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ABSTRACT 

 

Yingxu Hao. M.S., Purdue University, August 2014. Separation of On-column Labeled 
Model Proteins with Packed Capillary Electrophoresis. Major Professor: Mary J. Wirth. 

 

 Protein drugs are increasingly developed in the pharmaceutical company. Under 

the regulation of FDA, high purity of therapeutic proteins needs to be maintained. Before 

putting those drugs in the market, fast and efficient method is in need to achieve 

homogeneity. Traditionally, polyacrylamide gel electrophoresis (PAGE), capillary 

electrophoresis (CE), and size-exclusion chromatography (SEC) are used for the 

purification process. These methods have the disadvantages of low time and cost 

efficiency, and this quality assurance process has become the bottleneck of production. In 

our group, sub-micron silica colloidal particles with polyacrylamide layer on the surface 

are packed inside capillaries to increase the separation efficiency. In this particular 

project, NanoOrange dye is non-covalently associated with the protein sample to best 

reserve their native conformation. Proteins were separated at a distance as short as 8.2 

mm in 85 seconds with extremely low plate height. The efficiency can be improved by 

decrease the silica particle size. This high throughput separation has a potential to be 

adopted in industries.  

 Part II of this thesis describes the cost-effective DNA microarray project. 

Microarray is a technology evolved from southern blotting, and it is a common tool to 
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measure the expression levels of the DNA samples. To quantify the DNA samples, 

fluorescently labeled target strands hybridize with the DNA probe which binds to a solid 

surface. DNA microarray is frequently utilized in clinical studies, and the efficiency is 

highly desired to be improved. When attach the probes on a smooth surface, the amount 

of DNA captured will be limited. In this research, the microarray sensitivity is increased 

by layering silica colloidal particles on the solid surface. Silica particles obtain face-

centered cubic packing which increases the surface area to bind to the DNA probe, thus 

improve the microarray sensitivity. To reduce the cost of the microarray and to make it 

more point-of-care feasible, transparent plastic sheets is going to be researched to replace 

quartz silica plates. This new sensitive and cost effective microarray has a great 

possibility to be developed into point-of-care which detects a variety of diseases. 
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CHAPTER 1: INTRODUCTION AND BACKGROUND 

 

1.1 Importance of Protein Homogeneity in Pharmaceutical Industry 

 In pharmaceutical industries, there is an increasing amount of protein drugs that 

are discovered and used clinically every year. Monoclonal antibodies are great treatment 

for serious diseases, but they are easily aggregated [1]. Thus protein drug homogeneity is 

essential for safety and quality purposes. An efficient protein separation tool with high 

resolving power is more desired now than ever[44]. 

 

1.2 Background on Silica Colloidal Crystal 

 Silica colloidal particles packed capillaries are wildly used in chromatography 

studies for protein separation. Sub-micron silica colloidal crystals can be uniformly 

packed into fused silica capillaries as face-centered cubic lattice, where opalescence can 

be observed [2]. The benefits of using sub-micron silica colloidal particles are apparent 

according to Van Deemter equation [3][4]: 

  

	 	                       eq 1 

 
 In this equation, dp is the particle size, Dm is the diffusion coefficient of the 

analyte in mobile phase, and u is the linear velocity. The A, B, and C terms contribute to 



 

p

d

te

fr

d

an

m

 

h

tr

si

F
si
 

 

 

late height, 

iffusion para

erm is the lo

rom protein 

iffusion sign

nalyte diffus

mass transfer

Unifo

eight and th

ravel through

ieving mediu

igure 1.1 Pro
ieving mediu

and larger n

ameter, whic

ongitudinal 

spreading fr

nificantly in

sion coeffici

r inside the p

rmly packed

hus achieve h

h the pores c

um by size o

otein travel t
um 

numbers indi

ch is contrib

diffusion co

from the cen

nduces band

ient Dm. The

particles. 

d sub-micron

high efficien

constructed b

over time[29

through the 

icate less se

buted by cha

oefficient of

nter along th

d broadening

e C term is a

n silica collo

ncy[31]. Lik

by closely pa

][30][36].  

 

pores of clo

eparation eff

anneling thr

f the eluting

heir migratio

g, and it is

a combinatio

oidal crystal

ke illustrated

acked partic

sely packed 

ficiency. A t

rough a non-

g particles, a

on direction 

 proportiona

on of adsorp

l can greatly

d in figure 1

cles, they are

SCC, separa

term is the E

-ideal packin

and it is res

[5]. Longitu

ally related 

ption kinetic

y reduce the 

1.1, when pr

e separated in

ating inside 

3 

Eddy- 

ng. B 

sulted 

udinal 

with 

s and 

plate 

rotein 

n this 

 

the 



 

 

sl

m

ot

ca

se

S

th

ap

 

F

 

1.3 

Capill

lab-gel elect

microscope is

ther samples

apillary elec

eparation[38

ample analy

he speed of 

pplications, 

igure 1.2 Illu

Capillary E

1.3.

lary electrop

trophoresis 

s commonly

s by size[43

ctrophoresis 

8][39]. Thus 

ysis will also

analysis [6]

thus drives i

ustration of 

lectrophores

1 Backgroun

phoresis is a 

and chroma

y used in ind

3]. Even tho

attains the

the minimu

o be more e

. All these a

intensive res

slab-gel elec

sis: A High T

 

nd on Capill

combination

atography. C

dustries, and 

ugh it requi

 lowest det

um amount o

efficient with

advantages m

search about 

ctrophoresis

Throughput 

lary Electrop

n of the two

Capillary ele

it is used to

ires fluoresc

tection limit

of sample wi

h its extraor

makes CE a 

t it[37]. 

Separation M

phoresis 

o powerful se

ectrophoresi

o separate pr

cent labeling

t among the

ill be consum

rdinary separ

fast growin

Method 

eparation too

is on fluore

rotein, DNA

g on the ana

e whole fie

med for each

ration powe

ng tool in cli

4 

ols of 

escent 

A, and 

alytes, 

eld of 

h run. 

er and 

inical 

 



5 
 

1.3.2 Voltage Supply Affects the Separation Results 

 Electricity is the driving power for protein motion, and optimizing the voltage is 

one key factor to control the peak width. Increase the voltage results in a reduced 

separation time: 

t                                                                 eq 2 

 In the equation, L is the separation distance, v is the velocity, µ is the 

electrophoretic mobility, and V is the voltage. Voltage inverse relates with the separation 

time, but there is still an upper limit for the voltage applied.  

 Joule heating is one consequence from high voltage [7]: 

Heat VIt                                                  eq 3 

 V is the voltage from the supplier, I is the current, t is the separation time, and R 

is the resistance from the capillary. Heat produced is proportional to the voltage, but 

reduces dynamic viscosity, which thus induces band broadening.  

 

1.4 NanoOrange: A Dynamic Labeling Dye 

 Electrophoresis is commonly used and efficient to separate protein from their 

aggregates and other proteins with similar sizes. Unfortunately, fluorescent labeling is 

required to observe analyte motion using capillary electrophoresis under fluorescent 

microscope. Many frequently used fluorescent dyes covalently associate with protein 

sample, thus alter from their native conformation and increase the amount of aggregation. 

In this research, nanoOrange was used to form non-covalent bonds with protein samples 

to minimize protein conformation change[40]. 
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1.5 Research Goals 

 The goal of this work is to prove the feasibility of replacing covalently labeled 

dyes with NanoOrange, and separate the model proteins at baseline. Partial separation of 

the three model proteins was described by our former group member Dr. Birdsall, and 

baseline separation is desired to be completed by optimizing separation conditions. 

 The result is approached in a variety of ways. To obtain a clean spectrum, and 

best observe the fluorescent complex inside the capillary, sample preparation was 

studied. Separation efficiency is proportional to the size of silica colloids. To reduce the 

plate height and improve the separation, different sized silica particles were tested. To 

best separate the analytes, packing conditions were verified for the optimization purpose. 

 

1.6 Project Overview 

 This report is focused on utilizing nanoOrange as the on-column labeling tool 

for capillary electrophoresis and optimizing the separation conditions. 

 Chapter one reviews the background and theory behind the research. 

Submicron silica colloids were proved to be a feasible material to pack inside capillaries 

and a high throughput protein separation tool previously in the group. Sample preparation 

time is reduced by utilizing NanoOrange as an on-column labeling tool. Conditions for 

the protein separation were studied to minimize the band broadening, thus achieve 

baseline separation of protein. 

 Chapter two reviews the materials and methods used to develop the research 

step by step. 
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 Chapter three stated that separation of the three protein was achieved, which 

proves NanoOrange as the candidate of our new labeling dye. The silica particle size is 

one important factor which controls the separation efficiency. 

 Chapter four concludes the research result and points out the future direction of 

this project. Silica particle size can be reduced even more to achieve higher resolution, 

and bare silica particles may even be a feasible separation material with small enough 

particle size. 
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CHAPTER 2: MATERIALS AND METHODS 

 

2.1Chemicals and Materials 

 Silica colloidal particles of 350 and 500nm in diameter were purchased from 

Fiber Optic Center (New Bedford, MA). NanoOrange protein quantification kit was 

purchased from Life Technologies (Carlsbad, CA). Teflon coated capillaries with 100 i.d. 

and 75 i.d. were both purchased from Polymicro Technologies (Phoenix, AZ). Packing 

parts including unions, frets, and tightening tools were ordered from Valco Instruments 

Co. (Houston, TX). All the silanes were ordered from Gelest Inc. (Morrisville, 

PA).Model proteins, solvents, running buffer, and reagents are bought from 

SigmaAldrich Co. (St. Louis, MO). Stacking buffer was prepared in lab with 2% SDS, 

3% sucrose, 1mM EDTA, and 62 mM tris. 

 

2.2 Protein Preparation 

 Carbonic anhydrase, trypsin inhibitor, and lysozyme are the three model 

protein used in this research. Pure protein solid were dissolved into 500ul PBS solution at 

a concentration of 2mg/ml. Protein samples were prepared as in figure 1.3. For each 

individual protein sample, 10 ul of the protein stock solution was added into 4 ul of 

NanoOrange dye, and 26 ul of the pre- mixed stacking buffer which contains 62mM Tris, 
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2.4.3 In Capillary Chemical Modification 

 Packed capillaries were modified by growing a brush layer of polyacrylamide 

on the silica surface [8]. As shown in Figure 2.3 A, two percent 

(chloromethyl)phenylethyl-trichlorosilane was mixed with methyltrichlorosilane, which 

is a spacer, at a 20:1 ratio in anhydrous toluene. The reaction solution wicked into the 

capillaries, and reacted with silica surface for 12 hours under nitrogen. An immediate 

rinse of the capillaries with anhydrous toluene was done at 3500 psi with pressure pump 

to remove the excess reagents. The capillaries were then dried inside the 120°C oven for 

2 hours. 

 Activators generated by electron transfer (AGET) were used to replace 

traditional ATRP to perform the polymerization. Acrylamide, CuCl2, Sodium ascorbate, 

and tris(2-dimethylaminoethyl)amine was mixed into a total of 6 ml, 50:50 IPA:H2O 

solution as illustrated in figure 2.3 B[34]. Pressure pump was set at 3500 psi to push the 

reaction solution into the packed capillary, and the polymerization lasts 3 hours. Rinsing 

for 30 minutes is required immediately with 50:50 IPA:H2O to remove reaction solution 

from the capillary[11][35]. Capillaries are fully dried in the vacuum desiccator prior to 

setting it inside the refrigerator for storing. The fully modified capillary is ready to be 

used for electrophoresis. 
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protein motion was recorded as a movie, electropherograms can be conducted to visualize 

the separated peaks. 
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3.3 SCC Size Determines the Separation Efficiency 

 Silica colloid particle size is one important factor that affects the separation 

efficiency. Lysozyme, trypsin inhibitor, and carbonic anhydrase are the three model 

proteins, and their molecular weight and radii are listed in table 3.1 below. The result of 

750 nm, 500 nm, and 350 nm silica particles were compared, and theoretically, smaller 

particle size improves the separation [13].  

 

Table 3.1 Size and weight of the Three Model Proteins 

Protein M.W. (kda) Radius of gyration (nm) 

Lysozyme 15 1.9 

Trypsin inhibitor 20 2.3 

Carbonic Anhydrase 29 2.8 

 

 

 The protein mix was first separated with 750 nm particle packed capillaries 

(Figure 3.4). They are separated with a huge cluster spot in the middle, and a slightly 

faded spot leading. Theoretically, the three proteins were equally mixed, and the spots 

should have similar brightness. There is a high possibility that the smear in the middle 

contains more than one protein. Thus the separation efficiency is in need to be improved, 

and the research was moved onto using 500nm particles packed capillaries. 
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the loading buffer. Once this problem is solved, electropherograms may be conducted in 

the future to observe the separation efficiency. 

 Previously described by Birdsall et al., 350nm particles packed micro-channels 

were capable to partially resolve the three model proteins. But the capillaries were 

pressure packed and the particle arrangement was tighter than micro-channels. Protein 

motion was not observed in the 350 nm close-packed capillaries. To increase the pore 

size, the polymerization process was reduced by half time, half acrylamide concentration, 

and both half time and half concentration. None of the three small proteins moved 

forward inside the capillary.  

 The molecular weights of three model protein were equal or less than 29 kDa, and 

they should easily move inside the pores between 350 nm particles. The pore sizes were 

calculated with the silica particle radii as showed in figure 3.6, and the values are listed in 

table 3.2. Theoretically, silica colloidal particles packs into face-centered-lattice in 

capillaries, and the 350 nm particles should have pores with radius of 145 nm. The three 

small proteins have radii between 1.9 to 2.8 nm, so there should not have any problem 

moving inside the pores. After eliminating the cause of pore size, the lack of protein 

motion is thought to be from the interaction between themselves and the nanoparticles. 
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4.2 Conclusions 

 The three model preoteins, lysozyme, trypsin inhibitor, and carbonic anhydrase 

were separated with both 500 nm and 750 nm silica packed capillaries. As an on- column 

labeling method, NanoOrange non-covalently binds to the protein to keep them in their 

native conformation and saves the sample labeling time. To continue this work, some 

pharmaceutical important protein drugs like IgG and PSA have a potential to be separated 

with the same method. Also, combining with magnetic solid-phase extraction or other 

extraction methods, this separation method can be applied to real- life clinical sample 

analysis [14][41]. 
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CHAPTER 5: INTRODUCTION AND BACKGROUND 

 

5.1 Introduction: Imbalanced DNA Methylation, Cause and Effects 

 In most industrialized countries, obesity is a fast growing disease that millions of 

patients suffering from. Adults are trying different methods to lose weight, but limited 

number of people is concerned about infant patients and how DNA methylation affects 

baby obesity. Folic acid, S-Adenosyl methionine (SAM), and vitamin B are the key 

component for the methyl making pathway, and they are suggested during pregnancy to 

aid the methylation process of the baby’s DNA. With too little methyl-donating nutrient 

between the time in the womb to earlier age, certain regions of the human genome can be 

under-methylated lifelong, and thus suffering from diseases [15]. The defects of lacking 

DNA methylation was previously studied in University of Utah. In addition to causing 

obesity, the mice with complete agouti gene demethylation also suffers from increasing 

risk of cancer and diabetes [16].  

 DNA methylation alters gene expression by adding a methyl group to the cytosine 

which located next to guanine. Between 60% to 90% of CpGs are methylated at the 5 

position on the cytosine ring, and tipping the balance between methylation and lack is 

known to cause cancer, obesity and other types of serious disease [17][45][46]. 

Imbalanced DNA methylation may affect gene transcription by impede its binding to 

transcriptional proteins and the formation of compact and inactive chromatin[18][26].  
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 A fast, cost effective, and portable diagnostic tool is desired to track the amount 

of methylated DNA frequently. Treatment and diet change may be applied immediately 

to save the child from irreversible situation.  

 

5.2 Current Analytical Techniques for DNA Quantitation 

 

5.2.1 DNA Microarray 

 Microarray technology is one important tool in life science research, and it can 

also be applied for clinical purposes. To analyze and quantify a DNA target, its 

complementary oligonucleotides are immobilized on solid substrates [19]. Then the 

fluorescent labeled analyte binds to the spot, and can be visualized under the detection 

instrument[47]. Traditionally, microarray focuses on gene expression quantitation and 

analysis, and it is now also increasingly used in protein and carbohydrate analysis.  

 For microarray clinical diagnostics, faster analysis can be obtained by increasing 

the sensitivity. In addition to quantify the known DNA with its comprehensive libraries 

of oligonucleotides, high sensitivity microarray is also capable to capture and detect 

genes with low expression rates[27]. As the optical detection method was greatly 

improved, the amount of analytes bound to each microarray spots became the bottleneck.  

 

5.2.2 Hydrophilic Gels 

 Hydrophilic gels is one method to provide a large volume of analyte on the spot, 

but its long mass transportation time and strong background noise defeats the purpose of 

improving sensitivity [20]. Increasing the amount of analytes bounding concentration on 
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the spots can be achieved by utilizing sub-micron silica colloidal particles which 

enhances spot surface area. Silica colloidal particles can be uniformly packed into face-

centered cubic, extend spots into three dimensions [21][28]. Advantages like neglectable 

mass transportation time, reduced scattering, and cost-efficiency makes silica colloidal 

particles to be one promising material for DNA microarray technology.  

 

5.3 Research Goals 

 In this research, a cost effective DNA microarray is expected to be established to 

quantify DNA methylation. In order to commercialize and apply the DNA microarray in 

daily life, the quantitation efficiency and uniformity was in need to be studied. On one 

single microarray slide, multiple spots for different samples may be tested. After optimize 

spot size and solid surface material, the microarray is desired to be applied in point-of-

care to detect obesity, cancer, and other DNA related diseases. 

 

5.4 Project Overview 

 Chapter five reviews the background of DNA methylation. In human genome, the 

amount of DNA methylation needs to be balanced to keep the body from disease. 

Microarray, with the characteristics of being easy to use, is a candidate to monitor the 

DNA methylation as point-of-care. Previously in the Wirth group, silica colloidal crystal 

was proved to improve the amount of DNA bonding to the solid surface. In this research, 

the previous work will carry onto the DNA methylation microarray design.  

 Chapter six describes the detailed procedure of silica and solid substrate 

preparation. The hydrophilic fused silica slides were all prepared in the same fashion. 
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The size of the microarray spots were prepared differently to observe their influence upon 

the capturing efficiency. 

 For the result portion in chapter seven, the three batches of the microarray slides 

were prepared to compare with each other. To suspend silica particles, ethanol worked 

better while trying to remove the solvent. 

 Chapter eight reviews the possible directions to further develop the project. Safety 

and cost are the two important factors to determine if the microarray was feasible for 

everyday application. For the easy disposal and lower price, the project is shifting from 

quartz silica slides to transparent sheets. Since microarray was never developed on plastic 

materials, this project is obtaining a bright future for the application purposes.
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CHAPTER 6: MATERIALS AND METHODS 
 

 

6.1 Chemicals and Materials 

 Quartz silica slides were purchased from G.M. Associates, Inc. (Oakland, 

CA)).Silica colloidal particles of 150 nm in diameter were purchased from Fiber Optic 

Center (New Bedford, MA). Both the n-ocyadecyltrichlorosilane and 3-

aminopropyltrimethoxysilane were purchased from Gelest Inc. (Morrisville, PA).  

 

6.2 Silica Colloids Preparation 

 Silica particles were calcined three times at 600°C for 12 hours, and then 

annealed at 1050°C for 3 hours. Then the particles were rehydroxylated in 50% nitric 

acid solution. After rinsed, filtered, and dried in the vacuum oven, silica slurries were 

prepared. Previously described by Zheng et al., silica colloids were prepared into 10, 5, 

and 2.5 mg/ml slurries [22]. Two sets of a total of 6 slurries were generated: one set 

dissolved in water and the other in 100% ethanol. All the slurries were stored in 7 drum 

vials. 
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6.3 Quartz Silica Slide Preparation 

 

 6.3.1 Condition and Rehydroxylation 

 Quartz silica slides are used to carry silica colloidal particles and to develop the 

microarray on. The commercially bought slides are first cleaned with 0.1M NaOH base 

bath, and followed by rising with ultrapure water and ethanol. Rehydroxylation was 

done at 270°C with a 300 ml equal mixture of HNO3: H2O (w/w) for 12 hours to 

regenerate silanol groups on the slides for the following chemical modification.  

 

6.3.2 Silane Reaction for the Hydrophobic Slide Surface 

 After rinsed with ultrapure water for 3 times and with ethanol for 1 time, the 

slides are dried to prepare for a silane reaction. To convert the whole slide into 

hydrophobic, a 2% C18 in toluene was reacted with the silica surface for 12 hours. After 

rinsed with anhydrous toluene, the rehydroxylated slides were kept in the sealed reaction 

vessel to maintain a contamination-free environment. 

 

6.3.3 Microarray Spot Assembly 

 Three sets of slides were designed like shown in figure 6.1, and prepared in 

parallel to compare the results. Previously described by Zheng et al., silica colloidal 

crystal is capable to enhance the sensitivity of the microarray by letting the sample 

traveling through the pores. For the first set, Silanol groups were then regenerated to 

pack layers of silica colloids on the 6 DNA capturing spots. Etchant was used to cleave 

off the hydrophobic chain and retain the hydrophilic surface on the desired spot while 
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the rest of the slide remains hydrophobic [3]. Vinyl sheets with 6 holes were stick onto 

the slides to prevent the hydrophobic portion from the etchant. Etchant solution was then 

smeared on the silica surface. To observe evenly etched hydrophilic surface, etchant 

solution was re-layered every 10 seconds for a total of 1 minute. Q-tips are then rinsed 

with water and used to wipe off the etchant solution thoroughly. The slides were dipped 

into the previously described slurries for the hydrophilic spots to capture silica colloids. 

The slides were set horizontally for the solvent to dry up, and repeat the same procedure 

to obtain multiple layers to achieve the optimized efficiency.  

 The second set of slides was prepared with silica colloidal crystal packed on the 

whole surface. The exact rehydroxylation step described above was done on the whole 

slide. The whole slide was dipped into the 10mg/ml 150 nm silica suspension, and 

getting dried in the 60°C vacuum oven. This step repeats 4 to 10 times depend on the 

desired thickness of the silica layer [23]. 

 The last batch of slides was spotted with the traditional microarray spotter and 

silica colloidal crystal pile up on each location. The slide modification was done like 

described above until after the silation step. Microarray spotter was dipped into the 

etchant to get it on each tip. Then the tips were stamped onto the slide surface to cleave 

off the hydrophobic C18 chain and regenerate the silanol groups for the micro-spots. 

After removing the etchant with ultrapure water, the slides were set inside the silica 

solution, and dried under 60°C vacuum oven. After this step, the microarray is ready for 

adding the DNA probe, and capturing methylated DNA. 
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CHAPTER 7: RESULTS AND DISCUSSION 
 

 
7.1 Silica Slurry Solvent Optimization 

 Because this is the early stage of the project, the microarray is only at the first 

phase. Two solvents were compared by their apparent benefits. 

 Water was chosen because bare silica suspends the best in it, and the slurries will 

only stick onto the hydrophilic part of the slide. The solvent takes a long time to dry 

after each dip. Drying the slide vertically gave uneven layers of silica surface; drying 

horizontally carries a “coffee-cup ring” on the edges. In order to get rid of the ring, the 

slide was set inside the oven horizontally for 3 minutes to remove the solvent. This fast 

drying method worked on the traditional microarray slides, and it will be researched on 

in the future on the other two sets of microarray slides. 

 Slurry set two was suspended in ethanol. Ethanol was the preferred solvent by its 

easy drying property, but its hydrophobicity caused silica particles spread on the slide 

surface. The slides were dried both vertically and horizontally, but silica smear remained 

on the hydrophobic portion. To strengthen the hydrophobicity of the slide surface, the 

portion of n-octadecyltrichlorosilane will need to be increased in the future development 

of the project. 
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CHAPTER 8: CONCLUSION AND FUTURE DIRECTIONS 

 
8.1 Conclusions 

 At this early stage of the project, many factors of the silica slides are still in need 

to be studied prior moving towards DNA quantitation. Until this point, silica colloidal 

particles were proved to be able to associate with the hydrophilic silica surface. Etching 

the silica surface for one minute was able to cleave off the hydrophobic C18 chain. 

 

8.2 Future Directions 

 One direction for the project to do is to modify the solid surface from glass to 

transparent plastic sheet. Hydrophobic toner can be used to print on the slide surface, 

and the microarray spots will be left blank and being hydrophilic[25]. Then the silica 

particles can be packed on those areas to achieve high fluorescent intensity just like 

discussed above. 

 After getting the optimized slide surface, the research can be continued to the 

next phase where DNA probe will be grown on the silica surface. According to 

Palanisamy et al., a molecular inversion probe was designed to incorporate inosine 

nucleotides in it and complement potential DNA methylation sites [24]. Target 

unmethylated DNA can be recognized with thus sequence and get measured. A method 

may be designed in the future to grow such DNA probe onto silica colloids. Then, the 
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methylated NDA will be labeled and captured by the probe. For this step, miniaturized 

cell-phone based fluorescent microscope can be used for the detection part to make the 

DNA microarray more cost-efficient and portable. 
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