
Purdue University
Purdue e-Pubs
Department of Electrical and Computer
Engineering Faculty Publications

Department of Electrical and Computer
Engineering

2016

Thermodynamic efficiency limits of classical and
bifacial multi-junction tandem solar cells: An
analytical approach
Muhammad A. Alam
Purdue University, alam@purdue.edu

Mohammad Ryyan Khan
Purdue University, khan23@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/ecepubs

Part of the Electrical and Computer Engineering Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Alam, Muhammad A. and Khan, Mohammad Ryyan, "Thermodynamic efficiency limits of classical and bifacial multi-junction tandem
solar cells: An analytical approach" (2016). Department of Electrical and Computer Engineering Faculty Publications. Paper 69.
http://dx.doi.org/10.1063/1.4966137

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/77952594?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecepubs%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecepubs?utm_source=docs.lib.purdue.edu%2Fecepubs%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecepubs?utm_source=docs.lib.purdue.edu%2Fecepubs%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecepubs%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecepubs%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecepubs?utm_source=docs.lib.purdue.edu%2Fecepubs%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=docs.lib.purdue.edu%2Fecepubs%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages


Thermodynamic efficiency limits of classical and bifacial multi-junction tandem solar
cells: An analytical approach
Muhammad Ashraful Alam and M. Ryyan Khan 
 
Citation: Applied Physics Letters 109, 173504 (2016); doi: 10.1063/1.4966137 
View online: http://dx.doi.org/10.1063/1.4966137 
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/109/17?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Theoretical efficiency limit for a two-terminal multi-junction “step-cell” using detailed balance method 
J. Appl. Phys. 119, 073104 (2016); 10.1063/1.4942223 
 
Thermodynamic limit of bifacial double-junction tandem solar cells 
Appl. Phys. Lett. 107, 223502 (2015); 10.1063/1.4936341 
 
Wafer Processing Aspects of High Efficiency Multi‐junction Solar Cells 
AIP Conf. Proc. 1407, 38 (2011); 10.1063/1.3658290 
 
Detailed balance limit of the efficiency of multilevel intermediate band solar cells 
Appl. Phys. Lett. 98, 171108 (2011); 10.1063/1.3583587 
 
Statistical thermodynamic foundation for photovoltaic and photothermal conversion. IV. Solar cells with larger-
than-unity quantum efficiency revisited 
J. Appl. Phys. 89, 2482 (2001); 10.1063/1.1338522 
 
 

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  128.210.106.225 On: Fri, 11 Nov 2016

18:15:38

http://scitation.aip.org/content/aip/journal/apl?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1577065055/x01/AIP-PT/Agilent_APLArticleDL_110916/Agilent_Banner_webinar_1640x400.jpg/434f71374e315a556e61414141774c75?x
http://scitation.aip.org/search?value1=Muhammad+Ashraful+Alam&option1=author
http://scitation.aip.org/search?value1=M.+Ryyan+Khan&option1=author
http://scitation.aip.org/content/aip/journal/apl?ver=pdfcov
http://dx.doi.org/10.1063/1.4966137
http://scitation.aip.org/content/aip/journal/apl/109/17?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/119/7/10.1063/1.4942223?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/107/22/10.1063/1.4936341?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.3658290?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/98/17/10.1063/1.3583587?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/89/4/10.1063/1.1338522?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/89/4/10.1063/1.1338522?ver=pdfcov


Thermodynamic efficiency limits of classical and bifacial multi-junction
tandem solar cells: An analytical approach

Muhammad Ashraful Alama) and M. Ryyan Khan
School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA

(Received 24 June 2016; accepted 11 October 2016; published online 25 October 2016)

Bifacial tandem cells promise to reduce three fundamental losses (i.e., above-bandgap, below

bandgap, and the uncollected light between panels) inherent in classical single junction photovol-

taic (PV) systems. The successive filtering of light through the bandgap cascade and the require-

ment of current continuity make optimization of tandem cells difficult and accessible only to

numerical solution through computer modeling. The challenge is even more complicated for bifa-

cial design. In this paper, we use an elegantly simple analytical approach to show that the essential

physics of optimization is intuitively obvious, and deeply insightful results can be obtained with a

few lines of algebra. This powerful approach reproduces, as special cases, all of the known results

of conventional and bifacial tandem cells and highlights the asymptotic efficiency gain of these

technologies. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4966137]

The optimum single junction (SJ) solar cell fails to con-

vert 2/3 of the incident sunlight into useful energy.1,2 In fact,

these unconverted sub-bandgap (sub-BG) and above-

bandgap (above-BG) photons further degrade the perfor-

mance and reliability through self-heating.3,4 Moreover, the

panels in a solar farm must be spatially separated to avoid

shadowing; as a result, �50% of the photons are wasted in

the space in between (space-loss).5 With this “space-loss”

accounted for, �83% of the sunlight incident on a solar farm

will never be converted to electricity.

A bifacial multi-junction tandem (B-MJT) cell promises

to stem these three fundamental losses as follows: photons of

various energies are converted by the sequence of absorbers

with decreasing bandgaps so that “sub-BG” and “above-BG”

losses are reduced in half.6 In addition, bifacial cells partially

recover (�30% in practice) the space-loss by converting the

albedo light,7–10 see Fig. 1(a). Therefore, in principle, a

B-MJT solar farm may be 250% more efficient than a SJ

solar farm.

Since the 1960s, many groups have analyzed the physics

and optimized the design of MJTs with a finite number of

cells.6,11–14 Although the concept of bifacial cells15–17 is not

new, their high efficiency and reduced temperature sensitiv-

ity have sparked recent commercial interest. The thermody-

namics and the optimization of two-junction bifacial cells

have been reported recently.9,10 The results show that the

optimization is nontrivial: In a classical MJT, the need for

current-matching dictates a sequential decrease in bandgap

from the top to the bottom. In a B-MJT, the bottom cell is

illuminated by albedo light; therefore, we need not maintain

the bandgap sequence; a partial inversion of bandgaps is pos-

sible and desirable.

Even in the idealized thermodynamic limit, however,

many questions remain unanswered: What is the optimum

bandgap sequence of a B-MJT and how does it compare to a

classical MJT? How would the configuration change when

the solar farm is installed on a grass vs. a concrete surface?

At what point is the marginal gain in power output offset by

the cost of the additional junction?

A numerical simulation can answer these questions, but

the essential physics is sometimes lost in the fog of numeri-

cal modeling. Instead, we use a simple approximation for

bandgap-dependent photocurrent, within a chained-form sys-

tem,18 to show that the choice of bandgap in classical vs.

B-MJT is described by an elegantly simple formulation. We

assume a 2-terminal tandem with all of the subcells con-

nected electrically in series. The optimum efficiency pre-

dicted by the model matches the numerical results within

�2%. Away from the optimum BG, the luminescence cou-

pling19,20 is essential and numerical modeling cannot be

FIG. 1. (a) A bifacial panel collects both the direct sunlight and the light

scattered from ground (albedo reflectance, R). Reproduced with permission

from Appl. Phys. Lett. 106, 243902 (2015). Copyright 2015 AIP Publishing.

(b) A bifacial multi-junction tandem (B-MJT) is shown. The cell receives 1-

Sun and R-Sun illuminations from the top and the bottom, respectively. (c)

The B-MJT shown in (b) can be viewed as a bubble chain. The cells above

E0 absorb direct sunlight from the top, while those below E0 absorb albedo

light from the bottom. The absorber with the smallest bandgap (E0) absorbs

light from both sides.a)Electronic mail: alam@purdue.edu

0003-6951/2016/109(17)/173504/5/$30.00 Published by AIP Publishing.109, 173504-1
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avoided. Even in those cases, the results of the calculation

provide excellent initial guesses regarding the potential of

the bifacial cell technology.

Fig. 1(b) represents the typical configuration of a bifa-

cial cell. Conceptually, a B-MJT may be represented, as in

Fig. 1(c), by a chain of bubbles (each representing a material

with bandgap, Eg, and short-circuit current, JSCðEgÞÞ, illumi-

nated by 1-sun on the top and R-sun at the bottom. The cell

with the smallest bandgap (E0 � Eg;min) is located at {0},

which need not be at the bottom. The segment of the chain

illuminated by the direct incident light from the top is

marked {iþ}, with the top cell at {P}. Similarly, the cells

illuminated by the albedo light from the bottom are marked

{i–}, with the bottom cell at {Q}. Thus, the total number of

cells is N � Pþ Qþ 1.

Assuming complete absorption above the bandgap, the

current in the individual bubbles is related to the short circuit

current JSCðEgÞ of isolated absorbers as follows:

Jfi6g ¼ JSC;i6 � JSC;ðiþ1Þ6; except that; (1)

JP ¼ JSC;P ðtop cellÞ; (2)

JQ ¼ R JSC;Q ðbottom cellÞ: (3)

Since the current through the series connected cells must be

identical, the equations above are numerically equal.

Despite the complexity of the AM1.5G spectrum, the

short-circuit current, JSCðEgÞ, scales almost linearly within

the bandgap range (0.5 eV<Eg< 1.9 eV). In general, we can

always map Eg to Xg, so that

JSCðXgÞ ¼ JSUNð1� bXgÞ; (4)

where b is a constant, and JSUN depends on intensity, I.
Unlike the “actual bandgap” Eg, the “mapped bandgap” Xg is

always linear with JSC. This mapping greatly simplifies the

analysis for MJTs and B-MJTs. Once Xg is solved explicitly

(discussed later), it can be trivially mapped back to Eg, as

shown in Fig. S1 of the supplementary material.

Inserting Eq. (4) into Eqs. (1)–(3) and dictating that the

current must be continuous through the tandem cells, we find

that the bandgap optimization problem can be solved as

follows:

½X� ¼ ½M��1½Z�; (5)

where ½X� ¼ ½XP;…Xiþ;…;Xj�;…;XQ� is the bandgap vec-

tor of size N – 1 (excluding X0), and the residual vector, [Z],

of the same size is given by

½Z� ¼

�½1; 0; 0;…::bð1þ RÞX0; bð1þ RÞX0;

…0; 0;R�; P;Q>0

�½1; 0; 0;…::bð1þ RÞX0 � R�; P>0;Q¼0

�½1þ bð1þ RÞX0 � R�; P¼0;Q¼0 (6)

8>>>>>>><
>>>>>>>:

and ½M� � b�2
P BR

B Rb�2
Q

" #
; where R is the effective albedo

reflectance, and

½�2� �

�2 1 … …

1 �2 1 …

… … . .
.

…

… … 1 �2

2
666664

3
777775; ½B� �

0 � � � �b

..

. . .
. ..
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0 � � � 0
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3
775;

½BR� �
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..
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. ..

.

�bR � � � 0

2
664

3
775:

Note that ½�2
P� is a P�P matrix. Once Eq. (5) is solved

for [X], the actual bandgap set [E] can be obtained by inverse

mapping as discussed earlier (also see Fig. S1).

Once the vector [E] is specified, the full J – V
characteristics

JðVÞ ¼ Jph � JdarkðVÞ; (7)

can be determined as follows (see supplementary material

for details). The photocurrent, Jph, of the tandem device is

proportional to the number of solar photons absorbed in a

subcell, with this optical process being independent of bias

V. The photocurrents of the subcells are matched, and there-

fore can be replaced by a single source, evaluated Jph¼ JP,

for example. The dark current is

JdarkðVÞ � JD;i ¼ AiðEiÞðeqVi=kBTD � 1Þ: (8)

Here, AiðEgÞ ¼ qXD;i cðEg; TÞe�Eg=kBTD and cðEg; TÞ �
ð2kBT=c2h3ÞðE2

g þ 2kBT2Eg þ 2k2
BT2Þ (see Ref. 2). We

define AiðEiÞ such that it accounts for photon recycling

within each subcell. Here, TD is the device temperature, and

XD;i is the emission angle from each subcell. If the lumines-

cent coupling among the subcells is negligible, XD;i ¼ 4p (or

2p) for the bifacial (or conventional) device.

Using Eq. (8), we can write

V ¼
X

N

Vi ¼
X

N

kBTD

q
ln

Jdark

Ai
þ 1

� �
¼ kBTD

q
ln

JN
darkQ

Ai

 !
;

[ Jdark Vð Þ � qX	Dfcige� hEgi=kBTDð Þe qV=NkBTDð Þ:

(9)

Here, hEgi is the arithmetic mean of the bandgap set [E].

X	D and {ci} are the geometric means of XD;i and cðEi; TDÞ,
respectively. In this remarkable result, Eq. (9) suggests that the

terminal response of the complex B-MJT can be represented

by a string of identical cells repeated N-times, making the vast

literature on the SJ physics available to MJT analysis.

To summarize, once X0, N, Q (or, P), and R are specified,

Eq. (5) is solved to obtain the bandgap-set [X]. The values [X]

do not represent the final bandgaps and are required to be

mapped into the “actual bandgaps” [E]. Then, Eqs. (1)–(3),

(7), and (9) can be used to construct the J � V characteristics

and the efficiency, g	TðE0;N;Q;RÞ; of the cells. This is how

we calculate the contour plot shown in Fig. 2(a), for the spe-

cific case of (Q¼ 0, and R¼ 0), to be discussed below. To

calculate the optimum output power, Pmax � JðVoptÞVopt, we

must first calculate the voltage Vopt at the maximum power

173504-2 M. A. Alam and M. R. Khan Appl. Phys. Lett. 109, 173504 (2016)
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output. To do so, we solve Eq. (9) (by using the technique in

Ref. 2) to obtain

qVopt

N
� hEgi 1� TD

hEgi
Eg;P

TS

� �
� kBTDln

X	D
XS

� �
: (10)

Here, Eg,P¼EP is the bandgap of the topmost subcell and TS

is the temperature of the Sun. Eq. (10) is a generalization of

Vopt found in the SJ literature. The expression reduces to the

well-known SJ formula2,21,22 for N¼ 1 with hEgi ¼ Eg;P, as

expected. A tool implementing this modeling framework is

available online.23

Let us first consider a special case when Q¼ 0 (i.e., the

bottom cell has the smallest bandgap), to illustrate the power

of the technique. For arbitrary P and R, we have

½Z� � �½1; 0;…; bð1þ RÞX0 � R�. Eq. (5) is now easily

solved

Xi ¼
i

bN

� �
þ N � ið Þ b 1þ Rð ÞX0 � R½ �

bN
; (11)

where i¼ 1,…, N – 1. With R¼ 0, the equation reduces to

the conventional tandem structure. As explained earlier, Xi is

required to be mapped back to the “actual bandgap” Ei.

Interestingly, Eq. (11) offers a number of insights regard-

ing the optimization of B-MTJ cells. First, B-MJTs have

smaller Xi than classical MJTs (i.e., DXi ¼ �ðN � iÞð1
�bX0ÞR=bN), because, given the albedo illumination, the

bottom cells need not depend exclusively on the filtered light

from the top; therefore, improved current matching is possible

even with reduced bandgap difference. Second, unlike stan-

dard MJT cells (R¼ 0), the bottom cell of an optimized B-

MJT (with R> 0) need not have the smallest bandgap.

Specifically, the condition that the bottom cell has the small-

est bandgap implies X1 � X0 
 0 for stacks with Q¼ 0.

Inserting the expression for X1 from Eq. (11) (derived for

Q¼ 0) into this condition, we find

½ðN � 1ÞR� 1�ðbX0 � 1Þ 
 0:

For AM1.5G b ¼ 0:428 eV�1, and Eq. (13) will show

that Xopt
0 � ESJð¼ 1:33Þ for an optimized B-MJT; therefore,

ðbXopt
0 � 1Þ < 0. Thus, an optimized tandem design (with

Q¼ 0) is simply characterized by the constraint

N � ð1þ R�1Þ: (12)

For the (N, R) combination satisfying Eq. (12), the bottom

cell has the smallest bandgap (i.e., Q¼ 0), and thus we can

use Eq. (11) to calculate the B-MJT cell design. This

includes all conventional tandem cells because with R¼ 0,

Eq. (12) holds for arbitrary N. The condition also holds for a

subset of B-MJT cells, with shorter stacks. For example, for

symmetric illumination from top and bottom faces (R¼ 1),

Eq. (12) is satisfied only for N� 2. The result is easily inter-

preted: With R¼ 1 and N> 2, symmetric illumination dic-

tates that that B-MJT cells have a symmetric bandgap

sequence, decreasing from the top to the middle, and then

increasing again towards the bottom, so that Q¼ 0 is satis-

fied only with N� 2.

FIG. 2. (a) The normalized B-MJT

output g	T is for Q¼ 0 found as func-

tions of P and E0 at R¼ 0. The opti-

mum E0 is marked as white squares.

Note that, N¼Pþ 1 as we have set

Q¼ 0 in this case. (b) shows the corre-

sponding optimum B-MJT bandgaps

(red-filled squares). Results are com-

pared to theoretical predictions in the

literature for the conventional tandem

(þ).13,14 (c) The optimum B-MJT

bandgaps for R¼ 0.3 are shown. The

squares (�) show the E0-values. The D
and � markers represent the bandgaps

for the front {iþ} and back {j–} sub-

cells, respectively. The results are

compared to the bifacial tandem (�)

literature.10

173504-3 M. A. Alam and M. R. Khan Appl. Phys. Lett. 109, 173504 (2016)
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Focusing on the specialized case that satisfies Eqs. (11)

and (12), we note that Xi depends on X0, the smallest

bandgap. Therefore, the B-MJTs must be optimized for X0

(or E0) for the maximum power output, as follows.

We first calculate numerically Pmax ¼ JðVoptÞVopt, based

on Equations (7), (9), and (10), to find g	TðE0;N;Q ¼ 0;RÞ
for N¼ 1,…, 10 and R¼ 0, and plot the results in Fig. 2(a).

For comparison, g	T is the output normalized to the 1-sun

input. The white squares mark the optimum Eopt
0 ðNÞ that max-

imizes g	T for a specified number of junctions. Figs. 2(b) and

2(c) show that the Ei associated with Eopt
0 is in near perfect

agreement with results reported in the literature for the classi-

cal (R¼ 0) and bifacial cells (R¼ 0.3), respectively. In Fig.

2(c) for R¼ 0.3, Eq. (11) can be used to find the bandgaps for

N � ð1þ R�1Þ � 4—the results for N> 4 must be optimized

for Q> 0, see below. Given this level of agreement of the

bandgaps shown in Fig. 2, it is not surprising that g	T matches

with those from the literature as well, see Fig. 3.

In the discussion above, we have obtained the optimum-

E0(N, R) for Q¼ 0 through numerical maximization of the

power-output. Fortunately, the result can also be estimated

analytically, as follows. For a SJ (N¼ 1) solar cell, the opti-

mum bandgap is X0 ¼ XSJ ð� ESJÞ. Due to the linearity of

the JSC � Xg relationship, the bandgaps {Xi} of the

N–junction tandem would be such that the average is

hXii � XSJ . (Note: hXii ¼ ðX0 þ � � � þ XN�1Þ=N). Now,

using this relation at the optimal with Eq. (11), we find

Xopt
0 ¼ ESJ �

N � 1ð Þ 1� Rð Þ
2bN

 !
2N

N 1þ Rð Þ þ 1� Rð Þ :

(13)

Here, ESJ¼ 1.33 eV is the SJ optimum bandgap. For

AM1.5G, we have found Xopt
0 to be within 0.5 to 1.5 eV—

therefore, we can directly predict Eopt
0 ð¼ Xopt

0 Þ without map-

ping. Equation (13) anticipates the asymptotic limit of

Eopt
0 ðN !1Þ (see Figs. 2(b) and 2(c)), i.e.,

Eopt
0 N !1ð Þ � ESJ �

1� Rð Þ
2b

 !
2

1� Rð Þ : (14)

The analytical results discussed thus far apply only to

“Q¼ 0” cells that satisfy Eq. (12). For Q> 0, we must opti-

mize the stack numerically for arbitrary (N, R) combinations,

as follows.

In general, for a given set of N, R, Q, and E0, we first

find the subcells bandgaps using Eq. (5) and by inverse

mapping from Xg to Eg (also see Fig. S1 of supplementary

material), and then calculate g	TðE0;N;Q;RÞ using Equations

(7), (9), and (10). For a given (N, R), the maximum g	T deter-

mines E0 and Q simultaneously. The bandgap set for the

globally optimized B-MJT at R¼ 0.3 is shown in Fig. 2(c).

For a bifacial tandem, the bottom subcells receive extra pho-

tons from the albedo. Therefore, for current matching and

optimal designs: (i) the top subcells can be smaller to absorb

more photons from the direct light and (ii) the bottom sub-

cells can be larger to absorb fewer photons from the direct

light as these subcells are compensated by the albedo. This

results in a more tightly spaced set of bandgaps for B-MJTs

(in Fig. 2(c)) compared to the conventional MJTs (in Fig.

2(b)). For R¼ 0.3, we observe that Q¼ 0 for N� 4, consis-

tent with the constraint in Eq. (12). For N> 4, g	T is maxi-

mized for Q> 0, that is, the cell with the smallest bandgap is

no longer located at the bottom. This allows the bottom cell

to fully benefit from the albedo light. The Q-values are

marked at the top-axis in Figs. 2(c).

The corresponding output g	T for the optimized cells dis-

cussed above is marked in Fig. 3. One may naively expect

that when the sunlight intensity is scaled by a factor of

(1þR)¼ 1.3, the output will increase by a factor of

(1þR)¼ 1.3 as well. The requirement of current matching

among the series connected subcells, however, restricts the

ultimate gain below the idealized limit. Indeed for N¼ 1,

the efficiency increases from �31% at R¼ 0 to� 40.3% at

R¼ 0.3, a 30% gain as expected. The gain is somewhat

smaller for N> 1 due to the constraint of current matching in

B-MJTs.

While the results for R¼ 0 (classical tandem) are only

of pedagogical interest, the results shown in Fig. 3 report the

efficiency gain of B-MJTs with N
 3, which have not been

discussed in the prior literature. The results suggest that a

4-junction B-MJT (at a practical R¼ 0.3) would outperform

a 7-junction classical MJT, such as the power of the current-

constraint relaxed by the bifacial concept. For the same N,

the increased power-input of B-MJT would make the cells

slightly hotter, but the reduced temperature coefficient of

some of the bifacial cells, such as HIT (Hetero-junction with

Intrinsic Thin-layer), would compensate the effect.

To conclude, we have developed a methodology that

can be used to answer a broad range of questions regarding

conventional as well as bifacial tandem cells. The series con-

nected circuit approach allowed us to derive expressions for

Jdark and Vopt. We have generalized the physically meaning-

ful expression for Vopt, which is valid for SJs, MJTs, and

B-MJTs. Our analysis presents analytical expressions esti-

mating the bandgap sequence for conventional MJTs and

B-MJTs (for N � (1þR–1)). Numerical simulations would

still be necessary for MJTs or B-MJTs involving extremely

large or small bandgaps, or for optimization at the maximum

power point involving luminescent coupling.19,20 The final

FIG. 3. The normalized output g	T for the B-MJT is shown for R¼ 0 and

R¼ 0.3 by filled and open squares. Results are compared to theoretical pre-

dictions in the literature: for conventional tandem (þ),13,14 and bifacial tan-

dem (�).10 The black open squares (dashed lines) represent g	T for the

optimized B-MJT at R¼ 0.3 with Q
 0. Performance of the relevant state-

of-the-art PV technologies can be found in Refs. 24–26.
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design must rely on careful numerical optimization of finite

absorption, reflection, and series resistance. Regardless, the

methodology reported here stands out in its simplicity and

versatility to quantitatively predict a range of phenomena

previously accessible only to numerical modeling.

See supplementary material for JSC vs. bandgap plot in

Fig. S1, circuit model for tandems in Fig. S2, and detailed

results for B-MJT in Figs. S3–S6, derivation for constraint

on N for Q¼ 0.
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