energy of the droplet striking such a surface.  

Under dynamic conditions, additional pressures come into play at the interface: the 

Bernoulli pressure 21

2DP V  
 

 due to the velocity of the droplet during impingement, 

and the shock pressure or the water hammer pressure  WHP k cV  produced by the 

sudden stoppage of the droplet by the substrate. The water hammer pressure is limited to 

a small area compared to the projected area of the droplet and this area depends on the 

size of the droplet and velocity of impingement [81].  The value of 0.2 for the coefficient 

k used in the literature gives an extreme over-estimate of the water hammer pressure 

acting on the surface.  PWH acting during the impingement of a droplet on a textured 

superhydrophobic surface is therefore determined experimentally using a pressure 

balance-based approach in the present work, as discussed in a subsequent section. 

In order to prevent the droplet transition to homogeneous wetting of the surface, the 

anti-wetting pressure must exceed the wetting pressure, namely the sum of the dynamic 

pressure and the water hammer pressure, i.e., C D WHP P P  .  Otherwise, either partial or 

total infiltration of the air gap by the impinging droplet occurs [63].  Figure 5.2 illustrates 

these two possibilities following the impingement of a droplet on a superhydrophobic 

surface. 
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Figure 5.2. Schematic illustration of the alternative transition events during droplet 
impingement on a superhydrophobic surface. 

 

The capillary pressure may be enhanced by decreasing the feature size (Eq. (5.5)) 

[139].  The feature height must exceed a minimum value to avoid a transition to droplet 

impalement caused by the curved surface of the droplet touching the substrate [58].  Tall, 

slender pillars would ensure superhydrophobicity, but may not be sufficiently robust.  At 

the microscale, an alternate approach is to modify the surface design so as to increase the 

net anti-wetting pressure.  In the remainder of this section, we describe the design of 

hollow-pillared hybrid surfaces based on this approach, and compare their characteristics 

in terms of static contact angle and anti-wetting pressure with those of surfaces with solid 

pillars with only communicating air gaps. 

The hollow-pillared hybrid surface designed in this work consists of a square array of 

pillars with square holes at the centers of each of the pillars that serve to trap air in the 

holes.  The rationale is to use both the communicating and non-communicating air gaps 

to enhance the anti-wetting property of the surfaces.  Figure 5.1b shows the layout of 

Partial Wetting 

Non-Wetting  
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such a surface: a0 and ai represent the outer and inner dimensions of the square pillars, p 

is the pitch of the pillars, and b is the gap between the pillars.  In the present study, ai is 

maintained at two-thirds of a0 for all the surfaces fabricated.  For the experimental 

verification tests, six different substrates are fabricated with varying surface roughness 

and solid fraction as will be discussed in detail in a following section. 

5.1.1 Static Contact Angle on Hybrid Surfaces 

The static contact angle that may be achieved with the hollow-pillared hybrid surfaces 

(Figure 5.1b) is compared against that with a solid-pillared surface (Figure 5.1a) of 

equivalent pillar outer dimension, ao.  The solid fraction () and the surface roughness 

(rm) of the hybrid surface are given by 

2 2

2
o ia a

p
 
       (5.8) 

2

4( )
1 o i

m

a a h
r

p


  .      (5.9) 

The use of the non-communicating air gaps reduces the solid fraction, thus increasing 

the apparent contact angle.  He et al. [4] formulated an expression for the equilibrium 

contact angle based on the energy balance between the Cassie and Wenzel states of the 

droplet.  This angle represents the maximum contact angle of a droplet on a particular 

superhydrophobic surface, and for communicating square structures is given by He et al. 

[4] as 

1

0

4
cos 1 (1 )E

h

a

 


 
    

 
.     (5.10) 

Thus, the equilibrium contact angle of the droplet on the hollow-pillared hybrid geometry 

is given by 
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Comparing Eq. (5.10) and Eq. (5.11) it may be deduced that for a fixed outer feature 

size (ao), the equilibrium contact angle (θE) is larger for the hybrid surface.  Figure 5.3 

compares the variation of the contact angle for the Cassie (Eq. (5.2)) and the Wenzel (Eq. 

(5.3)) states with respect to the solid fraction corresponding to both the hollow-pillared 

hybrid surfaces and the solid pillar structures.  The chosen feature dimensions are ao = 20 

µm and pillar height h = 32 µm, and the solid fraction   is varied by varying the pitch p.  

The equilibrium contact angle θE is the intersection of the Cassie and the Wenzel curves 

(Figure 5.3).  The equilibrium contact angle for the hybrid structure is 167.2⁰ and is 

achieved at   = 0.049; this compares to the values for the solid pillars of 159⁰ at   = 

0.137.  Thus a higher stable contact angle can be obtained using a hollow-pillared hybrid 

geometry than with solid pillars.  It is also noteworthy that hybrid pillars support the 

Cassie state of a droplet over a larger range of solid fractions (  > 0.049) than do the 

solid pillars (  > 0.137) for the same ao.  
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Figure 5.3. The dependence of contact angle on the solid fraction for hollow hybrid 
pillars and solid pillars.  The intersection of the Cassie and Wenzel curves represent the 

equilibrium contact angle. 
 

5.1.2 Anti-Wetting Pressure Offered by Hybrid Surfaces 

The capillary pressure of the surface is also different for the hollow-pillared hybrid 

pillars proposed here, relative to a solid-pillar structure.  From Eq. (5.4), the capillary 

pressure for the hybrid surface is  

2
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o i
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
   

  
.   (5.12) 

The hybrid surface increases the capillary pressure significantly for a given value of 

solid fraction.  Figure 5.4 shows the variation of capillary pressure for the hybrid surface 

as well as for solid pillars as a function of solid fraction (varying pitch) for ao = 20 μm.  

As solid fraction   is increased, the angle obtained using the Cassie equation (Eq. (5.2)) 
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decreases.  An increasing solid fraction implies a decrease in air gap size, which results in 

an increase in capillary pressure.  Although this trend can be seen in case of both the 

surface geometries, the hybrid surface shows a much higher capillary pressure than the 

solid pillars for a given contact angle.  At a solid fraction of 0.4 (θC ~ 143°), the capillary 

pressure Pc is 14400 N/m2 for the hybrid surface but only 4800 N/m2 for the solid pillars.  

This is an important factor in the design of robust superhydrophobic surfaces for high 

anti-wetting pressure without compromising the high contact angle. 

 

Figure 5.4. Variation of contact angle and capillary pressure with solid fraction for the 
hollow-pillared hybrid surface and the solid-pillared surface. 
 

5.2 Fabrication of Hollow-Pillared Hybrid Surfaces 

Six hybrid surface samples are fabricated in the present work, with the surface 

parameters selected such that the Cassie state is the stable configuration for a droplet.  
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The contact angle and the capillary pressure for the six hybrid surfaces are computed 

from Eq. (5.2) and Eq. (5.12) respectively to be significantly higher than the values on 

corresponding solid square pillars of the same pillar outer dimension (a0) and pitch (p).  

Table 5.1 summarizes these surface parameters.  All the surfaces were fabricated in the 

Birck Nanotechnology Center at Purdue University.  Silicon wafers with 1 μm oxide 

layer are used as the substrates.  The fabrication process includes spinning of HMDS at 

3000 rpm for 10 secs followed by spinning photoresist, AZ 5214 (MicroChem) at 3000 

rpm for 30 sec.  The wafer is soft-baked at 110⁰ C for 65 s and exposed for 7 sec at a 

power of 23 mW/cm2 (Karl Suss MJB-3 mask aligner).  The reversal bake is carried out 

at 110⁰ C for 2 min and 40 sec, followed by a flood exposure for 60 sec.  The photoresist 

is developed using AZ 400K:DI water at a dilution ratio of 1:4 for 30 sec.  The 

photoresist is used to pattern SiO2 using reactive ion etching (STS AOE).  Subsequently, 

the photoresist is removed using acetone and methanol cleaning steps and the patterned 

oxide layer acts as the etch mask for silicon patterning using a deep reactive ion etch 

(DRIE) process.  A low etch rate of 1.7 µm/min is chosen for anisotropic etching to 

achieve the design feature size.  The DRIE parameters are listed in Table 1. 

Table 5.1. DRIE process parameters. 

Parameters 
Value 

etching passivation 

Switching time 6 sec 4 sec 

Gas flow 160 sccm SF6 85 sccm C4F8 

RF coil power 900 W 700 W 

RF Bias power 25 W 20 W 
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After DRIE etching, the oxide layer is removed using a buffered oxide etch.  The 

structures are subsequently spin-coated with 0.2% Teflon AF1600 (DuPont, Wilmington, 

DE) in FC77 solution at 1500 rpm for 30 sec resulting in a conformal coating of ~ 50 nm.  

The substrates are then baked at 90° C for 45 min.  SEM images of the hollow-pillared 

hybrid surfaces before spinning Teflon are shown in Figure 5.5. 

Table 5.2. Surface parameters of the hollow-pillared hybrid substrates fabricated. 

Surface 
a0 

(µm) 
ai 

(µm) 
Pitch 
(µm) 

  rm 

1 15 10.0 39 0.08 2.64 

2 20 13.3 45 0.11 2.65 

3 13 8.7 25 0.15 4.47 

4 20 13.3 34 0.19 3.88 

5 27 18.0 42 0.23 3.55 

6 33 22.0 47 0.27 3.48 

 



89 

 

 

Figure 5.5. Scanning electron microscopy (SEM) images of four representative hollow 
hybrid superhydrophobic surfaces fabricated in the present work: (a) surface 1 (b) surface 

3 (c) surface 4, and (d) surface 5. 
 

5.3 Experimental Setup 

The capillary length of a water droplet defined as  
1
2

g

 is 2.7 mm.  For droplet 

diameters smaller than this length, the flattening effect of gravity on the droplet may be 

neglected and a spherical geometry assumed.  A 3 μL deionized water droplet is used for 

the static contact angle measurements such that the length scale (diameter) is 

approximately 1.79 mm and is less than the capillary length [71].  A goniometer (Model 

290 Ramehart) is used for imaging the droplet and determining its contact angle using a 

(b) surface 3: a0 = 13 µm,  = 0.15, rm = 4.47 

(d) surface 5: a0 = 27 µm,  = 0.23, rm = 3.55 (c) surface 4: a0 = 20 µm,  = 0.19, rm = 3.88 

(a) surface 1: a0 = 15 µm,  = 0.08, rm = 2.64 
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circular-fit algorithm.  The spherical symmetry of the droplet allows for such a fit to 

determine the contact angle.  The droplet impingement experiments are carried out with a 

droplet of 4.5 µl volume.  Figure 4.3 shows a schematic diagram of the experimental 

setup used for the droplet impingement experiments.  The images are recorded using a 

high-speed camera (Photron 1024 PCI) at 3,000 to 3,750 fps.  Each experiment is carried 

out at least three times. 

The reported droplet static contact angle is obtained as the average of the contact 

angles measured at different locations on the substrate.  The droplet behavior upon 

impingement on the hybrid surfaces is seen to be extremely repeatable, mainly because of 

the precise control of the impingement settings and the uniformity of the substrates 

fabricated.  For droplet impingement experiments, representative results are presented in 

terms of the contact angle and the droplet wetted diameter.  Image processing is done 

using an in-house Matlab [119] code and Image J software (an image processing program 

available from the National Institutes of Health). 

5.4 Results and Discussion 

5.4.1 Static Contact Angle 

The static contact angles for the six test surfaces, measured using a circular curvefit 

algorithm to the goniometer images, are summarized in Table 5.3.  The experimental 

values of contact angle lie within 96 to 103 percent of the theoretically predicted values 

(from Eq. (5.2)) showing a reasonably good match.  The reported static contact angles are 

averaged over four sets of experiments.  All the hollow-pillared hybrid surfaces 

fabricated support high contact angles in the range of 153.4° - 157°. 
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Table 5.3. Predicted and measured values of the static contact angle for hollow-pillared 
hybrid surfaces. 

Surface 
Contact angle 

Theoretical (deg) Measured (deg) 

1 163.5 156.3±0.2 

2 160.9 156.1±0.9 

3 157.7 153.9±0.5 

4 154.7 156.3±1.1 

5 152.3 155.5±0.2 

6 149.7 153.9±0.5 
 

5.4.2 Droplet Impingement 

As discussed in an earlier section, the wetting transition upon impact is determined by 

the relative magnitudes of the Bernoulli pressure (PD), water hammer pressure (PWH), and 

capillary pressure (PC).  When a droplet of water impinges on a surface from a height of 

50 mm with ao = 20 µm and   = 0.1, these pressures take magnitudes of PC = 1,934 N/m2, 

PB = 491 N/m2, and PWH = 296,740 N/m2 (obtained using k = 0.2 in the expression for 

PWH [63]).  The water hammer pressure so predicted is orders of magnitude higher than 

the wetting pressures, and the wetting transition would be expected to occur at a droplet 

impingement height as small as ≈ 2 μm.  In the experiments, however, it is observed that 

the wetting transition for superhydrophobic surfaces of this geometry occurs when the 

impingement height is in the range of tens of mm.  It is clear that the expression for 

predicting PWH must be modified. 

The droplet impingement experiments not only assess the robustness of the air gaps 

of the hollow-pillared hybrid surfaces fabricated, but also aid in understanding the 
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mechanics of the impingement-induced droplet transition on the superhydrophobic 

surfaces.  Experiments were carried out by carefully incrementing the height of 

impingement in steps of 5 mm until a height was reached at which a part of the droplet 

goes into the Wenzel state on the surface.  The velocity corresponding to this occurrence 

is termed as the critical velocity.  In the following sections we describe the dynamics of 

the droplet upon impingement on the hybrid surfaces, and propose a modified expression 

for predicting the water hammer pressure 

5.4.3 Droplet Dynamics 

This section describes the dynamics of droplets impinging on superhydrophobic 

surfaces during completely non-wetting (Figure 5.2a) and partial wetting (Figure 5.2b) 

impact.  A droplet of volume ~4.5 μL was used in all the impingement experiments.  The 

relative importance of the kinetic energy of the impinging droplet and the surface tension 

force may be compared using the Weber number [78] defined as 
2

LA

V RWe 
  , where R 

is the radius of the droplet.  The Weber number in our experiments varies between 2.7 

and 27.3.  

The behavior of the droplet upon impact can be analyzed in terms of two main stages.  

In the first stage, the droplet interface advances to attain the maximum wetted diameter.  

During this phase the kinetic energy of the droplet is stored as deformation energy in the 

droplet.  The first stage (advancing phase) is an inertia-driven phenomenon; in the second 

stage (receding phase), the droplet retracts and the stored energy helps it rebound off the 

surface.  Complete retraction and detachment of the droplet from the superhydrophobic 

surface is possible only when the air gap within the structures retains its integrity during 
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impact; this is the basic test for water-repellence of a surface.  In this non-wetting case 

the pressure of the air gap prevents the droplet from going into a Wenzel state and 

reduces the energy expended during the retraction of the droplet, causing it to bounce off 

based on the stored energy.  Figure 5.6 shows the instantaneous images illustrating the 

droplet impact on surface 4 with a velocity of 0.99 m/s; We = 13.6.  The capillary 

pressure is higher than the net wetting pressure in this case, and the droplet bounces back 

without wetting the surface. 

 

Figure 5.6. Instantaneous images of droplet impact on surface 4 at V = 0.99 m/s. 
 

The non-dimensional contact diameter (normalized with respect to the initial diameter 

of the droplet) as well as the contact angle upon impact of a droplet from a height of 50 

mm (V = 0.99 m/s, We = 13.6) are shown in Figure 5.7 for surface 1 and surface 3 to 
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illustrate the dynamics of transition of the droplet to the Wenzel state upon impact.  

Instantaneous images during the droplet impact process are included as insets in the 

figure; surfaces 1 and 3 are chosen for inclusion in the figure as they display the 

minimum and the maximum capillary pressures, respectively, out of the six test surfaces 

designed.  For an impingement velocity of V = 0.99 m/s, the droplet undergoes a non-

wetting impact on surface 3 and a Wenzel transition occurs on surface 1.  The time period 

from t = 0 ms to t = 2.667 ms corresponds to the advancing phase of the droplet.  The 

effect of the Cassie-to-Wenzel transition on the advancing phase of the droplet (i.e., till 

the droplet reaches its maximum wetted diameter) is negligible.  The droplet reaches 

almost the same maximum wetted diameter (~ 1.85 times the initial diameter of the 

droplet) for both wetting (surface 1) and non-wetting impact (surface 3).  This may be 

attributed to the extremely small fraction of the droplet penetrating the air gap compared 

to the volume of the droplet for impact on all six surfaces.  In the case of surface 1, for an 

impingement height of 50 mm, the transition occurs over an area with radius ~ 0.72 mm 

(Figure 5.7) and assuming complete transition occurs over this area, the volume of 

displaced air is 0.048 mm3, which is approximately 1 percent of the total volume of 

droplet.  
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Figure 5.7. Instantaneous contact angle and non-dimensional contact diameter during 
non-wetting (surface 3) and wetting (surface 1) impact. 

 

A strong influence of the surface type on droplet behavior upon impact is seen, 

however, during the retraction phase.  On surface 3, the droplet retracts and detaches 

from the surface at t = 11.33 ms (Figure 5.7).  Okumura et al. [135] proposed that the 

contact time (the total time of contact of the droplet with the surface) for a non-wetting 

impact is given by a characteristic time scale based on a balance between inertia and 

capillarity as
1/23

(2.6 0.1) R 
    
 

.  This characteristic time scale for the droplet in the 

present work is 10.1 ms.  The slightly larger contact time observed with surface 3 may be 

attributed to the hysteresis of the surface [71].  It can be seen from Figure 5.7 that the 

droplet behaves more or less alike on both surface 1 and surface 3 till t = 8 ms.  The 
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wetted diameter of the droplet on surface 1 beyond t = 8 ms remains constant; thus the 

corresponding wetted diameter gives the length scale over which droplet transition 

occurred during impingement.  Beyond this time, the droplet continues to retract with 

diminishing wetted diameter on surface 3, but is stuck indefinitely on surface 1.  The 

inability of the droplet to recover from the Wenzel state induced due to impingement 

shows that there is extremely high resistance involved in detaching the droplet from the 

surface once it goes to its Wenzel state.  This can be explained in terms of the energy 

expended in the transition process relative to the energy required for the subsequent 

reverse transition (from Wenzel to Cassie state).  During droplet impingement, part of the 

energy of the droplet is expended in overcoming the energy barrier between the Cassie 

and the Wenzel states of the droplet, and the other part is utilized in spreading and 

subsequent retraction of the droplet interface. 

The energy barrier for hollow-pillared hybrid surface may be determined from a 

modified form of Eq. (5.7), 

   
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Corresponding to a droplet impingement height of 50 mm, a portion of the droplet (of 

contact radius 0.72 mm) undergoes Wenzel transition on surface 1 as discussed earlier.  

The energy expended for this transition is 0.125 µJ, which is only a small fraction of the 

total energy of the droplet  2 .2 1KE J .  The inability of the droplet to retract to the 

Cassie state once transition has occurred highlights the effect of non-conservative 

dissipation forces acting during reverse transition [35]. In contrast, the droplet has a non-

wetting impact on surface 3, which means that the dissipative energy loss occurs only on 
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top of the pillars and hence, the entire droplet is able to bounce off the surface.  The 

energy required for the Wenzel-to-Cassie reverse transition is much higher for the 

hollow-pillared hybrid surfaces than for the solid pillars, owing to the increased 

roughness (rm) in the former. 

Another characteristic distinguishing Cassie and Wenzel impact is the instantaneous 

contact angle of the droplet during the advancing and the receding phases (Figure 5.7).  

On surface 3, the droplet maintains a very high contact angle during its entire period of 

contact with the surface.  On surface 1, however, the contact angle decreases beyond t = 8 

ms, while the wetted diameter remains unchanged as the droplet remains partially in a 

Wenzel state.  The oscillation observed in the contact angle beyond this time is a result of 

the attempt by the droplet to overcome the dissipative forces. 

5.4.4 Pressure Balance 

As discussed above, droplet impact on the hybrid surfaces fabricated for this work 

remains non-wetting for impingement velocities that are lower than the critical velocity.  

At the critical velocity, a part of the droplet goes into the Wenzel state and remains stuck 

to the surface.  Once the impingement velocity exceeds the critical value and the effective 

wetting pressure exceeds the capillary pressure, the stability of the air gap in the 

superhydrophobic surface is compromised and drastic changes in the droplet 

characteristics are observed, primarily during the retraction phase of the droplet. Figure 

5.8 illustrates the critical-velocity limit for surface 5.  For the geometrical parameters of 

surface 5, the critical velocity is experimentally determined to be 1.37 m/s.  
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Figure 5.8. Instantaneous images during droplet impingement on surface 5 (PC = 4768 
N/m2) corresponding to droplet velocities of (a) 1.34 m/s, and (b) 1.37 m/s.  The second 

case represents the critical velocity for surface 5. 
 

While expressions for PC and PD are available in the literature, the water hammer 

pressure PWH for structured surfaces is less well quantified.  The impact dynamics change 

in the presence of superhydrophobic surfaces.  In the present work, careful experimental 

observation helps deduce the dependency of the water hammer pressure on different 

factors.  The critical velocity corresponding to each surface is determined experimentally.  

The coefficient of water hammer pressure (in WHP k cV ) is then determined for each 

of the hollow hybrid surfaces based on the critical velocity for the Cassie-Wenzel 

transition, 

C DP P
k

cV


 .          (5.14) 

This approach to determining the coefficient k assumes that the theoretically 

calculated capillary pressure PC applies.  We assume that the effect of the step size of 5 

mm used during impingement experiments is negligible in calculations of the coefficient.  

Table 5.4 lists the critical velocity and the value of the coefficient k in the definition of 

(a) 

(b) 
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PWH corresponding to each of the surfaces.  It is observed from these results that this 

coefficient is in fact not a constant, but is rather a function of the capillary pressure of the 

surface.  The coefficient varies almost linearly with respect to capillary pressure as shown 

in Figure 5.9.  

Table 5.4. Critical velocity and water hammer pressure coefficient for each hybrid 
surface. 

Surface 
Critical height of 

impingement (mm) 
Critical impingement 

velocity (m/s) 
Coefficient of water 
hammer pressure 

1 50 0.99 0.1408 x 10-2 

2 50 0.99 0.1465 x 10-2 

3 100 1.40 0.2334 x 10-2 

4 100 1.40 0.1984 x 10-2 

5 95 1.37 0.1877 x 10-2 

6 90 1.33 0.1960 x 10-2 
 

Kwon et al. [140] showed that a Cassie-to-Wenzel transition can be induced due to 

water hammer pressure acting during pendant-drop deposition on a superhydrophobic 

surface.  Wu et al. [141] carried out impingement experiments on superhydrophobic 

surfaces with different geometric parameters to demonstrate that the Cassie-Wenzel 

transition can lead to self-propelled movement of the droplet against the wettability 

gradient (due to the unbalanced interfacial forces).  They reported the critical velocity of 

impingement for the different test surfaces (cylindrical pillars with fixed pillar diameter 

and height and varying pitch).  We determine the capillary pressure based on the 

geometrical parameters of the surfaces used by Wu et al. [141] Substituting these values 

of critical impingement velocity and the capillary pressure in Eq. (5.14), we calculate the 
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coefficient of water hammer pressure (k).  The data points evaluated are included in 

Figure 5.9 so as to place our experimental results in context with the literature.  Even 

with a different surface geometry than that considered in the present work, these results 

from the literature follow a similar trend. 

 

Figure 5.9. Plot showing the dependence between the coefficient of water hammer 
pressure and the capillary pressure. 

 

This dependence of the water hammer pressure coefficient on the capillary pressure 

may be explained considering the morphology of the superhydrophobic surface, which is 

a combination of solid surfaces and air gaps.  When a droplet impinges on a flat surface, 

its motion in the direction of fall is immediately arrested, resulting in a shock pressure.  

However, in the case of structured surfaces, the droplet experiences a heterogeneous 

impact.  While the droplet comes to sudden stop on the solid parts of the surface, it is still 
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free to deform into the air gaps so that its overall deceleration is gradual.  The shock 

developed is thus alleviated compared to a flat surface and this results in the much 

smaller observed coefficient of PWH (ranging from k = 0.1408 x 10-2 to 0.2334 x 10-2 for 

the hybrid surfaces in this work compared to k = 0.2 on flat surface for moderate 

impingement velocities of approximately 8 m/s [80]). 

In the limiting case (V = Vcritical), the pressure balance may be written as  

  21
0

2CP k cV V    .     (5.15) 

Eq. (5.15) shows a quadratic dependence of the critical velocity on the capillary pressure 

which is also illustrated from the experimental results as well as those from Wu et al. 

[141] in Figure 5.10. 

 

Figure 5.10. Plot showing the quadratic dependence of the critical velocity magnitude 
with respect to the capillary pressure. 
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This finding of the dependence of water hammer pressure on the surface morphology 

and capillary pressure could potentially contribute significantly to the design of 

superhydrophobic surfaces for practical applications.  Experimental measurement of the 

impact forces during droplet impact on textured superhydrophobic surfaces would help in 

further understanding of the physics of impingement-induced wetting and droplet 

retraction. 

5.5 Summary 

Hollow-pillared hybrid surfaces consisting of both communicating and non-

communicating air gaps are designed for enhancement of the anti-wetting pressure during 

droplet impact.  The energy barrier of the superhydrophobic surfaces is represented in 

terms of the capillary pressure of the air gaps.  The design could be further improved by 

decreasing the feature size, which would result in enhanced capillary pressure and air 

gaps of greater robustness.  An additional pressure, namely the water hammer pressure, is 

demonstrated to play an important role during droplet impingement; however, the water 

hammer pressure coefficient is much smaller than for impingement on a rigid flat surface.  

Furthermore, the coefficient is predicted to be a function of the surface morphology, and 

hence of the capillary pressure; the critical velocity (which is the velocity of the droplet at 

which the droplet just goes to a Wenzel state upon impingement) is observed to exhibit a 

quadratic relationship with the capillary pressure. 

Precise measurement of the impact forces is required to further validate the 

experimental observations and to obtain a precise value for the water hammer pressure 

coefficient.  Results from this study offer a better understanding of impact dynamics that 
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can aid in the improved design of surfaces that can avoid the Wenzel transition under 

impinging droplets. 



104 

 

CHAPTER 6. DROPLET EVAPORATION DYNAMICS ON SURFACES WITH 
NEGLIGIBLE HYSTERESIS 

In the current chapter, evaporation characteristics of sessile water droplets on smooth 

hydrophobic and structured superhydrophobic substrates is reported.  On both surfaces, 

droplet evaporation is observed to occur in a predominant constant-contact-angle mode.  

The experimental results, with and without substrate heating, are compared with an 

isothermal vapor diffusion model for droplet evaporation from the literature.  Good 

agreement is observed for the hydrophobic surface between the analytical expression and 

experimental results in terms of the total time for evaporation, transient volume, contact 

angle, and contact radius. The evaporation characteristics on superhydrophobic surface 

demonstrates significant deviation from the vapor diffusion-only model, with the 

difference being amplified as the substrate temperature is increased.  This disparity is 

attributed primarily to the evaporative cooling at the droplet interface due to the high 

aspect ratio of the droplet and also the lower effective thermal conductivity of the 

substrate due to the presence of air gaps.  A simple model considering thermal diffusion 

through the droplet is used to highlight the important role of evaporative cooling at the 

droplet interface in determining the droplet evaporation characteristics on 

superhydrophobic surfaces.  The material presented in this chapter was published in 

Langmuir (29(34), pp. 10785-10795, 2013) [142] and Phys. Rev. E (84(4), p. 042402, 

2014) [143]. 
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6.1 Sample Preparation 

Experiments are carried out on two test surfaces: a smooth hydrophobic surface and a 

textured superhydrophobic surface.  The hydrophobic surface used in the experiments is a 

silicon wafer, spin coated with 0.02% solution of Teflon-AF 1600 (DuPont, Wilmington, 

DE) in FC-77 (3M, St. Paul, MN) to impart hydrophobicity.  The fabrication procedure 

for the hierarchical surface used in the present work circumvents the conventional two-

step process to create double-roughness structures.  Silicon pillars constitute the larger 

roughness element and the second-tier roughness surface is obtained using a single deep 

reactive ion etching step (DRIE).  The fabrication for this work was carried out in the 

Birck Nanotechnology Center at Purdue University. 

Silicon prime wafers are spin-coated with positive photoresist AZ 9260 

(Microchemicals) to form ~ 7 μm thickness of photoresist layer, and are lithographically 

patterned.  The photoresist is cured at 90° C for 5 mins and acts as the etch mask for the 

deep reactive ion etch (Bosch) process.  The Bosch process uses SF6 for etching and C4F8 

for passivation steps.  During etching, the silicon is selectively etched to form the pillars.  

A higher passivation time and a lower O2 gas flow during etching aids in retaining a 

fraction of the polymers formed during passivation.  During the DRIE process, the 

partially cured photoresist is deformed and is retained at the top of the silicon pillars to 

form the desired second-tier roughness.  Table 6.1 lists the process parameters used for 

fabrication of the hierarchical superhydrophobic surface.  The periodicity (pitch) of the 

pillars is ~ 48 μm, while the width of the tops of the pillars is ~ 45 μm.  The height of the 

pillars is 23 μm.  The overall roughness (Ra) of the second-tier roughness element, 

measured using an optical profilometer (NewView 6300, Zygo), is 2.93 μm. 
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Table 6.1. DRIE process parameters. 

Parameters 
Value 

Etching Passivation 

Switching time 8.5 sec 3 sec 

Gas flow 450 sccm SF6, 7 sccm O2 200 sccm C4F8 

RF coil power 2200 W 1500 W 

RF bias power 30 W 20 W 
 

The surface is then spin-coated with 0.02% solution of Teflon-AF 1600 in FC-77 to 

impart hydrophobicity.  The thickness of the Teflon layer is approximately 50 nm; hence, 

the overall roughness of the primary roughness as well as the sub-micron roughness on 

top of the pillars is not affected by the Teflon coating.  Figure 6.1 shows SEM images of 

the hierarchical superhydrophobic surface fabricated.  The cratered second-tier roughness 

on the pillars renders the surface robustly superhydrophobic, enhances the CA of the 

droplet, and results in a CAH < 1 deg. 

 

 

Figure 6.1. Scanning Electron Microscopy (SEM) images of the hierarchical 
superhydrophobic substrate used.  The SEM image to the left shows the substrate tilted at 

40 deg. 
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6.2 Experimental Setup 

Deionized (DI) water droplets of volumes ranging from 1 to 8 μL ± 0.1 μL are used in 

the experiments for droplet evaporation without substrate heating.  In the case of droplet 

evaporation with substrate heating, deionized (DI) water droplets of initial volume 3 μL ± 

0.1 μL are used; this volume corresponds to initial radii of 0.95 mm on the hydrophobic 

surface and 0.90 mm on the superhydrophobic surface.  For the range of droplet volume 

considered, the characteristic length of the droplet (its radius) lies below the capillary 

length scale  1/2

g



 
 
 

, which is equal to 2.7 mm for water.  Thus gravity effects may be 

neglected and a spherical-cap assumption for the droplet holds [134]. 

The experimental setup is shown in Figure 6.2.  The hot stage for the droplet 

evaporation experiments consists of a copper block that is electrically heated on its 

underside by a 10 W polyimide film heater (Minco); the sides of the block are insulated 

with fused ceramic foam.  A PID controller (TOT-1200, Temp-o-Trol) is used to control 

the power input to the film heater based on the measured temperature close to the 

substrate.  The test substrate is attached to the top of the copper block with a uniform 

layer of thermally conductive silicone paste (Omegatherm 201, Omega).  The 

temperatures at four locations along the central axis of the copper block are continually 

measured during a test using a data acquisition system (34970A, Agilent Technologies).  

The temperature variation across the thickness of the copper block remained below the 

uncertainty of the thermocouple measurements.  Therefore, the heater block can be 

treated as being isothermal, and the temperature nearest the sample substrate is quoted as 

the sample temperature for all the experiments.  For the test cases with unheated 



108 

 

substrates, the ambient temperature and humidity are maintained at 20.5 ± 0.5°C and 29 ± 

1%, respectively.  Evaporation experiments are carried out at three different substrate 

temperatures: 40 ± 0.5°C, 50 ± 0.5°C and 60 ± 0.5°C.  During the experiments of droplet 

evaporation on heated substrates, the ambient temperature and relative humidity are 

maintained at 21 ± 0.5°C and 36 ± 2%, respectively. 

 

Figure 6.2. Schematic diagram of the experimental setup 
 

For each test, a droplet is dispensed using a carefully calibrated microsyringe on to 

the test surface, and visualized using the goniometer imaging system till it evaporates 

completely.  The diffusivity of water vapor in air, and saturated vapor concentration are 

sensitive to temperature.  Therefore, precise control of experimental temperature and 

humidity conditions is essential for accurate determination of the droplet transient 

characteristics during evaporation.  The actual temperature and humidity are recorded 

during each test and used in the analysis of the droplet evaporation characteristics so as to 

account for any minor fluctuations in values (the diffusion coefficient D is 25.41 × 10-6 
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m2/s, and the saturated vapor concentration cs is 0.0175 kg/m3 at a temperature of 20.5°C 

[144]).  The static contact angle of the droplet on the surface is measured using a 

goniometer (Model 290, Ramehart).  A cold light source used for backlighting ensures 

improved contrast without affecting the droplet evaporation rate.  The images are 

recorded in intervals of 10 to 30 s and analyzed using the goniometer software.  A 

circular curvefit to the droplet image gives the contact angle (θ), contact radius (Rc) and 

height (h) of the droplet (Figure 6.3a and Figure 6.3b).  The droplet height and contact 

radius are also calculated and verified using an in-house MATLAB [119] code, and the 

contact angle using the relation 12 tan
c

h

R
   
  

 
.  Figure 6.3a and Figure 6.3b show the 

initial parameters of a droplet placed on the smooth and structured surfaces, respectively.  

The initial contact angle of the droplet on the smooth hydrophobic surface is ~ 120° and 

that on superhydrophobic surface is ~ 160°.  The corresponding values of contact angle 

hysteresis are ~ 10 deg and ~ 1 deg, respectively. 

 

Figure 6.3. Droplet placed on the (a) hierarchical superhydrophobic surface, and (b) 
smooth hydrophobic surface (Teflon-coated Si). 

(a) (b)
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6.3 Theoretical Analysis 

Without any external heat applied to the substrate, evaporation of the droplet is driven 

by the concentration gradient of water vapor between the droplet surface and the ambient.  

Diffusion of vapor into the atmosphere is the rate-limiting step, and the time scale for 

diffusion is on the order of 
2

0.04 siR

D
 , where D is the coefficient of vapor diffusion and 

Ri is the length scale of the droplet (initial radius of the droplet, which is on the order of 

mm) [13].  The diffusion time scale for a microliter-sized droplet is much smaller than 

the total evaporation time (typically a few hundred seconds).  In the case of heated 

substrates the total time for complete evaporation of a droplet is significantly reduced 

when the surface is heated.  However, even at a surface temperature of 60 °C, for a 

droplet of volume 3 µL, the ratio of diffusion time (tD) to evaporation time (tF) is tD/tF ~ 

0.0002 (using experimental tF). Therefore, the vapor concentration around the droplet 

may be assumed to be quasi-steady for unheated substrates as well as heated substrates 

for the range of temperatures considered in the study.  A droplet suspended in air 

evaporates with its size constantly diminishing at a rate that is proportional to the droplet 

radius [82].  In case of a sessile droplet, the rate of evaporation is affected by the 

presence of the substrate and depends on the contact radius of the droplet as well its 

contact angle [82]. 

Several models have been proposed to describe the evaporation process of a droplet 

[99].  However the experiment-specific nature of the assumptions and simplifications 

inherent in the models prevent their application to other experimental studies [16, 83, 84].  

Popov [13] proposed an analytical diffusion model for quasi-steady natural evaporation 
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of a droplet based on the solution to the Laplace equation describing the concentration 

field at the droplet surface in a toroidal coordinate system.  The model accounts for the 

non-uniform vapor concentration field around the droplet.  The evaporation flux J(r) on 

the surface of a droplet in a toroidal coordinate system according to the diffusion-only 

model for evaporation is given as [13], 

   

 
 

 

3
2

1
2

0

( )

1
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s
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



  

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



 



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 
    
 


, (6.1) 

where D is the coefficient of vapor diffusion, cs the saturated vapor concentration on the 

droplet surface, c
 the concentration of water vapor at infinity, Rc the contact radius of 

the droplet, θ the contact angle of the droplet, and r the radial coordinate at the baseline 

of the droplet such that r = Rc at the contact line.    and   are toroidal coordinates and 

are related to the height (h), contact radius Rc and contact angle θ of the droplet as 

sin
cosh cos

c

h
R

  
  
 

.      (6.2) 

The expression for droplet evaporation rate, obtained by integration of evaporation 

flux over the droplet surface area, is based on the contact angle θ and contact radius Rc 

and is valid over the entire range of contact angles.  It is noted that the contact-angle 

dependence of the evaporation rate as obtained by Picknett and Bexon [82] converges to 

Popov’s solution [13], although the final expressions are in different forms:  The 

dependence of the evaporation rate on CA given by Picknett and Bexon is in the form of 
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an approximate series solution, while Popov provided a closed-form expression.  For any 

contact angle, the rate of mass loss as given by Popov is 

 

   
0

( ) ;

sin 1 cosh 2
4 tanh

1 cos sinh 2

L C s
dM dV

R D c c f
dt dt

f d

  

     
 





   


      

,  (6.3) 

where M is the droplet mass, ρL the liquid density, V the droplet volume, Rc the contact 

radius, D the coefficient of vapor diffusion, cs the saturated vapor concentration on the 

droplet surface, c  the concentration of water vapor at infinity, and  f   the functional 

variation of CA evaluated using a numerical integration scheme in MATLAB [119].  

Using a spherical-cap assumption, the mass of the droplet may be written as 

   
   

3 3

2

sin
;

3 1 cos 2 cos
L cR

M g
g

 
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 
      (6.4) 

 
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33
cR V g 


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 

.      (6.5) 

Eq. (6.3) may now be written as 

   
1

33
( )L s

dV
V g D c c f

dt
   

 
    
 

.    (6.6) 

On surfaces with significant CAH, the contact line remains pinned; the contact angle 

and the droplet height change to account for the mass loss of the droplet due to 

evaporation.  When evaporation occurs in constant contact radius (CCR) mode (Rc = 

constant), the change in contact angle may be derived from Eqs. (6.1) and (6.2) as 

   2

2

( )
1 coss

L c

D c cd
f

dt R

  



   .    (6.7) 
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The suitability of Eqs. (6.4) and (6.5) for determining the instantaneous droplet 

volume and contact angle in CCR mode on surface with high CA (~ 150 deg) has been 

demonstrated by Gelderblom et al. [98].  On most surfaces, a combination of both CCA 

and CCR mode is observed.  The droplet evaporation on an ideal smooth surface with no 

irregularities is expected to occur at a constant contact angle.  Under this condition, the 

droplet evaporation characteristics should be similar those of a drop suspended in air, 

except for the suppression of evaporation due to the contact with the solid surface.  For 

droplet evaporation in constant contact angle mode (θ constant), the transient volume (V) 

is obtained by integration of Eq. (6.6) and is given by 

    
1

3 12 2
33 3

2 ( ) 3

3
s

i
L

D c c
V V g f t 

 
     

 
.   (6.8) 

in which  Vi is the initial volume of the droplet.  By rearranging the terms in Eq. (6.8) and 

using Eq. (6.5), the square of the wetted radius of the droplet can be represented as a 

linear function of time for a constant contact angle mode:  

   2 2 2 ( )s
c ci

L

D c c
R R g f t 




  .     (6.9) 

Time taken for complete evaporation  tott  may be obtained from the integration of Eq. 

(6.4), and for constant contact angle evaporation is given by 
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It is clear that k is constant for a fixed contact angle (θ).  The total time for droplet 

evaporation in CCA mode is thus a linear function of the initial volume of the droplet. 

Girard et al. [145] extended the vapor-diffusion model [13] to describe evaporation 

on a heated surface by allowing the droplet and substrate to be at an elevated temperature 

with respect to the ambient (but the droplet still was at the same temperature as the 

substrate), and determined the evaporation rate of droplets on a hydrophilic heated 

substrate as 

      ( ) s s s a

c

D c T Hc T
J r j

R



 .   (6.12) 

in which Ts is the substrate temperature, Ta the ambient temperature.  For droplet 

evaporation on a heated substrate, Equations 6.3 – 6.11 hold true with cs = cs(Ts); c∞ = 

cs(T∞) under the assumption that droplet evaporation is driven by vapor-diffusion. 

6.4 Results and Discussion 

6.4.1 Droplet Evaporation Characteristics on Unheated Substrates 

6.4.1.1 Droplet Evaporation on a Smooth Hydrophobic Substrate 

Droplet volumes of 1 to 6 μL are considered for study of evaporation characteristics 

on the smooth hydrophobic surface.  The initial contact angle of the droplet is 118 ± 2 

deg.  Droplet evaporation characteristics are analyzed in terms of transient droplet 

volume, contact radius, and contact angle.  Figure 6.4a shows the time evolution of the 

contact angle, and non-dimensional wetted radius of the droplet (with respect to non-

dimensional time, 
tot

t
t  ).  Droplet evaporation on the smooth hydrophobic surface 

occurred in two distinct phases.  The initial phase of evaporation proceeds with contact 
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radius remaining nearly constant until the contact angle of the droplet reaches the 

receding contact angle (θrec) at t = trec.  The receding contact angle of the droplet is 108 to 

110 deg for all cases irrespective of the initial volume of the droplet considered (Figure 

6.4a).  In the second phase, the contact radius shrinks with the contact angle reducing at a 

much slower rate.  Towards the end of the evaporation process, the contact angle and 

contact radius decrease simultaneously over a brief period of time.  This mixed 

evaporation regime exists for a small fraction (~ 10%) of the total evaporation time and is 

neglected for the purpose of the current analysis.  The droplet evaporation can thus be 

represented as a succession of the CCR and CCA modes. 

The droplet evaporates in a constant contact radius mode from t = 0 to t = trec.  The 

differential equation for CA given in Eq. (6.7) is integrated to determine the 

instantaneous droplet contact angle, 

   
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Using the initial contact angle of the droplet (θi = 120 deg) and a fixed time step (Δt = 

5 s), we use an explicit time-marching scheme to determine the transient contact angle 

(
n ) of the droplet between t = 0 and t = trec.  The value of CA at the previous time 

instant is denoted by 
1n 
.  The total time for evaporation of a droplet solely in the CCR 

mode may be determined using Eq. (6.14) using 0 degn
rec   .  The dashed lines in 
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Figure 6.4a and Figure 6.4b represent the instantaneous CA of the droplet until t = trec 

predicted using Eq.(6.14).  The predicted CA shows reasonable agreement with the 

experimental transient CA of the droplet.  Table 6.2 shows that there is a reasonable 

match between the predicted value of the time at which the droplet contact line starts 

receding and the experimental results. 

 

Figure 6.4. (a) Variation of contact angle and nondimensional wetted radius of 
evaporating droplets of different volumes as a function of the nondimensional time, and 

(b) comparison between experimental CA and transient CA predicted using Eq. (6.14) for 
droplet volume = 2 µL.  

 

Table 6.2. Time when the contact line starts receding. 

Volume  
(μL) 

trec 
Analytical 

(sec) 

trec 
Experimenta

l (sec) 

Deviation   
(%) 

1 175 195 11.43 

2 355 390 9.86 

3 380 405 6.58 

4 430 480 11.63 
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The second phase of droplet evaporation on the smooth hydrophobic surface occurs in 

a CCA mode.  The contact angle remains almost constant at θrec (~ 110 deg), and the 

droplet radius and height change in response to the mass loss by evaporation.  The 

instantaneous droplet contact radius can be predicted using Eq.(6.9).  To account for the 

droplet contact line pinning till t = trec in the first phase of the evaporation process, Eq. 

(6.9) may be written as  

    2 2 2 ( )s
c ci rec rec rec

L

D c c
R R g f t t 




   .   (6.15) 

Figure 6.5 shows the variation of the square of the contact radius for different droplet 

volumes on the smooth hydrophobic surface.  The square of the contact radius varies 

linearly with time beyond t = trec.  The dashed lines represent the predictions from 

Eq.(6.15), which show good quantitative and qualitative agreement with the experimental 

values. 

 

Figure 6.5. Transient variation of droplet volume on the smooth hydrophobic surface. 
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Next, the total time that the droplet takes to evaporate on the smooth hydrophobic 

surface is compared to the analytical solution of Popov [13].  Two cases are considered: 

first, we determine the total time for evaporation assuming droplet evaporation only in 

the CCA mode  rec  , and in the second case, the total time is evaluated with the CCR 

mode assumption (R = Ri).  The time required for CA to change from θ = θi to θ = 0 (Eq. 

(6.14)) gives the total time of evaporation in the CCR mode.  Table 6.3 lists the time 

taken for the total evaporation of the droplet corresponding to both cases.  It is evident 

that the evaporation time is well-predicted using the relation for the CCA mode of 

evaporation (Eq. (6.10)). 

A comparison of the experimentally determined time for complete evaporation with 

the analytical prediction assuming the CCA mode (Eq(6.10)) and CCR mode (Eq.(6.13)) 

is shown in Figure 6.6.  A linear dependence is observed between the total evaporation 

time and the droplet volume raised to a two-third power.  With the experimental 

parameters, D = 25.41 x 10-6 m2/s, saturated vapor concentration cs = 0.0175 kg/m3, 

humidity (H) = 0.29, and θ = 110 deg, the proportionality constant k in Eq. (6.11) is 

determined to be 947. 
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Table 6.3. Total time for evaporation on the smooth hydrophobic surface. 

Volume 

(μL) 

Time taken in 
CCA mode (s) 

Case 1 

Time taken in 
CCR mode (s)  

Case 2 

Time taken 
for complete 
evaporation 

(s) 
Experimental 

Deviation (%) 

1 954 870 1009 5.45 

2 1521 1350 1562 2.62 

3 1993 1820 1971 -1.12 

4 2450 2240 2543 3.80 
 

 

Figure 6.6. Total time for evaporation of droplets of different volume on the smooth 
hydrophobic surface.  The dashed lines represent the time required for complete 

evaporation of droplets in the CCA mode (Eq. (6.8)) and in the CCR mode (Eq. (6.10)).  
 

Figure 6.7 shows the time evolution of the volume of the evaporating droplet 

corresponding to the four different initial droplet volumes considered.  The symbols 
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represent the experimental data and the dashed lines in the figure represent the transient 

droplet volume predicted using the expression for fixed contact angle ( rec = 110 ± 1 

deg), i.e., Eq. (6.6).  Although evaporation on a smooth hydrophobic surface proceeds in 

the CCR mode followed by the CCA mode, a constant contact angle model is observed to 

predict the total time of evaporation as well as the droplet volume evolution with good 

accuracy.  The change of volume with respect to time is non-linear, consistent with the 

evaporation characteristics reported by Nguyen [96].  This non-linear trend is seen 

throughout the evaporation time span, irrespective of whether evaporation is occurring in 

CCR or CCA mode.  

 

Figure 6.7. Temporal evolution of droplet volume during evaporation on the smooth 
hydrophobic surface for different initial droplet volumes (1 µL – 4 µL). 
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6.4.1.2 Droplet Evaporation on a Hierarchical Superhydrophobic Substrate 

As discussed earlier, the hierarchical surface considered features two-tier roughness.  

The contact angle hysteresis (CAH) of the surface is measured using roll-off experiments 

[71] to be extremely low (< 1 deg).  Negligible CAH implies that the receding CA is 

almost equal to the initial CA, θrec ~ θi.  Hence, the droplet contact line starts receding 

immediately as the droplet placed on the substrate begins to evaporate.  The droplet 

evaporation, therefore, occurs predominantly in the CCA mode.  The instantaneous 

droplet images of a 3 µL droplet evaporating on the smooth hydrophobic surface and the 

superhydrophobic surface are illustrated in Figure 6.8a and Figure 6.8b.  Figure 6.9 

shows the contact angle and non-dimensional contact radius with respect to non-

dimensional time (normalized with respect to the total observed time for evaporation).  

The inset shows the time-varying outline for a droplet of initial volume 2 µL as it 

evaporates.  The droplet wetted radius shrinks with time, and a CCR phase is almost 

absent in case of this superhydrophobic surface.  Towards the tail end of evaporation, the 

contact angle and contact radius shrink simultaneously for a very brief period.  As with 

evaporation on the smooth hydrophobic surface, this mixed mode where both CA and CR 

decrease exists for a very short duration (~ 3% of the total evaporation time) and may be 

ignored for analysis. 
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Figure 6.8. Instantaneous images of a sessile droplet (Vi = 3 µL) evaporating on (a) the 
smooth hydrophobic surface, and (b) the hierarchical superhydrophobic surface. 

 

 

Figure 6.9. Contact angle and non-dimensional contact radius of droplets on the 
hierarchical superhydrophobic substrate.  The inset shows the time-varying outlines for a 

droplet of initial volume 2 µL as it evaporates. 
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10-6 m2/s, cs = 0.0175 kg/m3, humidity (H) = 0.29, and θ = 160 deg, the proportionality 

constant k in Eq. (6.8) is determined to be 890.  For a constant contact angle mode, the 

total time of evaporation is given by Eq. (6.8).  Figure 6.10.shows a comparison between 

the duration for complete evaporation of the droplet on the hierarchical surface with the 

predicted time from Eq. (6.8).  The error bars represent the standard deviation of the 

measurements averaged over four experimental runs.  Unlike in the case of the smooth 

hydrophobic surface where the experimental results agreed well with predictions for all 

initial droplet volumes (Figure 6.6), a consistent difference is seen between the two for 

the superhydrophobic surface (Figure 6.10).  The actual times for evaporation are 1.25 to 

1.33 times the predicted times.  The analytical model overestimates the rate of 

evaporation by ~ 20 %.  The increase in actual time for evaporation may be attributed to 

the reduced ease of vapor diffusion due to geometric vapor confinement under the 

footprint of the droplet due to the presence of air gaps, which is not taken into account in 

the model.  Although the analytical expression using the isothermal diffusion model 

indicates that the difference between the time taken by a droplet to evaporate in the CCA 

and CCR modes becomes negligible beyond a CA ~ 150 deg [146], the experimental 

results from the present study indicate otherwise.  Similar evidence of suppression of 

evaporation near the contact line in the CCA mode was offered by Kulinich and Farzaneh 

[17], with experimental measurements for evaporation on two surfaces with the same 

initial CA and varying CAH.  The droplet in the CCA mode was reported to take 

significantly longer to evaporate than that in the CCR mode.  The reduction in the rate of 

evaporation on the superhydrophobic surface with the CCA mode may also be attributed 
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to the reduced effective thermal conductivity of the substrate as will be discussed later in 

this section. 

 

 

Figure 6.10. Total time for complete evaporation of droplets of different initial volumes 
(Vi) on the hierarchical superhydrophobic surface. 

 

The isothermal diffusion model overpredicts the rate of evaporation of a droplet 
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Figure 6.11 shows the temporal variation of droplet volume on the hierarchical 

superhydrophobic surface for different initial droplet volumes.  The droplet volume 

varies non-linearly with time.  Interestingly this behavior of non-linear reduction in 

volume also matches the droplet evaporation on surface with very high initial contact 

angle and high contact angle hysteresis leading to a pinned mode of evaporation [98].  

The dashed lines show the predicted transient droplet volume of the droplets with 

different initial volumes using Eq. (6.16), which includes the correction proposed in this 

work for suppression of evaporation for high contact angle droplet evaporation.  

 

Figure 6.11. Transient evolution of droplet volume during evaporation of droplets of 
different initial volumes on the hierarchical superhydrophobic surface. 
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6.4.2 Generalized Relation for Droplet Volume Variation during Evaporation on 

Unheated Hydrophobic and Superhydrophobic Surface 

As seen from the previous sections, experiments on hydrophobic and hierarchical 

superhydrophobic surfaces with respective CA of approximately 120 deg and 160 deg 

indicate a non-linear variation of volume with time when the CA > 90 deg.  The linear 

relationship between the transient volume raised to 2/3rd power and time holds good for 

superhydrophobic surface where the contact angle remains fixed throughout the process 

of evaporation, as well as for hydrophobic surface where a combination of CCR and 

CCA modes exists (Figure 6.5 and Figure 6.10).  Also the experimental data of 

Gelderblom et al. [98] suggest a non-linear dependency of the droplet volume on time, 

even when the droplet evaporates predominantly in a constant contact radius mode.  

These experiments confirm the current observation that the volume of the droplet changes 

non-linearly with time when CA > 90 deg.  One reason for such non-linear behavior may 

be the extreme sensitivity of f(θ) in Eq. (6.3) on θ when CA > 90 deg (the dependence 

between f(θ) and θ for the entire range of CA is shown in Figure 6.12.  
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Figure 6.12. Variation of f(θ) with respect to contact angle of the droplet. 
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mixed modes), the above expression shows good agreement with experimental results.  

Further, we extract experimental data for droplet evaporation on a superhydrophobic 

surface with a pinned contact line from Gelderblom et al. [98] and plot along the same 

coordinates in c.  There is reasonable agreement between the analytical and experimental 

values till t* ~ 0.5, beyond which some deviation is observed.  The deviation as t* 

approaches 1 may be explained in terms of the contact angle of the droplet being less than 

90 deg towards the end of the evaporation [98].  Eq. (6.18) therefore provides a 

generalized relationship between the instantaneous droplet volume and the time scale, 

irrespective of the mode of droplet evaporation when the contact angle of the droplet θ > 

90 deg. 
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Figure 6.13. Variation of normalized droplet volume of the droplet raised to two-thirds 

power with non-dimensional time corresponding to evaporation on a (a) smooth 
hydrophobic surface, (b) superhydrophobic surface with negligible CAH, and (c) 

superhydrophobic surface with fixed CL [98].  The dashed lines represent the non-
dimensional droplet transient volume predicted from Eq. (6.18). 
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and the average instantaneous evaporation flux.  Evaporation occurs primarily in a CCA 

mode on both substrates.  The experimental results for the two surfaces are compared 

against each other and with predictions from the vapor-diffusion-only model.  A simple 

model is presented that takes into account the temperature drop across the height of the 

droplet due to conduction through the droplet and the interface temperature dependence 

of the local saturated vapor concentration. 

6.4.3.1 Temporal Variation of Contact Radius and Contact Angle  

Figure 6.14 shows the variation of droplet contact angle and nondimensional contact 

radius (nondimensionalized by the initial contact radius of the droplet) with respect to the 

time normalized by the total time of evaporation τ at three different substrate 

temperatures.  The insets in Figure 6.14(a) and Figure 6.14(b) show the respective 

temporal evolution of droplet shape on the hydrophobic and superhydrophobic surfaces 

corresponding to the substrate temperature Tsub = 50 °C.  The variation with normalized 

time of the transient contact angles and nondimensional contact radii for different 

substrate temperatures is more or less similar.  On the hydrophobic substrate, the contact 

radius of the droplet is observed to decrease continuously as the droplet evaporates as 

shown in Figure 6.14(a).  The droplet contact angle decreases from an initial contact 

angle to the receding contact angle value within the first 40% of the total time for 

evaporation.  From then on, droplet evaporation occurs purely in a CCA mode till τ ~ 0.9, 

followed by a mixed mode.  This behavior is in contrast to droplet evaporation on 

unheated smooth hydrophobic surfaces where a distinct CCR mode was observed and the 

contact radius remained fixed for the first 20% of the evaporation time; with substrate 
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heating, the CCR mode is replaced by a mixed mode in which both the contact radius and 

contact angle decrease simultaneously.  With the superhydrophobic surface, owing to the 

minimal contact angle hysteresis, the droplet evaporation occurs in a CCA mode for most 

of the evaporation period as seen in Figure 6.14b.  The average droplet contact angle 

during evaporation on the superhydrophobic surface remains at ~ 160 deg.  A stick-slip 

behavior is observed intermittently due to the surface roughness. 

 

Figure 6.14. Variation of the droplet contact angle and nondimensional contact radius 
with respect to nondimensional time on the heated (a) hydrophobic surface and (b) 
superhydrophobic surface.  The insets show the temporal variation of droplet shape 

corresponding to Tsub = 50 °C. 
 

6.4.3.2 Total Time for Evaporation 

It is important to assess the total time taken for the droplet to evaporate completely.  

In the presence of substrate heating, it is possible to reduce this time considerably as 

compared to an unheated case.  Figure 6.15 shows the time taken for complete 

evaporation of a 3 µL water droplet on the hydrophobic and superhydrophobic surfaces.  

Total time for evaporation corresponding to unheated substrates is also included in the 
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graph (substrate temperature of 21°C).  The times calculated from the vapor-diffusion 

model, Eq.(6.10), using the approximate value of the receding contact angles, i.e., θ = 

110 deg, for the hydrophobic substrate and θ = 160 deg for the superhydrophobic 

substrate are also shown in the plot.  The theoretical values of the total time of 

evaporation on the hydrophobic and superhydrophobic substrates overlap closely as 

shown in the plot.  The experimental behavior supports the exponential relation between 

the total time and substrate temperature proposed by Girard et al. [145].  The dependence 

of total time for evaporation tF can be fitted with a power law, 
b

F subt aT  where a = 

2510300, b = -2.34 for the hydrophobic surface and a = 767100, b = -1.91, for the 

superhydrophobic surface.  There is an excellent match between the measured total time 

for evaporation and that predicted by the vapor-diffusion model in the case of the smooth 

hydrophobic surface.  Conversely, a considerable mismatch is observed when the surface 

is superhydrophobic.  The vapor diffusion model overpredicts the rate of evaporation on 

the superhydrophobic surface.  This behavior is as opposed to droplet evaporation on a 

hydrophilic surface, where the isothermal diffusion-driven model was reported to 

underpredict the evaporation rate under heated conditions [97].  The time taken for 

complete evaporation of a droplet on the heated superhydrophobic surface is shown in 

Table 6.4.  The uncertainties shown represent the standard deviation of the different test 

runs.  Table 6.4 shows the deviation between the measured and predicted times for total 

evaporation on the superhydrophobic substrate.  The deviation is amplified with increase 

in substrate temperature:  from 31.2% at 40 °C to 50.8% at 60 °C.  At room temperature, 

without substrate heating, a 20 – 25% deviation was reported for evaporation on a 

superhydrophobic surface without substrate heating. 
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Figure 6.15. Total time for evaporation of droplets on the hydrophobic and 
superhydrophobic surfaces as a function of substrate temperature. The dashed lines 

represent a power fit to the experimental results.  The hollow symbols represent the time 
for evaporation calculated from the vapor-diffusion model, Eq. (6.10). 

 

Table 6.4. Total time for evaporation on the superhydrophobic substrate. 
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Time taken for 
evaporation (s): 
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Time taken for 
evaporation (s): 

Vapor-
Diffusion 

Model 

Deviation (%) 

40 677 ± 11.4 465 31.2 

50 445 ± 39.3 257 42.4 

60 307 ± 35.5 151 50.8 
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without substrate heating.  Although the total time for droplet evaporation on the 

hydrophobic surface was found to be predicted very well by the vapor-diffusion model, 

the temporal variation of volume is not as well predicted (Figure 6.16a).  This is in 

contrast with the droplet volume variation on an unheated hydrophobic surface, which 

was found to be predicted with remarkable accuracy by this model (as reported earlier)  

In the case of the superhydrophobic surface, the vapor-diffusion model significantly 

overpredicts the experimental evaporation rate, and the percentage difference increases 

with an increase in substrate temperature (Figure 6.16b).  The reason for the mismatch 

between the experimental results and the vapor diffusion model can be explained in terms 

of the competing effects of the buoyancy-induced convection in the vapor phase and the 

evaporative cooling along the interface, which will be described in detail in a following 

section. 

 

Figure 6.16. Temporal variation of droplet volume on the (a) hydrophobic and (b) 
superhydrophobic surfaces.  The dashed lines represent the variation of droplet volume 

with respect to time as obtained from the vapor-diffusion model. 
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6.4.3.4 Variation of Average Evaporation Flux 

The evaporation flux along the surface of an evaporating droplet is non-uniform 

except when the contact angle of the droplet is 90 deg [13].  Based on the vapor-diffusion 

model, while the flux is diverging near the contact line of a droplet with contact angle < 

90 deg, the flux is actually finite near the contact line when the contact angle > 90 deg as 

described in an earlier section.  Experimental determination of the local evaporation flux 

is challenging due to the difficulty in determination of the local vapor concentration as 

well as the temperature at the droplet interface.  The area-averaged flux over the droplet 

surface is calculated using 
avg

dV
dtJ

A


  where ρ, A, and V are the density, surface area, 

and volume of the droplet, respectively.  Figure 6.17(a) and Figure 6.17 (b) show the 

variation of average evaporation flux with respect to the transient volume of the droplet 

for both surfaces.  The average evaporation flux increases as the droplet evaporates on 

the hydrophobic and the superhydrophobic substrates; that is, the flux increases with 

reduction of instantaneous droplet volume during evaporation.  Towards the end of 

evaporation, corresponding to the period where droplet evaporation occurs in the mixed 

mode, there is a steep increase in the evaporation flux.  For the same substrate 

temperature, the droplet evaporating on the hydrophobic surface has a higher evaporation 

flux as compared to the superhydrophobic surface, which can also be concluded from the 

lower time of evaporation in the case of evaporation on a hydrophobic surface. 
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Figure 6.17. Average evaporation flux with respect to instantaneous droplet volume for 
different substrate temperatures on the (a) smooth hydrophobic and (b) superhydrophobic 

substrates. 
 

6.4.4 Evaporation Suppression on the Superhydrophobic Surface 

The different factors that result in evaporation suppression in the case of a 

superhydrophobic surface are analyzed.  A simplified thermal diffusion model is 

developed to illustrate the mechanisms leading to the inability of the diffusion-based 

model to explain evaporation on such surfaces. 

6.4.4.1 Geometric Constriction  

The diffusion model [13] takes into account the non-uniform evaporation flux at the 

surface of the droplet.  The evaporation flux computed using the Eq. (6.1) for a droplet of 

volume 3 µL with different contact angle values evaporating without substrate heating is 

shown in Figure 6.18.  Contact angles (θ) of 30, 60, 90, 120, 150, and 160 deg are 

selected corresponding to a constant volume of 3 µL to illustrate the difference in the 

variation of the evaporation flux on the droplet surface (Figure 6.18) at the different 

contact angle.  The evaporation flux was shown to be diverging at the contact line 
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analytically and experimentally by Hu et al. [87] for droplets with low CA (θ < 90 deg), 

as also shown in Figure 6.18.  For a hemispherical droplet (θ = 90 deg), the evaporation 

flux is constant all along the surface of the droplet.  However, when the contact angle 

exceeds 90 deg, the evaporation flux is maximum at the highest point of the droplet 

(corresponding to r/Rc = 0).  The flux remains almost uniform along the upper half of the 

droplet surface and reduces to zero near the contact line.  This shows that Popov’s 

diffusion model takes into account the saturation of vapor, and the resulting reduction of 

local evaporation flux near the contact line.  In spite of this, the presence of disparities 

between the analytically predicted and experimental rates of droplet evaporation on a 

superhydrophobic surface signifies that the difference is not due to the local geometric 

constriction near the contact line as has been suggested in earlier studies [17]. 

 

Figure 6.18. Variation of evaporation flux along the droplet surface corresponding to 
different contact angles at t = 0 s. 
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6.4.4.2 Evaporative Cooling Effect at the Droplet Interface  

A possible reason for the observed increase in the total time of droplet evaporation on 

a superhydrophobic surface may relate to the evaporative cooling effect at the droplet 

interface.  Two factors could contribute to the interface cooling.  The first is the effective 

thermal conductivity of the substrate.  David et al. [85] reported that pinned droplets on 

insulating substrates take longer to evaporate than on highly conducting substrates due to 

evaporative cooling.  Structured surfaces are rendered superhydrophobic by their ability 

to retain air gaps [71].  The stability of the air gaps and the reduced solid-liquid contact 

area with the superhydrophobic surface results in the high droplet contact angles, and the 

reduced CAH, observed.  The very low conductivity of air (0.024 W/mK) reduces the 

effective conductivity of the substrate, which can in turn reduce the rate of evaporation 

due to evaporative cooling of the droplet.  The effective thermal conductivity of the 

structured layer in this work, consisting of silicon pillars and photoresist of ~ 23 µm 

height and assuming a conductivity of 0.25 W/mK for the AZ 9260 photoresist, is 

determined to be 0.54 W/mK (details are included in the Supporting Information).  On the 

other hand, a higher CAH [17] is an indication of the air gaps in the structured surfaces 

being replaced by liquid, resulting in a higher effective conductivity than in the case 

where the air gaps are retained.   

The second and most important factor contributing to interface cooling is the thermal 

resistance of the droplet.  A droplet placed on a superhydrophobic surface maintains a 

high contact angle throughout evaporation which implies that for a fixed droplet volume, 

the ratio of droplet height to its corresponding contact radius remains consistently high 

(for CA = 160 deg, h/Rc ~ 5.7).  This leads to a longer thermal resistance path within the 
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droplet (conductivity of water = 0.6 W/mK) resulting in significant evaporative cooling 

compared to droplets with lower contact angles.  The isothermal diffusion model 

indicates that the total time for evaporation of a droplet is almost the same for both CCA 

and CCR modes when the initial CA ≥ 150 deg [146], which is not the case in reality.  

Kulinich and Farzaneh [17] reported that the time taken for complete evaporation of the 

droplet on a superhydrophobic surface with a pinned contact line was higher than for a 

sliding contact line, although the initial contact angle of the droplet was ≥ 150 deg in both 

cases.  In the present experiments, evaporation occurs in the CCA mode.  This is in 

contrast to droplet evaporation in a CCR mode where the contact angle decreases to 

account for evaporation, thereby reducing the thermal resistance path within the droplet.  

Thermal conduction through the droplet plays a significant role in determining the rate of 

evaporation especially on a superhydrophobic surface. 

A model is developed here to demonstrate the influence of evaporative cooling on the 

rate of droplet evaporation on a heated substrate.  The relative importance of the 

convective and the diffusive transport inside the droplet can be determined using the 

nondimensional Peclet number (Pe = UL/α) where U, L, α represent the characteristic 

velocity, length scale, and thermal diffusivity of the droplet.  Using a characteristic 

velocity of tens of micron per sec [9, 147], and the droplet height  as the characteristic 

length scale, the Peclet number for a 3 µL droplet is calculated to be less than 1, 

signifying the dominance of the diffusive transport inside the liquid droplet.  Similar 

conclusions regarding the minimal contribution of the convection inside the droplet on 

the net evaporation rate were made by Pan et al. [148] using a full-scale numerical model.  

The model developed in the present work accounts for thermal diffusion through the 
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liquid droplet and vapor diffusion through the surrounding gas, while convection in the 

gas and liquid domains is neglected.  The influence of the convection in the vapor domain 

can be analyzed based on the comparison between this model and the experimental 

results.  Heat is conducted from the heated substrate through the droplet and utilized for 

phase change at the liquid-vapor interface.  The substrate is held at a uniform constant 

temperature.  The ambient temperature and humidity are taken as 21 °C and 36% to 

match the experimental conditions.  One-dimensional conduction is assumed along the 

vertical axis.  The droplet volume is discretized into disks parallel to the droplet contact 

area, as shown in Figure 6.19.  The one-dimensional heat conduction model implies that 

the temperature laterally over each control volume remains uniform and the surface 

temperature variation occurs only along the vertical axis of the droplet.  The energy 

balance over each control volume can be written as 

 b t fg
b t

dT dT
kA kA J r h dS

dx dx
    ,   (6.19) 

where k is the thermal conductivity of the liquid droplet (k = 0.6 W/mK for water), Ab and 

At are respectively the bottom and top face-areas of the control volume, hfg is the latent 

heat of vaporization, and dS corresponds to the surface area of the control volume 

representing the liquid-air interface.  The evaporation flux J(r) in Eq (6.19) is initialized 

as the theoretical flux obtained from the vapor-diffusion model using Eq. (6.1) and 

evaluated at the substrate temperature.  The thermophysical properties are evaluated at 

the interface temperature (initialized as the substrate temperature).  The saturated vapor 

concentration at the droplet interface is coupled with the saturation pressure and hence 
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the local interface temperature at the droplet.  The saturation pressure psat(Tlv) is 

calculated using the Clausius-Clapeyron equation, 

_
_

1 1
( ) exp fg

sat lv sat ref
sat ref lv

Mh
p T p

R T T

  
       

   (6.20) 
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      (6.21) 

6 22.7554 10 3.46fgh T   .     (6.22) 

The energy equation Eq (6.19) is solved to obtain temperatures using the finite 

volume method in MATLAB using a forward-difference scheme.  The updated local 

temperatures are used to determine the evaporation flux and the thermophysical 

parameters (Psat, Cv, hfg) in subsequent iterations.  The energy equation is solved and 

iterated upon until convergence and the resultant surface temperature profile is obtained 

along the vertical axis of the droplet.  

 

Figure 6.19. Control volume approach to determining the axial droplet interface 
temperature subject to evaporative cooling. 

 
The interfacial temperatures of a 3 µL droplet obtained by solution of Eq. (6.19), with 

contact angles of 110 deg and 160 deg, are plotted in Figure 6.20a and Figure 6.20b, 

respectively.  The magnitude of the evaporative cooling is assessed based on ∆T, the 
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difference between the substrate temperature and the minimum temperature which occurs 

at the top of the droplet interface, as shown in Table 6.5.  The magnitude of interfacial 

cooling increases with an increase in substrate temperature for both the contact angles 

considered (Table 6.5).  For droplet evaporation in the CCA mode, the total time of 

evaporation is related to the inverse of the rate of evaporation, as seen from Eq. (6.3) and 

Eq. (6.10).  The ratio of the measured evaporation rate 
exp t

dm dt and that given by the 

vapor-diffusion-only model 
diff

dm dt is hence obtained as the ratio of the total time for 

evaporation from Eq. (6.10), and from the measured values in the form of 

       expexp F Fdiff tt diff
dm dt dm dt t t .  The evaporation rate increases with substrate heating, 

resulting in an increased rate of cooling, and sustains a larger temperature differential 

across the droplet. 

The effect of evaporative cooling on the interface temperature is much larger in the 

case of the superhydrophobic surface compared to the smooth hydrophobic surface for 

the substrate temperatures considered (Table 6.5).  This can be explained in terms of the 

higher height-to-contact-radius aspect ratio of a droplet on the superhydrophobic surface 

than on the hydrophobic surface, h/Rc = 5.67 (CA = 160 deg) versus h/Rc = 1.43 (CA = 

110 deg).  The longer conduction path (h) and a significantly lower conduction base area 

(Ac = πRc
2) in the case of the superhydrophobic surface as compared to the hydrophobic 

surface result in a larger temperature differential in the former.  In contrast, for a 

hydrophilic surface, the low contact angle of the droplet implies a significantly lower 

h/Rc aspect ratio.  The temperature drop across a droplet on hydrophilic surfaces is thus 

minimal, as reported by Girard et al. [145]. 
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Despite the considerable temperature drop predicted for the hydrophobic substrate, 

the total time for evaporation recorded experimentally shows excellent agreement with 

the vapor-diffusion-only model (Table 6.5).  A similar observation was made by Pan et al. 

[148], who reported that under unheated substrate conditions with a droplet contact angle 

of 110 deg, the suppression of evaporation caused by the evaporative cooling effect is 

compensated by the convective flow in the air which tends to enhance the rate of 

evaporation.  The agreement between the current experimental results and the vapor-

diffusion-only model even at elevated temperature indicates that the buoyancy-driven 

convection balances the evaporative cooling effect even as the interface cooling increases 

with an increase in the substrate temperature.  This implies that the evaporation 

enhancement effect of buoyancy-induced convection would be amplified as the substrate 

temperature is increased.  Conversely, for the superhydrophobic surface, there is a 

considerable difference between the measured and predicted time of evaporation.  This 

indicates that the enhancement of evaporation rate due to convection in the air and liquid 

domains is not sufficient to compensate for evaporation suppression due to the lowered 

interface temperature.  For hydrophilic surfaces, on the other hand, the vapor diffusion 

model has been shown to underpredict the rate of evaporation when subject to substrate 

heating [96, 97].  This is because the suppression of the evaporation rate by lowering the 

interface temperature is negligible in case of the hydrophilic surface, and the effect of 

buoyant convection-induced enhancement of the evaporation rate is dominant. 
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Figure 6.20. Interfacial temperature of a droplet of 3 µL volume at different substrate 
temperatures corresponding to the (a) hydrophobic (θ = 110 deg) and (b) 

superhydrophobic substrates (θ = 160 deg).  The radial location r along the droplet 
interface is normalized by the droplet radius (R). 

 

Table 6.5. Interfacial temperature of droplet subject to evaporative cooling. 

Tsub  

(°C) 

Hydrophobic Substrate 

(θ = 110 deg) 

Superhydrophobic Substrate 

(θ = 160 deg) 

ΔT  

(°C) 

Evaporation 
time ratio

   expF Fdiff t
t t

ΔT  

(°C) 

Evaporation 
time ratio

   expF Fdiff t
t t

21 2.41 1.011 5.17 0.770 

40 7.28 1.003 13.3 0.687 

50 11.22 0.984 19.05 0.576 

60 16.09 0.970 25.49 0.492 
 

6.5 Summary 

Evaporation of droplets on a hierarchical superhydrophobic surface with negligible 

contact angle hysteresis is shown to occur only in a constant contact angle mode.  The 

influence of substrate temperature on the evaporation characteristics of droplets on 
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hydrophobic and superhydrophobic surfaces is also experimentally investigated.  The 

experimental results are compared with a vapor-diffusion model which assumes the 

droplet temperature to be equal to the temperature of the substrate. Although the vapor-

diffusion-only model predicts the evaporation characteristics on a smooth hydrophobic 

surface with reasonable accuracy, it overpredicts the rate of evaporation for the case of 

superhydrophobic surfaces having low contact angle hysteresis. This disagreement is 

amplified with an increase in the substrate temperature (deviation ~20 percent for 

unheated case and ~ 50 percent when the substrate temperature is equal to 60 °C).   

Quantitative results for the total time of evaporation, temporal variation of droplet 

volume, contact radius and contact angle are presented.  The reduction in the rate of 

evaporation is attributed to the suppression of evaporation primarily by evaporative 

cooling at the droplet interface due to the high aspect ratio of the droplet leading to a 

longer thermal resistance path, and the low effective conductivity of the substrate owing 

to the presence of the air gaps.  An adjustment factor is proposed to account for the 

suppression of evaporation, and is found to accurately predict the transient droplet 

volume on the unheated superhydrophobic surface.  Based on our experimental 

observations and results from the literature, a generalized relationship for predicting the 

instantaneous volume of droplets under ambient conditions with initial CA > 90 deg, 

irrespective of the mode of evaporation, is presented.  A simple model is solved to 

determine the non-uniform interface temperature which is lower than the substrate 

temperature.  This model highlights the importance of evaporative cooling on reducing 

the resultant rate of evaporation of the droplet, especially in the case of superhydrophobic 

surfaces.
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CHAPTER 7. EVAPORATIVE CONVECTION FLOW IN DROPLETS 
EVAPORATING ON HEATED HYDROPHOBIC AND SUPERHYDROPHOBIC 

SURFACES 

In the current chapter, we experimentally demonstrate that the recirculating flow field 

inside a sessile droplet evaporating on heated smooth hydrophobic, and 

superhydrophobic substrates is driven by thermal buoyancy forces.  We employ Particle 

Image Velocimetry, and a subsequent velocity-correction algorithm that takes into 

account the refractive index mismatch when viewing through the spherical interface of 

the droplet, to quantitatively determine the flow velocity magnitude.  In the case of a 

hydrophobic substrate, a cross-section of an axisymmetric toroidal vortex, with flow 

directed upwards along the droplet vertical axis, is observed at the central plane of the 

droplet.  The inward motion of the seeding particles at the sliding contact line explains 

the localized particulate deposition observed on smooth hydrophobic surfaces at the 

center of an evaporated droplet footprint.  We evaluate the dependence of the flow field 

on the instantaneous droplet volume and substrate temperature. A scaling analysis is used 

to relate the observed velocities inside the droplet to the Rayleigh number. 

On the superhydrophobic substrate, an asymmetric vortex, with a solid-body rotation 

flow pattern is observed; this is in stark contrast with the axisymmetric flow pattern that 

develops on hydrophilic and hydrophobic substrates.  This asymmetric flow pattern 

develops due to the large height-to-diameter aspect ratio of the droplet, which dictates a 
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stable buoyancy-induced convection mode with one rolling vortex.  The flow velocity is 

shown to increase with substrate temperature and is an order of magnitude higher 

compared to droplets evaporating on hydrophobic substrates.  We propose a unique 

method to use such evaporation-induced flow on superhydrophobic substrates as a means 

to promote efficient ‘on-the-spot’ mixing in microliter droplets.  In addition, the high 

recirculation velocity combined with the sliding contact line of the droplet minimizes a 

distributed deposition of particles on the substrate during the evaporation process, 

enabling a single concentrated deposition after complete drying on superhydrophobic 

substrates.  The project was done in collaboration with Aditya Chandramohan.  A part of 

the material presented in this chapter is submitted for publication. 

7.1 Experimental Setup 

In the experiment, a deionized water droplet of 3 ± 0.5 µL initial volume is allowed to 

evaporate on a hydrophobic substrate (Teflon-coated silicon wafer) placed inside a 

transparent enclosure to avoid disturbance due to external air flow.  The experimental 

setup is shown in Figure 7.1.  The initial contact angle of the droplet is 118 ± 2 deg and 

the contact angle hysteresis is ~10 deg.  The superhydrophobic substrate is fabricated 

with silicon prime wafers using standard lithography and dry etching (deep reactive-ion 

etch) techniques.  The fabrication was carried out in the Birck Nanotechnology Center at 

Purdue University. The surface has a square array of pillars, as shown as the inset in 

Figure 7.2.  The pitch of the pillars is ∼30 μm, the width of the tops of the pillars ∼10 μm, 

and the height of the pillars ~20 μm. The textured surfaces were coated with Teflon (~50 

nm thickness) to render them superhydrophobic.  The initial contact angle (CA) of the 

droplet is 157 ± 2 deg and the contact angle hysteresis is ~ 10 deg.  Experiments are 
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conducted at three different substrate temperatures: 40 °C, 50 °C, and 60 °C.  The 

ambient temperature and humidity are maintained at 24 ± 1 °C and 36 ± 3%, respectively. 

The water droplet is seeded with 1 µm-diameter fluorescent polystyrene microspheres 

with peak excitation and emission at 532 nm and 602 nm, respectively.  A continuous 

diode-pumped solid-state Nd:YAG laser (Coherent Verdi V5; 532 nm) along with a 

Galilean lens arrangement is used to produce a light sheet with thickness ~ 30 µm and 

height ~ 6 mm that illuminates the vertical central plane of the droplet.  A laser power of 

1 W is used in the experiments.  Water has a very low absorption coefficient at the laser 

wavelength [ 149 ]; hence, laser-induced heating of water during the experiment is 

negligible.  A high-speed camera (Photron FASTCAM 1024PCI) fitted with a 

microscopic lens (Keyence VH-Z50L) and a high-pass filter (center wavelength = 620 

nm, bandwidth = 52 nm) captures the light emitted from the seeding particles at 60 

frames per second at a spatial resolution of ~ 3.8 µm/pixel.  Figure 7.1 shows a schematic 

diagram of the experimental setup.  A modified lens arrangement is used for visualization 

of the horizontal cross-sectional plane of the droplet.  Figure 7.2a and Figure 7.2b show 

the streaklines in the vertical and horizontal plane of the droplet obtained by overlapping 

multiple sequential images in the case of the hydrophobic and superhydrophobic 

substrate respectively.  All experimental results presented are acquired during the 

constant contact angle mode of evaporation, during which the mass loss due to 

evaporation results in a corresponding reduction in the height and contact radius of the 

droplet. 
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Figure 7.1. (a) Experimental setup for flow visualization using Particle Image 
Velocimetry. 

 

 

Figure 7.2. Streaklines visualized by superimposing multiple sequential side-view and 
top-view images on a (a) hydrophobic (b) superhydrophobic substrate.  The inset shows 

the SEM image of the superhydrophobic substrate used in the experiment. 
 

The PIV vector field is computed using the software LaVision 8.1.4.  A multi-pass, 

cross-correlation algorithm with first- and second-pass window sizes of 32 × 32 and 16 × 
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16 pixels, and 50% overlap between consecutive frames, is used to obtain a converged 

velocity vector field.  The instantaneous vector fields at each grid location are time-

averaged over a droplet volume change of ± 0.1 µL due to evaporation to obtain a vector 

field inside the droplet corresponding to a given volume; for instance, velocity vectors 

obtained during a droplet volume change from 2.1 µL to 1.9 µL are used to obtain the 

time-averaged vector field attributed to the droplet volume of 2 µL. 

7.2 Results and Discussion 

7.2.1 Flow Behavior on a Hydrophobic Substrate 

The velocity vectors are distorted (through a distortion in the cross-correlated particle 

positions) due to the spherical shape of the droplet interface which acts as a liquid lens.  

As a result, the vectors are severely compressed at the periphery (resulting in loss of 

vector data) and magnified at the center of the droplet [110].  A velocity-correction 

algorithm [110,150] is employed to correct for this distortion and to obtain an accurate 

quantitative estimate of the flow field.  The velocity mapping algorithm proposed by 

Kang et al. [110] is used with the correction reported by Minor et al. [150] incorporated.  

The ray-tracing method calculates the actual position of the particles based on the surface 

curvature and index of refraction of the liquid droplet.  The ray-tracing is realized by 

projecting the particle position, obtained from the captured image on the camera, onto the 

surface of the droplet by assuming that the droplet has a spherical profile.  Based on the 

refractive indices of air and water, the surface projection is traced to the center plane of 

the droplet to determine the actual (i.e., corrected) particle position using Snell’s law.  

The velocity vector correction is obtained by taking the derivative of the position 

correction [110].  The velocity field correction algorithm requires geometric 
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characterization of the droplet contact radius, height, and the coordinates of the center of 

the base contact area, which are determined from the experimental images.  Using an in-

house image processing code developed in MATLAB (The Mathworks Inc., Natick, MA), 

the droplet image noise is reduced and the reflections removed.  Subsequently the image 

is binarized and a boundary detection algorithm is used to determine the droplet profile, 

from which the geometric parameters of the droplet are estimated.  

Figure 7.3 shows the vector plot in the central plane of the droplet before and after 

vector position and magnitude correction.  At the center of the droplet, the lens effect 

artificially magnifies the actual velocities by approximately 34% at 50 °C (Figure 7.3).  

The optical distortion at the droplet interface significantly expands the positions and 

increases the magnitudes of the vectors at the center of the visualization plane.  Vector 

positions near the interface are heavily compressed toward the interface, ultimately 

resulting in a loss of information in this region even after correction [110].  It should be 

noted that the shifted vectors produced by the correction algorithm allow identification of 

the actual position of the vortex center in the plane of visualization (Figure 7.3).  The 

uncertainty in determination of the corrected vectors is dependent on the errors in the 

measurement of the droplet contact radius, height, and center of the base contact area, 

which are each estimated to be within 1 pixel.  The root-sum-squared approach was taken 

to assess this uncertainty, which was found to be within 2 µm/s. 
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Figure 7.3. Velocity vectors corresponding to substrate temperature of 50 °C (a) before 
and (b) after velocity correction, at a droplet instantaneous volume of 2 µL. 

 

Figure 7.5a and Figure 7.5b respectively show the velocity fields on the central 

vertical plane when the droplet has evaporated down to a volume of 2 µL and 1.2 µL  on 

a substrate maintained at 50 °C.  A cross-section of the toroidal vortex, appearing as a 

counter-rotating vortex pair in the 2D plane, is observed with flow directed inward 

towards the center of the droplet along the substrate and upward along the vertical axis.  

This flow behavior is in stark contrast to that on a hydrophilic surface where the flow 

along the substrate is directed outwards towards the contact line [13,101].  Earlier studies 

have attributed the recirculating flow inside an evaporating droplet to the Marangoni 

convection caused by surface tension gradient along the interface [101,104].  The 

Marangoni number is defined as 1d
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respectively.  The temperature gradient on the surface of the droplet, which determines 

the direction of the Marangoni flow, is dependent on the geometry and the 

thermophysical properties of the droplet and substrate.  Typically, a radially outward flow 

along the substrate is reported.  Recent studies have reported a flow directed inwards 

along the substrate under unique conditions, such as when the droplet contact angle is 

less than 14 deg [110,151,152], and when the substrate-to-droplet thermal conductivity 

ratio kR is low (kR < 2) [103].  If Marangoni convection were important in our 

experiments (CA ≈ 110 deg and kR > 250), the flow would be directed outward along the 

solid-liquid interface towards the contact line and downward along the vertical axis.  

Instead, the observed upward direction of flow along the vertical axis indicates that the 

driving parameter here is the density gradient caused by the temperature stratification in 

the droplet; i.e., buoyancy-induced Rayleigh convection is dominant. 

A significant temperature drop may be sustained across an evaporating droplet due to 

evaporative cooling at the interface on a hydrophobic surface which supports a large 

contact angle [148].  Thus, the liquid nearer the heated surface is at a higher temperature 

and lower density compared to the liquid at the top of the droplet.  This results in an 

unstable equilibrium: the denser liquid at the top descends while the lighter liquid at the 

bottom ascends, and this global motion within the droplet leads to a three-dimensional 

toroidal vortex pattern.  The absence of the outward capillary flow seen with hydrophilic 

surfaces is attributed to the unpinned contact line and reduced evaporative flux near the 

contact line compared to droplets with an acute contact angle as described in the previous 

chapter.  The axisymmetric nature of the toroidal vortex pattern is further confirmed by 

PIV visualization in the horizontal plane of the droplet with the maximum diameter (at 
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0.23y h  , where y and h represent the distance from the base of the droplet, and the 

droplet height, respectively); velocity vectors in this plane confirm the inward flow of 

particles towards the vertical axis along the substrate (as included in the Supplementary 

Material).  The Galilean lens arrangement is modified (compared to the one described in 

Figure 7.1a) so as to illuminate a horizontal cross-section of the droplet.  The horizontal 

plane of the droplet (corresponding to the maximum diameter) is chosen as the plane for 

visualization so as to minimize the distortion of the light sheet path due to refraction at 

the curved interface.  The placement of the camera is also altered to visualize this 

horizontal plane. 

Figure 7.4a and Figure 7.4b show the uncorrected and corrected velocity vectors, 

respectively, in the central horizontal plane of a droplet evaporating on a hydrophobic 

surface maintained at 40 °C, corresponding to an instantaneous droplet volume of 2.1 ± 

0.1 µL.  The flow is observed to be directed inwards towards the center.  This is also 

supported by the results obtained in the vertical cross-section of the droplet, as discussed 

previously, and affirms the axisymmetric, toroidal vortex flow structure in the droplet. 
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Figure 7.4. Flow visualization at the horizontal plane of the droplet at 0.23y h   
corresponding to hydrophobic substrate temperature of 40 °C (a) before correction and (b) 

after correction. 
 

This buoyancy-induced flow recirculation, in conjunction with the sliding contact line, 

explains the localized deposition pattern observed in the case of hydrophobic surfaces 

[24].  The flow pattern observed here is analogous to the solute-buoyancy-induced flow 

reported by Kang et al. [153]. 

A comparison of the velocity fields inside the droplet corresponding to instantaneous 

droplet volumes of 2 µL and 1.2 µL may be drawn from Figure 7.5.  The flow velocities 

decrease as the droplet volume (and correspondingly, the rate of evaporation as reported 

in the previous chapter) decrease.  This reduction in velocity magnitude can be explained 

in terms of the driving buoyancy forces, assessed using the Rayleigh number given by 
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(height of the droplet), resulting in a lowered buoyancy-induced convection velocity at 

lowered volumes (Figure 7.5b).  

 

Figure 7.5. Comparison of velocity fields at the central vertical plane inside a droplet 
evaporating on the hydrophobic substrate maintained at 50 °C at instantaneous volumes 

of (a) 2 µL and (b) 1.2 µL. 
 

The flow velocities (and rate of evaporation) increase with an increase in substrate 

temperature.  To illustrate this increase, the velocities extracted along the central vertical 

axis of the droplet at the instantaneous volume of 2 µL corresponding to different 

substrate temperatures are shown in Figure 7.6.  The increase in buoyancy-induced flow 

velocity can be attributed to the higher temperature drop across the droplet at elevated 

temperatures (as determined in the previous chapter).  An interesting observation is that, 

irrespective of the substrate temperature, the velocity is highest at 0.4y h  .  The high 

velocity at this location may be explained by proximity to the center of the toroidal 

vortex.  Figure 7.7 shows the velocity magnitude along the vertical axis of symmetry of 

the droplet as it evaporates on substrates maintained at different substrate temperatures.  
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The velocity field behavior with decreasing volume is very consistent across all the 

substrate temperatures considered. 

 

Figure 7.6. Velocity magnitude along the vertical axis of symmetry of the droplet at a 
volume of 2 µL on the hydrophobic substrate. 

 

 

Figure 7.7. Variation of flow velocity on the hydrophobic substrate with changing 
volume of the evaporating droplet along its vertical axis of symmetry, at substrate 

temperatures of: (a) 40 °C, (b) 50 °C, and (c) 60 °C. 
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The contribution of buoyancy to the flow behavior inside the droplet, compared to 

other potential mechanisms, is assessed in terms of the Rayleigh number.  A quantitative 

determination of Rayleigh number requires an estimation of the temperature drop, ΔT, 

along the droplet height.  To aid in prediction of the temperature field inside an 

evaporating droplet on a heated substrate, the relative importance of the convective and 

the diffusive transport inside the droplet may be determined using the Peclet number (Pe 

= UL/α, where U, L, and α represent the characteristic velocity, length scale, and thermal 

diffusivity of the droplet, respectively).  Using the average velocity in the vertical plane 

of the droplet as the representative flow velocity (U), and the height of the droplet as the 

length scale, a representative value for Pe corresponding to each different instantaneous 

droplet volume is determined.  Figure 7.8 shows the Peclet number corresponding to 

different instantaneous droplet volumes and substrate temperatures.  The Peclet numbers 

thus obtained are typically less than 1 for the substrate temperatures considered in the 

present study.  It is therefore appropriate to assume thermal diffusion to be the primary 

mode of heat transfer in a reduced-order model for the temperature field.  
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Figure 7.8. Peclet number at different instantaneous droplet volumes corresponding to 
different surface temperatures for a hydrophobic substrate. 

 

Using the diffusion model, the temperature drops along the droplet height are 

determined to be 7.1 °C, 11.0 °C, and 15.9 °C, corresponding to respective substrate 

temperatures of 40 °C, 50 °C, and 60 °C.  The thermophysical properties are evaluated at 

the average temperature of the droplet obtained from the solution of the diffusion-only 

model.  For the experimental conditions, the calculated theoretical value of the 

Marangoni number suggests that significant thermocapillary convection should take place; 

however, the experimental observation indicates the dominance of buoyancy-induced 

convection.  The magnitude of velocity inside the droplet is on the order of tens to 

hundreds of µm/s, as opposed to predicted Marangoni-induced flow velocities on the 

order of thousands of µm/s [147].  This suppression of Marangoni convection in water 

droplets is attributed to the large dipole moment of water molecules that attracts 

contamination on the free surface, and is supported by numerous experimental studies.  
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Hu and Larson [101] reported that the Marangoni number in water may be suppressed by 

up to 100 times due to the high sensitivity of water to contamination, as opposed to 

organic fluids, where theoretical predictions are more readily realized [110,105]. 

The present study establishes a direct correlation between flow velocity inside 

droplets evaporating on heated hydrophobic surfaces and the Rayleigh number.  Figure 

7.9 shows that the maximum velocity inside the droplet, across all experiments, is 

linearly related to the Rayleigh number.  The flow velocity inside the droplet increases 

with an increase in Rayleigh number and signifies the dominance of buoyancy forces in 

the recirculating convection pattern observed. 

 

Figure 7.9. Variation of the maximum velocity inside the droplet at different substrate 
temperatures and volume, with respect to Rayleigh number. 
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7.2.2 Flow Behavior on a Superhydrophobic Substrate 

In the case of a superhydrophobic substrate, an asymmetric vortex, with a solid-body 

rotation flow pattern is observed (Figure 7.10).  This is in stark contrast with the 

axisymmetric flow pattern observed during droplet evaporation on hydrophobic 

substrates.  Figure 7.10a, and Figure 7.10b show the uncorrected and corrected velocity 

vectors, respectively, corresponding to a substrate temperature of 50 °C.  This flow 

pattern is consistent across all experiments conducted at the different substrate 

temperatures.  Since the flow is not axisymmetric, the relative orientation of the 

visualization plane with respect to the axis of the convection roll determines the velocity 

profile obtained during experiments; all two-dimensional visualizations of central vertical 

planes presented herein are near-perpendicular to the rolling axis.  The horizontal cross-

section is visualized at the maximum diameter of the droplet (at y = 0.46 h); the 

streaklines are shown in Figure 7.2b.  The velocity vector plots in Figure 7.11 show that 

the flow pattern is symmetric along one central vertical plane of symmetry aligned with 

the direction of flow rotation; the horizontal in-plane velocities are significantly lower 

compared to the velocity magnitudes in the central vertical plane (Figure 7.10b). 
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Figure 7.10. Velocity vectors corresponding to a heated superhydrophobic substrate at 
50 °C (a) without velocity correction, and (b) with velocity correction, at a droplet 

instantaneous volume of 2 μL. 
 

 

Figure 7.11. Velocity vectors at the horizontal plane of the droplet (at y = 0.46 h) with 
instantaneous volume ~ 2 µL corresponding to a substrate temperature of 50 °C. 
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The flow pattern in a water droplet evaporating on a heated hydrophobic surface has 

been definitively attributed to buoyancy forces caused by the temperature stratification in 

the droplet based on the observed direct scaling between the measured flow velocity and 

nondimensional Rayleigh number; as described in the previous section.  Surface-tension-

induced Marangoni convection is suppressed in water droplets, as is supported by 

numerous experimental studies [102,105].  The Rayleigh number, which is used to assess 

the driving buoyancy forces, scales as Ra ~ ΔT L3, where L and ΔT represent the length 

scale (height) of the droplet and temperature difference along the droplet height, 

respectively.  The driving buoyancy force increases with an increase in temperature 

difference, ΔT across the droplet.  The temperature differential across the droplet height 

is expected to be even greater for a superhydrophobic surface due to the longer 

conduction path between the (smaller) substrate contact area and the interface at the top 

of the droplet.  Therefore, the flow pattern established in a water droplet evaporating on a 

superhydrophobic surface can also be attributed to buoyant forces.  The convection 

pattern resulting from the Rayleigh-Benard instability in the presence of thermal 

buoyancy forces is dependent on the geometry of the system and the boundary conditions 

[154,155]. 

The single, asymmetric vortex observed in droplets on the superhydrophobic surface 

is in stark contrast to the axisymmetric fluid motion observed on hydrophilic [102] and 

hydrophobic substrates.  On heated hydrophobic surfaces with a sliding contact line, an 

axisymmetric toroidal vortex is formed with flow directed upward along the vertical axis 

of the droplet.  The differences in the three-dimensional steady flow pattern in the 

droplets between the hydrophobic and superhydrophobic cases can be attributed to the 
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dependence of the primary instability mode of Rayleigh-Benard convection on the 

geometry of the spherical cap droplet.  The threshold for attaining an asymmetric flow 

state in cylindrical prisms by Rayleigh-Benard convection was previously established 

experimentally and numerically [154,155,156].  These studies showed that the form of 

the stable flow structure which emerges due to Rayleigh-Benard convection is dependent 

on the cylinder aspect ratio (AR = h/D; where h is the height of the cylinder and D is the 

base diameter) and the Rayleigh number [154,155,156].  For a cylinder heated on end, a 

nonlinear numerical analysis of convection by Neumann [156] showed that stable 

axisymmetric solutions are restricted to small Rayleigh numbers.  Within this constraint, 

an axisymmetric toroidal vortex was reported for cylinder aspect ratios less than 0.55 or 

0.72 depending on the wall boundary condition [155,156].  For a cylindrical geometry 

with aspect ratio ≳ 1, a one-roll mode was reported [154,155,156].  While these specific 

thresholds apply to flow in cylinders, the convection instability for low Rayleigh number 

flows inside spherical cap droplets follows a similar behavior; this is supported by 

experimental results for hydrophobic and superhydrophobic substrates.  On the 

hydrophobic substrate (CA = 110 deg), the lower aspect ratio droplet (h/D = 0.67, where 

h is the height of the droplet and D is the droplet contact diameter) exhibits a stable 

axisymmetric flow.  Conversely, on the superhydrophobic surface (CA = 150 deg), the 

higher aspect ratio (h/D = 0.93) leads to a stable single rotating vortex.  Furthermore, the 

flow structure in the horizontal central plane (Figure 7.11) is analogous to the Rayleigh-

Benard instability-induced flow field with a one-roll mode observed in the horizontal 

cross-section of cylindrical geometries with an aspect ratio of ~1 [155].  The finding of 

an asymmetric convection pattern has particular significance to modeling approaches, 
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which should not universally assume axisymmetric 2D droplet evaporation behavior.  It 

should be noted that similar asymmetric flow behavior was observed by Chang and Velev 

[11] for a spherical water droplet evaporating to ambient while floating on the surface of 

an oil bath. 

The maximum velocity in the droplet evaporating on the superhydrophobic surface is 

on the order of 1000 m/s.  This flow velocity is an order of magnitude higher than the 

flow velocity in a droplet evaporating on a hydrophobic substrate, which is on the order 

of 100 m/s.  It is important to note that the magnitude of evaporation-induced velocity is 

higher in the case of the superhydrophobic surface compared to the hydrophobic surface 

despite the fact that the overall rate of evaporation is lower [143].  The high recirculation 

velocity in the former case can be related to the higher magnitude of Rayleigh number 

and the difference in the nature of the vortex structure in the case of a superhydrophobic 

substrate as compared to a hydrophobic substrate.  The higher contact angle of a droplet 

on a superhydrophobic surface results in a larger height (length scale) and ΔT (=Tsub – 

Tinterface) due to evaporative cooling across the droplet.  The velocity magnitude inside the 

droplet increases with increase in substrate temperature (Figure 7.12).  The rate of 

evaporation increases with substrate temperature, thereby increasing the extent of 

evaporative cooling and resulting temperature difference, ΔT, across the droplet. 
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Figure 7.12. Velocity vectors in the central vertical plane of the evaporating droplet 
corresponding to superhydrophobic substrate temperature of (a) 40 °C (b) 50 °C, and (c) 

60 °C.  
 

The experiments reveal a consistent vertical distance of the vortex center above the 

substrate in all cases.  When viewing along the rolling axis, it is observed that 

irrespective of the substrate temperature, the vortex center lies at a vertical height of 0.72 

± 0.02 mm from the base of the droplet for a 2 µL droplet.  This corresponds to a 

nondimensional height, y/h = 0.496 ± 0.015.  In the case of a droplet evaporating on a 

hydrophobic surface, the nondimensional height of the maximum velocity location, 

corresponding to the center of the toroidal convection pattern was observed at a 

nondimensional height, y/h ≈ 0.4.  This position remained unchanged for different 

instantaneous droplet volumes and surface temperatures.  The physical characteristics of 

the vortex structures in droplets on the hydrophobic and superhydrophobic substrates 

show that the vortex center of the flow pattern is constant for a given surface wettability. 

The recirculating flow pattern that develops inside a droplet evaporating on a 

superhydrophobic surface can be exploited in microfluidic devices to achieve efficient 

mixing in microliter-sized droplets.  Under species-diffusion-dominated conditions, the 
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time required to homogenize the solution is dependent on the diffusion time scale, 

2
d r D  , where r is the radius of the drop, and D is the diffusion coefficient.  For a 

fluorescent dye (Rhodamine 6G; diffusion coefficient in water = 4.14 x 10-10 m2/s [157]) 

mixing into a water droplet of volume ~2 µL, the diffusion time scale is ~24 min.  The 

time scale for mixing due to evaporative recirculation motion inside the droplet can be 

estimated as  2
circ n    where ω is the angular velocity of the flow pattern and n is the 

number of rotations required for mixing.  The angular velocity inside the droplet 

evaporating on a superhydrophobic surface increases with an increase in substrate 

temperature; ω = 0.75 ± 0.10 s-1, 1.71 ± 0.28 s-1, 2.21 ± 0.33 s-1 corresponding to Tsub = 

40 °C, 50 °C, and 60 °C, respectively.  The corresponding mixing time scales reduces 

with this increase in the angular velocity, and should be on the order of seconds, 

depending on the number rotations are required for mixing.  The Peclet number for mass 

transport, given by Pe = UL/D, is ~3260 for a 2 µL droplet on a superhydrophobic 

surface.  The high Peclet number signifies the dominance of the evaporative convection 

flow for mass transport or mixing within the droplet.   

The reduction in mixing on the superhydrophobic substrate with increase in substrate 

temperature is demonstrated by proof-of-concept mixing experiments using fluorescent 

dye Rhodamine 6G (Figure 7.13).  The droplet volume used in the mixing experiments is 

~10 µL for easier visualization.  The evaporative flow field inside the droplet undergoes 

multiple rotations (on the order of ten) to realize complete mixing within the droplet.  On 

the superhydrophobic substrate, the mixing time reduces by a factor of 8 from ~9.7 s at 

40 °C to ~1.2 s at 60 °C.  This convection-aided mixing time is two to three orders of 
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magnitude less than the species-diffusion mixing time scale (~72 min for a 10 µL droplet), 

as anticipated from the scaling analysis which was based on velocity measurements in 2 

µL droplets.  At a fixed substrate temperature of 60 °C, the mixing time is reduced by 

~15 times during droplet evaporation on the superhydrophobic substrate compared to the 

hydrophobic substrate (Figure 7.13).  Since the rate of evaporation of water droplets on 

superhydrophobic surfaces is low [143], efficient mixing can be obtained without much 

loss of mass within a short time period. 

 

Figure 7.13. Time series images showing dye mixing in an evaporating droplet on a 
superhydrophobic substrate maintained at (a) 40 °C (b) 50 °C (c) 60 °C, and on (d) 

hydrophobic substrate maintained at 60 °C. 
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The flow behavior inside the droplet during evaporation on a superhydrophobic 

surface in conjunction with the sliding droplet contact line may be related to the 

evaporative deposition of particulate inclusions on such surfaces.  The high internal flow 

velocity impedes the deposition of particulates on the substrate.  The particulates remain 

suspended due to the bulk fluid motion within the droplet.  During the final stages of 

evaporation, when the droplet contact angle reduces and the contact line becomes pinned, 

the particles are more prone to adhering to the substrate.  This occurs in the mixed mode 

of evaporation, which occurs in the last 0.5 % of the evaporation time [116,143].  The 

final deposition area on superhydrophobic substrates with sliding contact line is therefore 

less than the footprint area of the droplet at onset of the mixed mode of evaporation [116]. 

7.3 Summary 

The internal flow field of a droplet evaporating on a heated hydrophobic, and 

superhydrophobic surfaces is experimentally mapped.  Particle Image Velocimetry is 

used to quantitatively determine the flow velocity inside the droplet.  In the case of 

hydrophobic substrates, the presence of an axisymmetric, toroidal vortex structure with 

flow directed upwards along the vertical axis indicates a buoyancy-induced flow.  This 

mechanism, along with the sliding contact line during evaporation, explains the localized 

deposition of particles previously observed on hydrophobic substrates.  The 

representative flow velocity is shown to directly correspond to the thermal Rayleigh 

number, confirming that buoyancy-induced flow dominates. 

On superhydrophobic substrates, asymmetric buoyancy driven evaporative flow 

pattern observed.  The flow field is attributed to the high aspect ratio of droplets 

evaporating on superhydrophobic surfaces.  The flow velocity is an order of magnitude 
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higher than that observed in the case of axisymmetric flow in a droplet evaporating on 

hydrophobic substrate.  This illustrates the applicability of droplet evaporation on 

superhydrophobic surfaces for achieving efficient droplet mixing for microfluidics 

applications.  The mixing rates are enhanced by increasing the substrate temperatures.  

The high flow velocity combined with a sliding contact line results in localized 

evaporative deposition on superhydrophobic surfaces. 
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CHAPTER 8. CONCLUSIONS AND FUTURE WORK 

The primary outcome of the present doctoral thesis is a better understanding of the 

interdependence between surface morphology and interfacial interaction mechanism.  

The research work enabled a physics-based understanding of the droplet dynamics on 

smooth hydrophobic, and superhydrophobic surfaces under external electrical actuation, 

dynamic impact, and during evaporation.  This chapter summarizes the key research 

outcomes of the present dissertation, and subsequently a few avenues of future research 

are proposed 

8.1 Conclusions 

The findings of the present work are as listed below: 

In Chapter 3, the transient response of a droplet to step actuation, and time varying 

actuation during electrowetting is determined.  The findings are important in applications 

such as electrowetting-based lens, and switch, which rely upon electrical actuation.   

a. Irrespective of the applied step voltage, a droplet of a particular volume takes a 

characteristic time for attaining the maximum electrowetted radius.  This 

characteristic time scale is proposed to be dependent on the radius, density, and 

surface tension of the droplet. 
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b. Analysis of the droplet dynamics in terms of the transient contact angle, and 

contact radius of the droplet, during time-varying actuation of a liquid droplet is 

used to identify the shape oscillation modes of the droplet during electrowetting 

with an alternating in-phase and out-of-phase behavior between contact angle and 

contact radius. 

c. Sub-harmonic oscillation behavior is identified and explained in terms of the 

parametric excitation force acting on the droplet during electrowetting. 

Chapter 4 includes a single-step fabrication technique for hierarchical 

superhydrophobic surfaces.  A comparison between the characteristics of the hierarchical 

surface, and single-roughness surfaces shows a significant improvement in the 

characteristics of the former in terms of the contact angle hysteresis, roll-off angle, and 

robustness under dynamic impact conditions. 

In Chapter 5, novel hybrid superhydrophobic surfaces, incorporating a combination of 

communicating and non-communicating air gaps, are designed and fabricated.  Pressure-

based analysis during droplet impingement experiments enables a better understanding of 

the Cassie-Wenzel transition mechanism. 

a. The hybrid superhydrophobic surfaces increase the anti-wetting capillary 

pressure while retaining a high contact angle at the single roughness level.  

b. The water hammer pressure acting during droplet impact is discovered to be 

dependent on the surface morphology, and significantly lower on 

superhydrophobic surfaces compared to flat surfaces. 

In Chapter 6, evaporation characteristics of sessile droplets on unheated and heated 

hydrophobic and superhydrophobic surfaces are studied.  The research work enabled 
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understanding of the dependence of the transport mechanisms affecting droplet 

evaporation on the droplet shape which is in turn dependent on the surface characteristics. 

a. Evaporation on unheated and heated hydrophobic and superhydrophobic 

surfaces with minimal contact angle hysteresis follows a constant contact 

angle mode during evaporation. 

b. A comparison with the vapor-diffusion model shows that although there is a 

good match between rate of evaporation obtained experimentally and the 

vapor-diffusion model for hydrophobic surfaces, there is a significant 

mismatch in the case of superhydrophobic surfaces.  The deviation increases 

with increase in substrate temperature. The suppression in evaporation rate is 

attributed to the evaporative cooling across the droplet interface. 

c. A simple model is developed to determine the interfacial temperature profile 

of a droplet during evaporation, taking into account thermal conduction 

through the droplet. 

d. A generalized relationship between instantaneous volume of droplets and 

nondimensional time for droplets with contact angle greater than 90 deg under 

unheated conditions is proposed. 

Chapter 7 includes visualization and analysis of evaporation-induced convection in 

droplets on hydrophobic and superhydrophobic surfaces.  Particle Image Velocimetry, 

and a subsequent image correction algorithm to account for the lens effect of the droplet 

are used to quantitatively determine the flow velocity inside the droplet. 
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a. The presence of an axisymmetric, toroidal vortex structure with flow directed 

upwards along the vertical axis indicates a thermal buoyancy induced flow in 

a water droplet evaporating on a hydrophobic surface. 

b.  The flow structure, along with the sliding contact line, are proposed to be 

responsible for localized particle deposition on hydrophobic surface. 

c. In the case of superhydrophobic surfaces, the convection is manifested as a 

single rotating vortex structure, analogous to the solid body rotation.  The 

flow structure is attributed to the height to diameter aspect ratio of droplet on 

superhydrophobic surfaces.  

d. The convection flow velocity inside droplets evaporating on 

superhydrophobic surface is determined to on the order of 1000 µm/s, which 

is an order of magnitude higher than on hydrophobic surfaces.  The 

applicability of the recirculating flow in mixing applications in lab-on-chip 

devices is proposed. 

8.2 Suggested Future Work 

8.2.1 Wetting based Manipulation of Solute in an Evaporating Droplet 

The work presented in this thesis demonstrates that evaporation-induced convection 

inside a droplet is dependent on the substrate properties.  Droplet evaporation on a 

hydrophilic surface results in peripheral deposition.  On the other hand, hydrophobic and 

superhydrophobic surfaces that are characterized by a low contact angle hysteresis are 

demonstrated to localize particulate deposition during evaporation.  The work presented 

in this thesis has highlighted the importance of the nature of substrate and the 

accompanying convective flow on the evaporative deposition characteristics.  The 
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dependence of the flow characteristics on surface wettability can be exploited to 

manipulate the evaporative deposition by implementing surfaces with differential 

wettability.  The idea is to fabricate a hybrid superhydrophobic surface with specific 

hydrophilic areas for solute transport to a desired location by selective pinning of contact 

line and by means of convective control inside the droplet.  The device for localized 

evaporative deposition can also implement substrate heating so as to minimize the total 

process time. 

8.2.2 Efficient Mixing using Evaporation-induced Convection 

Efficient mixing of small amounts of liquids is of extreme importance in 

microfluidics application.  However, in small length scales, the viscous effects are 

dominant which makes mixing challenging.  In lab-on-chip devices, the rate of chemical 

reactions is often limited by the mass diffusion.  Different mixing mechanisms include 

flow past patterned features, magnetic stirrers, electrowetting, and acoustic waves.  

Obtaining on-the-spot mixing in static droplets is even more challenging.  Recently, 

electrowetting-induced oscillation based internal convection inside droplet has been 

reported to enhance mixing inside droplets.  Our work, as a part of this thesis, has 

revealed the significant magnitude of the evaporation-induced convection velocity inside 

droplets evaporating on superhydrophobic surfaces.  The evaporation-induced flow 

velocity increases with increase in substrate temperature.  One possible avenue for future 

work is to implement this evaporation-induced convection in microfluidics devices to 

obtain ‘on-spot’ and ‘on-the-go’ mixing.  Superhydrophobic surfaces are characterized by 

a very low contact angle hysteresis and a low roll off angle.  The idea is to implement this 

property to move droplets in microchannels with heated bottom wall so that both 
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transport and mixing of droplets can be attained simultaneously.  The flow field inside 

the droplet undergoing simultaneous evaporation and rolling should be studied for this 

application. 
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Appendix A. Hierarchical Superhydrophobic Surfaces 

Figure A.1 shows the different hierarchical superhydrophobic surfaces fabricated in using 

the single step methodology reported in Chapter 5. 

 

 

Figure A.1. Hierarchical superhydrophobic surfaces with (a) width 19.5 µm, pitch = 41 

µm (b) width 17 µm, pitch = 27 µm (c) width 35.5 µm, pitch = 44 µm 

 
 

(a) 

(b) 

(c) 
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Appendix B. Mathematica Algorithm to Determine Evaporation Flux at Droplet 

Interface using Vapor-Diffusion Model 

ClearAll["Global`*"] 
theta =160*Pi/180; % Contact angle of droplet 
Vol = 3; 
R0=(3*Vol/(Pi*(1-Cos[theta])^2*(2+Cos[theta])))1/3*10-3//N; % Radius of droplet 
Cs = 1/57.3;   % Saturation concentration 
Dif = 0.2541*10-4; 
H = 0.36; 
delC = (1-H)*Cs 
R = R0*(Sin[theta]); 
hmax = N[R/Sin[theta]*(1-Cos[theta])]; 
Nu =500; 
deltah = hmax/Nu; 
htND = hmax/R; 
 
csa[z_] :=Sin[theta]/z- Cos[theta] 

r[z_] :=R*
2 1 2z z     % Radial location on the droplet interface as a function of height 

f[tau_]:=tau*Cosh[theta *tau]/Cosh[Pi *tau] *Tanh[tau*(Pi-theta)] 
Jr[z_] := 
delC/(R/Dif)*(Sin[theta]/2+(√2*(csa[z]+Cos[theta])3/2)*(NIntegrate[f[tau]*LegendreP[- 
0.5+I*tau,csa[z]],{tau,0,20}]))  % Evaporation flux at the droplet interface as 
function of corresponding height 
J = {}; 
hND = {}; 
r1 = {}; 
csa1 = {}; 
J2={}; 
For[i = 1,i <=(Nu-1),i++, 

h = hmax-i*deltah;      
z = h/R; 
AppendTo[J,Re[Jr[z]]]; 
AppendTo[r1,r[z]/R]; 
AppendTo[hND,h/R]; 
AppendTo[csa1,csa[z]]; 

     ] 
dmbydtfin = Pi* R * Dif*delC*((Sin[theta]/(1+Cos[theta])) + 
4*NIntegrate[(1+Cosh[2*theta*tau])/Sinh[2*Pi*tau]*Tanh[(Pi-theta)*tau],{tau,0,20}]) 
Mfunctionz=Re[NIntegrate[Jr[z]*R/Sin[theta]*(2 Pi )*R,{z,htND,0.0000001}]] % Evaporation rate 
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Appendix C. Matlab Code Implementing Conduction Heat Transfer through the 

Droplet 

clear all; close all; clc; 
Vol=2;   % in µL 
theta = 150*pi/180; % Contact angle 
Rad = (3*Vol/pi/(1-cos (theta))^2/(2+ cos (theta)))^(1/3)*1e-3; % Radius of droplet (in m) 
Rc = Rad*sin(theta);  %Contact radius of droplet (in m) 
height = Rad-Rad*cos(theta);  %height of the droplet in m 
V0 = Vol*1e-9; %in m3 
h0 = height ; %(ht in m) 
Tot_SurfAr = 2*pi*(Rad)*h0; 
 
R = 8.3145; %J/mol.K 
M =0.018 ;  %kg/mol 
 
H = 0.36; N = 500; % number of discretization 
 
Tamb = 24  + 273.15; 
Tref = 300;  %in K 
% Tref = 315; 
Tsub = 40 + 273.15; 
Dref = 2.6262e-005; %diffusion coeff at 300K 
% Dref = 2.8256e-005; % diffusion coeff at 315 K 
Psat_ref = 0.03531*10^5; %Psat at 300K in Pascal 
% Psat_ref = 0.08132*10^5;   %Psat at 315K in Pascal 
kliq = 0.58;  %conductivity of water 
 
%% Reading the functional dependence on CA of Flux from the excel sheet containing 
evaporation flux at the droplet interface corresponding to a particular contact angle 
 
Jre = xlsread('f_theta_in_expression_J_r',2, 'c6:c504');  %for 150 deg CA 
% Jre = xlsread('f_theta_in_expression_J_r',3, 'c6:c504'); %for 110 deg CA, 
 
deltah = h0/500; 
 
h_r(:,1) = h0 - (1:499)*deltah; 
r = real(sqrt(-h_r.^2 + Rc.^2 - 2*h_r.*Rc./tan(theta))); 
 
% Parameters at ambient conditions 
hfg_Ta= 2.7554*10^6 - 3.46*Tamb^2;  % latent heat 
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Psat_Ta = Psat_ref*exp(M*hfg_Ta/R*(1/Tref - 1/Tamb)); % saturation pressure 
Cs_Ta = Psat_Ta/(R*Tamb) * M;  % saturated concentration at Ta 
Damb = Dref.*(Tamb/Tref)^(3/2); % diffusion coefficient 
 
% Parameters at substrate temperature 
hfg_Tsub = 2.7554*10^6 - 3.46.*(Tsub)^2; %J/kg 
Psat_Tsub = Psat_ref*exp(M*hfg_Tsub/R*(1/Tref - 1/Tsub)); 
Cs_Tsub = Psat_Tsub/(R*Tsub) * M;  
Dsub = Dref.*(Tsub/Tref)^(3/2); 
 
J_diff = Jre*(Cs_Tsub - H*Cs_Ta)/(Rc/Dsub); 
r(N) = Rc; h_r(N) = 0; 
 
%% calculating stripe area 
delS(1:500) = Tot_SurfAr/N;  % since delS is equal for same thickness strips on spherical 
cap 
area_ratio = sum(delS)/(2*pi*Rad*h0); 
 
T(1:N) = Tsub;  %Initializing temperature 
 
%% Iterations 
delT = 100; n=0; 
for n = 1:1000000 

n = n+1 
 

D(1) = Dref*(T(1)/Tref)^(3/2); 
hfg(1) = 2.7554*10^6 - 3.46.*(T(1))^2; %J/kg 
Psat(1) = Psat_ref*exp(M*hfg(1)/R*(1/Tref - 1/T(1))); 
Cs_Ti(1) = Psat(1)/(R*T(1)) * M ; % vap molar conc * vap mol. wt 
 
delC(1) = Cs_Ti(1) - H*Cs_Ta; 
J(1) = Jre(1)* delC(1)/(Rc/D(1)); 
S = J(1) *delS(1)*hfg(1); 
Ab(1) = pi*(r(1))^2; 
J(1) = Jre(1)* delC(1)/(Rc/D(1)); 
h_top = h_r(1)+deltah/2; 
h_bot = h_r(1)-deltah/2; 
r_top = real(sqrt(-h_top^2 + Rc^2 - 2*h_top*Rc/tan(theta))); 
r_bot = real(sqrt(-h_bot^2 + Rc^2 - 2*h_bot*Rc/tan(theta))); 
A_top(1) = pi*r_top^2; 
A_bot(1) = pi*r_bot^2; 

 
T(1) = T(2) - S*deltah/(kliq*A_bot(1)); 
for i = 2: N-1 
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D(i) = Dref*(T(i)/Tref)^(3/2); 
hfg(i) = 2.7554*10^6 - 3.46.*(T(i))^2; %J/kg 
Psat(i) = Psat_ref*exp(M*hfg(i)/R*(1/Tref - 1/T(i))); 
Cs_Ti(i) = Psat(i)/(R*T(i)) * M ; % vap molar conc * vap mol. wt 
delC(i) = Cs_Ti(i) - H*Cs_Ta; 
J(i) = Jre(i)* delC(i)/(Rc/D(i)); 
S(i) = J(i) *delS(i)*hfg(i); 
h_top = h_r(i)+deltah/2; 
h_bot = h_r(i)-deltah/2; 
r_top = real(sqrt(-h_top^2 + Rc^2 - 2*h_top*Rc/tan(theta))); 
r_bot = real(sqrt(-h_bot^2 + Rc^2 - 2*h_bot*Rc/tan(theta))); 

  
A_top(i) = pi*r_top^2; 
A_bot(i) = pi*r_bot^2; 

  
T(i) = (T(i-1)*A_top(i) + T(i+1)*A_bot(i))/(A_top(i)+A_bot(i)) - 
S(i)*deltah/(kliq*(A_top(i)+A_bot(i))); 

 
end 
 
T(N) = Tsub; hfg(N) = hfg_Tsub; J(N)= 0; h_r(N) = 0; Ab(N) = pi*(r(N))^2 ; 

end 
 
r(N) = Rc; J_diff(N)= J_diff(N-1); 
figure (2); plot(r/Rad,T-273.15) 
figure (3); plot(r/Rad, J_diff,'r'); hold on; plot(r/Rad, J) 
 
sum1 = 0; 
for i = 1: N 

sum1 = sum1 + T(i)*delS(i); 
end 
Ti_avg = sum1/sum(delS); 
 
hfg_Ti_avg = 2.7554*10^6 - 3.46.*(Ti_avg)^2; %J/kg 
Psat_Ti_avg = Psat_ref*exp(M*hfg_Ti_avg/R*(1/Tref - 1/Ti_avg)); 
Cs_Ti_avg = Psat_Ti_avg/(R*Ti_avg) * M;  
D_Ti_avg = Dref.*(Ti_avg/Tref)^(3/2); 
delC_diff = (Cs_Tsub - H*Cs_Ta); 
delC_Ti_avg = Cs_Ti_avg - H*Cs_Ta; 
 
Ratio = (D_Ti_avg*delC_Ti_avg)/(Dsub*delC_diff) 
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Appendix D. Numerical Diffusion Model for Droplet Evaporation 

In this section, a numerical model (using software package ANSYS 12.0 (FLUENT 

solver)) to help understand the evaporation mechanism is presented.  The model was 

developed with the help of Dr. Zhenhai Pan.  This is addition to the simple diffusion 

model assuming parallel control volume described in Chapter 6.  In this model, the 

assumptions are: (1) the convection in both the liquid and gas phases may be ignored; (2) 

the silicon substrate remains at ambient temperature since the thermal conductivity of the 

silicon substrate is much higher than both the structured layer and the liquid droplet; and 

(3) the temperature is continuous across all interfaces.  With the first assumption, the 

energy equation in the droplet, gas phase and structured layer is described by 2 0T  , 

and the resulting evaporation flux is given in Eq. (6.1).  An isothermal boundary 

condition is assumed at the bottom of the structured layer (T = 20.5°C).  The third 

assumption leads to the same temperature on both sides of the droplet-gas interface and 

droplet-substrate interface, and the latent heat for evaporation is supplied from both the 

liquid and the gas side.  At the outer boundary of the gas domain (200 times the droplet 

radius (R) away from the droplet interface), T = 20.5°C.  The evaporation results in a heat 

sink at the droplet interface.  To model the heat sink at the evaporating interface, a heat 

source (Sh) is added to the mesh cells adjacent to the liquid side of the interface 

,

( ) cell
h

cell g

q r A
S

V
 .     (A.1) 
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where q(r) is the heat flux absorbed at the interface, Acell is the interface area of a 

specified cell adjacent to the interface, and Vcell is the cell volume.  The heat flux 

absorbed by the interface, q(r) is given as 

( ) ( )fgq r h J r  .     (A.2) 

where hfg is the latent heat (hfg = 2.46×106 J/kg at 20.5°C for water) and J(r) is the 

evaporation flux (as given by Eq. (6.1)). 

The thermal diffusion model is solved by employing the software package ANSYS 

12.0 (FLUENT solver).  The mesh is shown in Figure D.1.  A total of 81080 (for the 

hydrophobic substrate) or 108440 (for the superhydrophobic substrate) quadrilateral cells 

are used across the computational domain.  The mesh is locally refined at the liquid-gas 

interface.  A mesh-independence check was performed to confirm that the simulation 

results are insensitive to further refinement of the mesh.  The variation of the interfacial 

temperature is smaller than 0.5% for a mesh with twice as many cells for each case.  A 

hemispherical simulation boundary is selected for the gas domain as shown in Figure 

D.1.  The distance from the droplet to the outer boundary is 200 times the droplet radius; 

the interfacial temperature was confirmed to be independent of the boundary location for 

this domain size. 
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Figure D. 1. Schematic diagram of the numerical simulation domains and boundary 
conditions (with mesh overlay) for (a) the full domain; (b) detailed view near the droplet 

on a hydrophobic substrate; (c) detailed view near the droplet on a superhydrophobic 
substrate. 

 

The computed temperature fields around a 2 μL droplet with different substrates are 

shown in Figure D.2.  The calculated temperature distribution along the droplet interface 

is shown in Figure D.3.  A large temperature drop is induced along the droplet interface 

by the evaporative cooling effect for the superhydrophobic substrate.  The area-weighted 

average interfacial temperature of the droplet is 15.55°C, which is ~ 5°C lower than the 
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ambient temperature.  The saturation pressure psat (Tlv) is calculated from the Clausius-

Clapeyron equation: 

_
_

1 1
( ) exp fg

sat lv sat ref
sat ref lv

Mh
p T p

R T T

  
       

    (A.3) 

The saturated vapor density at the evaporating interface (cs) decreases by ~ 27.8%, 

leading to a reduced rate of evaporation.  Therefore, the assumption of uniform 

temperature throughout the system in the diffusion-only model is not applicable to a 

superhydrophobic substrate and the evaporation rate is significantly over-estimated. 

 

Figure D. 2. Temperature field in and around an evaporating 2 μL droplet resting on: (a) 
the structured superhydrophobic substrate (θ = 160 deg); and (b) the smooth hydrophobic 
substrate (θ = 110 deg).  The color legend on the left indicates the calculated temperature 

in °C (the scale is different for the two cases). 
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A significant temperature drop occurs along the height of the evaporating droplet (~ 

6.7°C) while the temperature drop across the structured layer is ~ 0.5°C, which means 

that the thermal resistance of the droplet is the primary factor contributing to the high 

evaporative cooling effect for a superhydrophobic surface.  This result is not surprising 

because although the structured layer has a thermal conductivity (~ 0.54 W/mK) 

comparable to that of water, it has a much smaller thickness (~ 23 µm) compared to the 

water droplet (h ~ 1.7 mm).  If the structured layer were removed, i.e. the bottom of the 

droplet was held isothermal at 20.5°C, the suppression of the saturated vapor density at 

the evaporating interface (cs) reduces slightly from ~ 27.8% to ~ 24.4%. 

The temperature distribution along the evaporating interface is found to be 

dependent on CA of the droplet, and independent of droplet volume (Figure D.3).  This 

behavior can be explained using a simple scaling analysis.  The evaporation flux, q(r), 

and the corresponding cooling flux along the droplet interface, are inversely proportional 

to the droplet contact radius (Eq. (6.1)).  The temperature drop across the droplet, 

     
   1 1

1 cos
~

sinliq c

h h
T q r f f

k R


 


  

   
 
   (kliq is the thermal conductivity of the 

droplet and f1(θ) represents the functional dependence of evaporation flux on CA), is 

independent of the length scale (or volume for fixed CA) of the droplet.  This explains 

why a single correction factor 0.8 in Eq. (6.16) could be employed to account for the 

evaporative suppression in almost all the experimental cases on the superhydrophobic 

surface. 
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Figure D. 3. Interfacial droplet temperature for both hydrophobic (θ = 110 deg) and 
superhydrophobic substrate (θ = 160 deg).  The radial location (r) is normalized by the 

droplet radius (R). 
 

For a smooth hydrophobic substrate, the temperature drop across the droplet is much 

smaller.  The average interfacial temperature is 19.01°C and the saturated vapor density 

at the evaporating interface is suppressed by ~ 8.9%.  It should be noted that in the 

present analysis, the convection in both liquid and gas phases, which usually increases 

the evaporation rate, was neglected.  The weak suppression of the evaporation by the 

cooling effect in case of a smooth hydrophobic surface could be partly compensated by 

the fluid convection on either side of the evaporating interface.  Ongoing research efforts 

are targeted at full-scale modeling of the evaporation, including the evaporative cooling 
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effect, thermal conduction of the underlying substrate, and fluid flows in the droplet and 

surrounding air domains 
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Appendix E. Matlab Code to Correct Vector Distortion Due to Lens Effect of 

the Droplet 

f = uigetfile('.dat'); 
 
%% Droplet Parameters 
 
fid = fopen(f, 'rt'); 
A = textscan(fid, '%f', 'HeaderLines', 3); 
 
M=4;           % Number of columns in the original file 
scale = 3.86e-03;   % millimeters to pixels correction 
vector_scale = 10; 
 
N = length(A{1,1})./M; 
B = reshape(A{1,1}, M, N); 
C = transpose(B); 
 
%% User Input (Contact radius, height, coordinates of the center of the droplet base line 
obtained from experimental images) 
 
R = 108.5;    % in pixels % Contact radius 
h = 376;    % in pixels 
y_0 = 702;  %pixel distance from the top of the image to the bottom of droplet 
x_0 = 513.5; 
 
na = 1; 
nd = 1.33; 
filename = ’Enter File Name containing Corrected Vectors’; 
%% PIV Data 
 
b = h-R;        %in pixels 
x = C(:,1)/scale;   % in pixels 
x = x - x_0; 
y = C(:,2)/scale; 
y = y_0-y; 
u_old = C(:,3)/(scale/1000);   %convert m/s to pixel/s ((m/s*pixel/mm)/1000) 
v_old = -C(:,4)/(scale/1000); 
r = 1/2*(R+sqrt(R^2+4*b.*y)); 
z = sqrt(r.^2 - x.^2-y.^2); 
 
%% Delete Points Outside Droplet 
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u_old(imag(z)~=0)  = 0; 
v_old(imag(z)~=0)  = 0; 
 
Nu = sqrt(x.^2+(y-h/2).^2); 
u_old(Nu > 0.95*h/2) = 0; 
v_old(Nu > 0.95*h/2) = 0; 
 
%% Ray Tracing 
 
sintheta = sqrt(x.^2+z.^2)./r; costheta = y./r; 
sinphi = x./sqrt(x.^2+z.^2);  cosphi = z./sqrt(x.^2+z.^2); 
f = 1./sqrt(((r+b.*costheta).^2.*(sintheta.*sinphi).^2) + ((r.*costheta-b.*sintheta.^2).^2)); 
 
psia = acos((r+b.*costheta).*sintheta.*cosphi./sqrt(r.^2 + b.^2 *sintheta.^2)); %angle of  
incidence 
psid = asin(na/nd*sin(psia));    %Snell’s Law 
 
Bx = -f.*tan(psia-psid).*(r+b.*costheta).*sintheta.*sinphi; 
By = -f.*tan(psia-psid).*(r.*costheta-b.*sintheta.^2); 
Bz = -1; 
 
dBxdx =diff(Bx, x); %partial differential of Bx with respect to x. The command 

requires a symbolic toolbox 
dBxdy=diff(Bx, y); 
 
%% New Velocity and Position 
 
corr_u = u_old.*dBxdx + v_old.*dBxdy; 
corr_v = u_old.*dBydx + v_old.*dBydy; 
 
u_new = u_old + corr_u; 
v_new = v_old + corr_v; 
 
x_new = x; 
y_new = y; 
x_new((Nu <= 0.95*h/2)) = x((Nu <= 0.95*h/2))-z((Nu <= 0.95*h/2)).*Bx((Nu <= 
0.95*h/2))/Bz; 
y_new((Nu <= 0.95*h/2)) = y((Nu <= 0.95*h/2))-z((Nu <= 0.95*h/2)).*By((Nu <= 
0.95*h/2))/Bz; 
x_new(y<0) = x(y<0); 
y_new(y<0) = y(y<0); 
 
%% Convert back to meters 
x_new = scale*x_new; 
y_new = scale*y_new; 
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u_new = scale*u_new; 
v_new = scale*v_new; 
x = scale*x; 
y = scale*y; 
u_old = scale*u_old; 
v_old = scale*v_old; 
corr_u = scale*corr_u; 
corr_v = scale*corr_v; 
magnitude_old = sqrt(u_old.^2 + v_old.^2); 
magnitude = sqrt(u_new.^2+v_new.^2); 
velocity = [u_new,v_new]; 
 
% %% Comparison of magnitudes. 
%% Droplet Boundary 
theta = -90:0.01:90; 
r = R+b*cosd(theta); 
yr = r.*cosd(theta)*scale; 
xr = r.*sind(theta)*scale; 
 
%% Plotting Comparison 
figure(1) 
quiver(x_new,y_new,u_new,v_new); 
hold on; 
plot(xr, yr, 'k'); 
axis equal; 
 
figure(2) 
quiver(x,y,u_old, v_old, 'r'); 
hold on; 
plot(xr, yr, 'k'); 
% contourf(x,y,sqrt(u_old.^2+v_old.^2)); 
axis equal; 
 
%% Output Data File 
fid = fopen(filename, 'wt'); 
fprintf(fid,'x_old[mm] \t y_old[mm] \t u_old[mm/s] \t v_old[mm/s] \t x_new[mm] \t 
y_new[mm] \t u_new[mm/s] \t v_new[mm/s]\n'); 
for i = 1:length(x_new) 
    fprintf(fid, '%0+7.7f \t %0+7.7f \t %0+7.7f \t %0+7.7f \t %0+7.7f \t %0+7.7f 
\t %0+7.7f \t %0+7.7f \n', x(i), y(i), u_old(i), v_old(i),  x_new(i), y_new(i), u_new(i), 
v_new(i)); 
end 
fclose(fid); 
dlmwrite(filename, [], '-append', 'delimiter',',') 
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