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ABSTRACT 

Hockemeyer, Kurt R. M.S., Purdue University, August 2014. Spatial and temporal 
distribution of fungicides applied to creeping bentgrass. Major Professor: Richard Latin. 
 
 

Turf managers often rely on fungicides to limit damage caused by root diseases. Since 

fungicides do not move basipetally, they are effective only when fungitoxic 

concentrations are delivered to the rhizosphere (Latin, 2011). This research focused on 

the distribution of modern fungicides in verdure, thatch, sand, and roots of creeping 

bentgrass (Agrostis stolonifera L. var. palustris (Huds.) Farw.) maintained as a putting 

green.  Fungicides (azoxystrobin (methyl (E)-2-[2-[6-(2-cyanophenoxy)pyrimidin-4-

yloxy]phenyl]-3-methoxyacrylate), propiconazole (1,2,4-Triazole, 1-((2-(2,4-

dichlorophenyl)-4-propyl-1,3-dioxolan-2-yl)methyl), pyraclostrobin (carbamic acid, [2-

[[[1-(4-chlorophenyl)-1H-pyrazol-3-yl]oxy]methyl]phenyl]methoxy-,methyl ester), and 

thiophanate-methyl (dimethyl 4,4’-o-phenylenebis[3-thioallophanate]) were applied to 

replicate field plots in a water volume of 815 L ha-1. Plots were sampled over time (0, 3, 

7, 10, 14, 17, 21 days after application) by extracting cores measuring 2 cm diameter by 

3.8 cm deep. Cores were separated into verdure/thatch, sand, and roots before 

quantitative determination (liquid chromatography, triple quadrupole mass spectrometry) 

of fungicide residues. Fungicide residues in verdure/thatch declined steadily with time 

and support previously reported results describing fungicide depletion. Fungicides were 
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detected in roots and sand within 5 hours of application, although at very low (1-15 ppm) 

concentrations. Residues in roots and sand remained at low levels throughout the 

experiment. Fungicides differed with respect to amounts recovered per turfgrass 

component.   
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CHAPTER 1. LITERATURE REVIEW 

1.1 Introduction 

Turfgrasses are affected by numerous infectious diseases, primarily fungal, 

that result in structural and cosmetic damage.  Although there are a variety of non-

chemical options often employed to reduce effects of fungal pathogens, synthetic 

fungicides offer the most effective and consistent solutions to limiting turfgrass 

disease (Turgeon, 1991).  Fungicide persistence in the environment plays an integral 

role in the performance of that fungicide.  Root diseases, including take all patch 

(caused by Gaeumannomyces graminis (Sacc.) Arx. & D. Olivier var. avenae (E.M. 

Turner) Dennis) and summer patch (caused by Magnaporthe poae Landschoot & 

Jackson) are particularly difficult to control.  At one time, fungicides were thought to 

move from leaves to roots, where they would suppress existing fungal infections and 

protect roots from new infections.  More recent information on the kinetics of 

fungicide mobility show that few antifungal compounds have basipetal mobility.  

Furthermore, none of these basipetal penetrant fungicides are effective against 

important root diseases of Poa and Agrostis species (Latin, 2011).  This review will 

focus on fungicides and their use for root disease control, and on fungicide mobility 

and persistence in a turfgrass environment.
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1.2 Fungicides 

Based on phytomobility, fungicides are classified as either contacts, local 

penetrants, acropetal penetrants, or systemic penetrants.  Contact fungicides were 

among the first fungicides developed.  They are not absorbed into plant tissues but 

form a protective layer on the outside of leaves and other plant parts.  Redistribution 

may occur from rain, dew, or irrigation water moving fungicide deposits.  Contact 

fungicides typically have multisite modes of action and provide the shortest 

protection interval (7-14 days).  Local penetrants are absorbed into the plant and have 

an affinity for the waxy cuticle layer located on the outside of the turf leaf blade.  

Therefore a fungicide deposit on one side of a leaf will transfer through the leaf blade 

to the other side of the leaf.  This mobility is described as translaminar movement.  

Acropetal penetrants are xylem mobile fungicides.  Xylem is the water conducting 

tissue of plants and water is taken in through roots and exits from leaves through 

evapotranspiration.  Therefore, these fungicides that are xylem mobile will be 

upwardly mobile, hence the name acropetal.  Systemic penetrants represent 

fungicides that are truly systemic, moving both up and down the plant.  These 

fungicides follow the carbohydrate gradient in phloem cells.  There are few systemic 

penetrants and they are ineffective against many pathogens.   

According to Latin (2011) fungicide performance is based on three factors: 

use of an effective active ingredient, a fungitoxic concentration of the effective 

fungicide coming into contact with the pathogen, and adequate persistence in the 

turfgrass-soil environment.  Since effective fungicides are not downwardly mobile, 
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and because root pathogens are located in thatch and soil, disease control can only be 

achieved by ensuring delivery of active ingredients to the rhizosphere where they will 

act on the active fungal community. 

1.3 Fungicide mobility 

 The verdure and thatch layers in a turfgrass sward represent the largest 

barriers to delivery of fungicides to the rhizosphere.  Thatch is a strongly intermixed 

layer of living and dead stems, leaves, and roots of grass that occurs naturally 

between the verdure and soil surface (Hurto et al., 1980).  Much research has been 

conducted on the mobility of fungicides and other pesticides in a turfgrass system in 

the context of environmental fate.  Schumann et al. (2000) tested three different 

fungicide delivery systems for their ability to transfer active ingredients below 

verdure and thatch to roots.  They were not able to detect fungicides in roots in any 

appreciable amount and no fungicides were detected below 5.1 cm of soil.  Wu et al. 

(2002)  investigated two fungicides, chlorothalonil and metalaxyl, for their mobility 

in a putting green in southern California.  Residues were mainly detected in the upper 

10 cm of soil.  They attributed these results to the high organic carbon content found 

in thatch.  Another study directly compared mobility of cyproconazole in bare soil 

and in turf containing different levels of thatch (Gardner et al., 2000).  This study 

indicated that increasing the amount of thatch decreased the amount of cyproconazole 

that reached soil.  Even when 67% of thatch was removed, no cyproconazole residues 

were detected below 5 cm.  A similar study by Gardner and Branham (2001) 

evaluated turfgrass cover and irrigation regime on the mobility of mefenoxam and 
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propiconazole.  The presence of turfgrass cover drastically reduced the movement of 

fungicide residues into the soil.  Dell et al. (1994) conducted sorption studies for 

triadimefon, vinclozolin, and chloroneb in thatch and soil.  They were able to show 

that thatch drastically increased the sorption of fungicides.  The increased sorption 

correlates to a lower potential for fungicides in turf to migrate off site.  Horst et al. 

(1996) evaluated four pesticides for their mobility in a Kentucky bluegrass fairway.  

Thatch typically contained the highest amount of residues detected while soil held on 

average 58% less residues on all sampling days.  A majority of soil residues were 

detected in the top 10 cm.  Frederick et al. (1996) were also able to show that very 

little vinclozolin residues infiltrated below verdure and thatch and no residues were 

detected below 4 cm.  The consensus of these studies is that turfgrass cover (verdure 

and thatch) intercepts and retains a large portion of pesticide residues and allows very 

little residues to infiltrate into soil.  Once fungicides are applied to turf, they are 

subject to a myriad of dissipation processes that affect persistence. 

1.4 Fungicide persistence in verdure and thatch 

 The third factor in determining fungicide performance is persistence in the 

environment (Latin, 2011).  As discussed in the previous section, verdure and thatch 

are capable of significantly reducing the amount of pesticides that reach the roots and 

soil and therefore persistence in these components is important in determining 

fungicide performance against root diseases.  Daniels and Latin (2013) evaluated the 

residual efficacy of fungicides against brown patch by bioassay and quantitative 

analysis.  The bioassay revealed a rapid decline in residual efficacy within 10 days of 
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application.  Quantitative analysis of residues in verdure reinforced bioassay results 

by revealing very rapid dissipation of residues.  Reported half-lives in verdure were 

1.0, 2.2, 1.6, and 2.4 days for azoxystrobin, flutolanil, metconazole, and 

pyraclostrobin, respectively.  Sigler et al. (2003) evaluated dissipation of three 

fungicides from verdure.  Reported half-lives of triadimefon, metalaxyl, and 

iprodione were 3.3, 3.7, and 3.6 days, respectively.  Horst et al. (1996) reported the 

half-lives of metalaxyl, pendimethalin, chlorpyrifos, and isazofos in a Kentucky 

bluegrass fairway to be 16, 12, 10, and 7 days, respectively.  These values are lower 

than half-lives of these pesticides in agricultural soils.  The half-lives of three 

fungicides in bare soil versus a bentgrass turf were evaluated by Gardner et al. (2000) 

and Gardner and Branham (2001).  Cyproconazole, propiconazole, and mefenoxam 

had half-lives of 129, 29, and 7-8 days in bare soil, respectively.  The addition of turf 

cover decreased these values to 12, 12-15, and 5-6 days.  Half-lives of metalaxyl and 

chlorothalonil have been reported as 2.7 and 5.6 days in thatch and 1.4 and 4.9 days 

in verdure (Wu et al., 2002).  Liu and Hsiang (1996) monitored the in vitro 

degradation of carbendazim in thatch using a bioassay and estimated half-life at 17.5 

days.  The degradation rates of two herbicides were significantly faster in Kentucky 

bluegrass thatch than in soil (Hurto et al., 1979).  These studies support the idea of 

faster degradation in turf than in soil.  Conversely some research supports the concept 

of faster degradation in soil.   

 According to Magri and Haith (2009) pesticide degradation due to microbial 

activity in thatch is expected to be higher than in agricultural soils.  This is due to 

highly active microbial populations and repeated applications of pesticides to turf.  
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Repeated applications of pesticides have been studied in soils, and the enhanced 

biodegradation phenomenon has often been observed (Chapman et al., 1986; Slade et 

al., 1992; Walker et al., 1986).  The theory behind enhanced biodegradation is that 

microbes that are able to degrade the pesticide being applied become a much larger 

part of the population with each repeated application, therefore persistence decreases 

with each application.  Frederick et al. (1996) determined that a rapid decline in 

vinclozolin residues in verdure and thatch after repeated applications was due to 

enhanced biodegradation.  Conversely, Sigler et al. (2003) refuted their own 

hypothesis that repeated applications would result in enhanced biodegradation in the 

verdure.  Sigler et al. (2000) stated that microbial degradation in the canopy is slower 

than in soil due to the inhospitable microbial environment.  The canopy is exposed to 

high amounts of UV light and extreme changes in free water which are not conducive 

to high microbial activity.  Another study reveals slower dissipation values in thatch 

and grass clippings than in soil for chloroneb, triadimefon, and vinclozolin (Frederick 

et al., 1994).   

 Daniels and Latin (2013) reported very rapid dissipation of fungicides in 

verdure alone.  Residue half-lives were 1.0, 2.4, 2.2, and 1.6 days for azoxystrobin, 

pyraclostrobin, metconazole, and flutolanil, respectively.  Sigler et al. (2003) reported 

that even though large numbers of microorganisms populate the turf leaf surface 

(~108 g-1 dr wt leaf), microbial degradation plays a less important role in the 

fungicide’s fate.  Instead they concluded that a two-stage physical sorption process is 

the major reaction pathway that controls the fate of fungicides.  Sigler et al. (2003) 

reported half-lives in the turfgrass canopy for triadimefon, metalaxyl, and iprodione 
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as 3.3, 3.7, and 3.6 days, respectively.  These rapid dissipation values are comparable 

to the values reported by Daniels and Latin (2013) and suggest rapid microbial 

degradation.  Their work showed little microbial mineralization of 14C-labeled 

fungicides, only 1-2%.  Instead they were able to show that after 24 hours 97, 65, and 

80% of applied metalaxyl, triadimefon, and vinclozolin became unextractable from 

the leaf surface.  Rapid verdure dissipation is more likely a result of many dissipation 

processes working in unison to remove or degrade residues of pesticides, including 

microbial degradation, leaf surface partitioning, clipping removal, photolysis, 

volatilization, etc. 

1.5 Fungicide persistence in soil 

 Persistence of fungicides in soil is important in determining fungicide fate.  

Fungicide persistence has been studied in agricultural and turf soils.  Singh and 

Dureja (2009) investigated the effect of biocompost soil amendment on the 

degradation of penconazole and propiconazole.  Half-lives were 41.2 and 73.4 days 

for penconazole and propiconazole, respectively.  Flooding soils increased half-lives 

to 57.9 and 91.2 days.  Mixing biocompost at 5% with soil increased degradation and 

decreased half-lives to 30.1 and 51.9 days.  The dissipation of azoxystrobin, a 

relatively new fungicide, has been monitored in a sandy loam soil (Ghosh and Singh, 

2009).  Azoxystrobin dissipated faster under anaerobic conditions, with reported half-

lives of 107 and 63 days for aerobic and anaerobic conditions, respectively.  

Amending soil with compost enhanced degradation to half-lives of 73 and 39 days.  

Azoxystrobin also degraded through photolysis, but photolysis degradation was faster 
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in ultraviolet light than in sunlight.  They determined that soil serves as a screen and 

protects azoxystrobin from photolysis.  The effects of different soil characteristics on 

the degradation of another relatively new fungicide, pyraclostrobin, have been studied 

(Reddy et al., 2013).  Like azoxystrobin, pyraclostrobin dissipation is faster under 

anaerobic conditions (10 days vs 28.7 days).  Sludge amended soil resulted in faster 

dissipation of pyraclostrobin with a half-life of 9.2 days.  Thom et al. (1997) 

investigated the dissipation of difenoconazole in soils.  Adding an organic 

amendment to soil increased dissipation, with half-life values dropping from 46 days 

to 15 days.  Thiophanate-methyl has been shown to dissipate very quickly in soils 

(Fleeker et al., 1974).  Five days after an application 80-90% of thiophanate-methyl 

residues had dissipated.  Thiophanate-methyl degrades mainly into one metabolite, 

carbendazim.  This metabolite has fungicidal properties and is the main reason why 

thiophanate-methyl is used as a fungicide.  Carbendazim half-life was reported as 28 

days in soil, slower than in thatch (Liu and Hsiang, 1994).  Frederick et al. (1994) 

determined that lab incubations of turf soil, thatch, and grass clippings resulted in 

fastest dissipation occurring in soil.  Gardner et al. (2000) and Gardner and Branham 

(2001) directly compared bare soil and turf cover dissipation values and found that 

bare soil half-lives were higher than turf half-lives.  These studies generally show that 

soil dissipation values are slower and adding organic matter to soils increases 

dissipation rates.  Turf thatch and soils are generally very high in organic matter and 

perhaps this explains why dissipation is faster in a turf environment. 
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1.6 Root diseases 

 Prior to 1984 there was only one member of the ectotrophic root-infecting 

fungi group that was recognized as a pathogen of turfgrass in North America.  Since 

then there have been a number of advancements of knowledge within this group 

(Clarke and Gould, 1993).  Today there are five disease associations within this 

group.  Take-all patch of creeping bentgrass caused by the pathogen 

Gaeumannomyces graminis var. avenae was the first member of this group.  This 

pathogen affects many grass species but bentgrasses are the most susceptible.  Spring 

dead spot of bermudagrass is caused by the pathogens Ophiosphaerella korrae and O. 

herpotricha.  Bermudagrass decline is caused by the pathogen Gaeumannomyces 

graminis var. graminis.  Necrotic ring spot is caused by the pathogen Leptosphaeria 

korrae and affects bluegrass species.  It was originally described as Fusarium blight, 

but after decades of research it became apparent that a combination of diseases had 

been placed under the name Fusarium blight.  Summer patch was the second disease 

that was segregated from the Fusarium blight misnomer.  Summer patch is caused by 

the pathogen Magnaporthe poae and is another serious disease of bluegrasses and 

fine fescues (Smiley, 1993).  These diseases are difficult to control and among the 

most destructive because of the limited availability of disease resistant germplasm, 

poor understanding of pathogen biology, lack of field studies that examine the effects 

of cultural practices on disease severity, and inconsistent control with fungicides 

(Dernoeden, 1993) 
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 Management of root diseases with fungicides is a very common practice 

because of the low tolerance for damage on turf playing surfaces.  But much of the 

research available on fungicidal control of root diseases is contradictory.  Gregos and 

Jung (2003) found the active ingredients pyraclostrobin and azoxystrobin provided 

excellent control of take-all patch in colonial bentgrass, triadimefon provided 

acceptable control, and propiconazole treatments were not acceptable.  This study 

suggests that strobilurin fungicides, azoxystrobin and pyraclostrobin, provide 

excellent control of take-all patch, despite these two fungicides having differing 

phytomobilities.  Their results also suggest that DMI fungicides, triadimefon and 

propiconazole, are not as efficacious for take-all patch control.  In a later study for 

curative control of take-all patch, McDonald et al. (2007) reported that control was 

best achieved with applications of azoxystrobin, tebuconazole, or a combination 

product of azoxystrobin and propiconazole.  Pyraclostrobin treatments still showed 

damage after most other treatments were completely void of symptoms.  This study 

contradicts the other by showing that a DMI can provide excellent control of this root 

disease and that pyraclostrobin did not provide excellent control.  The first study was 

a preventative study while the second was a post outbreak study and this difference 

may have accounted for discrepancies in control.  From 1999 to 2011 seven studies 

from Plant Disease Management Reports and Fungicide & Nematicide Tests 

evaluated fungicide applications for their efficacy against summer patch (Earlywine 

and Miller, 2012; Majumdar et al., 2000; Mitkowski and Boesch, 2006; Soika and 

Tredway, 2010a; Soika and Tredway, 2010b; Vincelli et al., 2004; Wong and Corza, 

2005).  In these seven studies, four described azoxystrobin as providing acceptable 
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control while one showed azoxystrobin treatments were not significantly better than 

no fungicide check treatments.  Two studies described their pyraclostrobin treatments 

or treatments in combination with pyraclostrobin as providing excellent control.  One 

study indicated that pyraclostrobin improved turf quality slightly while another 

showed unacceptable control of summer patch.  Three studies resulted in 

propiconazole providing the best control or one of the best.  One study evaluated 

propiconazole as providing less control.  Two studies described thiophanate-methyl 

as offering good to excellent suppression of summer patch symptoms, while two 

other studies showed thiophanate-methyl provided some but not acceptable control.  

These are just a few examples of studies evaluating fungicidal control of root diseases 

and the discrepancies found therein.  There are many differences among these seven 

studies including application volume, application interval, fungicides evaluated, 

evaluation criteria, first application date, etc.  These many differences complicate the 

task of directly comparing results.  The point of this discussion is to highlight the 

inconsistencies observed when attempting to control root diseases with fungicides.   

 When considering the barriers to delivering fungicides to the turf rhizosphere 

and the rapid dissipation that occurs in a turf environment, it is not surprising that 

results of fungicide applications can be so inconsistent.  To better understand these 

inconsistencies, a determination of the spatial distribution of fungicides on high value 

turf must be conducted, including roots of turfgrass.  Observing the dissipation of 

these fungicides over time may also help in understanding control of root diseases 

with antifungal compounds. 
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CHAPTER 2. SPATIAL AND TEMPORAL DISTRIBUTION OF FUNGICIDES 
APPLIED TO CREEPING BENTGRASS 

2.1 Introduction 

Root diseases such as take all patch (caused by Gaeumannomyces graminis (Sacc.) 

Arx. & D. Olivier var. avenae (E.M. Turner) Dennis) and summer patch (caused by 

Magnaporthe poae Landschoot & Jackson) cause serious cosmetic and structural damage 

to intensively managed turf on golf courses.  Compared to healthy roots, those impaired 

by infection are less able to sustain plant growth under periods of heat and drought 

stress—common occurrences in the Midwestern United States.  Golf course 

superintendents often employ a variety of stress-relieving cultural practices in order to 

mitigate effects of disease (Dernoeden, 1993).  However, because of extremely low 

damage tolerance on fine turf, they often rely on fungicides to limit infection and reduce 

the likelihood of unacceptable damage to playing surfaces. 

Although numerous antifungal compounds are registered for use on turfgrass against 

root diseases, fungicide application does not assure successful disease control (Latin, 

2011).  Fungicides are applied to the verdure—green leaves and stems—while root 

pathogens inhabit the thatch and rhizosphere.  Furthermore, compounds effective against 

root pathogens are xylem-mobile or translaminar, and therefore, are not transported to 

roots through the plant.  Instead, they must move below the verdure in order to intercept
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pathogen growth in and around plant roots.  Delivery of effective compounds into thatch 

and rhizosphere is usually facilitated by supplemental irrigation following the 

application, and/or increasing the water carrier volume of the application.  Based on the 

archive published in Plant Disease Management Reports, chemical control of root 

diseases such as summer patch and take-all patch remains inconsistent, despite applying 

effective fungicides accompanied by a variety of efforts to improve the likelihood of 

success. 

Understanding the spatial and temporal distribution of fungicides in creeping 

bentgrass turfgrass may help explain inconsistencies in fungicide performance against 

root diseases.  Early research was conducted in the context of environmental fate of 

pesticides, including fungicides.  Thom et al. (1997) examined the effects of pretreatment 

and organic amendment on the degradation of difenoconazole.  Horst et al. (1996) 

monitored the vertical movement and dissipation of pendimethalin, chlorpyrifos, 

isazofos, and metalaxyl.  Sorption studies were conducted for the fungicides triadimefon, 

vinclozolin, and chloroneb in thatch and soil (Dell et al., 1994).  Frederick et al. (1994) 

observed the degradation of chloroneb, triadimefon, and vinclozolin in soil, thatch, and 

grass clippings under laboratory conditions.  Gardner et al. (2000) directly compared the 

effects of varying levels of turfgrass cover on the dissipation and mobility of 

cyproconazole.  Gardner and Branham (2001) studied the effects of turfgrass cover and 

irrigation regime on the mobility and dissipation of mefenoxam and propiconazole.    Liu 

and Hsiang (1996) estimated degradation of benzimidazole residues in thatch and 

turfgrass clippings by bioassay.  Wu et al. (2002) evaluated chlorothalonil and metalaxyl 
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for their persistence and fate in a bentgrass putting green.  Schumann et al. (2000) 

conducted a study on fungicide delivery to control root diseases.  They compared new 

delivery systems for their ability to transfer fungicides below thatch and into roots.   For 

all of the aforementioned published reports, results and conclusions support the concept 

of a rapid decline in residues in the verdure, almost no accumulation in the soil and roots, 

and a significant accumulation in thatch.  Daniels and Latin (2013) were among the first 

to explore fungicide dissipation in terms of potential for foliar disease control.  They used 

a bioassay as well as a quantitative approach to correlate reductions in fungicide residue 

with fungicide performance against brown patch, a foliar disease of amenity turf such as 

creeping bentgrass. 

The research reported here focused on different components (verdure/thatch, roots, 

and sand substrate) of bentgrass turf, and examined distribution of modern fungicides.  

The objective was to investigate where fungicides (especially modern fungicides) 

accumulated and how long they remained on site. 

2.2 Materials and Methods 

2.2.1 Field experiments 

Field plots were located on a sward of a mature mixture of ‘Penncross’ and 

‘Backspin’ creeping bentgrass on a sand based rootzone at the William H. Daniel 

Turfgrass Research and Diagnostic Center in West Lafayette, IN.  Experiments to refine 

sampling and extraction techniques were conducted in 2011 and 2012 (Figures 8-13).  

Two comprehensive runs of the experiment were completed during summer 2013.  
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Maintenance practices for this site were standard for a creeping bentgrass putting green in 

the Midwest.  The site was mowed with a triplex reel mower 5 days per week at a height 

of 0.343 cm with the clippings collected.  Irrigation was applied in a supplemental 

manner to avoid drought stress.  Fertilizer was applied to provide 147 kg nitrogen ha-1 yr-

1, 27 kg phosphorous ha-1 yr-1, and 68 kg potassium ha-1 yr-1.  Aerification was performed 

once in the spring and once in the fall using 1.27 cm hollow tines at 5 x 5 cm spacing.  

After aerification, the greens were verticut twice and topdressed with sand.  Prior to the 

application of experimental treatments, boscalid (3-pyridinecarboxamide, 2-chloro-N-(4’-

chloro(1,1’-biphenyl)-2-yl) (Emerald; BASF Corporation, Research Triangle Park, NC) 

and/or chlorothalonil (tetrachloroisophthalonitrile) (Daconil Ultrex; Syngenta Crop 

Protection, Greensboro, NC) were applied to the field site to suppress infection by 

Sclerotinia homeocarpa F.T. Bennett and avoid turf damage associated with disease.  

Boscalid and chlorothalonil are not related to compounds investigated in this research. 

Fungicides selected for use in this research included azoxystrobin (Heritage TL; 

Syngenta Crop Protection, Greensboro, NC), propiconazole (Banner Maxx; Syngenta 

Crop Protection, Greensboro, NC), thiophanate methyl (3336F; Cleary Chemical 

Corporation, Dayton, NJ), and pyraclostrobin (Insignia SC; BASF Corporation, Research 

Triangle Park, NC).  They were applied at high label rates (Table 1) with a custom built 

CO2 pressurized boom sprayer using three air induction nozzles with flat fan tips (TeeJet 

Technologies, Wheaton, IL).  Nozzles were spaced 38 cm apart and 41 cm above the turf 

surface.  The application volume was equivalent to 815 liters ha-1 at 35 psi.  All 

fungicides were tank mixed and applied as a single treatment to four replicate plots each 

measuring 1 m by 2 m.  Turfgrass was irrigated for approximately five minutes 
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immediately after fungicide application.  Total water volume applied through irrigation 

ranged between 0.33-0.38 cm.     

2.2.2 Sample collection and preparation 

Samples were collected using a 1.9 cm soil probe to a depth of 3.8 cm at 0, 3, 7, 

10, 14, 17, and 21 days after fungicide application from the treated turfgrass.  Residues 

were determined in turfgrass roots, rhizosphere sand, and in the combined verdure/thatch.  

Prior to the application of fungicide treatments, plots were sampled to establish a baseline 

of residues in the experimental site.  For each core sample the verdure/thatch component 

was immediately separated from the roots and sand and placed in an individual 50 mL 

polypropylene tube.  Samples were placed in a -80 °C freezer and stored until fungicide 

extraction.  Root and sand samples were dried (Yamato DKN600 Mechanical Convection 

Oven, Santa Clara, CA) at 43 °C for 24 hours.  Once dry, root and sand components were 

separated using a No. 14 (1.4 mm) USA Standard Test Sieve and placed into 50 mL 

polypropylene centrifuge tubes and stored at -80 °C until extraction.   

2.2.3 Quantitative analysis 

Residues were measured using liquid chromatography-mass spectrometry/mass 

spectrometry (LC-MS/MS).  In addition to the four fungicides analyzed, the metabolite of 

thiophanate-methyl, methyl 2-benzimidazole carbamate (MBC or carbendazim) was also 

analyzed because thiophanate-methyl is rapidly degraded into this fungitoxic metabolite 

(Fleeker et al., 1974).  Analytical standards for all fungicides—azoxystrobin (99.4%), 

pyraclostrobin (99.9%), propiconazole (99.2%), thiophanate methyl (99.3%), 

carbendazim (99.2%), and metconazole (99.5%) –were obtained from Sigma-Aldrich (St. 
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Louis, MO).  Stock solutions of 10 mg/ml were prepared in pure acetonitrile for all 

standards except carbendazim, which was prepared in pure acetone at 0.3 mg/ml.  Stock 

solutions were stored in microcentrifuge tubes at -20 °C.  HPLC-grade acetone and 

acetonitrile along with reagent grade magnesium sulfate and sodium acetate were 

obtained from Sigma-Aldrich.  Dispersive solid phase extraction (d-SPE) tubes (15 mL) 

were obtained from Agilent Technologies (Santa Clara, CA).  Verdure/thatch and root 

samples were homogenized using an Ultra-Turrax T8 from IKA (Wilmington, NC).  

Fungicide extraction was based on the QuEChERS method developed by Anastassiades 

et al. (2003) with modifications from Daniels and Latin (2013).  Samples were weighed 

before extraction.  Verdure/thatch and root extraction consisted of adding 15 mL of 80/20 

v/v acetonitrile/water to each tube.  All samples were spiked with 10 µL of metconazole 

(10 mg/mL) internal standard for quality assurance, and then homogenized for a uniform 

extract.  Magnesium sulfate (400 mg) and sodium acetate (100 mg) were added to each 

tube and shaken vigorously for 1 minute before centrifuging at 3000 rpm for 5 minutes.  

An 8 mL aliquot was removed from the top phase of the extract and transferred to a 15 

mL d-SPE tube containing 855 mg anhydrous magnesium sulfate, 150 mg PSA, and 45 

mg GCB and shaken vigorously for 1 minute before centrifuging at 3000 rpm for 5 min.  

Supernatant (1 mL) was then transferred to an Eppendorf tube and stored at -20 °C until 

analysis.  Extract (200 µL) was transferred into an autosampler vial and placed in the 

autosampler plate for analysis by the LC-MS/MS.  Sand samples followed a simplified 

extraction protocol proposed by Pinto et al. (2010).  The simplified approach does not 

involve homogenization, does not add sodium acetate, and does not contain the d-SPE 

step.  Fungicide residues were detected using an Agilent 1200 series Rapid Resolution 
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liquid chromatography system consisting of a vacuum degasser, a well-plate autosampler, 

and a binary pumping device coupled to an Agilent 6460 Triple Quad (QQQ) mass 

spectrometer (Agilent Technologies).  The column used for separation of fungicides was 

a reversed-phase Zorbax SB-Phenyl column (4.6 mm x 150 mm, 5 um) also from 

Agilent.  Mobile phases were as follows:  solvent A contained 20/80 v/v methanol/water 

and solvent B contained 90/10 v/v acetonitrile/water, with both solvents containing 5mM 

ammonium acetate (pH=5).  The gradient was the following:  time 0 minutes, 50% B; 

time 1 minute, 50% B; time 5 minutes, 100% B; time 10 minutes, 100% B; time 11 

minutes, 50% B; time 15 minutes, 50% B.  The flow of the mobile phases was 0.8 ml 

min-1, and the column was held at room temperature.  Injection volume was 10 µl for all 

standards and sample extracts.  Mass spectrometry analysis used positive polarity 

electrospray ionization with the following source parameters:  capillary voltage, 3500 V; 

nozzle voltage, 1000 V; nebulizer pressure, 310 kPa; drying gas, 8 L min-1; gas 

temperature, 325 °C; sheath gas, 10 L min-1; sheath gas temperature, 250 °C.  Data were 

acquired using multiple reaction mode (MRM) with a dwell time of 50 ms and unit 

resolution.  Samples were evaluated with Agilent MassHunter Quantitative Analysis 

(version B01.04) software to determine residue concentrations.  Efficiencies of recovery 

for thiophanate-methyl, azoxystrobin, propiconazole, and pyraclostrobin were 67.4, 88.9, 

85.8, and 86.1%, respectively (Figure 1). 

Residue data were normalized per gram of component sampled and subjected to 

analysis of variance (SAS, v 9.2, PROC MIXED) to explore differences in fungicide 

depletion over time.  Dissipation half-lives (DHL) were calculated where applicable 
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using a first order decay model (t1/2=ln(2)/k).  DHL means were separated using analysis 

of variance (SAS, v 9.2, PROC GLM).   

2.3 Results 

Significant differences in fungicide concentrations were observed across all 

turfgrass components (verdure/thatch, roots, and sand) for “fungicide” and “sampling 

date” effects (Table 2).  The nature of differences in measurable residues for replication 

and run varied among components.  Within the sand component, all factors and 

interactions were statistically different (P=0.05).  Similar results were observed within 

the verdure/thatch component, except that differences among replications were not 

significant (P=0.05).  For root samples, only fungicide effects, sampling date effects, and 

the fungicide*sampling date interaction were statistically significant.  Although spatial 

and temporal distributions for all fungicides were similar over both runs of the 

experiment, significant run effects were identified in the analysis of variance.  Therefore, 

characteristics of fungicide depletion will be addressed separately as appropriate for each 

run. 

DHL values show similar results for fungicides in each turfgrass component in 

both runs of the experiment (Table 3).  For example, DHL values for all fungicides were 

similar in the sand component.  Near zero quantities of azoxystrobin, propiconazole and 

pyraclostrobin over all sampling dates precluded calculation of DHL for those fungicides 

in sand.  Only thiophanate-methyl and the carbendazim metabolite were detected to the 

extent that DHL was determined—and they were similar for both runs. DHL for 

thiophanate-methyl in sand in runs 1 and 2 were 2.8 and 2.9 days, respectively.  For 
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carbendazim in sand, DHL was 7.0 and 9.3 days, for runs 1 and 2, respectively.  Within 

the root component, DHL values for propiconazole were greatest (14.5 and 24.4 days in 

runs 1 and 2, respectively).  DHL for azoxystrobin in roots were similar between runs 

(12.7 days and 10.1 days for runs 1 and 2, respectively).  Pyraclostrobin does not 

accumulate in roots (it is not xylem-mobile) and therefore DHL could not be calculated.  

In the verdure/thatch component, greatest DHL was associated with pyraclostrobin (18.9 

and 13.5 days for runs 1 and 2, respectively). 

Comprehensive illustrations of dissipation for all fungicides in turfgrass components 

are presented in Figures 2-6.  Baseline samples collected prior to application of fungicide 

treatments resulted in no detectable residues of active ingredients used in this research. 

Measurable amounts of all fungicides were present in all sample components 

(verdure/thatch, roots, sand) within five hours of the application (sample day 0).   

Fungicides differed with regard to their distribution in various components. 

Depletion of thiophanate-methyl was similar in both runs of the experiment (Figure 2, 

A and B).  Greatest amounts were observed in verdure/thatch shortly after application and 

were depleted over the next seven days.  Lesser amounts were observed in roots and were 

almost totally depleted seven days after application. Thiophanate-methyl was barely 

detectable in the sand component for all sampling dates.  Thiophanate-methyl degraded 

into its main fungitoxic metabolite, carbendazim (Figure 3, A and B).  Carbendazim 

levels were lower in the verdure/thatch component compared to roots, and near zero 

levels were observed in sand.  Regardless of turfgrass component, for both runs of the 

experiment, carbendazim residues approached zero 14 days after application. 
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Propiconazole depleted in verdure/thatch over time, but did not approach zero until 

21 days after application. (Figure 4, A and B).  As fungicide dissipated in verdure/thatch, 

it accumulated in roots.  Of all fungicides applied, propiconazole was observed in greater 

amounts (20-25 ppm) in roots 21 days after the application.  Near zero levels were 

measured in sand.  Results were similar in both runs of the experiment. 

Marked differences in spatial and temporal distribution were observed between the 

two QoI fungicides, azoxystrobin and pyraclostrobin.  Azoxystrobin was detected at 

higher levels in roots versus verdure/thatch on almost all sampling dates (Figure 5, A and 

B). Conversely, greater amounts of pyraclostrobin were measured in the verdure/thatch 

component compared to roots on all sampling dates (Figure 6, A and B).  Root residues 

were significantly higher for azoxystrobin, ranging from 4-12 µg g-1 roots, while 

pyraclostrobin was only detected between 0.5-1.8 µg g-1 roots.  Azoxystrobin resulted in 

an initial period of uptake in roots followed by slow dissipation (DHL ranged between 10 

and 13 days for runs 1 and 2, respectively).  Pyraclostrobin root residues were initially 

low (>1 µg g -1) and remained near zero throughout the sampling period.  Analysis of 

variance of fungicide residues in roots over all sampling dates and both runs showed that 

pyraclostrobin residues were not significantly different (P=0.1518) from zero on all 

sampling dates (Table 4). Using the Tukey multiple comparison method (Hsu, 1996) 

significant differences between azoxystrobin and pyraclostrobin were identified at the 

P=0.0001 probability level in roots (least squares estimates of 7.2277 vs 1.0451 µg g-1 for 

azoxystrobin and pyraclostrobin, respectively) (Table 4).  Statistical differences also were 

identified in the sand component (least squares estimates of 0.4002 vs 0.1060 µg g-1 for 

azoxystrobin and pyraclostrobin, respectively) (Table 5), but not in the verdure/thatch 
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component (2.9473 vs 4.5705 µg g-1 for azoxystrobin and pyraclostrobin, respectively) 

(Table 6).  

2.4 Discussion 

This research describes differences and similarities in the dissipation of fungicides 

applied to creeping bentgrass.  Prior to this work we find few direct comparisons that can 

be made to previous published reports.  Liu and Hsiang (1996) estimated in vitro 

degradation of carbendazim in thatch to be 2.5 weeks (17.5 days) which differs from our 

estimation of field degradation of carbendazim (5.4-5.6 days).  Quantification of residues 

was conducted using a thatch-agar pellet bioassay and spectrophotometry.  Because their 

study estimated in vitro degradation, factors such as fluctuating temperatures and 

moisture levels, photolysis, root uptake, etc., were not contributing to dissipation and 

may account for such differences in half-lives.   

 Gardner and Branham (2001) investigated the fate of propiconazole in a turfgrass 

environment.  They reported a half-life for propiconazole in turfgrass to be 12-15 days 

and in bare soil 29 days.  Our reported DHL values were 6-10 days in verdure/thatch and 

14-24 days in roots, shorter times than their reported half-life.  They estimated DHL by 

log transforming residues detected and regressing transformed values over time.  It is 

possible that the calculation difference contributed to the slight variation in DHL values.  

There were also differences in sample collection, extraction procedure, as well as liquid 

chromatograph and mass spectrometer analysis parameters.  Their results are similar to 

ours in that they report very high residue amounts in verdure and thatch and little residual 

chemical in the underlying soil.  On day 21 our data show relatively high propiconazole 
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residues in roots.  This is surprising considering rapid decline in efficacy against brown 

patch and dollar spot reported in bioassay experiments by Daniels and Latin (2013) and 

Latin (2006).  Schumann et al. (2000) reported almost no fungicide reaching roots.  

Although they investigated fungicide residues in roots, experiments were conducted on a 

Kentucky bluegrass sward with a thatch layer 5 times thicker than what was observed on 

our experimental putting green.   

 In this research approximately 6-8 µg g-1 of azoxystrobin and pyraclostrobin were 

observed on day 0 in verdure/thatch (Figures 5 and 6), much lower than what was 

reported by Daniels and Latin (127 and 200 µg g-1 verdure) (2013).  The addition of the 

thatch layer in this study most likely explains why there is a large discrepancy.  Thatch 

comprised a majority of the mass of each verdure/thatch sample.  If verdure alone would 

have been analyzed, it would require greater amounts of turf foliage to obtain one gram, 

and therefore residues detected also would be greater.  In addition, irrigation in this study 

may have washed residues off verdure and below thatch which could also help explain 

this discrepancy.   

 Results of our research generally show lower residue levels in the turfgrass 

system compared to previously published reports.  We normalized residue amounts per 

gram of component analyzed, following the precedent of Daniels and Latin (2013), 

Frederick et al. (1994), and Wu et al. (2002).  Horst et al. (1996) reported their results as 

total chemical residues detected.  Schumann et al. (2000) reported percent of applied 

fungicide.  Gardner et al. (2000) and Gardner and Branham (2001) expressed results in 

normalized and untransformed terms.  These differences in reporting may account for 

differences in the reported residues detected.  In our work, the average component 
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weights recovered were 0.3589 g roots core-1, 10.9912 g sand core-1, and 1.1516 g 

verdure/thatch core-1.  After normalization root residues were generally higher than sand 

residues because of the low weight of the root component.  Sand residues never 

accumulated above 1.5 µg g-1 because of the high weight of sand component recovered 

and residues remained low throughout the study. 

The dissipation of azoxystrobin and pyraclostrobin has been investigated in 

agricultural soils.  Ghosh and Singh (2009) reported on the degradation and sorption of 

azoxystrobin in a sandy loam soil.  The dissipation of pyraclostrobin in soils has also 

been explored (Reddy et al., 2013).  To our knowledge this paper is the first to describe 

dissipation of these more modern QoI fungicides for turfgrass.  They have similar modes 

of action, but differ in terms of phytomobility—azoxystrobin is an acropetal penetrant 

(xylem mobile) and pyraclostrobin is a local penetrant (translaminar) (Latin, 2011).  This 

research describes differences in distribution of these fungicides in turf.  For azoxystrobin 

and pyraclostrobin, the percentage of total residues detected in each turf component for 

the second run are illustrated in Figure 7.  Results for the first run were very similar 

(Figures 14-15).  Azoxystrobin residues in roots accounted for 34-80% of all 

azoxystrobin measured throughout the sampling period (Figure 7, A).  Only 5-20% of all 

pyraclostrobin residues were detected in roots (Figure 7, B).  Both azoxystrobin and 

pyraclostrobin are used successfully to treat root diseases (Gregos and Jung, 2003; Wong 

and Corza, 2005). However, if pyraclostrobin is primarily detected in the verdure/thatch 

layer, in order to achieve control of root diseases, pyraclostrobin must affect fungal 

growth and protect roots located in thatch.   
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This research advances our understanding of how differences in fungicide 

phytomobility may affect the distribution of compounds applied to control root diseases.  

It also reinforces the concept of rapid dissipation of thiophanate-methyl into 

carbendazim.  Accumulation and dissipation of residues in verdure and thatch is also 

supported.  For propiconazole, azoxystrobin, and pyraclostrobin, root residues were 

relatively high 21 days after application.  In order to appreciate the complete dissipation 

of fungicides in roots, future research should include a longer experimental period.  

Comparisons could be made among different cultural practices including irrigation, 

application volume, or use of wetting agents to improve fungicide delivery to the 

rhizosphere.  An evaluation of fungicide distribution and dissipation in a sand based 

rootzone versus a native soil green also may provide some insight into inconsistencies 

observed by golf course superintendents.  We did not correlate fungicide residues with 

effects on fungal growth.  Such research is likely the next step in investigating control of 

root diseases with antifungal compounds.  
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Figure 1.  Spray capture conducted on glass petri plates with theoretical values based on 
fungicide label rates and actual values obtained using LC-MS/MS 
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Figure 2.  Spatial and temporal distribution of thiophanate-methyl on a sand based 
creeping bentgrass putting green.  Experiments were conducted in July 2013 (A) and 
August 2013 (B). 
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Figure 3.  Spatial and temporal distribution of carbendazim on a sand based creeping 
bentgrass putting green.  Experiments were conducted in July 2013 (A) and August 2013 
(B). 
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Figure 4.  Spatial and temporal distribution of propiconazole on a sand based creeping 
bentgrass putting green.  Experiments were conducted in July 2013 (A) and August 2013 
(B). 
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Figure 5.  Spatial and temporal distribution of azoxystrobin on a sand based creeping 
bentgrass putting green.  Experiments were conducted in July 2013 (A) and August 2013 
(B). 
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Figure 6.  Spatial and temporal distribution of pyraclostrobin on a sand based creeping 
bentgrass putting green.  Experiments were conducted in July 2013 (A) and August 2013 
(B). 
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Figure 7.  Percentage of initial azoxystrobin (A) and pyraclostrobin (B) residues detected 
in each turf component.  Experiments were conducted in August 2013. 
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Table 1.  Fungicides applied to creeping bentgrass in 2013 

  

Fungicide Fungicide Class Phytomobility Application Rate  
(kg a.i. ha-1) 

Azoxystrobin Quinone outside inhibitor (QoI) Acropetal penetrant 0.610 

Propiconazole Demethylation inhibitor (DMI) Acropetal penetrant 1.980 

Thiophanate-methyl Benzimidazole Acropetal penetrant 9.160 

Pyraclostrobin Quinone outside inhibitor (QoI) Local penetrant 0.555 
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Table 2.  Tests of fixed effects for three turf components 

* Significant at the 0.05 probability level 
** Significant at the 0.01 probability level 
*** Significant at the 0.001 probability level 
† NS, not significant at the 0.05 probability level 
 

  

   Roots Sand Verdure/thatch 

Source of Variation Numerator DF Denominator DF Pr˃F Pr˃F Pr˃F 

Replication 3 231 NS† ** NS 

Fungicide 4 231 *** *** *** 

Day 6 231 *** *** *** 

Fungicide*Day 24 231 *** *** *** 

Run 1 231 NS * *** 

Fungicide*Run 4 231 NS *** *** 

Day*Run 6 231 NS *** ** 
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Table 3.  First order dissipation half-lives (DHL) of five fungicides applied in July and 
August of 2013 

Values within columns followed by the same letter are not significantly different according to Tukey 
multiple comparison (P=0.05). 
† Not applicable. Data did not exhibit first order decay and therefore dissipation half-life values were not 
calculated. 
  

 Dissipation half-life (days) 

 July 2013 August 2013 

Fungicide Roots Sand Verdure/thatch Roots Sand Verdure/thatch 

Azoxystrobin 12.7b NA† 6.5ab 10.1ab NA 4.7b 

Propiconazole 14.5b NA 10.1b 24.4b NA 6.3b 

Thiophanate-methyl 2.6a 2.8a 2.3a 2.4a 2.9a 1.9a 

Carbendazim 4.0a 7.0b 5.6ab 4.7a 9.3b 5.4b 

Pyraclostrobin NA NA 18.9c NA NA 13.5c 
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Table 4.  Least squares means for the ANOVA model based on roots 

 

Table 5.  Least squares means for the ANOVA model based on sand 

 

Table 6.  Lease squares means for the ANOVA model based on verdure/thatch 

 

 

Fungicide Estimate Standard Error DF t Value Pr ˃ |t| Alpha Lower Upper 

Carbendazim 6.4428 0.7268 231 8.86 ˂.0001 0.05 5.0107 7.8749 

Thiophanate-methyl 1.7587 0.7268 231 2.42 0.0163 0.05 0.3266 3.1908 

Azoxystrobin 7.2277 0.7268 231 9.94 ˂.0001 0.05 5.7956 8.6598 

Propiconazole 22.1438 0.7268 231 30.47 ˂.0001 0.05 20.7117 23.5759 

Pyraclostrobin 1.0451 0.7268 231 1.44 0.1518 0.05 -0.3870 2.4772 

Fungicide Estimate Standard Error DF t Value Pr ˃ |t| Alpha Lower Upper 

Carbendazim 0.6409 0.03446 231 18.60 ˂.0001 0.05 0.5730 0.7088 

Thiophanate-methyl 0.2045 0.03446 231 5.93 ˂.0001 0.05 0.1366 0.2724 

Azoxystrobin 0.4002 0.03446 231 11.61 ˂.0001 0.05 0.3323 0.4681 

Propiconazole 1.2063 0.03446 231 35.00 ˂.0001 0.05 1.1384 1.2743 

Pyraclostrobin 0.1060 0.03446 231 3.07 0.0024 0.05 0.03807 0.1739 

Fungicide Estimate Standard Error DF t Value Pr ˃ |t| Alpha Lower Upper 

Carbendazim 4.0990 0.7039 231 5.82 ˂.0001 0.05 2.7122 5.4858 

Thiophanate-methyl 12.5342 0.7039 231 17.81 ˂.0001 0.05 11.1474 13.9210 

Azoxystrobin 2.9473 0.7039 231 4.19 ˂.0001 0.05 1.5605 4.3341 

Propiconazole 18.8817 0.7039 231 26.83 ˂.0001 0.05 17.4949 20.2685 

Pyraclostrobin 4.5705 0.7039 231 6.49 ˂.0001 0.05 3.1837 5.9573 
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Appendix A 

 

Figure 8.  Temporal distribution of four fungicides in creeping bentgrass roots.  
Preliminary experiment, September 2011. 
 

 

Figure 9.  Temporal distribution of four fungicides in creeping bentgrass rhizosphere 
sand.  Preliminary experiment, September 2011. 
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Figure 10.  Temporal distribution of four fungicides in creeping bentgrass roots.  
Preliminary experiment, July 2012. 
 

 

Figure 11.  Temporal distribution of four fungicides in creeping bentgrass rhizosphere 
sand.  Preliminary experiment, July 2012. 
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Figure 12.  Temporal distribution of five fungicides in creeping bentgrass roots.  
Preliminary experiment, August 2012. 
 

 

Figure 13.  Temporal distribution of five fungicides in creeping bentgrass rhizosphere 
sand.  Preliminary experiment, August 2012. 
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Figure 14.  Percentage of initial azoxystrobin residues detected in each turf component.  
Experiment was conducted in July 2013. 
 

 

Figure 15.  Percentage of initial pyraclostrobin residues detected in each turf component.  
Experiment was conducted in July 2013. 
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Figure 16.  Spray capture collected from bottle with theoretical values based on fungicide 
label rates and actual values obtained using LC-MS/MS 
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Table 7.  Tests of fixed effects for roots 
Effect Numerator DF Denominator DF F Value     Pr > F 

Fungicide             4 231 137.62     <.0001 

Day              6 231 6.25     <.0001 

Replication             3 231 0.72     0.5435 

Run              1 231 0.52     0.4720 

Fungicide*Day        24 231 4.16     <.0001 

Fungicide*Run         4 231 1.84     0.1211 

Day*Run          6 231 1.51     0.1742 
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Table 8.  Tests of fixed effects for sand 
Effect Numerator DF Denominator DF F Value     Pr > F 

Fungicide             4 231 162.21     <.0001 

Day              6 231 6.29     <.0001 

Replication            3 231 4.03     0.0080 

Run              1 231 5.05     0.0256 

Fungicide*Day        24 231 8.50     <.0001 

Fungicide*Run         4 231 13.38     <.0001 

Day*Run          6 231 5.08     <.0001 

 

Table 9.  Tests of fixed effects for verdure/thatch 
Effect Numerator DF Denominator DF F Value     Pr > F 

Fungicide             4 231 95.70     <.0001 

Day              6 231 95.99     <.0001 

Replication             3 231 2.28     0.0802 

Run              1 231 11.25     0.0009 

Fungicide*Day        24 231 24.90     <.0001 

Fungicide*Run         4 231 7.58     <.0001 

Day*Run          6 231 3.78     0.0013 
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Table 10.  Tests of fixed effects for July 2013 run 
Effect Numerator DF Denominator DF F Value     Pr > F 

Fungicide             4 360 32.39     <.0001 

Day              6 360 14.87     <.0001 

Replication             3 360 2.41     0.0665 

Component              2 360 70.88     <.0001 

Fungicide*Day        24 360 2.53     0.0001 

Fungicide*Component      8 360 31.63     <.0001 

Day*Component 12 360 5.49     <.0001 

 

Table 11.  Tests of fixed effects for August 2013 run 
Effect Numerator DF Denominator DF F Value     Pr > F 

Fungicide             4 360 90.39     <.0001 

Day              6 360 14.05     <.0001 

Replication             3 360 1.05     0.3715 

Component              2 360 82.64     <.0001 

Fungicide*Day        24 360 3.28     <.0001 

Fungicide*Component        8 360 84.48     <.0001 

Day*Component          12 360 7.33     <.0001 
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Appendix B 

B.1 Summer patch 

Before 1984, all patch diseases with similar symptoms to summer patch were 

described as Fusarium blight (Davis and Dernoeden, 1991).  Smiley and Fowler 

(1984) then described a separate pathogen, Phialophora graminicola, to be the causal 

agent of the summer patch disease.  Landschoot and Jackson (1987) then concluded 

that the causal agent was misidentified, and designated it as Magnaporthe poae.  

Symptoms of summer patch occur as patches of dead turf that are 2.5-5 cm in 

diameter.  These patches can increase up to 30 cm in diameter which results in 

coalescing patches that can leave large areas of turf devastated.  The frog-eye 

symptom occurs when weeds or other grass species colonize the center of the patch 

creating a ring of symptomatic often necrotic turf and is characteristic of summer 

patch.  Dark brown ectotrophic runner hyphae are observed growing on the roots and 

crowns of infected plants (Kackley et al., 1990a).  This disease poses a risk wherever 

high quality turf is grown, including annual bluegrass golf greens and fairways, 

Kentucky bluegrass sports fields, or Kentucky bluegrass or fine fescue home lawns.  

Summer patch severity can be reduced with an integrated approach of cultural 

practices that promote healthy plants and roots, but in areas where disease tolerance is 

very low, fungicides are an important aspect of control.   

Magnaporthe poae is a hyphopodiate, root-infecting fungus with a 

Phialophora anamorph.  The perithecia can be single or gregarious with a globose 
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body (252-556 µm diameter) and cylindrical neck (357-756 µm long).  Asci 

contained in the perithecia are numerous, cylindrical, straight or slightly curved, and 

63-108 µm long.  The ascospores contained in the asci are fusoid, 23-42 µm long, 2-

septate at maturity, with the end cells hyaline and the intermediate cells thick walled.  

Superficial hyphae growing on plant roots are sparse, brown, and septate.  Typically 

2-5 µm in diameter and can be found singly or together with 2-3 strands.  The 

hyphopodia are globose and can occur singly or in groups on roots or crowns.  

Swollen hyphal cells often populate cortical cells.  Phialides that produce conidia are 

hyaline, 6-15 µm long, straight or curved, and are borne on lateral branches or 

terminally.  Cultures grown on potato dextrose agar contain appressed mycelium that 

are initially hyaline while slowing turning grey or olivaceous brown with thick 

strands of dark mycelium growing from the center of the colony.  Leading hyphae are 

wavy, often curling back toward the center.  Old colonies are olivaceous brown or 

black.  Magnaporthe poae is a heterothallic species that requires two mating types to 

achieve sexual reproduction in vitro (Landschoot and Jackson, 1989).   

Symptoms of the summer patch disease begin to develop under high 

temperature and low soil moisture conditions and can appear from June through 

September.  Although symptoms can be exacerbated by drought conditions, drought 

is not a predisposing factor to disease development (Jackson, 1993).  Weakened and 

impaired root systems are unable to support above ground plant tissues and therefore 

symptoms appear during dry conditions.  It was found that M. poae attained 

maximum growth on PDA and incited the most damage on inoculated plants at 25-

30 °C (Kackley et al., 1990b). 

 

 



52 

B.2 Summer patch control 

Cultural control options play a large part in the control of summer patch.  It 

can be more severe on compacted and poorly drained areas.  Aerification is 

recommended to reduce soil bulk density, increase rooting, and help reduce symptom 

expression.  Soil moisture is another important factor in the development of summer 

patch.  Kackley et al. (1990a) showed that summer patch symptoms were most severe 

in turf that was kept in non-drought conditions.  Symptoms were suppressed in 

treatments that were irrigated deeply and infrequently versus lightly and frequently 

(Davis and Dernoeden, 1991).  This type of irrigation regime generally results in 

deeper root systems.  Turgeon (1991) stated that lower mowing heights result in 

aesthetically more pleasing turfs but also reduce the turfs defenses against 

environmental and disease pressures.  Davis and Dernoeden (1991) found that 

summer patch damage was less severe in Kentucky bluegrass turf maintained at 7.6 

cm versus turf maintained at 3.8 cm.  Susceptibility of plants to M. poae (reported as 

Phialophora graminicola) was more pronounced in turf mown at 2 cm versus 

unmowed (Smiley et al., 1985).  Sulfur coated urea, urea, ammonium chloride, and 

sodium nitrate were evaluated for their effects on summer patch severity.  Sulfur 

coated urea reduced the severity of summer patch the most, while sodium nitrate 

treatments yielded the most severe summer patch symptoms.  The authors stated that 

the beneficial results are most likely due to the acidifying and slow release effects of 

the sulfur coated urea.  Sodium nitrate may have increased severity because it reduced 

rooting and did not acidify the soil (Davis and Dernoeden, 1991).  Thompson et al. 
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(1995) showed that in ‘Fylking’ Kentucky bluegrass summer patch symptoms and 

rhizosphere pH were slightly reduced by the application of ammonium sulfate in the 

first year.  The following year resulted in delayed onset of summer patch symptoms 

and great reduction in patch development and soil pH.  Summer patch severity was 

reduced by up to 75% in the high ammonium sulfate treatments (196 kg N ha-1 yr-1).  

Biological control of summer patch has not been extensively studied.  Thompson et 

al. (1996) tested 10 different bacterial strains known for their ability to control 

soilborne pathogens on agronomic crops for their ability to suppress summer patch.  

All ten bacterial strains showed some level of suppression in agar plates.  Five 

significantly reduced disease symptoms in the growth chamber.  Two strains reduced 

summer patch in two different field trials.  Enterobacter cloacae EcH-1 and Bacillus 

subtilis D-39Sr reduced symptoms by 34-49% and 39-53% respectively. 
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Appendix C 

C.1 Intrinsic activity of fungicides against Magnaporthe poae 

 Dilution plate assays were used to assess the sensitivity of Magnaporthe poae to 

four fungicides.  Potato dextrose agar (PDA) was amended with 0.001, 0.01, 0.1, 1, and 

10 ppm of each fungicide active ingredient.  LD50 (fungicide concentration at which 

colony growth was reduced by 50% when compared to colony growth on non-amended 

PDA) was calculated after regressing relative growth percentages over log 10 fungicide 

concentration.  LD50 values for thiophanate-methyl, propiconazole, azoxystrobin, and 

pyraclostrobin were 0.53, 0.004, 0.02, and 0.001 ppm, respectively. 
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Figure 17.  Linear regression of relative colony growth data of an isolate of M. poae 
against thiophanate-methyl. 

 

 

Figure 18.  Linear regression of relative colony growth data of an isolate of M. poae 
against propiconazole. 
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Figure 19.  Linear regression of relative colony growth data of an isolate of M. poae 
against azoxystrobin. 
 

 

Figure 20.  Linear regression of relative colony growth data of an isolate of M. poae 
against pyraclostrobin. 

y = -24.41x + 5.8462
R² = 0.7999

0

20

40

60

80

100

-4 -3 -2 -1 0 1 2

R
el

at
iv

e 
co

lo
ny

 g
ro

w
th

 (%
)

Log 10 fungicide concentration

y = -14.612x + 3.1466
R² = 0.7454

0

20

40

60

80

100

-4 -3 -2 -1 0 1 2

R
el

at
iv

e 
co

lo
ny

 g
ro

w
th

 (%
)

Log 10 fungicide concentration

 

 


	Purdue University
	Purdue e-Pubs
	Summer 2014

	Spatial and Temporal Distribution of Fungicides Applied to Creeping Bentgrass
	Kurt Ronald Hockemeyer
	Recommended Citation


	CHAPTER 1. LITERATURE REVIEW
	1.1 Introduction
	1.2 Fungicides
	1.3 Fungicide mobility
	1.4 Fungicide persistence in verdure and thatch
	1.5 Fungicide persistence in soil
	1.6 Root diseases

	CHAPTER 2. SPATIAL AND TEMPORAL DISTRIBUTION OF FUNGICIDES APPLIED TO CREEPING BENTGRASS
	2.1 Introduction
	2.2 Materials and Methods
	2.2.1 Field experiments
	2.2.2 Sample collection and preparation
	2.2.3 Quantitative analysis

	2.3 Results
	2.4 Discussion
	Appendix A
	Appendix B
	B.1 Summer patch
	B.2 Summer patch control

	Appendix C
	C.1 Intrinsic activity of fungicides against Magnaporthe poae



