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3.15 Variance of ũ10(t) (left ) and error plot with respect to approximation
order at t = 2 (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.16 Membership function of fuzzy number. . . . . . . . . . . . . . . . . . . 63

3.17 Membership function of µ̃3(x) (left) and error plot with respect to approx-
imation order at space x = 0.5257 (right). . . . . . . . . . . . . . . . . 64

3.18 Expected value of µ̃3(x) (left ) and error plot with respect to approximation
order at x = 0.5257 (right). . . . . . . . . . . . . . . . . . . . . . . . . 65

3.19 Variance of µ̃3(x) (left ) and error plot with respect to approximation order
at x = 0.5257 (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1 Venn diagrams: (a) The set A with subsets, (b) The set A with intersecting
sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Belief and Plausibility of a proposition A. . . . . . . . . . . . . . . . . 71

4.3 An m-function and the focal elements. . . . . . . . . . . . . . . . . . . 72



vii

Figure Page

4.4 The distance between m-functions of un and u, at time t = 2, with respect
to approximation order n . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5 The distance between m-functions of un and u, at time t = 2, with respect
to approximation order n . . . . . . . . . . . . . . . . . . . . . . . . . . 80



viii

ABSTRACT

Chen, Xiaoxiao Ph.D., Purdue University, December 2014. Epistemic Uncertainty
Quantification in Scientific Models. Major Professor: Dongbin Xiu.

In the field of uncertainty quantification (UQ), epistemic uncertainty often refers

to the kind of uncertainty whose complete probabilistic description is not available,

largely due to our lack of knowledge about the uncertainty. Quantification of the

impacts of epistemic uncertainty is naturally difficult, because most of the existing

stochastic tools rely on the specification of the probability distributions and thus do

not readily apply to epistemic uncertainty. And there have been few studies and meth-

ods to deal with epistemic uncertainty. A recent work can be found in [J. Jakeman,

M. Eldred, D. Xiu, Numerical approach for quantification of epistemic uncertainty,

J. Comput. Phys. 229 (2010) 46484663], where a framework for numerical treat-

ment of epistemic uncertainty was proposed. In this paper, firstly, we present a new

method, similar to that of Jakeman et al. but significantly extending its capabilities.

Most notably, the new method (1) does not require the encapsulation problem to

be in a bounded domain such as a hypercube; (2) does not require the solution of

the encapsulation problem to converge point-wise. In the current formulation, the

encapsulation problem could reside in an unbounded domain, and more importantly,

its numerical approximation could be sought in Lp norm. These features thus make

the new approach more flexible and amicable to practical implementation. Both the

mathematical framework and numerical analysis are presented to demonstrate the ef-

fectiveness of the new approach. And then, we apply this methods to work with one

of the more restrictive uncertainty models, i.e., the fuzzy logic, where the p-distance,

the weighted expected value and variance are defined to assess the accuracy of the



ix

solutions. At last, we give a brief introduction to our future work, which is epistemic

uncertainty quantification using evidence theory.
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1. INTRODUCTION

1.1 Epistemic Uncertainty

Mathematical models are used to simulate a wide range of systems and processes

in many sciences, such as engineering, physics, biology, chemistry and environmental

sciences. However, these systems are subject to a wide range of uncertainties. In

order to thoroughly understand the system, the uncertainties involved in the under-

lying physics need to be explored. There are various sources of uncertainties, for

example, random inputs of the system, randomness in the property of the material,

unknown structural properties of the physics, observation errors, etc. The treatment

(quantification) of the uncertainties is essential for the precise modeling of the real

system.

Oberkampf and Roy [1] divide these uncertainties into two categories: aleatory

and epistemic. Aleatory uncertainty arises from the intrinsic variability associated

with the physical system and is irreducible. Epistemic uncertainty represents any

lack of knowledge in any phase or activity of the modeling process and is reducible

when adding enough information.

Aleatory uncertainty is also referred to in the literature as irreducible uncertainty,

inherent uncertainty, variability and stochastic uncertainty, which is usually charac-

terized with probability distributions because of their randomness. Consequently, we

can use the systematic probability theory and mature statistical tools to deal with

quantification of aleatory uncertainties.

On the other hand, epistemic uncertainty is referred to as subjective uncertainty,

reducible uncertainty, and model form uncertainty. The sources of epistemic un-

certainties in the parameter input process, which are interpreted as subjective un-

certainty and reducible uncertainty, are not amenable to interpretation in terms of
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classical probability theory. To represent such uncertainties, Zadeh [2] introduced

the concept of a fuzzy set (with fuzzy or imprecise boundary). Unlike in the classical

set theory where, if an object is a member of a set A, it cannot be a member of the

disjoint set of A. It allows an object or element to be a member of more than one

set with different grade of membership. This work began the modern revolution in

new ways of thinking about uncertainty that stems from sources other than random

processes. Fuzzy sets have been applied in diverse fields such as social science [3],

linguistics [4], and pattern recognition [5,6]. In 1978, Zadeh [7] extended the fuzzy set

theory to possibility theory, where he interpreted membership functions of fuzzy sets

as possibility distributions encoding flexible constraints induced by natural language

statements. Here, the application of it in uncertainty analysis is the purpose of the

dissertation.

Other sources of epistemic uncertainty resulting from limited understanding or

misrepresentation in the modeled process, are known commonly as model form un-

certainty. Inclusion of enough additional information can lead to a reduction in the

predicted uncertainty of a model output. Consequently, we can consider epistemic

uncertainty as providing bounds on an underlying aleatory uncertainty. To represent

these uncertainties, Shafer [8] developed what he called a mathematical theory of ev-

idence based on the ideas of Dempster [9,10]. This theory was immediately espoused

by the artificial intelligence community who called it the Dempster-Shafer theory of

evidence. It is considered as a generation of probability theory, where cumulative

belief and cumulative plausibility functions are defined to represent the uncertainty

in the output metrics. Here, belief constructs a measure of the amount of information

that supports an event being true and plausibility measures the absence of informa-

tion that supports the event being false. For decades, the Dempster-Shafer (DS)

theory of evidence (also called evidence theory) is well developed in the application

context [6, 11–14], where reduction and convergence to the true aleatory uncertainty

can be obtained given sufficient additional information, that is, the evidence the-

ory representation of uncertainty approaches the probabilistic representation as the
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amount of information about the input data increases. In this way, application of DS

theory to study uncertainties in modeling and simulations is our future work.

1.2 Recent Work on Epistemic Uncertainty Quantification

Until recently, most uncertainty analysis has focused on aleatory uncertainty. Nu-

merous stochastic methods have been developed to provide accurate and efficient

simulations for this form of uncertainty. For example, the stochastic methods based

on generalized polynomial chaos (gPC) [15], an extension of the traditional polyno-

mial chaos [16], have demonstrated their efficiency in practice and are widely used

for many problems. Their implementations typically follow either stochastic Galerkin

(SG) [15–17] or stochastic collocation (SC) [18–22], often termed as intrusive meth-

ods or non-intrusive methods, respectively. For a detailed review on the methods,

see [23, 24].

Numerical study of epistemic uncertainty is more difficult because of the lack of

sufficient probabilistic information. And one naturally can not readily adopt proba-

bilistic approaches. Some of the existing approaches include evidence theory, possibil-

ity theory [25] and interval analysis [11,26]. These method have their own advantages,

though most do not address efficient numerical implementations. More recent studies

can be found in [11,27].

Our methodology is based on the recent work of [28], where a general numerical

approach was proposed for epistemic uncertainty analysis. The method consists of

three components: (1) encapsulation of the epistemic uncertain inputs by a bounded

domain, i.e., a hypercube; (2) solution of the encapsulation problem, which is the orig-

inal governing equations defined in the encapsulation domain; and (3) post-processing

of the resulting numerical solution for its statistics, whenever the probability distri-

bution of the epistemic inputs is known, or assumed, a posterior. A notable feature

of the approach is that the numerical solution of the encapsulation problem needs to

have error control in L∞ norm, i.e., point-wise, in the entire encapsulation domain.
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Though effective and mathematically sound, the requirements of using bounded en-

capsulation domain and controlling errors in L∞ norm can be difficult to achieve in

practical simulations.

1.3 Research Outline

The primary method of this work is presented in Chapter 2, where the method is

proposed and both the numerical algorithms and the error analysis are demonstrated.

We extend the capabilities of the methodology proposed in [28]. The new approach

achieves two notable extensions. One is in the modeling of the epistemic inputs,

where the encapsulation domain is not required to be bounded anymore. Whenever

appropriate, unbounded domains can be used to encapsulate the inputs. In practice

this could impose less constraints on modeling the inputs, because in many problems

there may not be obvious bounds for the epistemic variables. The other extension of

the new approach is that the numerical approximation of the encapsulation problem

can now be measured in Lp, p > 1, norm. Naturally this is much easier to achieve in

practice than the L∞ norm used in the earlier work of [28]. (In fact for semi-bounded

and unbounded variables, approximation in L∞ norm is not possible.) The ability

to use unbounded domain to model the epistemic inputs and to approximate the

encapsulation problem in Lp norm makes the new method more flexible in practical

computations, as it applies to a much larger set of problems (bounded variables vs.

unbounded variables) and allows more flexible numerical treatment. In fact, the new

framework incorporates the earlier one from [28] as a special case, i.e., when the

epistemic variables are modeled as bounded variables and a numerical method with

point-wise error control is utilized, the new method becomes identical to the earlier

one. In term of the analysis of the new method, we present convergence analysis in

both weak form and strong form. This is another extension of the earlier work of [28],

which only contains convergence result in a weak form.
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The application of this method on epistemic uncertainty quantification using

Fuzzy set theory is shown in Chapter 3. Firstly, the basics of the fuzzy set theory are

introduced, where the fuzzy set and fuzzy number are defined and the property and

operation of fuzzy sets are described. And the most notable parts for this chapter are:

(1) To assess of the accuracy of a numerical fuzzy equation, unlike using the supreme

distance [29], which needs the accuracy of the numerical solution in L∞-norm, we

define the p-Hausdoreff distance, which naturally leads to the requirement of the ac-

curacy over the parameter domain of the numerical solution to the parametric PDE

in Lp-norm. (2) Associated with the possibility theory, we define the weighted ex-

pected value and variance value of a function of a fuzzy set using the concepts of

average values of the function on the α-cut of a fuzzy set. (3) The convergence of the

solution in p-Hausdoreff distance, the weighted expected value and the variance are

theoretically proved and numerically illustrated.

In Chapter 4, we briefly present the future work of our research, which is epistemic

uncertainty quantification using Evidence theory. Similar to the work of chapter 3,

firstly, a brief description of the mathematical basics of the DS theory is given, where

we define the distance of two m-functions based on p-Hausdorff distance to assess

the accuracy of the solution. And the convergence of the m-function can be achieved

under the assumption of the L∞ norm convergence of numerical solution. Some

numerical examples are shown there.

At last, final conclusions are drawn in Chapter 5.

The text of this dissertation includes the reprints of the following papers, either

accepted or submitted for consideration at the time of publication.

X. Chen, E.-J. Park, and D. Xiu. A flexible numerical approach for quantification

of epistemic uncertainty. J. Comput. Phys., 240 (2013) 211224.

X. Chen, Y. He and D. Xiu. Fuzzy Partial Differential Equation. J. Comput.

Phys., Submitted.
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2. A FLEXIBLE NUMERICAL APPROACH FOR

QUANTIFICATION OF EPISTEMIC UNCERTAINTY

In this chapter, we present a new method, similar to that of [28] but significantly

extending its capabilities. Most notably, the new method (1) does not require the

encapsulation problem to be in a bounded domain such as a hypercube; (2) does not

require the solution of the encapsulation problem to converge point-wise. In the cur-

rent formulation, the encapsulation problem could reside in an unbounded domain,

and more importantly, its numerical approximation could be sought in Lp norm.

These features thus make the new approach more flexible and amicable to practical

implementation. And the framework is as follows: In Section 2.1, we present the nec-

essary mathematical framework for quantifying epistemic uncertainty. In section 2.2,

we discuss the construction and solution of the encapsulation problem, and establish

the convergence results when the probability distribution of the variables becomes

known a posterior. In section 2.3, we present numerical analysis to demonstrate the

effectiveness of the new approach.

2.1 Problem Setup

Let D ⊂ Rl, l = 1, 2, 3, be a physical domain with coordinates x = (x1, . . . , xl),

let (0, T ] be a time domain with T > 0, and let IZ ⊂ Rn be a parameter domain for

uncertain inputs. We consider a general partial differential equation (PDE) as
vt(x, t, Z) = L(v), D × (0, T ]× IZ ,

B(v) = 0, ∂D × [0, T ]× IZ ,

v = v0, D × {t = 0} × IZ ,

(2.1)
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where L is a (linear or nonlinear) differential operator, B is the boundary condition

operator, v0 is the initial condition, and Z = (Z1, . . . , Zn) is a set of uncertain parame-

ters characterizing the uncertainty in the inputs of the governing equation. We assume

that the problem (2.1) is well-posed in Z and let v(x, t, Z): D × (0, T ] × IZ → Rnv

denote its solution. For simplicity, we further assume that the output of (2.1) is in one

dimension, i.e., nv = 1. We also make a fundamental assumption that the problem

(2.1) is well posed in IZ .

Most of the existing studies adopt a probabilistic formulation to quantify aleatory

uncertainty the type of uncertainty whose complete probabilistic specification is

available. This translates into the availability of the knowledge of the function

FZ(s) = Prob(Z ∈ s) for real number s ∈ Rd. (In many practical applications,

this is often accomplished by assuming the marginal distribution of each Zi and then

assuming mutual independence among all the components.) In this paper, however,

we consider the case where the uncertainty is epistemic. That is, the distribution

functions of FZ(s) is not completely known, primarily due to our lack of knowledge

and characterization of the physical system governed by the system of equations (2.1).

Since the focus of our study is on the dependence of the solution on the uncertain

inputs Z, hereafter we will suppress the notions of x and t, with the understanding

that all of the statements are meant for any fixed locations in x and t.

2.2 Methodology

We now present a method for solving system (2.1) subject to epistemic uncertain

inputs. The proposed methodology is a three-step procedure that involves identifying

the ranges of the uncertain inputs, generating an accurate numerical approximation

of the solution to (2.1) within estimated ranges, and post-processing the results. Note

that no probability distribution information will be utilized in the solution procedure.



9

2.2.1 Range Estimate

The first task is to identify a range, or bound, that is sufficiently large such that

the true, and yet unknown, range of the input uncertainty is mostly incorporated.

For each variable Zi, i = 1, ..., d, let

IZi = [αi, βi], αi ≤ βi, (2.2)

be its (unknown) range. Note that the range can be bounded, semi-bounded, or

unbounded. The goal of range estimation is to identify an interval

IXi = [ai, bi], (2.3)

such that IXi and IZi overlap each other with sufficiently large probability. Note that

the interval can be semi-bounded or unbounded. This is fundamentally different from

the work of [28], where the estimated range is required to be bounded. The estimated

range IXi must be sufficiently large such that it encapsulates the true range IZi either

completely or, if there is any truncation, the truncation is sufficiently small. In [28],

this requirement is termed the overwhelming probability condition. In the current

setting, the ability to use unbounded interval IXi removes the need for highly accurate

estimate of the unknown range IZi , as one can, in principle, always use an unbounded

interval to completely encapsulate the unknown range. This could help alleviate the

difficulty in estimating the input ranges, a task that sometimes can be challenging.

It should be noted that when estimating the range of each epistemic variables, it is

natural to ensure the governing Eq. (2.1) remains well-posed in the estimated range

IXi . That is, it certainly makes sense not to let IXi intersect with any parameter

values that may violate the physical laws or solvability of the governing equations.

For the collection of all the inputs, let IZ be the range of the uncertain epistemic

variables Z ∈ Rd. Naturally,

IZ ⊂ ×di=1IZi . (2.4)
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Note there may be dependence among some of the components of Z, and the real

range of Z may be smaller than the tensor product of each range. To encapsulate the

range IZ , we define an encapsulation set

IX = ×di=1IXi = ×di=1[ai, bi], (2.5)

which is the Cartesian product of (2.3). Now let

I+ = IZ ∩ IX , I0 = IZ \ IX , (2.6)

denoted as super set and common set, respectively, and

I− = IZ 4 IX = I+ \ I0, (2.7)

be the symmetric difference of IZ and IX , denoted as difference set. We now require

that the range estimation procedure is satisfactory when

P (Z ∈ I ) ≤ δ, (2.8)

for a sufficiently small non-negative real number δ ≥ 0. Therefore, the encapsulation

set IX encapsulates IZ , the true and unknown support of Z, with probability at least

1−δ, where δ ≥ 0 can be made small by enlarging the size of IX . The parameter δ can

be zero, i.e., IX encapsulates IZ with probability one. One easy way to accomplish

this is to ensure IZ ⊂ IX , which is relatively easier to enforce in the current framework

because IX can be defined as the entire space Rd.

2.2.2 Encapsulation Problem

We now define the following encapsulation problem
ut(x, t,X) = L(u), D × (0, T ]× IX ,

B(u) = 0, ∂D × [0, T ]× IX ,

u = u0, D × {t = 0} × IX ,

(2.9)
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where IX is the bounded hypercube defined in (2.5). This is effectively the same

problem (2.1) defined now on the encapsulation set IX that covers the original random

parameter set IZ with probability at least 1− δ. The new problem is well defined in

IX , because we have assumed the estimated range of each IXi stays in the range of

well-posedness allowed by the governing equation. Since problem (2.1) and (2.9) are

exactly the same in the common domain I0, we have the following trivial result,

u(·, s) = v(·, s), ∀s ∈ I0. (2.10)

We remark that for the encapsulation problem (2.9) we do not assign any proba-

bility information to the variables X. For the solution of the encapsulation problem

(2.9), we focus only on the dependence on the variables X, which now resides in

IX ⊂ Rd, i.e.,

u(X) : IX −→ R. (2.11)

We equip IX with an inner product

(f, g)w =

∫
IX

f(s)g(s)w(s)ds, (2.12)

where w(s) ≥ 0 is a weight function, non-vanishing in the interior of IX . We also

introduce the weighted Lp norm

‖f‖Lpw(IX) = (

∫
IX

|f(s)|pw(s)ds)1/p, 1 ≤ p < +∞. (2.13)

We remark that the choice of the weight function w is entirely a numerical issue.

It is used to measure the errors of the numerical approximation and unrelated to the

probability information of the uncertain inputs. Let un(X) be a numerical solution to

the encapsulation problem (2.9), where n is a discretization parameter that indicates

a finer discretization for larger values of n. For example, n can be the highest de-

gree of a polynomial approximation, the total number of discretization elements, etc.

A critical requirement for the proposed methodology is the need for the numerical

approximation of (2.9) to be accurate in the weighted Lp norm. That is, we require

εn , ‖u− un‖Lpw(IX) � 1. (2.14)
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Ideally the error should converge, i.e., εn → 0 as n→∞, though convergence is only

a mathematical preference, not a practical necessity.

This requirement represents another fundamental difference from the method pro-

posed in [28], where the approximate solution un is required to be accurate point-wise

in IX , i.e., in L∞ norm. The current requirement in the weighted Lp norm is obviously

weaker mathematically and easier to accomplish in practice. There exist many nu-

merical approaches that can deliver accurate approximation in the weighted Lp norm.

And the choices are problem dependent. Here we will not engage in discussions on

the numerical strategies. We assume a satisfactory numerical strategy can always

be devised for (2.9) such that the numerical solution is accurate in the weighted Lp

norm. We now discuss the way to use un in epistemic uncertainty analysis.

2.2.3 Epistemic Uncertainty Analysis

The nature of epistemic uncertainty is that it is primarily due to lack of knowledge.

And in principle, the true nature of the epistemic uncertainty can be inferred via

added information, typically through more measurement and deeper understanding

of the system.

When un(X), the polynomial approximation of the true solution u(X), is obtained

for (2.9) and accurate in the Lp-norm (2.18), it can serve as an accurate surrogate

model. We can then apply various operations on un, instead of u. This is particularly

useful when the probability distribution of the variables becomes known a posterior.

We can then evaluate the solution statistics of un based on the posterior distribution

on Z. Note the operations on un do not require us to solve the governing equations

anymore they can be treated as post-processing steps. And one can repeat this step

as much as possible for any kind of posterior distributions. Let ρZ(s) = dFZ(s)
ds

, s ∈ IZ
be the posterior probability distribution of the epistemic uncertain input Z. Then,

for example, the mean of the true solution v(Z)

m , E[v(Z)] =

∫
IZ

v(s)ρZ(s)ds, (2.15)
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can be approximated by

mn =

∫
I0
un(s)ρZ(s)ds. (2.16)

Let us define

r(s) = 1I0
ρ(s)

w(s)
, s ∈ I+, (2.17)

where 1 is the indicator function satisfying, for any set A, 1A(s) = 1 for s ∈ A and

1A(s) = 0 otherwise. Like in [28], where the convergence in mean was established,

similar result holds here.

Lemma 2.1. (Mean convergence). Assume the solution of (2.1), v(Z), is bounded

and let Cv = ‖v‖L∞. Let un(X) be an approximation to the solution u(X) of (2.9)

in weighted Lpw norm and denote

εn = ‖u− un‖Lpw(IX), p ≥ 1. (2.18)

Let q be a positive real number satisfying 1/p + 1/q = 1, and assume the function r

defined in (2.17) satisfies, for q < 1(p > 1),

Cr = E[rq−1] =

∫
I0
rq−1(s)ρz(s)ds <∞. (2.19)

Then the mean of v in (2.15) and the mean of un in (2.16) satisfy

|m−mn| ≤ C1/q
r εn + Cvδ, (2.20)

where for the case of q =∞(p = 1), we define C
1/q
r = 1.

Proof. We first extend the domains of the definitions for v, q, and un to I+, by

following the definitions in (2.6), and define, for s ∈ I+,

v+(s) = 1IZ (s)v(s),

ρ+(s) = 1IZ (s)ρZ(s),

u+n (s) = 1IX (s)un(s).

(2.21)
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Naturally, ρ+ is a probability density function on I+. Then (2.15) can be expressed

as

m =

∫
IZ

v(s)ρZ(s)ds =

∫
I+
v+(s)ρ+(s)ds, (2.22)

which can be split into two parts

m =

∫
I0
v+(s)ρ+(s)ds+

∫
I−
v+(s)ρ+(s)ds (2.23)

=

∫
I0
v(s)ρZ(s)ds+

∫
I−
v+(s)ρ+(s)ds (2.24)

=

∫
I0
v(s)ρZ(s)ds+

∫
I−∩IZ

v(s)ρZ(s)ds. (2.25)

By using (2.16), we have

m−mn =

∫
I0

(v(s)− un(s))ρZ(s)ds+

∫
I−∩IZ

v(s)ρZ(s)ds (2.26)

=

∫
I0

(v(s)− un(s))(w(s))1/p
ρZ(s)

w(s)1/p
ds+

∫
I−∩IZ

v(s)ρZ(s)ds, (2.27)

where the property (2.10) has been used. The special case of p = 1 immediately leads

to the conclusion. And for p > 1, an exercise of the Holder’s inequality leads to

|m−mn| ≤ (

∫
I0
|u(s)− un(s)|pw(s))1/p(

∫
I0

ρqZ(s)

wq/p(s)
)1/q +

∫
I−∩IZ

v(s)ρZ(s)ds. (2.28)

Utilizing (2.8) and (2.19) and the condition of 1/p + 1/q = 1, the main result (2.20)

is established.

It is worthwhile to compare this result to that of [28], which states that the

error estimate satisfies |m − mn| ≤ ηn + Cvδ, where ηn is the error of un in L∞-

norm. In both results, the second term is the same, indicating the error induced

by truncating the true range of the variables. In the current approach, the domain

IX can be unbounded, therefore it is easier to avoid this truncation error because

one does not need to truncate the range. On the other hand, the solution of the

encapsulation problem un is required to have a less strict approximation property,

in the weighted Lp norm, as opposed to the L∞ norm required by [28]. The weight

w in the approximation, however, needs to satisfy the condition posed by (2.19),
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and this manifests itself as the constant in the first term of the error bound (2.20).

Additionally, convergence in a strong form can be established.

Theorem 2.2. (Strong convergence). Assume the function r, defined in (2.17), sat-

isfies

Cr,0 = max
s
r(s) <∞, (2.29)

and the solution of the encapsulation problem un has error in Lpw norm in the form

of (2.18). Then

E(|v − un|p)1/p = ‖v − un‖Lpρ(I+) ≤ C
1/p
r,0 εn + Cvδ

1/p. (2.30)

Proof.

E(|v − un|p) =

∫
I+
|v+ − u+n (s)|pρ+(s)ds (2.31)

=

∫
I0
|v+ − u+n (s)|pρ+(s)ds+

∫
I−
|v+ − u+n (s)|pρ+(s)ds (2.32)

=

∫
I0
|v − un(s)|pρ+(s)ds+

∫
I−∩IZ

|v+(s)|pρ+(s)ds (2.33)

=

∫
I0
|v − un(s)|pw(s)

ρZ(s)

w(s)
ds+

∫
I−∩IZ

|v+(s)|pρ+(s)ds (2.34)

≤
∫
I0
|v − un(s)|pw(s)ds ·max

s∈I0

ρZ(s)

w(s)
+ Cp

vδ (2.35)

≤ Cr,0ε
p
n + Cp

vδ ≤ (C
1/p
r,0 εn + Cvδ

1/p)p (2.36)

And this completes the proof.

With such a strong convergence in Lpρ(I
+), we immediately obtain the following

trivial result.

Corollary. (Weak convergence). Suppose that εn and δ can be made arbitrarily small.

Then, following the same conditions in Theorem 2.1, un converges tov in probability,

and consequently also in distribution, with respect to the probability measure ρ+ defined

in (2.21) on the super set I+.
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2.2.4 Implementation Procedure

We now present a quick summary to illustrate the procedure of applying the

method to practical problems. Again, we use the setup for the general stochastic

system (2.1).

• Identify the epistemic variables. In (2.1), the variables are denoted as Z =

(Z1, . . . , Zd), d ≥ 1. (We do not discuss the case of aleatory variables because

their treatment is well studied.)

• For each epistemic variable Zi, i = 1, . . . , d, identify a reasonable interval IXi ,

(2.9), as an estimate of its range. Note this step requires one to utilize any

available information, data, or even experience.

• Define the encapsulation set IX as the tensor products of each interval IXi ,

as in (3.4). Consequently, this defines the encapsulation problem (2.9). Note

that if the intervals IXi are all strictly bounded, then is a hypercube and the

encapsulation IX problem becomes identical to that in the earlier work of [28].

• Solve the encapsulation problem (2.9), which is the same governing Eq. (2.1)

defined in the encapsulated parameter space IX . We now specify a weight

function w in IX and seek a numerical solution un that approximates the true

solution u in Lpw, p ≥ 1 norm in IX . This is a standard approximation approach,

e.g., finite element methods, and the choices of the weight and the norm vary

from problem to problem.

• Post-process the numerical solution un. Since un is an accurate approximation

in a strong norm Lpw, it can be used as a surrogate for the unknown solution

u. One can now apply various operations on un to analyze approximately the

properties of u.

To solve the encapsulation problem (2.9) in the parameter space IX , one can readily

borrow several well developed methods such as those based on generalized polynomial
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chaos, stochastic collocation, etc., all of which offer numerical approximations in a

strong norm similar to Lp. Since this is not the focus of the current paper, we refer

the interested readers to the book [24] and its large collection of references.

Naturally, this result implies that the statistical moments of un converges to those

of the true solution v, whenever the errors induced by εn and δ can be arbitrarily

small.

2.3 Numerical Examples

In this section, we present numerical examples to support the theoretical analysis.

The focus is on examination of the error behavior. We employ three sets of tests.

The first one utilizes a scalar equation with a single epistemic variable. Though

simple, this example allows us to thoroughly examine the convergence properties of

the numerical implementations, where we employ different variations of encapsulation

strategies. The second example is a homogeneous random diffusion problem with

multiple epistemic variables in the diffusivity field. This example allows us to examine

the case when the dependence of the variables is unknown. The third example is a

time-dependent stochastic diffusion problem with multiple epistemic variables in the

diffusivity field, this example allow us to examine the case when weighed function is

different.

We remark that even though the first and the second problems resemble those

in [28], they are now quite different because of the different modeling assumptions on

the input epistemic variables. Here we focus on the cases when the epistemic variables

are modeled as semi-bounded and unbounded, in order to demonstrate the flexibility

of the new framework. Such assumptions are on the epistemic variables are outside

the applicability of the framework of [28].
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2.3.1 Ordinary Differential Equation

Let us consider
dv

dt
= −Zv, v(0) = 1, (2.37)

where the parameter Z > 0 is a variable representing the input uncertainty. It is an

epistemic uncertainty - its probability distribution is unknown a priori. The exact

solution is

v(t, Z) = exp(−Zt) (2.38)

We will use this to examine the error behavior of the numerical methods, by assuming

different types of true distributions on Z. The encapsulation problem takes the

following form
du

dt
= −Xu, u(0) = 1, (2.39)

where the range of X, IX , is to be determined based on ones modeling assumptions.

Here we consider three difference cases of IX for all possible situations, i.e., IX can

be a bounded interval (a, b), a semi-bounded domain (0,+∞), or an unbounded

domain (−∞,+∞). Even though this problem admits a simple analytical solution

u(t,X) = exp(−Xt), we still resort to its numerical solution so that the proposed

framework in this paper can be fully examined. Our numerical procedure is a Galerkin

method using orthogonal polynomial basis functions. (One is free to use any other

suitable numerical methods.) We seek

un(t,X) =
n∑
j=0

ûj(t)φj(X), (2.40)

where φj(X) are Legendre polynomial satisfying∫
IX

φi(X)φj(X)w(X)dX = δi,j, (2.41)

where δi,j is the Kronecker delta function. Depending on the range of IX , we utilize

different types of orthogonal polynomials. For bounded interval IX = (a, b), we use

Legendre polynomials with w ≡ const; for semi-bounded interval IX = (0,+∞), we



19

use Laguerre polynomials with w(s) ∝ exp(−s); and for unbounded interval IX =

(−∞,+∞), we use Hermite polynomials with w(s) ∝ exp(−s2).

Upon substituting (2.40) into (2.39) and enforcing the residue to be orthogonal

to the linear polynomial space of degree up to n, we obtain the following Galerkin

system
dûj
dt

= −
n∑
i=0

ei,jûi, ûj(0) = δ0,j, (2.42)

where ei,j = 1
2

∫
IX
sφi(s)φj(s)w(s)ds. And the resulting numerical solution un con-

verges to u in L2
w norm. (See Appendix for proof.) We then assign various distri-

butions to Z a posterior, use these distributions to approximate the statistics of the

solution via un directly (without resorting to the numerical simulations), and examine

the errors induced by this procedure.

Bounded encapsulation

We first assume the exact (and unknown) distribution of Z is an exponential

distribution, i.e., ρ ∼ exp(−s). For the encapsulation problem (2.39) we use X ∈

(0, b) with various length of b. This is the similar case considered in [28], where

the convergence in mean, a weak error measure, was discussed. Here we study the

convergence in L2
ρ norm, a strong norm, and examine its behavior based on Theorem

2.1. The results are depicted in Fig. 2.1. It is obvious that the errors converge

(exponentially fast) as the order of expansions is increased, before they saturate at

certain level. The error saturation level depends on the value of b−a, larger value of b

induces a smaller error because it causes a smaller truncation in the distribution of Z

and hence a smaller value δ in the second error term in (2.30) of Theorem 2.2. Weak

error measure, e.g., error in mean value, behaves similarly. It has been documented

in [28] and is not presented here.

We further examine the error dependence on b, which is a direct indication of the

truncation error δ. In Fig. 2.2, the strong and weak errors are examined against the

parameter b, at a fixed and sufficiently high polynomial order of n = 18. Numerical
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Figure 2.1. Convergence of the errors in strong L2
ρ norm for linear

ODE (2.37) at t = 1, where the encapsulation set is X = (0, b) and
the exact distribution is exponential ρZ(s) ∼ exp(−s).
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Figure 2.2. Convergence of the errors in strong norm and weak norm
for linear ODE (2.37) at t = 1, where the encapsulation set is X =
(0, b) and the exact distribution is exponential ρZ(s) ∼ exp(−s). The
results are for fixed polynomial order of n = 18 and various values of
b.

errors in the Galerkin solver are thus negligible. It can be seen that the errors decrease

when b increases, as they should. It is also evident that the strong error converges

slower than the weak error with respect to b. This is consistent with the estimate

from (2.20) and (2.30), as the strong error scales as δ1/p (p = 2 in this case) but weak

error scales as δ.

Semi-bounded encapsulation

We now employ X ∈ (0,+∞) as the encapsulation variable. This corresponds to

the practical case where one does not have a reliable estimate of the upper bound of

the epistemic variable. We then use Laguerre polynomial with weight w(s) ∝ exp(−s)

to approximate the encapsulation problem (2.39).

We first assume the true distribution of Z is uniform in (0, 1) with ρZ(s) = 1. In

this case there is no truncation error because IX = (0,+∞) completely encapsulates
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Figure 2.3. Convergence of errors in the strong form of L2
ρ norm and

the weak form of mean, along with the L2
w error (en) of the Galerkin

solutions of (2.39), at different polynomial approximation orders n.
Here X ∈ (0,∞) and the true a posterior distribution of Z is uniform
in (0, 1).

the real variable Z. Error convergence, in both the strong form of L2
ρ and the weak

form in mean, are plotted in Fig. 2.3, for different orders of polynomial approximations

at a fixed time t = 1. It can be seen that in this case both the strong error and

the weak error converge at the same rate –exponential rate– as the L2
w polynomial

approximation error of (2.39). This is consistent with the error bounds from Theorems

2.2, as in this case the complete encapsulation of Z by X ensures δ = 0.

We now assume the true distribution of Z is uniform, but resides in different

intervals of (a, b). In Fig. 2.4, the errors are presented from intervals of (0, 1), (5, 6),

and (10, 11), in both the L2
ρ form (left) and mean (right). It is obvious that all errors

converge (exponentially fast). It also should be remarked that although all intervals

have the same size of one, as the interval becomes further away from the origin the

errors become larger. This is because in the Laguerre approximation the weight is

w(s) ∝ exp(−s) it achieves the best accuracy close to zero and becomes progressively
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less accurate away from zero. Consequently, we should emphasize that even though

the ability to use semi-bounded and unbounded encapsulation variables in the current

framework does alleviate the modeling effort, sometimes significantly, to estimate the

ranges of the epistemic variables, it does not imply this can completely eliminate

the need to estimate the epistemic variables. When using unbounded domains, the

accuracy of the numerical approximation will inevitably be less satisfactory in the

region where the weight function approaches zero. It is thus important to have a

good, or even just a vague, idea of the true range of the epistemic variables so that

one can put the estimated range close to the peak of the weight function to ensure

more accurate solutions.
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Figure 2.4. Convergence of errors for uniformly distribution Z in
different intervals of (a, b), using encapsulation variable X ∈ (0,∞).
Left: L2

ρ error; Right: error in mean.

Unbounded encapsulation

Finally we examine a case where the encapsulation variable is assumed to be

X ∈ (−∞,+∞). Correspondingly we employ Hermite polynomial to solve (2.39)

numerically. This is a simplified case of the practical situation where one does not
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Figure 2.5. Convergence of errors in the strong form of L2
ρ norm and

the weak form of mean, along with the L2
w error (en) of the Galerkin

solutions of (2.39), at different polynomial approximation orders n.
Here X ∈ (−∞,+∞) and the true a posterior distribution of Z is
uniform in (0, 1).

have a good understanding of either the upper bound or the lower bound of the

epistemic variables. Using an unbounded encapsulation variable would serve as one

way to circumvent the difficulty. Both the errors in the strong form (L2
ρ) and the

weak form (mean) are shown in Fig. 2.5, along with the L2
w convergence error of the

numerical solution of (2.39). Once again we emphasize that in practice it is desirable

that one has at least a vague idea of where the true range of the epistemic variable is,

and can then center the weight function w of the Hermite polynomial approximation

around that range to achieve more accurate numerical results.
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2.3.2 Homogenous Diffusion Equation

We consider the following problem in one spatial dimension (n = 1) and (d > 1)

random dimensions.

− ∂

∂x
[k(x, Z)

∂u

∂x
(x, Z)] = f(x, Z), (x, y) ∈ (0, 1)× Rd, (2.43)

with forcing term f = 2 and the boundary conditions

u(0, Z) = 0, u(1, Z) = 0, Z ∈ Rd.

Furthermore assume that the random diffusivity has the form

k(x, Z) = 1 + σ

d∑
k=1

1

k2π2
(1 + cos(2πkx))Zk.

where σ > 0 is a parameter to control the variation level of the diffusivity field.

Here we choose this fixed form representation to focus on the treatment of the random

variables Zk, which are assumed to be epistemic. Note that usually the expansion is

obtained by certain decomposition procedure, e.g., KarhunenLoeve expansion. For

non-Gaussian processes, the decomposition usually can not fully determine the prob-

ability distributions of Zk.

Since the detailed examination of using different encapsulation strategies has been

carried out in the previous example, here we mostly focus on dealing with the unknown

dependence structure of the epistemic random variables Zk.

We set d = 6 and σ = 1 in the expansion (2.3.2). (These choices are rather

arbitrary.) We assume that the posterior distribution (unknown now) of Z is Z1 ∈

beta(0, 1, 3, 2), and Z3 ∈ beta(−1, 0, 1, 1) and Z5 ∈ beta(−0.5, 0.5, 0, 0), Z2 = Z1Z5,

Z4 = (Z2
1 + 1)Z3, and Z6 = −Z5. Clearly all the variables are bounded, Z1 ∈

(0, 1), Z2 ∈ (−0.5, 0.5), Z3 ∈ (−1, 0), Z4 ∈ (−2, 0), Z5 ∈ (−0.5, 0.5) and Z6 ∈

(−0.5, 0.5). Also by construction the variables are dependent. What appears to be
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a six-dimensional problem is in fact a three-dimensional one, for Z2, Z4 and Z6 are

functions of the other three variables. Let

Z1 = Z1

Z2 = Z2 + 0.5

Z3 = −Z3

Z4 = −Z4

Z5 = Z5 + 0.5

Z6 = Z6 + 0.5.

, (2.44)

Then,

k(x, Z) =1− 0.5
∑

k=2,5,6

σ(
1

k2π2
(1 + cos(k2πx)))

− σ
∑
k=3,4

1

k2π2
(1 + cos(2πkx))Zk)

+ σ
6∑

k=1,k 6=3,4

1

k2π2
(1 + cos(2πkx))Zk.

In the following epistemic analysis we assume that none of the above information

regarding the distributions is unavailable. The only information we have is a conser-

vative estimate of the bounds of the variables. And based on the bound estimation,

we employ a straightforward linear transformation (2.44) and define X ∈ IX = (0,∞)

to completely encapsulate the epistemic variables Z. Our encapsulation problem is

therefore

− ∂

∂x
[k(x,X)

∂u

∂x
(x,X)] = f(x,X), (x, y) ∈ (0, 1)× (0,∞)6, (2.45)

where same boundary conditions and source term f hold, and the diffusivity field

follows the similar construction of (2.3.2) with the encapsulation variables X in place

of Z. Clearly the encapsulation problem is six-dimensional in the parameter space

of X. We employ the six-dimensional Laguerre polynomials, in conjunction with a

Galerkin procedure, with weight function w(s) = (exp(−s))6 to solve the problem.

Due to lack of analytical solution, here we employ a sufficiently high-order poly-

nomials solution at n = 8 order as the numerical exact solution, against which we
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Figure 2.6. Convergence of the errors of in both strong form (L2

weighted norm) and in a weak form (in mean) for the diffusion prob-
lem. Errors are computed against the high-order (n = 8) Galerkin
solution at a fixed spatial location x = 0.5257

compare the solutions obtained by lower-order expansions. Both the strong errors (in

L2
ρ) and weak errors (in mean value) are computed and presented in Fig. 2.6. The

errors are computed at a fixed spatial location (x = 0.5257), where the solution is

non-trivial. (One can of course take a normed error in the spatial dimension as well.)

The usual (exponentially) fast convergence with respect to the approximation order

can be clearly observed. No error saturation is present because the encapsulation

variables can fully encapsulate the epistemic variables.

2.3.3 Time-dependent Diffusion Equation

we present numerical examples to suppose the theoretical analysis. The focus

is on the examination of the error behavior. Since we are more interested in the

convergence of the methods (The proof is in the appendix). In order to simplify
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the calculation, we denote that the dimension of the spatial space is d = 1, and we

consider the equation below:

∂u

∂t
− ∂

∂x
[k(x, y)

∂u

∂x
(t, x, y)] = f(t, x, y), (t, x, y) ∈ (0, T ]× (0, 1)× Rd, (2.46)

with forcing term f = 2 , the boundary conditions

u(t, 0, y) = 0, u(t, 1, y) = 0, t ∈ [0, T ], y ∈ Rd,

and initial condition

u(0, x, y) = x− x2, (x, y) ∈ [0, 1]× Rd.

Furthermore assume that the random diffusivity has the form

k(x, y) = 1 + σ
d∑

k=1

1

k2π2
(1 + cos(2πkx))yk.

where σ > 0 is a parameter to control the variation level of the diffusive field. Here

we choose this fixed form representation so that we can focus on the errors induced

by solving the equation. So, in the tests below, we assume that σ = 1.

We consider the case where the dimension of the random variable is d = 2 and

the true distribution of Z = (Z1, Z2) is Z1, Z2 ∼iid Beta(0, 1, 1, 1). The numerical

strategy and the convergence of it are in the appendix B.

Firstly, we employ X ∈ (0, 1)2 as the encapsulation variable and assume that the

posterior distribution for Z = (Z1, Z2), Z1 and Z2 are independent beta(0, 1, 1, 1).

Since IX = (0, 1)2 and IZ = (0, 1)2, it is obviously that there is no truncation at the

”tails”. Numerical tests on the convergence are produced for both the strong form

and the weak form. The error are plotted in Figure 2.7.

Secondly, we employ X ∈ (0,∞)2 as the encapsulation variable and assume that

the posterior distribution for Z = (Z1, Z2), Z1 and Z2 are independent beta(0, 1, 1, 1).

Since Iy = (0, 1)2 and IX = (0,∞)2, it is obviously that there is no truncation at the

”tails”. Numerical tests on the convergence are produced for both the strong form

and the weak form. The error are plotted in Figure 2.8.
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Figure 2.7. Convergence of errors of strong norm, weak norm,
where the encapsulation set is (0, 1)2 and the exact pdf are
Z1, Z2, beta(0, 1, 1, 1), and T = 5.0. Convergence is with respect to
the order of the polynomial expansion.
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Figure 2.8. Convergence of errors of strong norm, weak norm,
where the encapsulation set is (0,∞)2 and the exact pdf are
Z1, Z2, beta(0, 1, 1, 1), and T = 5.0. Convergence is with respect to
the order of the polynomial expansion.
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It can be seen that in both cases, both the strong error and the weak error converge

at the same rate –exponential rate– as the L2
w polynomial approximation error, which

are consistent with the error bounds from Theorems 2.2, as in this case the complete

encapsulation of Z by X ensures δ = 0. Also, we can see that the convergence rate

in the first case is much faster than the second one, because different w result in

different constant Cr,0 in Theorems 2.2.
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3. EPISTEMIC UNCERTAINTY QUANTIFICATION

USING FUZZY SET THEORY

Here, we will work with one of the more restrictive uncertainty models, i.e., the fuzzy

logic. We construct a general numerical approach was proposed for UQ with this

uncertainty model. The method consists of three components: (1) range estima-

tion, find the domains of the fuzzy numbers; (2) parameterized representation of the

problem and get the numerical solution and (3) fuzzy analysis, for assessment of the

accuracy of a numerical fuzzy equation, we define the p-Hausdoreff distance, which

naturally leads to the requirement of the accuracy over the parameter domain of the

numerical solution to the parametric PDE in Lp-norm. Unlike using the supremum

distance [29], which needs the accuracy of the numerical solution in L∞-norm. This

method is more flexible, since it is much easier to get the accuracy in Lp-norm by the

existing numerical method, such as Galerkin methods and Finite Element methods.

In section 3.1, we present the basic knowledge of fuzzy set theory and setup the

problem we are interested in. In the section 3.2, a numerical method is stated and

some proper analysis of the convergence of the method is given. Then, in section

3.3, some examples are presented to numerically demonstrate the convergence of the

method.

3.1 Fuzzy Set Theory and Problem Setup

Concepts of vagueness and fuzziness have been contemplated in mathematics and

science for quite a long time. For example, in 1923, Bertrand Russell stated that

”All traditional logic habitually assumes that precise symbols are being employed. It

is therefore not applicable to this terrestrial life, but only to an imagined celestial

existence.” As for the mathematical basis for formal fuzzy logic, it was first studied
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by the Polish logician Jan Lukasiewicz in the 1920s, where he constructed a series of

multi-valued logical systems, generalizing from small finite numbers of truth-values

to those containing infinite sets of truth values. His work and calculation formula are

ingrained in modern fuzzy set theory and fuzzy logic. then, in 1937, the philosopher

Max Black, who was concerned with vagueness and imprecision in language, and the

effect of these concepts on logic, believed that all terms whose application involves

using our senses are vague and came up with the concept what called ”membership

functions”. He even conducted a cognitive psychological experiment with a group of

people that effectively constructed membership functions exemplifying vagueness of

certain words. However, most people considered the beginning of fuzzy set theory

to be Zadehs 1965 paper [2], where the concept of fuzzy sets was proposed by L.

A. Zadeh [2] in 1965 to represent data and information possessing non-statistical

uncertainties. Later in [7], the theory of possibility is related to the theory of fuzzy sets

by simply illustrating the concept of a possibility distribution as a fuzzy restriction

which acts as an elastic constraint on the values that may be assigned to a variable.

An notable achievement of fuzzy sets and fuzzy logic can be found in [30]. In 2005,

The journal Fuzzy Sets and Systems published a 40th Anniversary of Fuzzy Sets in

December, which contains 14 position papers covering various aspects of the role and

future prospects of fuzzy sets.

Next, a brief description of the mathematical basics of the fuzzy set theory is

given.

3.1.1 Mathematical Basics of Fuzzy Set theory

In Classical set theory, we learned that all objects can be divided into sets. If a

particular object does not lie within a set, then it belongs to the compliment of this

set. For example, Consider a set A which contains all the integers, one can affirm

without doubt that the number 5 belongs to the natural numbers set N , which is

a subset of A, and it can not belong to th set of non-positive integers, which is the
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compliment of N in A. However, in real life, a high degree of uncertainty exists, and

we cannot simply dump objects into discrete classification bins. For example, for the

same set A that we defined in the example of the classical set theory, what to say

about whether number 3 is in the set of the numbers around 4? Clearly, the answer

in this case will depend on the context. We then have various linguistic values of one

linguistic variable, which are true to some degree. This degree, subjective as it may

be, varies from 0 to 1. The main difference between classical and fuzzy sets is that in

the former there is a dichotomy notion that should necessarily be preserved.

In Classical set theory, any classical set could be represented by its characteristic

function, that is,

Definition 3.1. Let U be a non-empty set and A a subset of U. The characteristic

function of A is given by:

A(x) =

1 ifx ∈ A

0 ifx /∈ A.
(3.1)

Here, A(x) is a function whose domain is U and the image {0, 1}. if A(x) = 1, this

means the element x belongs to subset A, and if A(x) = 0, we say that the element

x does not belong to A. In this sense, the characteristic function A : U → {0, 1}

describes completely what the subset A is. As a generation of the classical set theory,

the fuzzy set is defined as follows:

Definition 3.2. Let U be a classical non-empty set and x ∈ U be an element. A

fuzzy set Ã is defined as

Ã = {(x, µÃ(x))|x ∈ U}, µÃ(x) : U → [0, 1], (3.2)

where µÃ(x) is called membership function.

When µÃ(x) = 1, x is considered as a full member of the fuzzy set Ã; when

µÃ(x) = 0, x is considered as not a member of the fuzzy set Ã.

The membership function µÃ(x) (or denoted as Ã(x)) describes the degree of

membership of element x in fuzzy set Ã for each x ∈ U . While, in classical(crisp)
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set theory, the membership function only takes values 0 or 1. In this case, one can

only know whether an element of the set have or not a particular characteristic, but

a ranking of membership is not possible. Here, we use Fig. 3.1 to illustrate the

difference between the concept of fuzzy sets and the concept of classical sets.

Figure 3.1. Fuzzy and Crisp sets

Conversely, we can interpret the information from a fuzzy set by converting the

fuzzy set into classical sets, where we define support, core, α-cut and strong α-cut of

a fuzzy set.

Definition 3.3. The support of a fuzzy set Ã, denoted as Supp(Ã), is a classic set

whose elements have nonzero membership grade in Ã, i.e.,

Supp(Ã) = {x ∈ U |Ã(x) > 0}. (3.3)

And the core of a fuzzy set Ã, denoted as Core(Ã), is a classic set whose elements

have membership grade equal to 1 in Ã, that is

Core(Ã) = {x ∈ U |Ã(x) = 1}. (3.4)
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Obviously, if A is a subnormal fuzzy set, then its core is the empty set, Core(A) =

∅. Core and support definitions are related concepts, since they identify elements

belonging to the fuzzy set and Core(A) ⊂ Supp(A). In order to have a good view of

the relations, we use Fig. 3.2 to illustrates the support and core concepts of a fuzzy

set.
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Figure 3.2. Support and core of a fuzzy set

Similarly, we can define the α-cut of a fuzzy set, denoted as [Ã]α (or strong α-cut,

denoted as [Ã]α+) consists of elements, which belong to a fuzzy set Ã with at least

(or more than) α degree, i.e.,

[Ã]α = {x ∈ U |Ã(x) ≥ α},

[Ã]α+ = {x ∈ U |Ã(x) > α}.

Furthermore, we have that

Theorem 3.1. (Second Decomposition Theorem) A fuzzy set Ã can be decomposed

as [31]:

Ã = ∪α∈[0,1]α · [Ã]α+ . (3.5)
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Properties and Operations of Fuzzy sets

Fuzzy sets have several characteristics and properties whose explanation facilitates

the understanding and the development of fuzzy models. Bellow, we list those most

important and common ones. If you want to know more about it, you can read the

book [31].

Definition 3.4. A fuzzy set Ã is called normal when supx∈U µÃ(x) = 1. Otherwise,

Ã is called subnormal.

And Fig. 3.3 shows an example of normal and subnormal fuzzy sets.
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Figure 3.3. Normal fuzzy set and subnormal fuzzy set

Definition 3.5. A fuzzy set Ã is convex if for any λ in [0, 1], x, y in the support of

Ã,

µÃ(λx+ (1− λ)y) ≤ min(µÃ(x), µÃ(y)). (3.6)

Alternatively, Ã is convex if all its α-cuts are convex.

Analogous to the binary relation between two sets and the operations on sets in

classic set theory, the subset, union, intersection, and complement of fuzzy sets are

defined as



37

• Subset Ã ⊆ B̃ if and only if Ã(x) ≤ B̃(x) for all x ∈ U .

• Union (Ã ∪ B̃)(x) = max[Ã(x), B̃(x)],∀x ∈ U .

• Intersection (Ã ∩ B̃)(x) = min[Ã(x), B̃(x)],∀x ∈ U .

• Complement Ãc(x) = 1− Ã(x),∀x ∈ U .

Let Ã and B̃ are fuzzy sets with membership functions shown in the left of Fig. 3.1.1,

the union, intersection and complement of Ã and B̃ are illustrated in the right of Fig.

3.1.1.
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Figure 3.4. Union and intersection of fuzzy sets A and B,complement
of fuzzy set B.

Note: The definitions of subset, union, intersection and complement in fuzzy set

theory perform exactly as the corresponding ones for classical sets where the values

of the membership functions are restricted to either 0 or 1. However, the law of

excluded middle (A ∪Ac = U) and the law of noncontradiciton (A ∩Ac = ∅)

hold in classical set theory but not in fuzzy logic.

Similarly, we can define the Cartesian product of the fuzzy sets, that is,

Definition 3.6. Let Ã1, Ã2, . . . , ÃN be the fuzzy sets with the corresponding member-

ship functions µÃ1
, µÃ2

, . . . , µÃN defined on U1, U2, . . . , UN respectivly. Let Ã be the
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Cartesian product Ã1×Ã2, . . .×ÃN and we have Ã ⊆ U = U1×U2×. . .×UN . The high-

dimensional fuzzy set Ã is characterized by a membership function µÃ(x1, x2, . . . , xN),

for all xi ∈ Ãi, i = 1, 2, ..., N . From Zadeh [32], the membership function of Ã is ex-

pressed as

µÃ = min{µÃ1
, µÃ2

, . . . , µÃN}. (3.7)

Note: Due to the numerical equivalence between the membership function in fuzzy

set theory and the possibility distribution function in possibility theory, the expression

of the membership function µÃ is the same as joint possibility distribution, which

can be calculated using t-norm with the properties of commutativity, monotonicity,

associativity [33]. There are various t-norm definitions in the literature. They mainly

differ from each other in the way they associate. The minimum operator (3.7) is one

of them and called the min t-norm. The choice of a specific t-norm affects the shape

of the joint possibility distribution [33]. Therefore different expressions of µÃ can be

obtained. In the current work, the min t-norm is simply used and the choice of t-norm

will be explored in future work.

Extension Principle and Fuzzy Numbers

A special class of fuzzy sets – fuzzy numbers – defined on the set R1 of real

numbers, which captures our intuitive conceptions of approximate numbers, such as

“numbers that are close to a given real number,” satisfies [31]

• The fuzzy set must be normal;

• The fuzzy number must be convex;

• The support of the fuzzy set must be bounded.

Some examples of fuzzy numbers are show in Fig. 3.5: a triangular, trapezoidal

and crisp number respectively, where the latter is actually the fuzzy representation

of a classical number. A function of crisp numbers can be extended to the function



39

Figure 3.5. Triangular, trapezoidal and crisp number
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of fuzzy numbers or more generally, fuzzy sets using Zadeh’s extension principle, in

other words, a classical map f : X → Y operating on elements ~x ∈ X can be extended

towards a map f : F(X) → F(Y ), operating on fuzzy sets Ã ∈ F(X), where F(X)

and F(Y ) are the collections of all the fuzzy sets defined on X and Y respectively.

Definition 3.7. Let Ã1, Ã2, . . . , ÃN be the fuzzy sets with the corresponding mem-

bership functions µÃ1
, µÃ2

, . . . , µÃN defined on X1, X2, . . . , XN respectively, and X be

the Cartesian product X = X1 ×X2, . . . ,×XN . If f is a mapping from X to Y , i.e.,

y = f(x1, x2, ..., xN), then the extension principle allow us to define a fuzzy set B̃ in

F(Y ) by [34]

B̃ = {(y, µB̃(y))|y = f(x1, x2, ..., xN), (x1, x2, ..., xN) ∈ X},

where

µB̃(y) =

sup(x1,x2,...,xN )∈f−1(y) min{µÃ1
(x1), µÃ2

(x2), ..., µÃN (xN)} f−1(y) 6= ∅,

0 f−1(y) = ∅,
(3.8)

where f−1 is the inverse of f .

For N = 1, the extension principle reduces to

B̃ = {(y, µB̃(y))|y = f(x), x ∈ X},

where

µB̃(y) =

sup(x)∈f−1(y) µÃ(x) f−1(y) 6= ∅,

0 f−1(y) = ∅,
(3.9)

Theorem 3.2. If f : X → Y be an arbitrary crisp function, then for any Ã ∈ F(X),

the following property of f fuzzified by the extension principle holds [31]:

[f(Ã)]α+ = f([Ã]α+), ∀α ∈ [0, 1]. (3.10)
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Distance between Two Fuzzy Sets

In order to assess the numerical error of the system of partial differential equations

involving fuzzy sets, a distance measure for fuzzy sets is required. We first define a

modified Hausdorff distance to measure the difference between two classical sets.

Definition 3.8. Let Ã be a fuzzy set with membership function µÃ(s), and X =

f([Ã]α+), Y = g([Ã]α+) be two non-empty classical sets, the p-Hausdorff distance dHp

between X and Y is defined as

dHp(X, Y )

= max{(
∫
s∈[Ã]α+

essinf
r∈[Ã]α+

dp(f(s), g(r))ds)
1
p , (

∫
r∈[Ã]α+

essinf
s∈[Ã]α+

dp(f(s), g(r))dr)
1
p},

(3.11)

where dp(f(s), g(r)) is a classical distance measure. We define dHp(X, Y ) = 0 when

X = ∅ or Y = ∅.

Theorem 3.3. Let Ã be a fuzzy set with membership function µÃ(s) and with support

S, if Ũ = f(Ã) and Ṽ = g(Ã), the p-Hausdorff distance dHp between any strong α-cut

of Ũ and Ṽ is bounded from above as

dHp([Ũ ]α+ , [Ṽ ]α+) ≤
(∫

s∈S
dp(f(s), g(s))ds

) 1
p

. (3.12)

Proof.

dHp([Ũ ]α+ , [Ṽ ]α+),

= dHp([f(Ã)]α+ , [g(Ã)]α+),

= dHp(f([Ã]α+), g([Ã]α+)), using Thm 3.2

= max{(
∫
s∈[Ã]+α

essinf
r∈[Ã]+α

dp(f(s), g(r))ds)
1
p , (

∫
r∈[Ã]α+

essinf
s∈[Ã]α+

dp(f(s), g(r))dr)
1
p},

≤ max{(
∫
s∈[Ã]α+\A1

dp(f(s), g(s))ds)
1
p , (

∫
r∈[Ã]α+\A2

dp(f(r), g(r))dr)
1
p},

≤ (

∫
s∈[S̃]α+

dp(f(s), g(s))ds)
1
p ,

≤ (

∫
s∈S

dp(f(s), g(s))ds)
1
p ,

(3.13)
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where A1 and A2 are measure 0 subsets in [Ã]α+ .

Corollary. If the classical distance measure is defined as dp(f(s), g(s)) = ‖f(s) −

g(s)‖Lpw , then

dHp([Ũ ]α+ , [Ṽ ]α+) ≤ C1/p‖f(s)− g(s)‖Lpw , (3.14)

where C = maxIξ
1

w(ξ)
is a positive real number.

Proof.

dHp([Ũ ]α+ , [Ṽ ]α+)

≤
(∫

s∈S d
p(f(s), g(s))ds

) 1
p

=
(∫

s∈S d
p(f(s), g(s))w(s) 1

w(s)
ds
) 1
p

≤
(

maxs∈S
1

w(s)
)
1
p (
∫
s∈S d

p(f(s), g(s))ds
) 1
p

= C1/p‖f(s)− g(s)‖Lpw .

Weighted Expected Value and Variance

The concept of membership function in the fuzzy set theory can be interpreted

as the possibility distribution in possibility theory [7]. In possibility theory, the

variable x, analogous to a random variable in probability theory, takes on values from

the set U containing the true value. The true value of x is unknown and we have a

possibility distribution µÃ(x), which describes the degree to which it is possible that

the elements x ∈ U is the true value of x. In this section, we will use the concept of

average values of well-chosen real-valued function on α-level sets of the memebership

function to obtain the expected value and the variance of a function of a fuzzy set.

Let B̃ be a joint possibility distribution in Rn, let α ∈ [0, 1] and g : Rn → R be a

function. It is well-known from analysis that the average value of function g on [B̃]α

is defined by

C[B̃]α
(g) = 1∫

[B̃]α
dx

∫
[B̃]α

g(x)dx

= 1∫
[B̃]α

dx1...dxn

∫
[B̃]α

g(x1, . . . , xn)dx1 . . . dxn
. (3.15)
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Following [35], we call C as the central value operator.

Note: If [B̃α] is degenerated for some α ∈ [0, 1], that is∫
[B̃]α

dx = 0, (3.16)

then we approximate [B̃]α with non-degenerated sets and consider the limit case.

Namely, let {Sk} be a sequence of sets such that [B̃]α ⊂ Sk ⊂ Rn, 0 <
∫
Sk
dx < ∞,

and

lim
k→∞

sup{‖x− s‖|x ∈ [B̃]α, s ∈ Sk} = 0.

then,

C[B̃]α
(g) = lim

k→∞
CSk(g) = lim

k→∞

∫
Sk
g(x)dx∫
Sk
dx

.

Definition 3.9. A function f : [0, 1] → R is said to be a weighting function if f is

non-negative, monotone increasing and satisfies the following normalization condition∫ 1

0

f(α)dα = 1. (3.17)

Different weighting functions can give different (case-dependent) importances to

α-levels sets of fuzzy numbers. We can notice that f in monotone increasing, in this

way, this gives less importance to the lower levels of fuzzy sets, which is coincided

with our sense to acknowledgment.

And the expected value of function g on fuzzy set Ã with respect to a weighting

function f was defined by

Ef (g; Ã) =
∫ 1

0
C[Ã]α(g)f(α)dα

=
∫ 1

0
1∫

[Ã]α
dx

∫
[Ã]α

g(x)dxf(α)dα
. (3.18)

Especially, if g(x) = x, for all x ∈ R is the identity function then we get

Ef (id; Ã) = Ef (id; Ã) =

∫ 1

0

a1(α) + a2(α)

2
f(α)dα, (3.19)

which is the f -weighted possibilistic mean value of Ã introduced in [36].
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Note: The expected value of a function on a fuzzy number Ã is nothing else but

the expected value of its average values on all α level sets of Ã.

Similarly, the variance of function g on fuzzy set Ã with respect to a weighting

function f can be considered as the expected value of function gg(x) = (g(x) −

C[Ãα](g))2, that is

V arf (g; Ã) = Ef (gg; Ã)

=
∫ 1

0
C[Ã]α(gg)f(α)dα

=
∫ 1

0
1∫

[Ã]α
dA

∫
[Ã]α

(g(x)− C[Ã]α(g))2dxf(α)dα

. (3.20)

Again, if g(x) = x, for all x ∈ R is the identity function then we get the f -weighted

possibilistic variance of the fuzzy number Ã in [36],

V arf (Ã) =

∫ 1

0

(a1(α)− a2(α))2

2
f(α)dα. (3.21)

3.1.2 Problem Setup

Let D ⊂ Rl, l = 1, 2, 3, be a physical domain with coordinates x = (x1, . . . , xl),

let (0, T ] be a time domain with T > 0, and let Ξ ⊂ Rn be a parameter domain for

uncertain inputs. We consider a general partial differential equation (PDE) as
ut(x, t, ξ) = L(u), D × (0, T ]× Ξ,

B(u) = 0, ∂D × [0, T ],

u = u0, D × {t = 0} × Ξ,

(3.22)

where L is a (linear or nonlinear) differential operator, B is the boundary condition

operator, u0 is the initial condition, and ξ =

xi1, . . . , ξn} is a set of uncertain parameters characterizing the uncertainty in the

inputs of the governing equation. We assume that the problem (4.13) is well-posed

in Ξ and let u(x, t, ξ̃): D × (0, T ] × Ξ → Rnu denote its solution. For simplicity, we

further assume that the output of (4.13) is in one dimension, i.e., nu = 1.
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In the situation where the uncertain parameter ξ is random and the associated

probability density function (PDF: Pξ(s) = P (ξ ≤ s)) is known, the standard prob-

abilistic formulation is adopted and the statistics of the stochastic quantity u(x, t, ξ)

are calculated. In the situation where ξ is random however the PDF is not completely

known, one can adopt a three-step procedure [37] – estimating the range of ξ, solv-

ing the system of equations (4.13) within the estimated range numerically, and then

post-processing the obtained solution when the PDF becomes available – to calculate

the statistics of u(x, t, ξ). In this paper, we extend the three-step procedure to the

situation where the uncertain parameter ξ or some components of ξ are not random

but associated with vague and imprecise information. In such case, the epistemic or

mixed types of uncertainty in the parameter ξ and the propagated uncertainty in the

output or the statistics of the output u(x, t, ξ) are represented mathematically in the

framework of fuzzy set theory.

3.2 Methodology

Similar to the work of [37], we use a three-step procedure to quantify the uncer-

tainty in the output of the system (4.13), where the input parameters are random

variable associated with probability density functions or fuzzy numbers associated

with membership functions. The procedure comprises identifying the ranges of the

uncertain inputs, generating the accurate numerical solution for the system (4.13)

within the estimated ranges, and analyzing the uncertainty in output using Zadeh’s

extensive principle in the framework of fuzzy set theory. Hereafter, to be clear, we

use ξ̃, ũ to denote fuzzy sets while ξ, u are classical variables.

3.2.1 Range Estimation

The first task is to identify a range, or a bound for the uncertain parameters, which

is sufficiently large such that it can cover all the possible cases we are interested in.
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For the uncertain parameters characterized by fuzzy sets, their supports serve the

purpose. For each variable ξ̃i, i = 1, . . . , d, let Supp(ξ̃i) = [ai, bi] be its range. Denote

Iξ = ×di=1[ai, bi], we have Iξ ⊆ Ξ. According to the definition of the fuzzy number, Iξ

is closed and bounded.

3.2.2 Numerical Solution of System of PDE

Once the ranges of the parameters are estimated, traditional numerical methods

can be used to solve the system of equations (4.13) in the domain Iξ and the ap-

proximated solution is denoted as un(x, t, ξ), where the index n is associated with the

discretization parameters in the approximation. The error of the numerical solution

defined as

εn = ‖un(x, t, ξ)− u(x, t, ξ)‖Lpw(Iξ), p ≥ 1, (3.23)

approaches zero as n → ∞, where u(x, t, ξ) is the exact solution of Eqs. (4.13),

ω = ω(ξ) is a weight function. In the current work, we use Galerkin method to

approximate the solution of (4.13) in polynomial space.

3.2.3 Epistemic Uncertainty Quantification in Output

In this section, we take into account the uncertainty in the inputs ξ̃ and quantify

the consequent uncertainty in output un using fuzzy set theory, i.e., we obtain the

membership function for the fuzzy output ũn(x, t, ξ̃). With any fixed x and t, for

simplicity, we write un(x, t, ξ) as un(ξ) : Iξ → R. Using Zadeh’s extension principle,

one can then calculate the membership function of un(ξ̃) using Eq. (3.8). We then

denote un(ξ̃) at x and t as ũn(x, t, ξ̃).

To show that the true quantity of our interest ũ(x, t, ξ̃) from the Eq. (4.13) can be

approximated by ũn(x, t, ξ̃), according to the second decomposition theorm of fuzzy
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sets Thm. 3.1 (i.e., ũ = ∪α∈[0,1]α · [ũ]α+ , ũn = ∪α∈[0,1]α · [ũn]α+), we only need to show

for all α ∈ [0, 1], [ũn]α+ approaches [ũ]α+ as n→∞. According to the Cor. 3.1.1,

dHp([ũ]α+ , [ũn]α+) ≤ C1/p‖u(ξ)− un(ξ)‖Lpw = C1/pεn. (3.24)

Similarly, we can achieve the convergence of the weighted expected value and variance

once we have the Lp convergence. And the proof are as follows:

Theorem 3.4. (Convergence of Expected Value) Let un(ξ̃) be an approximation to

the solution u(ξ̃) of equation (4.13), and we have that

εn = ‖un(ξ)− u(ξ)‖Lpw(Iξ), p ≥ 1, (3.25)

approaches to 0 as n → ∞, where w(ξ) > 0 is a weighted function. Let q be a real

positive number satisfied that 1/p+ 1/q = 1, denote that

C1 =

∫ 1

0

(
∫
[ξ̃]α

w−q/pdξ)1/q∫
[ξ̃]α

dξ
f(α)dα, (3.26)

and if C1 satisfies C1 <∞, then, the expected value of u and un satisfy

|Ef (u− un; ξ̃)| = |Ef (u; ξ̃)− Ef (un; ξ̃)| ≤ C1εn. (3.27)

Proof. By the definition of the expected value in equation (3.18),

|Ef (u; ξ̃)− Ef (un; ξ̃)| = |
∫ 1

0
C[ξ̃]α(u)f(α)dα−

∫ 1

0
C[ξ̃]α(un)f(α)dα|

≤
∫ 1

0
|C[ξ̃]α(u)C[ξ̃]α(un)|f(α)dα

=
∫ 1

0
1∫

[ξ̃]α
dξ

∫
[ξ̃]α
|u− un|dξf(α)dα

. (3.28)

Apply Holder’s inequality, we have that∫
[ξ̃]α

|u− un|dξ ≤ (

∫
[ξ̃]α

|u− un|pw(ξ)dξ)1/p(

∫
[ξ̃]α

w−q/pdξ)1/q. (3.29)

Substitute (3.29) into (3.28),

|Ef (u; ξ̃)− Ef (un; ξ̃)| ≤
∫ 1

0

(
∫
[ξ̃]α

w−q/pdξ)1/q∫
[ξ̃]α

dξ
(
∫
[ξ̃]α

(|u− un|)pw(ξ)dξ)1/pf(α)dα

≤ εn
∫ 1

0

(
∫
[ξ̃]α

w−q/pdξ)1/q∫
[ξ̃]α

dξ
f(α)dα

= C1εn

.

(3.30)
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Theorem 3.5. (Convergence of Variance) Let u and un be the same as in theorem

3.4 and p ≥ 2 denote

C2 =

∫ 1

0

(
∫
[ξ̃]α

w−q
∗/pdξ)1/q

∗∫
[ξ̃]α

dξ
f(α)dα, (3.31)

where q∗ satisfies 2
p

+ 1
q∗

= 1. And

C3 =

∫ 1

0

(
∫
[ξ̃]α

w−q/pdξ)2/q

(
∫
[ξ̃]α

dξ)2
f(α)dα, (3.32)

where q satisfies 1
p

+ 1
q

= 1. Assume that C2 <∞, C3 <∞, then, we have

V arf (u− un; ξ̃) ≤ 2(C2εn + C3ε
2
n). (3.33)

Note: if p = 2, C2 is denoted as maxξ∈Iξ
1

w(ξ)

∫ 1

0
f(α)∫
[ξ̃]α

dξ
dα.

Proof. By the definition (3.20) and triangle inequality, we can separate the left hand

side of the equation (3.33) into two parts, that is

V arf (u− un; ξ̃)

=
∫ 1

0
1∫

[ξ̃]α
dξ

∫
[ξ̃]α

(u(ξ)− un(ξ)− C[ξ̃]α(u− un))2dξf(α)dα|

≤ 2
∫ 1

0

∫
[ξ̃]α

(u−un)2dξ∫
[ξ̃]α

dξ
f(α)dα + 2

∫ 1

0

∫
[ξ̃]α

(C[ξ̃]α (u)−C[ξ̃]α (un))
2dξ∫

[ξ̃]α
dξ

f(α)dα

= 2
∫ 1

0

∫
[ξ̃]α

(u−un)2dξ∫
[ξ̃]α

dξ
f(α)dα + 2

∫ 1

0
(C[ξ̃]α(u)− C[ξ̃]α(un))2f(α)dα

. (3.34)

For the first part, we have∫ 1

0
1∫

[ξ̃]α
dξ

∫
[ξ̃]α

(u− un)2dξf(α)dα

≤
∫ 1

0

(
∫
[ξ̃]α

w−q
∗/pdξ)1/q

∗∫
[ξ̃]α

dξ
(
∫
[ξ̃]α

(|u− un|)pw(ξ)dξ)1/pf(α)dα

≤ εn
∫ 1

0

(
∫
[ξ̃]α

w−q
∗/pdξ)1/q

∗∫
[ξ̃]α

dξ
f(α)dα

= C3εn

, (3.35)
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and for the second part, we can obtain∫ 1

0
(C[ξ̃]α(u)− C[ξ̃]α(un))2f(α)dα

≤
∫ 1

0
1

(
∫
[ξ̃]α

dξ)2

∫
[ξ̃]α

(
∫
[ξ̃]α

(u− un)dξ)2dξf(α)dα

≤
∫ 1

0
1

(
∫
[ξ̃]α

dξ)2
(
∫
[ξ̃]α

(|u− un|)pw(ξ)dξ)2/p(
∫
[ξ̃]α

w−q/pdξ)2/qf(α)dα

≤
∫ 1

0

(
∫
[ξ̃]α

w−q/pdξ)2/q

(
∫
[ξ̃]α

dξ)2
(
∫
[ξ̃]α

(|u− un|)pw(ξ)dξ)2/pf(α)dα

≤ ε2n
∫ 1

0

(
∫
[ξ̃]α

w−q/pdξ)2/q

(
∫
[ξ̃]α

dξ)2
f(α)dα

= C3ε
2
n

. (3.36)

Adding the two parts, the conclusion holds.

3.2.4 Mixed Aleatory and Epistemic Uncertainty Quantification in Out-

put

In reality, there might be situations where both aleatory and epistemic uncertainty

involve in the model inputs, therefore it is necessary to develop approaches for mixed

types of uncertainty quantification in output. Suppose probability density functions

(PDFs) are known for the set of random variables Z = {Z1, Z2, ..., Zm} (Z ∈ IZ ⊆ Rm,

m ≥ 1,
∫
IZ
ρZdZ = 1), while membership functions are associated with the set of non-

probabilistic uncertain parameters ξ̃ = {ξ̃1, ξ̃2, ..., ξ̃d}. The proposed approach can be

easily extended to such a case involving mixed aleatory and epistemic uncertainty.

Let us consider the following system
ut(x, t, Z, ξ̃) = L(u), D × (0, T ]× IZ × Ξ,

B(u) = 0, ∂D × [0, T ],

u = u0, D × {t = 0} × IZ × Ξ.

(3.37)

For a fixed x and t, the system of equations can be solved numerically in the range

IZ × Iξ, where Iξ is the Cartesian product of the supports of the fuzzy numbers ξ̃is.
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Let un denote this numerical solution where n is the approximation order. The error

of the numerical solution is defined as

εn = ‖un(Z, ξ)− u(Z, ξ)‖Lpρ(IZ)⊗Lpw(Iξ), p ≥ 1,

=

(∫
Iξ

(∫
Z∈IZ

|u(Z, ξ)− un(Z, ξ)|pρZdZ
)
ωdξ

)(1/p)

,

where u(Z, ξ) is the exact solution of the Eq. (3.37) in the range IZ × Iξ.

Proposition 3.6. Define the conditional expectations as

µ(u(Z, ξ)|ξ) =

∫
Z∈IZ

u(Z, ξ)ρZdZ;

µ(un(Z, ξ)|ξ) =

∫
Z∈IZ

un(Z, ξ)ρZdZ.

Then

‖µ(u(Z, ξ)|ξ)− µ(un(Z, ξ)|ξ)‖Lpw(Iξ) ≤ εn.

Proof.

‖µ(u|ξ)− µ(un|ξ)‖Lpw(Iξ),

=
(∫

Iξ
|µ(u|ξ)− µ(un|ξ)|pωdξ

)(1/p)
,

=
(∫

Iξ
|
∫
Z∈IZ

(u(Z, ξ)− un(Z, ξ))ρZdZ|pωdξ
)(1/p)

,

=
(∫

Iξ
|
∫
Z∈IZ

(u(Z, ξ)− un(Z, ξ))(ρZ)1/p(ρZ)(p−1)/pdZ|pωdξ
)(1/p)

,

≤
(∫

Iξ
(
∫
Z∈IZ

|u(Z, ξ)− un(Z, ξ)|pρZdZ)(
∫
Z∈IZ

(ρ
(p−1)/p
Z )qdZ)p/qωdξ

)(1/p)
,

=
(∫

Z∈IZ
(ρ

(p−1)/p
Z )qdZ

)1/q (∫
Iξ

(
∫
Z∈IZ

|u(Z, ξ)− un(Z, ξ)|pρZdZ)ωdξ
)(1/p)

,

where 1/p+ 1/q = 1.

We have
(∫

Z∈IZ
(ρ

(p−1)/p
Z )qdZ

)1/q
= 1 since (p − 1)/p = 1/q and

∫
Z∈IZ

ρZdZ = 1.

Therefore the following inequality holds,

‖µ(u|ξ)− µ(un|ξ)‖Lpw(Iξ) ≤ εn.
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Due to the epistemic uncertainty in the fuzzy number ξ̃, the conditional ex-

pectations µ(u(Z, ξ̃)|ξ̃) and µ(un(Z, ξ̃)|ξ̃) are not deterministic, but we can calcu-

late the associated membership functions using Zadeh’s extension principle. Denote

µ̃(ξ̃) = µ(u(Z, ξ̃)|ξ̃) and µ̃n(ξ̃) = µ(un(Z, ξ̃)|ξ̃), the error in the conditional expecta-

tion introduced by the numerical procedure is measured by the p-Hausdorff distance

between the strong α-cut of the two fuzzy sets µ̃(ξ̃) and µ̃n(ξ̃) for any α ∈ [0, 1].

Using the Cor. 3.1.1 and the , we have

dHp([µ̃]α+ , [µ̃n]α+) ≤ C1/p‖µ(u(Z, ξ)|ξ)− µ(un(Z, ξ)|ξ)‖Lpw(Iξ) ≤ C1/pεn.

Naturally, we can get the convergence of the weighted expected value and variance

of µ and µn by using Theorem 3.4, 3.5 and Prop. 3.6.

|Ef (µ− µn; ξ̃)| = |Ef (µ; ξ̃)− Ef (µn; ξ̃)| ≤ C1εn, (3.38)

V arf (µ− µn; ξ̃) ≤ 2(C2εn + C3ε
2
n), (3.39)

where C1, C2 and C3 have the same value as their definition in Theorem 3.4 and 3.5.

Since the proof process is the same as in the proof process of Theorem 3.4, 3.5, which

only needs to substitute u by µ, and un by µn, respectively. We will not repeat it

here.

3.3 Numerical Examples

The proposed procedure of analyzing the uncertainty in the output to differential

equations is illustrated in numerical examples. The focus are on examination of the

membership function behavior and error behavior. When associated with possibility

theory, where the membership function defined here can be interpreted as a possibility

distribution. the behavior of weighted expected value and variance and their error

behavior are naturally become our interest. All the behaviors are tested here.

We first test our procedure on a linear ordinary differential equation with single

fuzzy variable. Though simple, this examples allows us to thoroughly examine the

the membership function, the weighted expected value and variance behaviors and
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convergence properties of the numerical implementations. The second example is a

non-linear equation with two fuzzy numbers as uncertain inputs. The membership

function, the weighted expected value and variance of the uncertain output are pro-

vided and the convergence rate with respect to the approximation order is analyzed.

Then we test the proposed numerical approach for mixed types of uncertainty quan-

tification in a diffusion problem with both random variables and fuzzy numbers as

uncertain inputs.

3.3.1 Ordinary Differential Equation

Let us consider
∂u(t, ξ̃)

∂t
= (1 + σξ̃)u, u(0, ξ̃) = 1, (3.40)

where σ = 0.1 and ξ̃ is a one-dimensional fuzzy variable. Let ũ(t) denote the unknown

solution. We consider three different membership functions (see Fig. 3.6) for ξ̃:

µ1(ξ) = 0.5 ∗ (1 + ξ);

µ2(ξ) = (0.5 ∗ (1 + ξ))0.5;

µ3(ξ) =

1 + ξ −1 ≤ ξ ≤ 0,

1− ξ 0 ≤ ξ ≤ 1.

(3.41)

The proposed three-step procedure is applied for uncertainty propagation as fol-

lows. Firstly, we estimate the range of the uncertain parameter. Due to the definition,

the support of ξ̃ is a compact set (Supp(ξ̃) = [−1, 1] in the example) and it is used

as the estimated range.

Next, we replace the fuzzy set ξ̃ by the parameter ξ ∈ Iξ = [−1, 1] and solve the

Eq. (3.40) numerically in the range Iξ. Equation (3.40) with ξ ∈ Iξ also yields a simple

analytical solution u(t, ξ) = e(1+σξ)t, which can be used to compare the membership

function behavior to the numerical solution and examine the error behavior later.
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Figure 3.6. Membership functions of the fuzzy number ξ̃.
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To solve the Eq. (3.40) numerically, we use Galerkin method with Legendre

polynomial basis and scale the equation as

∂u(t, ξ)

∂t
= (1 + σξ)u, u(0, ξ) = 1, (3.42)

where ξ ∈ Iξ = [−1, 1].

We seek the solution in the following form:

un(t, ξ) =
n∑
j=0

ûj(t)φj(ξ), (3.43)

where φj(ξ) are Legendre polynomial satisfying∫
Iξ

φi(ξ)φj(ξ)w(ξ)dξ = δi,j, (3.44)

where δi,j is the Kronecker delta function and w(ξ) = 0.5.

Substituting (3.43) into (3.42) and forcing the residue to be orthogonal to the

linear polynomial space of degree up to n, we obtain the following Galerkin system

dûj
dt

=
n∑
i=0

ei,jûi, ûj(0) = δ0.j, (3.45)

where ei,j = 1
2

∫
Iξ

(1 + σξ)φi(ξ)φj(ξ)w(ξ)dξ. This system of ODE yields the solution

un, which converges to u in L2
w norm.

Using Zadeh’s extension principle, the uncertainty in un(t) propagated from the

uncertainty in ξ̃ can be represented by membership functions. The membership func-

tions of ũn(t) with n = 10 are shown in Figs. 3.7- 3.9, with different membership

functions associated with the input fuzzy number ξ̃. We also study the convergence

of p-Hausdorff distance with respect to the approximation order n. The p-Hausdorff

distance (solide lines), L2 error (dashed lines) error are computed at time t = 1, where

the solution is non-trivial. And the figures show that a) the p-Hausdorff distance be-

tween ũ and ũn is independent on the membership function of the input fuzzy number

in the example, and b) the p-Hausdorff distance has spectral convergence with respect

to the approximation order n.
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Figure 3.7. Membership function of ũ10(t) (left) and error plot with
respect to approximation order at t = 1 (right).
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Figure 3.8. Membership function of ũ10(t) (left) and error plot with
respect to approxiamtion order at t = 1 (right).
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Figure 3.9. Membership function of ũ10(t) (left ) and error plot with
respect to approxiamtion order at t = 1 (right).
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By the definition of the weighted expected value and the variance of the function

of a fuzzy set, here, we let f(α) = 1. The expected value and variance of ũn(t)

with n = 10 are shown in left of Figs. 3.10- 3.11, with different membership functions

associated with the input fuzzy number ξ̃. We also study the convergence of them with

respect to the approximation order n. The error between the expected value under

different fuzzy sets, L2
w error (line with tag) error are computed at time t = 1, where

the solution is non-trivial. This is consistent with the error bounds from Theorems

3.4 and 3.5.
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Figure 3.10. Expected value of ũ10(t) (left ) and error plot with respect
to approximation order at t = 1 (right).

3.3.2 Non-linear Ordinary Differential Equation

In this section, we test the proposed approach on the following non-linear equation,

du

dt
= −ξ̃1u(1− u

A
), (3.46)

and the initial condition is

u(0, ξ̃1, ξ̃2) = ξ̃2. (3.47)
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Figure 3.11. Variance value of ũ10(t) (left ) and error plot with respect
to approximation order at t = 1 (right).
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Let A = 2.0 and ξ̃1, ξ̃2 be fuzzy numbers with membership functions

µ(ξ1) =


10ξ1 − 3 0.3 ≤ ξ1 ≤ 0.4,

1 0.4 ≤ ξ1 ≤ 0.5,

6− 10ξ1 0.5 ≤ ξ1 ≤ 0.6;

µ(ξ2) =

100ξ2 − 84 0.84 ≤ ξ ≤ 0.85,

86− 100ξ2 0.85 ≤ ξ ≤ 0.86.

(3.48)

The membership function of the two-dimensional fuzzy set ξ̃ = ξ̃1 × ξ̃2 is shown in

Fig. 3.12.
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Figure 3.12. Membership function of fuzzy number ξ̃1 × ξ̃2.

Replacing the fuzzy number ξ̃ by parameter ξ = [ξ1, ξ2], where ξ1 ∈ [0.3, 0.6] and

ξ2 ∈ [0.84, 0.86], the analytic solution of Eqs. (3.46)-(3.47) is

u(t, ξ1, ξ2) =
Aξ2e

−ξ1t

ξ2e−ξ1t − ξ2 + A
. (3.49)
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To solve the Eqs. (3.46)-(3.47) numerically using Galerkin method with Leg-

endre polynomials, we transfer the support [0.3, 0.6] × [0.84, 0.86] to [−1, 1]2 (i.e.,

ξ ∈ [−1, 1]2) and the Eq. (3.46) is rewritten as:

du

dt
= −(0.45 + 0.15ξ1)u(1− u

A
), ξ ∈ [−1, 1]2. (3.50)

The initial condition becomes

u(0, ξ1, ξ2) = 0.85 + 0.01ξ2. (3.51)

Similarly to the linear example, we solve the equations numerically and obtain

the approximated solution un, where n is the approximation order. Then we can cal-

culate the membership functions using Zadeh’s extension principle. The membership

function of approximated solution ũ10(t) at different time are presented on the left

hand side of Fig. 3.13. We can see that the membership functions have the same

pattern. On the right hand side, we have showed p-Hausdorff distance behavior (solid

line) and L2 error (dashed line) at time t = 2, with respect to approximation order

n. In Figs. 3.14- 3.15, the weighted expected value and variance of ũn(t) with n = 10

and f(α) = 1 are shown on the left, and the convergence of them with respect to

the approximation order n are studied. The error between the expected value and

variance, L2
w error (line with tag) error are computed at time t = 2.

Diffusion Equation with Both Aleatory and Epistemic Uncertainty In this section,

we test the proposed numerical approach on diffusion equation with mixed types of

uncertainty involved. The diffusion equation is specified as

− ∂

∂x
[k(x, Z, ξ̃)

∂u

∂x
(x, Z, ξ̃)] = f(x, Z, ξ̃), x ∈ (0, 1), (3.52)

with forcing term f = 2 and the boundary conditions

u(0, Z, ξ̃) = 0, u(1, Z, ξ̃) = 0.

Furthermore, we assume that the uncertain diffusivity has the form

k(x, Z, ξ̃) = 1 + σ
∑
k∈D1

1

k2π2
cos(2πkx)ξ̃k + σ

∑
k∈D2

1

k2π2
cos(2πkx)Zk,
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Figure 3.13. Membership function of ũ10(t) (left) and error plot with
respect to approximation order at time t = 2 (right).
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Figure 3.14. Expected value of ũ10(t) (left ) and error plot with respect
to approximation order at t = 2 (right).



62

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5
x 10

−3

1 2 3 4 5 6 7 8 9 10
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2
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where σ = 0.1 is a parameter to control the variation level of the diffusivity field, ξ̃k

with k ∈ D1 = {1, 3, 5, 7} are fuzzy numbers represented with the same membership

functions shown in Fig. 3.16, Zk with k ∈ D2 = {2, 4, 6, 8, 9, 10} are assumed to

be i.i.d. random variables with distribution Beta(−1, 1, 1, 1), we denote the density

function as ρZ . Then the uncertain input parameters are

ξ̃ = {ξ̃1, ξ̃3, ξ̃5, ξ̃7}, Z = {Z2, Z4, Z6, Z8, Z9, Z10}. (3.53)
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Figure 3.16. Membership function of fuzzy number.

Firstly, we estimate the ranges of the uncertain parameters ξ̃ and Z as Iξ =

Supp(ξ̃) = [0, 1]4 and IZ = [−1, 1]6. Then, we solve the Eq. (3.52) numerically in

the domain Iξ × IZ using Galerkin method with n-th order Jacobi polynomials with

parameters α = 1 and β = 1. Let un(x, Z, ξ) be the approximated solution and

u(x, Z, ξ) be the exact solution to the Eq. (3.52) in the domain Iξ × IZ .

Define εn as the error of the numerical solution at a fixed point,

εn = ‖un(x, Z, ξ)− u(x, Z, ξ)‖Lpρ([−1,1]6)⊗Lpω([−1,1]4),
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and define the conditional expectations given uncertain input parameter ξ̃ as

µ̃(ξ̃) = µ(ũ(Z, ξ̃)|ξ̃) =

∫
Z∈[−1,1]6

ũ(x, z, ξ̃)ρ(Z)dZ,

µ̃n(ξ̃) = µ(ũn(Z, ξ̃)|ξ̃) =

∫
Z∈[−1,1]6

ũn(x, Z, ξ̃)ρ(Z)dZ.
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respect to approximation order at space x = 0.5257 (right).
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4. EPISTEMIC UNCERTAINTY QUANTIFICATION

USING EVIDENCE THEORY

Until now, our focus is on epistemic uncertainty quantification using the fuzzy set

theory, which have been had may good results. However, as to epistemic uncertainty

represented by Dempster-Shafer Theory, where the uncertainties are characterized

by the so called ”m-function”, we have not do much work on it. In order to have a

good interpreting of epistemic uncertainty, epistemic Uncertainty quantification using

Dempster-Shafer Theory becomes the topic of our future work.

Here, first of all, we have a brief introduction of the Dempster-Shafer Theory, and,

similar to the work in chapter 3, we define a distance based on p-hausdorffe distance

to measure the dissimilarity of two m-functions. Then, we propose the methodology

to approximate the exact solution. At last, we implement two simple examples to

illustrate the convergence of the method.

4.1 Dempster-Shafer Theory of Evidence

The Dempster-Shafer (DS) theory of evidence (also called evidence theory)was

first introduced by P. Dempster in 1976 [8] as a new approach to the representation

of uncertainty. The theory is originated from the earlier works of Dempster [9, 10]

in the 1960s in the context of statistical inference. In [10], Dempster considered a

multivalued mapping, from a space E of sample observations regarded as sources of

evidence/information to the target space X(such as a parameter space or a product

of a parameter space and a space of future observations). Here E is carrying a

probability measure over its subset. He inferred that the corresponding measure

in X would be non-unique and one could at best consider just upper and lower

probabilities. Furthermore, in practice, different sources of evidence Ei may provide
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information about the same uncertain outcome in X. under the assumption of the

independence of evidence sources, he proposed a rule to combine them (now known

as Dempsters rule of combination) for the purpose of statistical inference.

Based on these fundamental ideas, Shafer modeled ones intuitive perception of

belief/opinion and developed what he called a mathematical theory of evidence, where

X is called the frame of discernment, and the lower and upper probabilities are called

belief and plausibility functions, respectively. Shafer defined a belief function as a

measure with the important property of super additivity and laid the foundation

for a comprehensive theory of belief functions. This fuzzy character of the belief

measure makes the theory naturally suitable for representing and treating epistemic

uncertainty stemming from imprecise information or incomplete knowledge.

Since the publication of Shafers work, the DS theory is well developed by many

people. For example, Yager proposed a new rule of combination what is called Yagers

rule [38, 39] to avoid the counterintuitive results when combining highly conflicted

evidence under the Dempsters rule of combination. Moreover, in 2004, Yager [40]

proposed the concepts of entropy and specificity of a belief function, which provide

information regarding the represented by the belief function. For more work of Yager,

please see [41,42].

Next, a brief description of the mathematical basics of the DS theory is given.

4.1.1 Measures in the DS Theory

Let X be the quantity of interest with a collection of possible values

X = {X1, . . . , Xn}, then, the set X is called the universal set or the frame of dis-

cernment. For any subset A of X, if we know exactly the true value of X, then

our knowledge is complete and there is no uncertainty. However, we may have only

partial knowledge and the true value of X is unknown. In such a case, propositions

in the form of “the true value of X is in A” are considered. Here, we use a basics
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belief assignment to represent the strength of evidence supporting the proposition A,

that is

Definition 4.1. Let X be a universal set and A be any subset of X, a basic belief

assignment (BBA, also called an m-function) is a mapping m from power set 2X

(which is the set of all subsets of X including X and ∅) to the unit interval [0, 1] to,

which satisfies:

m(∅) = 0, (4.1)∑
A⊆X

m(A) = 1. (4.2)

The equation (4.1) states that no belief mass should be assigned to the null set,

and it implicitly assumes that the true value of X is included in the universal set X,

which is called the closed-world assumption. The equation (4.2) states that the sum

of the belief masses over all the subsets is unity, which implies that one’s total belief

has measure one. Hereafter we use m-function and BBA interchangeably.

Remark: The reasons why a m-function may not be called a probability density

function (PDF) are listed, below,

1. First, an m-function assigns mass to sets while the traditional probability theory

assigns probability to single points.

2. Secondly, m(A) ≤ m(B) may not hold for an m-function if A ⊆ B.

3. At last, the additivity property m(A1)+m(A2) = m(A1∪A2) (A1, A2 ⊆ X) may

not hold for an m-function while it holds for the probability measure.

The element A ⊆ X is called a focal element if m(A) 6= 0. And the union of all

the focal elements is called the core of an m-function, denoted by ζ.

Foe any subset A of X, since the true value lying in the subset of A implies that

the true value also lies in A, the total support (total degree of belief) for A should

also include the support for subsets of A. As a result, adding m(B) for all B ⊆ A

together gives the total belief committed to A: Bel(A).



70

Definition 4.2. Bel is a belief measure that assigns a number in the unit interval

[0, 1] to the power set 2X. And it is defined as follows:

Bel(A) =
∑
B⊆A

m(B). (4.3)

The definition of the belief function is illustrated by the Venn diagram (Fig. 4.1(a))

showing the set A and its subsets B1, B2, and B3. m(B1), m(B2), and m(B3) also

support that the true value of the quantity of interest is in A.

(a) (b)

Figure 4.1. Venn diagrams: (a) The set A with subsets, (b) The set
A with intersecting sets.

Belief functions have the following properties [8].

1. Boundary conditions: Bel(∅) = 0, Bel(X) = 1.

2. Superadditivity: for any A,B ⊆ X, we have:

Bel(A ∪B) ≥ Bel(A) +Bel(B)−Bel(A ∩B) (4.4)

Specifically, Bel(A) +Bel(A) ≤ 1, where A is the complement of A.

Definition 4.3. A dual measure of belief related to what extent one believes its

negation A is defined as

Pl(A) = 1−Bel(A) (4.5)
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This dual measure is called plausibility function (Pl : 2X → [0, 1]), which measures

the maximum possible strength of evidence supporting a proposition A. Alternatively,

it can also expressed by the adding m(B) for all the B ∩ A 6= ∅.

Pl(A) =
∑

B∩A 6=∅

m(B). (4.6)

The definition of plausibility is graphically explained with Fig. 4.1(b), which

shows that if B1 and B2 are two sets intersecting A, m(B1) and m(B2) also support

that it is possible for the true value of the quantity of interest to fall in A. Belief,

plausibility and m-functions are equivalent in the sense that any two can be deduced

from the third.

Figure 4.2. Belief and Plausibility of a proposition A.

The formulas 4.3 and 4.6 indicate that Bel(A) ≤ Pl(A). We can interpret that

Bel(A) ≤ Pl(A), Bel(A) +Bel(A) ≤ 1 from Figure 4.2. The gray area describes the

epistemic uncertainty in the proposition A, and Bel(A), Pl(A) can be interpret as the

lower bound and upper bound of possible strength of support for the proposition A.

Unlike super-additivity of the belief function, probability theory has strict additivity:

P (A) + P (Ā) = 1, i.e., the epistemic uncertainty represented by the gray area of

Fig. 4.2 disappears. Thus probability theory is natural for quantifying aleatory

uncertainty, in this sense, DS theory can be used to quantify both aleatory and

epistemic uncertainty naturally.

In the current work, the universal set is assumed to be a finite interval with a finite

number of subintervals as the focal elements. For example, let the interval X = [a, b]
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be the universal set. The focal elements are ξ1, ξ2 and ξ3, where the m-function is

defined as follows: m(ξ1) = 0.4, m(ξ2) = 0.3 and m(ξ3) = 0.2, and m(X) = 0.1. Here,

we illustrate it in Fig. 4.3:

Figure 4.3. An m-function and the focal elements.

By the definition in (4.3), the degrees of belief associated with focal elements are

obtained:

Bel(ξ1) = 0.4, Bel(ξ2) = 0.3, Bel(ξ3) = 0.2, Bel(X) = 1. (4.7)

Analogous to the cumulative distribution function in probability theory, Oberkampf

[13] introduced the concepts of cumulative belief function (CBF) and cumulative plau-

sibility function (CPF) or a complementary cumulative belief function (CCBF) and a

complementary cumulative plausibility function (CCPF). The concepts extend prob-

abilistic risk assessment where the probability of high-end risk range is displayed.

And the definitions are as follows:

CBF (x) = Bel(X ≤ x), (4.8)

CPF (x) = Pl(X ≤ x), (4.9)

CCBF (x) = Bel(X > x), (4.10)

CCPF (x) = Pl(X > x). (4.11)
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Note: Given the belief function, all the CBF, CPF, CCBF, CCPF are obtained

uniquely. However, the inverse does not hold, i.e., given a CBF and a CPF, we can

not get a unique belief function [42].

4.1.2 Distance between Two m-functions

There are a number of measures in the literature to measure the dissimilarity

between two m-functions defined over the same finite set [43–50], however, in the

case with a finite interval as universal set and with finite number of subintervals

as focal elements, the distance between two m-functions is barely studied. Here we

define a distance measure based on p-Hausdorff distance to measure the dissimilarity

between m-functions defined in such situation.

Recall the definition of p-Hausdorff distance in chapter 3 as follows:

Definition 4.4. Let X, Y ⊂ Rn be two non-empty classical sets, the p-Hausdorff

distance dĤp is defined as

dĤp(X, Y ) = max{(
∫
x∈X

essinf
y∈Y

dp(x, y)dx)
1
p , (

∫
y∈Y

essinf
x∈X

dp(x, y)dy)
1
p}, (4.12)

where dp(x, y) is the Lp-norm of the difference between two vectors.

Next we define a distance measure to measure the dissimilarity between two m-

functions in a special case.

Assume m1,m2 are two m-functions with the same number of focal elements

A1, ...Al and B1, ...Bl respectively, and the belief masses assigned to the focal ele-

ments are the same for Ai and Bi, i.e., m1(Ai) = m2(Bi) = ai for 1 ≤ i ≤ l. Then

the distance between m1 and m2 is defined as

Dis(m1,m2) =
∑
i

dĤ(Ai, Bi) ∗ ai.
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4.2 Uncertainty Quantification Using Evidence Theory

Let D ⊂ Rl, l = 1, 2, 3, be a physical domain with coordinates x = (x1, . . . , xl),

let (0, T ] be a time domain with T > 0, and let Ξ ⊂ Rn be a parameter domain for

uncertain inputs. We consider a general partial differential equation (PDE) as
ut(x, t, ξ) = L(u), D × (0, T ]× Ξ,

B(u) = 0, ∂D × [0, T ],

u = u0, D × {t = 0} × Ξ,

(4.13)

where L is a (linear or nonlinear) differential operator, B is the boundary condition op-

erator, u0 is the initial condition, and ξ = {ξ1, . . . ξn} is a set of uncertain parameters

characterizing the uncertainty in the inputs of the governing equation. We assume

that the problem (4.13) is well-posed in Ξ and let u(x, t, ξ): D × (0, T ] × Ξ → Rnu

denote its solution. For simplicity, we further assume that the output of (4.13) is in

one dimension, i.e., nu = 1.

In the situation where the uncertain parameter ξ is random and the associated

probability density function (PDF: Pξ(s) = P (ξ ≤ s)) is known, the standard prob-

abilistic formulation is adopted and the statistics of the stochastic quantity u(x, t, ξ)

are calculated. In the situation where ξ is random however the PDF is not completely

known, one can adopt a three-step procedure [37] – estimating the range of ξ, solv-

ing the system of equations (4.13) within the estimated range numerically, and then

post-processing the obtained solution when the PDF becomes available – to calculate

the statistics of u(x, t, ξ). Here, we extend the three-step procedure to the situation

where the information associated with the uncertain variable ξ is insufficient for a

probabilistic treatment. In such case, the epistemic or mixed types of uncertainty in

the parameter ξ and the propagated uncertainty in the output or the statistics of the

output u(x, t, ξ) are represented mathematically in the framework of evidence theory.

Similar to the work of chapter 2 and chapter 3, we use a three-step procedure

to quantify the uncertainty in the output of the system (4.13), where the input pa-

rameters are random variable associated with probability density functions or uncer-
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tain variables associated with m-functions. The procedure comprises identifying the

ranges of the uncertain inputs, generating the accurate numerical solution for the

system (4.13) within the estimated ranges, and analyzing the uncertainty in output

in the framework of evidence theory.

4.2.1 Range Estimation

The first task is to identify a range, or a bound for the uncertain parameters, which

is sufficiently large such that it can cover all the possible cases we are interested in.

For the uncertain parameters characterized by m-functions, the universal sets (i.e.,

finite intervals) serve the purpose. For each variable ξi, i = 1, . . . , d, let its universal

set Xi = [ai, bi] be its range. And denote Iξ = X1 × · · · ×Xd to be the domain.

4.2.2 Numerical Solution of System of PDE

Once the ranges of the parameters are estimated, traditional numerical methods

can be used to solve the system of equations (4.13) in the domain Iξ and the ap-

proximated solution is denoted as un(x, t, ξ), where the index n is associated with the

discretization parameters in the approximation. The error of the numerical solution

defined as

εn , ‖un(x, t, ξ)− u(x, t, ξ)‖L∞(Iξ), (4.14)

approaches zero as n→∞, where u(x, t, ξ) is the exact solution of Eqs. (4.13).

4.2.3 Epistemic Uncertainty Quantification in Output

In this section, we take into account the uncertainty in the inputs ξ and quantify

the consequent uncertainty in output un using evidence theory, i.e., we obtain the m-

function for the uncertain output un(x, t, ξ). With any fixed x and t, for simplicity, we

write un(x, t, ξ) as un(ξ) : Iξ → R. Suppose the m-functions mi (1 ≤ i ≤ d) are given

for each input parameter ξi. Specifically, a universal set Xi = [ai, bi] (1 ≤ i ≤ d)
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includes all the possible values of ξi. The focal elements are a finite number of

subintervals ξij = [aij, bij], where 1 ≤ j ≤ Ci and Ci < ∞ is the number of focal

elements of them-functionmi. Uncertainty propagation using the DS theory attempts

to find the m-function for the output un. The procedure includes constructing an

d-dimensional belief structure for ~X, obtaining the focal elements for un(ξ), and

assigning the belief masses to the focal elements according to the body of evidence.

1. Construct the m-function for ξ.

The d-dimensional belief structure can be constructed by taking the Cartesian

product over all the directions of ξ where the universal set is ~X = X1 ×X2 ×

...×Xd. The focal elements are ~ξn = ξ1n1 × ξ2n2 × ...× ξdnd , 1 ≤ n ≤
∏d

i=1Ci,

where ~ξn is an d-dimensional hypercube and ξini is a focal element of the i-th

m-function mi. The m-function is defined as m(~ξn) =
∏d

i=1mi(ξini).

2. Obtain the focal elements for un(ξ).

The uncertainty in ξ, represented by the d-dimensional belief structure, is prop-

agated through the system un = un(ξ) and accumulated in the uncertainty of

the output un. To construct an m-function to represent the uncertainty in un,

we calculate the lower and upper bounds of un in each hypercube ξ ∈ ~ξn using

(4.15)-(4.16), and the interval between lower and upper bounds constitutes one

focal element for un.

ymin = min
ξ∈~ξn

un(ξ), (4.15)

ymax = max
ξ∈~ξn

un(ξ). (4.16)

There are many algorithms available to solve the constrained optimization prob-

lems [11,19], such as Newton’s methods, which are very basic iterative methods

to find stationary points of differentiable functions. However, this gradient-

based local optimization solver cannot guarantee the global optima. In order

to find the global optima, multi-start implementations of local optimization

methods or global optimizers are considered. These methods search the entire
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domain to find the global optima, in this way, the computational cost would be

a big problem [11]. An alternative approach is to estimate the bounds ymin and

ymax of the output by a sampling method, where the uniform distribution is as-

sumed over each input hypercube. The sampling method is easy to implement,

but its accuracy depends on the number of samples.

3. Assign the m-function to focal elements for un.

The m-function associated with ~ξn would be transfered to the corresponding

focal element [ymin, ymax] for un, i.e., mun([ymin, ymax]) = mξ(~ξn). Obviously, the

output un should have the same number of focal elements as ξ unless there are

two or more hypercubes corresponding to the same focal element for un.

4.3 Numerical Examples

4.3.1 Ordinary Differential Equation

Firstly, let us consider an ordinary differential equation, which is defined as follows:

∂u(t, ξ)

∂t
= −ξu, u(0, x) = 1, (4.17)

where the m-function of ξ, with the universal inteval X = [0, 1] and focal elements

X1 = [0, 1
3
], X2 = [1

3
, 2
3
] and X3 = [2

3
, 1] is defined as follows: m(X1) = 0.3, m(X2) =

0.5, m(X3) = 0.15 and m(X) = 0.05. The proposed three-step procedure is applied

for uncertainty propagation as follows. Firstly, we estimate the range of the uncertain

parameter. Due to the definition, its universal set X = [0, 1] is its range. Then, solve

the Eq. (4.17) numerically in the range X. Also, we know that equation (4.17) yields

a simple analytical solution u(t, ξ) = e−ξt, which can be used to calculate the distance

(4.13) between the m-functions later.

To solve the equations numerically, we apply the same strategy in chapter 3, and

get the numerical solution un, where n is the approximation order. Then, we can

calculate the distance (4.13) between the m-functions of un and u, And the distance

behavior is show in figure 4.4 at time t = 1, with respect to approximation order n.
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Figure 4.4. The distance between m-functions of un and u, at time
t = 2, with respect to approximation order n
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Non-linear Ordinary Differential Equation In this section, we test the proposed

approach on the following non-linear equation,

du

dt
= −ξ1u(1− u

A
), (4.18)

and the initial condition is

u(0, ξ1, ξ2) = ξ2. (4.19)

Let A = 2.0. The m-function of ξ1, with the universal inteval X = [0.3, 0.6] and

focal elements X1 = [0.3, 0.4], X2 = [0.4, 0.5] and X3 = [0.5, 0.6] is defined as follows:

m(X1) = 0.3, m(X2) = 0.5, m(X3) = 0.15 and m(X) = 0.05. And the m-function

of ξ2, with the universal inteval Y = [0.83, 0.86] and focal elements Y1 = [0.83, 0.84],

Y2 = [0.84, 0.0.85] and Y3 = [0.85, 0.86] is defined as follows: m(Y1) = 0.3, m(Y2) =

0.5, m(Y3) = 0.15 and m(X) = 0.05. Then, the 2-dimensional belief structure ξ =

(ξ1, ξ2) is defined as m(Zi,j) = m(Xi)m(Yj), where the universal set is Z = X × Y

and focal elements are Zij = Xi × Yj, i, j = 1, 2, 3.

Obviously, the analytic solution of Eqs. (4.18)-(4.19) is

u(t, ξ1, ξ2) =
Aξ2e

−ξ1t

ξ2e−ξ1t − ξ2 + A
. (4.20)

To solve the equations numerically, we apply the same strategy in chapter 3, and

get the numerical solution un, where n is the approximation order. Similarly to the

linear example, we can calculate the distance (4.13) between the m-functions of un

and u. And the distance behavior is show in figure 4.5 at time t = 2, with respect to

approximation order n.
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5. SUMMARY

In this thesis, what we do are as follows:

Firstly, we present a computational strategy for epistemic uncertainty analysis.

The new method is a notable extension of the work of [28] , in the sense that it allows

one to use unbounded intervals to encapsulate the true (and unknown) ranges of the

epistemic variables. Consequently the new method can employ numerical solutions

that are accurate in Lp weighted norms. These feature makes the method more

flexible in practice. Theoretical analysis of the method is conducted, where errors

in both strong form and weak form are analyzed. Numerical tests are conducted to

verify the theory. Though more extensive work is required, and is ongoing, to further

examine the methodology, the new method appears to be a fairly effective tool for

epistemic uncertainty analysis.

Secondly, we proposed a framework for quantifying a kind of epistemic uncer-

tainty, which is represented by fuzzy theory. A numerical study and analysis of this

approach for solving fuzzy partial differential equations are presented, which can also

be applied very effectively for solving fuzzy PDEs. The approach, which intuitively

rise from the work in chapter 2, is based on solution of an parametric problem which

generates a solution to the governing equations in the support of the fuzzy num-

bers. No distributional information about any of the variables needs be assumed,

only estimates of the support of the variables are needed. Once the domains have

been specified, a polynomial approximation can be constructed in the domain. The

polynomial approximation to the parametric problem is chosen to converge in Lp

weighted norm throughout the input space. As long as this convergence is obtained,

the polynomial solution of the parametric problem can be used as an effective model

for fuzzy PDEs.
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Finally, we briefly introduce the future work of the research, whose topic is epis-

temic uncertainty quantification using evidence theory. Here, we use the similar

methodology as we did in the previous work. And the convergence of the method

can be achieved once we have the L∞ convergence of the approximated solution,

while in chapter 3, we only need the Lp weighted norm convergence. In this way, the

motivation of finding a more flexible method is our future work.
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evidence,” Information Fusion, vol. 2, pp. 91–101, 2001.

[44] B. Tessem, “Approximations for efficient computation in the theory of evidence,”
Artificial Intelligence, vol. 61, no. 2, pp. 315–329, 1993.

[45] W. Liu, “Analyzing the degree of conflict among belief functions,” Artificial
Intelligence, vol. 170, pp. 909–924, 2006.

[46] L. Chen, W. Shi, Y. Deng, and Z. Zhu, “A new fusion approach based on distance
of evidences,” Journal of Zhejiang University SCIENCE, vol. 6A, no. 5, pp. 476–
482, 2005.

[47] W. Perry and H. Stephanou, “Belief function divergence as a classifier,” in Pro-
ceedings of the 1991 IEEE International Symposium on Intelligent Control, Ar-
lington, VA, 1991, pp. 280–285.

[48] F. Cuzzolin, “Two new bayesian approximations of belief functions based on
convex geometry,” IEEE Transactions on Systems, Man, and Cybernetics, Part
B: Cybernetics, vol. 37, no. 4, pp. 993–1008, 2007.



86

[49] T. Denœux, “Inner and outer approximation of belief structures using a hierarchi-
cal clustering approach,” Int. Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems, vol. 9, no. 4, pp. 437–460, 2001.

[50] A. Jousselme and P. Maupin, “Distances in evidence theory: Comprehensive
survey and generalizations,” International Journal of Approximate Reasoning,
vol. 53, pp. 118–145, 2012.

[51] D. Xiu and J. Shen, “Efficient stochastic Galerkin methods for random diffusion
equations,” J. Comput. Phys., vol. 228, pp. 266–281, 2009.



APPENDICES



87

A. CONVERGENCE OF GALERKIN SOLUTION FOR

ODE

We now present the convergence proof for the orthogonal polynomial Galerkin solution

for the ordinary differential equation (2.39). In fact, we consider a slightly more

general form of the problem

du

dt
= −α(X)u, u(0) = 1, (A.1)

where the coefficient α is bounded away from infinity

−∞ < αmin ≤ α(x) ≤ αmax. (A.2)

Let IX be the range of X and {Φj} be a set of orthogonal polynomials on IX∫
IX

Φi(s)Φj(s)w(s)ds = δi,j, (A.3)

where w is a weighted function in with inner product defined as

(f, g)w =

∫
IX

f(s)g(s)w(s)ds,

and norm ‖f‖w =
√

(f, f)w.

In Gelerkin method we seek an expansion

vN(t,X) =
N∑
j=0

v̂j(t)Φi(X), (A.4)

such that (A.1) is satisfied in a weak from, which is

(
dvN
dt

+ αvN ,Φk(X))w = 0, ∀k = 1, . . . , N. (A.5)

Straightforward derivation then gives us, for all k = 0, . . . , N ,

dv̂k
dt

= −
N∑
j=0

ajkv̂j, (A.6)
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where

ajk =

∫
IX

α(s)Φj(s)Φk(s)w(s)ds, (A.7)

and the initial condition becomes v̂k(0) = δ0,k One the other hand, for the exact

solution u(t,X) ∈ L2
w(IX), then we can define the project of u in to L2

w(IX) as

PNu(t,X) =
N∑
j=0

ûj(t)Φi(X), (A.8)

where ûj = (u,Φj(X))w. Obviously, PNu is the optimal in the ‖ · ‖w norm and

limN→∞ PNu = u. Assume that for some m > 1/2,

‖(PNu− u)(t)‖w ≤ CN−m‖u(t)‖Hm
w (IX) ∀t > 0, (A.9)

where the constant C does not depend on N . Note that the rate of convergence

depends on the regularity of u and the type of orthogonal polynomials {Φj}.

Theorem A.1. (Convergence). Suppose that the assumption (A.9) holds. The

Galerkin solution vN converges to the solution u of the (A.1). Moreover, if the so-

lution u(t,X) belongs to the weighted Sobolev space Hm
w (IX) for any t, there exists a

constant C, independent of N , such that

max
0≤t≤T

‖(vN − u)(t)‖w ≤ CN−m+1/2 max
0≤t≤T

‖u(t)‖Hm
w (IX). (A.10)

It is easy to verify that the coefficients ûk, k = 1, . . . , N satisfy

dûk
dt

= −
∞∑
j=0

ajkv̂j, k = 1, . . . ,∞. (A.11)

Proof. Let us define that

êk = v̂k − ûk, k = 1, . . . , N.

We then have
dêk
dt

= −
N∑
j=0

ajkêj +
∑
j>N

ajkûj. (A.12)
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Upon multiplying both sides by êk and taking a summation over k, we obtain

N∑
k=0

êk
dêk
dt

= −
N∑
k=0

N∑
j=0

êkajkêj +
N∑
k=0

∑
j>N

êkajkûj. (A.13)

Let eN(t, x) = vN − PNu. Naturally, we have ‖eN‖w =
∑N

k=0 ê
2
k. We now adopt

vector-matrix notation by defining

e = (ê1, . . . , êN)T , A = (ajk)0≤j,k≤N . (A.14)

Then, (A.13) can be written as

1

2

d

dt
‖e‖2 = −eTAe + eTr, (A.15)

where the norm is the vector 2-norm and ‖e‖ = ‖eN‖w, and r = (r̂0, . . . , r̂N)T with

the entries

r̂k =
∑
j>N

ajkûj, k = 0, . . . , N. (A.16)

Lemma A.2. Following the definitions of e and A and the condition (A.2),

eTAe ≥ αmin‖e‖2. (A.17)

Proof. Consider an arbitrary vector e and construct a function

q(s) = ê0 + ê1Φ1(s) + · · ·+ êNΦN(s). (A.18)

Obviously, q(s) is a polynomial and satisfies ‖q w| = ‖e‖.

eTAe =
∑N

j=0

∑N
k=0 êjajkêk

=
∑N

j=0

∑N
k=0

∫
α(s)êj êkΦj(s)Φk(s)ds

=
∫
α(s)q2(s)w(s)ds

≥ αmin‖q‖2w.

(A.19)

Substituting this result into (A.15), we obtain

d

dt
‖e‖ ≤ −αmin‖e‖+ ‖r‖. (A.20)
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We now analyze the term ‖r‖. Using the definition (A.16), we derive

r̂k =
∑∞

j>N ajkûj =
∑∞

j>N

∫
α(s)Φj(s)Φk(s)w(s)dsûj

=
∫
α(s)

∑∞
j>N ûjΦj(s)Φk(s)w(s)ds

=
∫
α(s)(u− PNu)Φk(s)w(s)ds

. (A.21)

Then, it follows that

‖r‖ = (
∑N

k=0 r̂
2
k)

1/2 = (
∑N

k=0(
∫
α(s)(u− PNu)Φk(s)w(s)ds)2)1/2

≤ (
∑N

k=0 ‖u− PNu‖2w‖αΦk‖2w)1/2

αmax
√
N + 1‖u− PNu‖w , β(N, t)

, (A.22)

where the Cauchy-Schwartz inequality and the orthonormal property of the basis are

used. Note that for m > 1/2, β(N, t) → 0 as N → ∞ for all t due to (A.8). And

from (A.20 and A.21), we obtain

d

dt
‖e‖ ≤ −αmin‖e‖+ β(N, t). (A.23)

The Gronwall inequality then leads to

‖e(t)‖ ≤ exp−αmint ‖e(0)‖+

∫ t

0

exp−αmin(t−s) β(N, s)ds. (A.24)

An application of the triangle inequality implies

w‖vN − u‖w ≤ ‖vN − PNu‖w + ‖PNu− u‖w. (A.25)

and the convergence theorem is then established for N → ∞ by using (A.8), (A.21)

and ‖e(0)‖ = 0.

It is trivial to see that the same convergence result holds true for the case of

‖e(0)‖ 6= 0 but converges at the same rate of the projection error ‖u− PNu‖w. This

corresponds to the case of (A.1) with a random initial condition u0(X) that is ap-

proximated by its orthogonal projection PNu0. Correspondingly the initial conditions

become v̂k(0) = (u0,Φk)w, fork = 0, . . . , N . This is the typical procedure in prac-

tice.
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B. CONVERGENCE OF GALERKIN SOLUTION FOR

TIME-DEPENDENT DIFFUSION EQUATION

Let D is a bounded and convex domain with piecewise smooth boundary and y is an

uncertainty in Ω, assume that Ω = Iz, where Iz is the range of the random variables

y ∈ Rd. We consider the following partial differential equations modeling flows in

porous media, which is the stochastic diffusion equation, where v is a stochastic

function.(v : D̄ × [0, T ]× Ω→ R).


∂u
∂t
−∇ · (kd(x, z)∇u) = f(x, t, z), x ∈ D ⊂ Rn, t ∈ [0, T ], z ∈ Iz,

u(x, t, z) |∂D= 0, t ∈ [0, T ], z ∈ Iz,

u(x, 0, z) = u0(x, z), x ∈ D̄ ⊂ Rn, z ∈ Iz.

(B.1)

Assume that the random diffusive coefficient has the form

k(x, z) = k0(x) +
d∑
i=1

ki(x)zi, for all x ∈ D, a.e. (B.2)

where {ki}di=0 are fixed functions with k0 > 0. Alternatively (B.2) can be written

as

k(x, z) =
d∑
i=0

ki(x)zi, for all x ∈ D, a.e. (B.3)

where z0 = 1.

For well-posedness we require

kmax ≥ k(x, z) ≥ kmin > 0, for all x ∈ D, y ∈ Iz, (B.4)

and ∫
[0,T ]×D

f 2(x, t, s)dxdt < +∞ for all s ∈ Iz. (B.5)
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Such a requirement obviously excludes random vector y that is unbounded below, e.g.

Gaussian distribution. Throughout the paper we will only consider random variables

that are bounded from below.

And also, for any fixed random z ∈ Iz, (B.1) is a deterministic partial differential

equation, and we recall the notion of the weak solution for the deterministic partial

differential equation: we say that v(x, t, y) is a weak solution if it satisfies the initial

condition, u(x, 0, z) = u0 at t = 0, and u ∈ L2(0, T ;H1
0 (D)), ∂t(v) ∈ L2(0, T ;H1

0 (D)),

and a.e. in [0, T ]∫
D

∂tvwdx+

∫
D

(k(x, y)∇u · ∇w)dx =

∫
D

fwdx, for all w ∈ H1
0 (D). (B.6)

By means of energy estimation, assumptions (B.4) and (B.5), there exists a unique

solution v ∈ L2(0, T,H1
0 (D)), and the following estimate holds

‖v(T )‖2L2(D) + kmin‖u‖2L2(0,T ;H1
0 (D)) ≤

C2
D

kmin
‖f(x, t, y)‖2L2([0,T ]×D) + ‖u0‖2L2(D), (B.7)

where CD is the poincare constant satisfying ‖u‖L2(D) ≤ CD‖∇u‖L2(D), for all v ∈

H1
0 (D).

Let {φi}∞1 be d-variate orthonormal Polynomials with weight function ρ(ξ). Define

the tensor product Hilbert Spaces

Hk(D)
⊗

L2(Iz,F , ρ) := {v = v(x, ξ);

∫
Iz

‖v(x, ξ)‖2Hk(D)ρ(ξ)d(ξ) <∞}

equipped with the norm

|‖v‖|k :=
√∫

Iz
‖v(x, ξ)‖2

Hk(D)
ρ(ξ)dξ.

Since {Φm(Z)}∞m=1 be an orthonormal basis with weight ρ(ξ) in space Iz, we can

write v(x, ξ) =
∑∞

i=1 vi(x)Φi(ξ), and v ∈ Hk(D)⊗ L2(Iz,F , ρ) if and only if

∞∑
i=1

‖vi‖2Hk(D) <∞, and |‖v‖|k,D,Iz =

√√√√ ∞∑
i=1

‖vi‖2Hk(D)
<∞. (B.8)

Thus we can identify v ∈ Hk(D)⊗L2(Iz,F , ρ) with V = (v1, v2, · · · ) ∈ Hk(D), where

Hk(D) := {V = (v1, v2, · · · ),
∞∑
i=1

‖vi‖2Hk(D) <∞},
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with ‖|V |‖k,D,Iz defined the same as in ‖|v(x, ξ)|‖k. In what follows, we shall not

distinguish Hk(D)⊗ L2(Iz,F , ρ) from Hk(D).

Note: In order to simplify the notation, we denote that ‖|V |‖ =
√∑∞

i=1 ‖vi‖2L2(D).

Assume that u, u0 and f have the following GPC expansions.

u(x, t, z) =
∞∑
i=1

ui(x, t)φi(z). (B.9)

u0(x, z) =
∞∑
i=1

u0i (x)φi(z). (B.10)

f(x, t, z) =
∞∑
i=1

fi(x, t)φi(z). (B.11)

Then (B.1) is equivalent to
∂ui(x,t)
∂t
−
∑∞

i=0∇ · (aij∇ui) = fj, x ∈ D ⊂ Rn, t ∈ [0, T ], j = 1, 2, · · · ,

uj(x, t) |∂D= 0, t ∈ [0, T ],

uj(x, 0) = u0j , x ∈ D̄ ⊂ Rn,

(B.12)

where aij(x) =
∑d

l=0 kl(x)E(zlφiφj).

Denote

A = (aij(x)),

U = (u1(x, t), u2(x, t), · · · ),

U0 = (u01, u
0
2, · · · ),

F = (f1(x, t), f2(x, t), · · · ).
Alternatively, (B.12) can be written as

∂U
∂t
−∇ · (A∇U) = F, x ∈ D ⊂ Rn, t ∈ [0, T ],

U(x, t) |∂D= 0, t ∈ [0, T ],

U(x, 0) = U0, x ∈ D̄ ⊂ Rn.

(B.13)

On the other hand, the Pth-order, gpc approximations of u(x, t, z), u0(x, z) and

f(x, t, z) are

u(x, t, z) ≈
N∑
i=1

ûi(x, t)φi(z), u0(x, z) ≈
N∑
i=1

u0jφi(z), f(x, t, z) ≈
N∑
i=1

fi(x, t)φi(z).

(B.14)
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Substituting (B.14) in to (B.1) and projecting the result equation onto the sub-

space spanned by the first N gPC basis polynomials, we obtain for


∂ûi(x,t)
∂t
−
∑N

i=0∇ · (aij∇ûi) = fj, x ∈ D ⊂ Rn, t ∈ [0, T ], j = 1, 2, · · · , N

ûj(x, t) |∂D= 0, t ∈ [0, T ],

ûj(x, 0) = u0j , x ∈ D̄ ⊂ Rn,

(B.15)

where aij(x) =
∑d

l=0 kl(x)E(zlφiφj) 1 ≤ i, j ≤ N .

Definite finite dimensional subspaces PN(D) , as follow.

Hk(PN(D)) := {V = (v1, v2, · · · ),
N∑
i=1

‖vi‖2Hk(D) <∞},

where

vm = 0, ∀ |m| > N.

Alternatively, the GPC approximation to the solution u is to find UN ∈ Hk(PN(D))

such that
∂UN

∂t
−∇ · (AN(x)∇UN(x)) = FN(x, t), x ∈ D ⊂ Rn, t ∈ [0, T ],

UN(x, t) |∂D= 0, t ∈ [0, T ],

UN(x, 0) = UN
0 , x ∈ D̄ ⊂ Rn,

(B.16)

where

AN = (aij),

FN = (f1, · · · , fN , · · · ),

UN
0 = (u01, · · · , u0N , · · · ).

Here aij = 0 ∀ |i| > N, or|j| > N , and fm = 0, ∀ |m| > N .

The following proposition is refer from [51].

Lemma B.1. Assume that zi are independent beta distributions or exponential dis-

tributions. Then A is a diagonally dominant matrix. In fact, we have that

aii ≥ kmin +
∞∑

j=1,j 6=i

|aij|, i = 1, 2, · · · .
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Lemma B.2. Assume that a symmetric M ×M matrix A = (ai,j) satisfies

aii ≥ k +
∞∑

j=1,j 6=i

|aij|, i = 1, 2, · · · ,M (B.17)

and set

D̂ = diag(A), A = D̂ + S. (B.18)

Then,

2|utSv| ≤ ut(D̂ − kI)u+ vt(D̂ − kI)v, for all u, v ∈ RM (B.19)

and

kminu
tu ≤ utAu ≤ kmaxu

tu, for all u ∈ RM . (B.20)

Theorem B.3. Let U be the solution to (B.13) and UN the solution the the gpc

approximation (B.16). Denote that that W be the projection of U in to the space

Hk(PN(D)), then we can get

1
2
‖|(U − UN)(T )|‖2 + kmin

2

∫ T
0
‖|∇(U − UN)|‖2dt

≤ ‖|(U −W )(T )|‖2 + (k
2
max

kmin
+ kmin)

∫ T
0
‖|∇(U −W )|‖2dt

+
C2
D

kmin

∫ T
0
‖|∂t(W − U)|‖2dt.

(B.21)

Proof. Taking the inner product, with respect to x in L2(D), of (B.13) with W −UN

and integration by parts.

we have

(
∂U

∂t
, (W − UN)) + (A(x)∇U,∇(W − UN)) = (F,W − UN). (B.22)

Similarly, apply it to (B.16),

(
∂UN
∂t

,W − UN) + (AN(x)∇UN ,∇(W − UN)) = (FN ,W − UN), (B.23)

we know that

(AN(x)∇UN ,∇(W − UN)) = (A(x)∇UN ,∇(W − UN)), then, (B.24)

(
∂UN
∂t

,W − UN) + (A(x)∇UN ,∇(W − UN)) = (FN ,W − UN). (B.25)



96

Subtracted (B.22) by (B.25) , we get

(
∂U − UN

∂t
,W − UN) + (A(x)∇(U − UN),∇(W − UN)) = 0. (B.26)

Also, we have

(∂(W−UN )
∂t

,W − UN) + kmin‖|∇(W − UN)|‖2

= (∂(W−UN )
∂t

,W − UN) + kmin(∇(W − UN),∇(W − UN))

= (∂(W−U)
∂t,

W − UN) + (∂(U−UN )
∂t

,W − UN)

+kmin(∇(W − UN),∇(W − UN))

≤ (∂(W−U)
∂t

,W − UN) + (∂(U−UN )
∂t

,W − UN)

+(A∇(W − UN),∇(W − UN)))

= (∂(W−U)
∂t

,W − UN) + (∂(U−UN )
∂t

,W − UN)

+(A∇(U − UN),∇(W − UN))) + (A∇(W − U),∇(W − UN))).

(B.27)

by (B.26), we have

(∂(W−UN )
∂t

,W − UN) + kmin‖|∇(W − UN)|‖2

≤ (∂(W−U)
∂t

,W − UN) + (A∇(W − U),∇(W − UN))).
(B.28)

Now estimate the terms in above

(∂(W−U)
∂t

,W − UN) ≤ ‖|∂(W − U)|‖‖|W − UN |‖

≤ CD‖|∂t(W − U)|‖‖|∇(W − UN)|‖,

and

(A∇(W − U),∇(W − UN))) ≤ kmax‖|∇(W − U)|‖‖|∇(W − UN)|‖.

Then apply the inequality ab ≤ a2

2ε
+ εb2

2
and integral from 0 to T , we have

1
2
‖|(W − UN)(T )|‖2 + kmin

2

∫ T
0
‖|∇(UN −W )|‖2dt

≤ C2
D

kmin

∫ T
0
‖|∂t(W − U)|‖2dt+ k2max

kmin

∫ T
0
‖|∇(W − U)|‖2dt.

(B.29)

So, by triangle inequality

1
2
(‖|(U − UN)(T )|‖2 + kmin

∫ T
0
‖|∇(U − UN)|‖2dt)

≤ ‖|(W − UN)(T )|‖2 + kmin
∫ T
0
‖|∇(W − UN)|‖2dt

+‖|(U −W )(T )|‖2 + kmin
∫ T
0
‖|∇(U −W )|‖2dt.

(B.30)
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In this way, we have

1
2
‖|(U − UN)(T )|‖2 + kmin

2

∫ T
0
‖|∇(U − UN)|‖2dt

≤ ‖|(U −W )(T )|‖2 + (k
2
max

kmin
+ kmin)

∫ T
0
‖|∇(U −W )|‖2dt

+
C2
D

kmin

∫ T
0
‖|∂t(W − U)|‖2dt.

(B.31)
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