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A Semidefininte Programming Formulation of the LQR

Problem and Its Dual

Donghwan Lee Jianghai Hu∗†

November 9, 2016

Abstract

The goal of this paper is to derive a modified formulation of the finite-horizon LQR problem,
which can be cast as semidefinite programming problems (SDPs). In addition, based on the the
Lagrangian duality, its dual problem is studied. We establish connections between the proposed
primal-dual conditions with existing results. As an application of the proposed results, the
decentralized LQR analysis and design problems are addressed. Especially, using the structure of
the derived LQR formulations, a sufficient but simple and convex surrogate problem is developed
for solving decentralized LQR design problems.

1 Introduction

In this paper, the finite-horizon linear quadratic regulator (LQR) problem is considered. The
goal is to investigate a semidefinite programming (SDP) formulation of the finite-horizon LQR
problem. It is well known that both finite-horizon and infinite-horizon LQR problems can be
transformed into SPD problems (see for example, [1–4]). Recently, another SDP formulation of
the finite-horizon LQR problem was proposed in [5]. This method is especially attractive because
it converts the LQR problem into the optimal covariance matrix selection problem, and it can be
also interpreted as a dual problem of the standard LQR approaches based on the Riccati equations
or the Lyapunov methods. The first main result of this paper is a proposition of a modified SDP
problem for the infinite-horizon LQR. Compared to the SDP problem in [5], the proposed SDP
problem includes explicitly the static feedback gain parameters, and it may enjoy some properties
that make it especially useful when special structures are imposed on the feedback gain over the
finite time-horizon.

On the other hand, we study a dual counterpart of the proposed LQR formulation by using the
Lagrangian duality in optimization theories [6]. There are several duality relations in systems and
control theory, which have attracted much attention during the last decades. For instance, a new
proof of Lyapunov’s matrix inequality was presented in [7] based on the standard semidefinite
programming (SDP) duality [8]. In addition, SDP formulations of the LQR problem and their dual
formulations were developed in [3] and [4]. Comprehensive studies on the SDP dualities in systems
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and control theory, such as the Kalman-Yakubovich-Popov (KYP) lemma, the LQR problem, and
the H∞-norm computation, were provided in [9]. More recent results include the state-feedback
solution to the LQR problem [5], the generalized KYP lemma and H∞ analysis [10, 11] derived
using the Lagrangian duality. In this paper, we derive a dual SDP problem of the proposed LQR
formulation and establish a connection between the proposed dual problem and the Q-function
approach to the LQR problem considered in [12,13]. In addition, some equivalence relations between
the proposed primal and dual formulations and those in [5] are addressed.

Finally, it is proved that the proposed primal LQR formulation can be applied to a more general
class of problems, the structured static state-feedback LQR designs including the distributed and
decentralized LQR design problems. A sufficient but simple SDP relaxation of the decentralized
LQR design problem is developed based on the methods developed in [2].

This paper is organized as follows. Section II presents the standard finite-horizon LQR problem
and the proposed formulation consisting of an optimization problem subject to convex matrix
inequalities. Section III provides its dual problems, and Section IV discusses connections between
the proposed formulations and existing results. In Section V, a convex approximation of the
decentralized LQR problem is addressed, and finally, Section VI concludes the paper.

Notation: The adopted notation is as follows: N and N+: sets of nonnegative and positive integers,
respectively; R: set of real numbers; R+: set of nonnegative real numbers; R++: set of positive real
numbers; Rn: n-dimensional Euclidean space; Rn×m: set of all n×m real matrices; AT : transpose
of matrix A; A ≻ 0 (A ≺ 0, A � 0, and A � 0, respectively): symmetric positive definite (negative
definite, positive semi-definite, and negative semi-definite, respectively) matrix A; In: n×n identity
matrix; Sn: symmetric n×n matrices; Sn+: cone of symmetric n×n positive semi-definite matrices;
S
n
++: symmetric n× n positive definite matrices; Tr(A): trace of matrix A.

2 Finite-horizon LQR problem

Consider the stochastic LTI system

x(k + 1) = Ax(k) +Bu(k) + w(k) (1)

where k ∈ N, x(k) ∈ R
n is the state vector, u(k) ∈ R

m is the input vector, x(0) ∼ N (0, Wf )
and w(k) ∼ N (0, W ) are mutually independent Gaussian random vectors. In this section, the
finite-horizon stochastic LQR problem will be considered.

Problem 1 (Finite-horizon LQR problem). Solve

min
F0,..., FN−1∈Rm×n

E(x(k)TQfx(k)) +

N−1
∑

k=0

E

(

[

x(k)
u(k)

]T [
Q 0
0 R

] [

x(k)
u(k)

]

)

subject to x(k + 1) = Ax(k) +Bu(k) + w(k)

u(k) = Fkx(k)

A collection of assumptions that will be used throughout the paper is summarized below.

Assumption 1. The following assumptions are made:

1. Qf � 0, Q � 0, R ≻ 0, Wf ≻ 0, and W ≻ 0;



2. (A, B) is stabilizable and (A, Q) is detectable.

If we define the covariance of the augmented vector [x(k)T , u(k)T ]T ∈ R
n×m

Sk = E

(

[

x(k)
u(k)

] [

x(k)
u(k)

]T
)

, k ∈ {0, 1, . . . , N}

then, Problem 1 can be equivalently converted to the matrix equality constrained optimization
problem.

Problem 2. Solve

J∗
p := min

S0,...,SN−1∈S
n+m

F0,..., FN−1∈R
m×n

Jp({Sk}
N−1
k=0

) (2)

subject to

Φ(Fk, Sk−1) = Sk k ∈ {1, 2, . . . , N − 1}
[

In
F0

]

Wf

[

In
F0

]T

= S0

where

Jp({Sk}
N−1
k=0

) := Tr

(

Qf

(

[

AT

BT

]T

SN−1

[

AT

BT

]

+W

))

+
N−1
∑

k=0

Tr

([

Q 0
0 R

]

Sk

)

Φ(F, S) :=

[

In
F

]

(

[

AT

BT

]T

S

[

AT

BT

]

+W

)

[

In
F

]T

In Problem 2, the matrix equality constraints represent the covariance updates. Note that the
formulation of Problem 2 is a modified version of the problem in [5, Propisition 1]. The difference
is that the gain parameters explicitly appear in the covariance update equations of Problem 2, while
this is not the case for [5, Propisition 1]. Later, a relation between Problem 2 and [5, Propisition
1] will be shown.

Since the left-hand side of the matrix equalities are not linear, it is not clear whether or not
the optimization in Problem 2 is convex. Instead of dealing with Problem 2 in its present form
involving the matrix equality constraints, we will consider the modified problem by replacing the
matrix equalities in Problem 2 by inequalities.

Problem 3. Solve

popt := min
S0,...,SN−1∈S

n+m

F0,..., FN−1∈R
m×n

Jp({Sk}
N−1
k=0

) (3)

subject to

Φ(Fk, Sk−1) � Sk, k ∈ {1, 2, . . . , N − 1}
[

I

F0

]

Wf

[

I

F0

]T

� S0

The goal of this section is to study properties of Problem 3 and find relations between Problem 2
and Problem 3. The following results can be established first.



Proposition 1. The following statements are true:

1. The optimization (2) is convex;

2. The optimization (2) is strictly feasible.

Proof. Proof of statement 1): It is enough to prove that the constraints can be equivalently con-
verted to linear matrix inequality (LMI) constraints so that the optimization is a convex semidefi-
nite programming problem (SDP). It can be readily done by using the modified Schur complement
in [14, Theorem 1]. More precisely, we claim that Φ(Fk, Sk−1) � Sk holds if and only if there exists
Gk ∈ R

n×n such that







Sk ∗

[

Gk GkF
T
k

]

(

Gk +GT
k −

[

AT

BT

]T

Sk−1

[

AT

BT

]

−W

)






� 0 (4)

To prove the necessity of the claim, suppose that Φ(Fk, Sk−1) � Sk holds. SinceDk :=

[

AT

BT

]T

Sk

[

AT

BT

]

+

W ≻ 0, by the Schur complement argument, Φ(Fk, Sk−1) � Sk holds if and only if

[

Sk ∗
[

Dk DkF
T
k

]

Dk

]

�

0, which equivalent to (4) with Gk = Dk, proving the necessary part. To prove the sufficiency, sup-
pose that (4) is satisfied. Then, by algebraic manipulations, it can be proved that pre- and post-

multiplying both sides of (4) by





−I 0
0 −I

I F T
k





T

and its transpose yield Φ(Fk, Sk−1) � Sk. Thus,

the claim is proved. Lastly, with the change of variables GkF
T
k = Lk, (4) is equivalent to an LMI.

Therefore, the optimization is equivalent to the convex SDP, completing the proof of the statement
1).

Proof of the statement 2): With Fk = 0, ∀k ∈ {0, 1, . . . , N − 1} and any ε > 0, construct matrices
{Sk}

N−1
k=0

as follows:

[

In
F0

]

Wf

[

In
F0

]T

+ εIn = S0

Φ(Fk, Sk−1) + εIn = Sk

The set {Fk, Sk}
N−1
k=0

satisfies the constraints of (2) with strict inequalities. The complete the proof
of the statement 2).

To proceed, denote by S the set of all optimal solutions of the form {(Fk, Sk)}
N−1
k=0

of (3). In

addition, define the projection mapping F := {{Fk}
N−1
k=0

: {(Fk, Sk)}
N−1
k=0

∈ S}. It is not clear
whether or not the optimal solution of (3) is unique. Even if the optimal solution of (3) is not
unique, then it is also not clear whether or not all the optimal solutions take equalities in the
constraint of (3). However, we can draw a conclusion that if {Fk}

N−1
k=0

∈ F , then it is also optimal
for Problem 2.

Proposition 2. If {Fk}
N−1
k=0

∈ F , then it is also optimal for Problem 2.



Proof. Let {Fk}
N−1
k=0

∈ F and construct {S̄k}
N−1
k=0

such that

Φ(Fk, S̄k−1) = S̄k, k ∈ {1, 2, . . . , N − 1}
[

I

F0

]

Wf

[

I

F0

]T

= S̄0

Clearly, S̄k � Sk, ∀k ∈ {0, 1, . . . , N − 1} and hence, popt ≥ Jp({S̄k}
N−1
k=0

). However, since

{Fk, S̄k}
N−1
k=0

is also a feasible point of (3), and thus, Jp({S̄k}
N−1
k=0

) ≥ popt. Therefore, Jp({S̄k}
N−1
k=0

) =

popt and {Fk, S̄k}
N−1
k=0

is an optimal solution of (3). Since the problem (2) has a feasible set in-

cluded by the feasible set of (3), and the optimal solution {Fk, S̄k}
N−1
k=0

of (3) takes equalities in

the constraints of (3), {Fk, S̄k}
N−1
k=0

is also optimal solution of (2). This completes the proof.

Corollary 1. J∗
p = popt holds.

Proof. Straightforward from Proposition 2.

3 Dual to the finite-horizon LQR problem

The aim of this section is to find a dual formulation of Problem 3 using the Lagrangian duality [6,
chapter 5]. For any P0, . . . , PN−1 ∈ S

n+m
+ and P̄0, . . . , P̄N−1 ∈ S

n+m
+ , define the Lagrangian of

the problem (3)

L({(Sk, Fk, Pk, P̄k)}
N−1
k=0

) := Jp({Sk}
N−1
k=0

) +
N−1
∑

k=1

Tr((Φ(Fk, Sk−1)− Sk)Pk)

+Tr

((

[

I

F0

]

Wf

[

I

F0

]T

− S0

)

P0

)

−
N−1
∑

k=0

Tr(SkP̄k)

Rearranging some terms, it can be represented by

L({(Sk, Fk, Pk, P̄k)}
N−1
k=0

) = Jd({Pk, Fk}
N−1
k=0

)

+Tr

((

[

AT

BT

]

Qf

[

AT

BT

]T

−PN−1 +

[

Q 0
0 R

]

− P̄N−1

)

SN−1

)

+
N−1
∑

k=1

Tr((Γ(Fk, Pk)−Pk−1 − P̄k−1)Sk−1) (5)

Consider the dual problem

dopt := sup
Pk�0, P̄k�0

k∈{0,..., N−1}

D({(Pk, P̄k)}
N−1
k=0

) (6)

= sup
Pk�0, P̄k�0

k∈{0,..., N−1}

inf
{Sk, Fk}

N−1

k=0

L({(Sk, Fk, Pk, P̄k)}
N−1
k=0

)

where

D({(Pk, P̄k)}
N−1
k=0

) := inf
{Sk, Fk}

N−1

k=0

L({(Sk, Fk, Pk, P̄k)}
N−1
k=0

)



Theorem 1. The following statements are true:

1. The strong duality holds, i.e., popt = dopt;

2. Consider the Riccati equation

ATXk+1A−ATXk+1B(R+BTXk+1B)−1BTXk+1A+Q = Xk (7)

for all k ∈ {0, 1, . . . , N − 1} with XN = Qf , and define {(Sk, Fk, Pk, P̄k)}
N−1
k=0

with

Fk = −(R+BTXk+1B)−1BTXk+1A

Sk = Φ(Fk, Sk−1), S0 =

[

I

F0

]

Wf

[

I

F0

]T

Pk =

[

Q+ATXk+1A ATXk+1B

BTXk+1A R+BTXk+1B

]

P̄k = 0, k ∈ {0, 1, . . . , N − 1}

(8)

Then, {(Sk, Fk)}
N−1
k=0

is an primal optimal point of (3) and {(Pk, P̄k)}
N−1
k=0

is the correspond-
ing dual optimal point of (3).

Proof. Proof of the statement 1): By Proposition 1, the optimization is convex and strictly feasible.
By the Slater’s condition [6], the strong duality holds.

Proof of the statement 2): Since the primal feasible point of (3) for {S0}
N−1
k=0

⊂ S
n+m are guaranteed

to be positive semidefinite, the constraints Sk � 0, k ∈ {0, 1, . . . , N − 1} can be added to (3)
without changing the optimal solution set as well as the feasible set. From the KTT condition of
the generalized inequality constrained optimization in [6, chapter 5.9.2], its KKT condition can be
summarized as the primal feasibility condition

[

I

F0

]

Wf

[

I

F0

]T

� S0, Φ(Fk, Sk−1) � Sk

k ∈ {1, 2, . . . , N − 1}

Sk � 0, k ∈ {0, 1, . . . , N − 1}

the complementary slackness condition

Tr

((

[

I

F0

]

Wf

[

I

F0

]T

− S0

)

P0

)

= 0

Tr((Φ(Fk, Sk−1)− Sk)Pk) = 0
k ∈ {1, 2, . . . , N − 1}

Tr(SkP̄k) = 0, k ∈ {0, 1, . . . , N − 1}

(9)

and the dual feasibility condition

PN =

[

Qf 0
0 0

]

, Γ(0, PN )− P̄N−1 = PN−1

Γ(Fk, Pk)− P̄k−1 = Pk−1, k ∈ {1, 2, . . . N − 1}

Wf (P0, 12 + F T
0 P0, 22) + (P T

0, 12 + P0, 22F0)Wf = 0



Mk(Pk+1, 12 + F T
k+1Pk+1, 22) + (P T

k+1, 12 + Pk+1, 22Fk+1)Mk = 0

k ∈ {1, 2, . . . , N − 1}

Pk � 0, P̄k � 0, k ∈ {0, 1, . . . N − 1}

where Mk =
[

A B
]

Sk

[

A B
]T

+W . By plugging (8) into the KKT condition, it can be proved
that they satisfy the KKT. Since the problem (3) is convex, the point (8) is the primal and dual
optimal points of (3). This completes the proof.

In what follows, we introduce an explicit dual formulation of Problem 3.

Problem 4. Solve

d̃opt := max
P0,...,PN−1∈S

n+m

+

Jd({Pk, Fk}
N−1
k=0

) (10)

subject to

Γ(Fk, Pk) � Pk−1, k ∈ {1, 2, . . . N − 1}

Γ(0, PN ) � PN−1

[

0
I

]T

Pk

[

0
I

]

≻ 0, Fk = −P−1
k, 22P

T
k, 12

k ∈ {0, 1, . . . N − 1}

where

Jd({Pk, Fk}
N−1
k=0

) := Tr

(

[

I

F0

]

Wf

[

I

F0

]T

P0

)

+
N
∑

k=1

Tr

(

[

I

Fk

]

W

[

I

Fk

]T

Pk

)

Γ(F, P) :=

[

AT

BT

] [

I

F

]T

P

[

I

F

] [

AT

BT

]T

+

[

Q 0
0 R

]

and

Pk =

[

Pk, 11 Pk, 12

P T
k, 12 Pk, 22

]

, PN =

[

Qf 0
0 0

]

Theorem 2. The following statements are true:

1. dopt ≥ d̃opt holds;

2. The lower bound is tight, i.e., dopt = d̃opt;

3. Consider the Riccati equation (7). An optimal point of (10) is {Pk}
N−1
k=0

with

Pk =

[

Q+ATXk+1A ATXk+1B

BTXk+1A R+BTXk+1B

]

(11)

Proof. Proof of statement 1): Define the set

F :=

{

P ∈ S
n+m
+ :

[

0
Im

]T

P

[

0
Im

]

≻ 0

}



Then, it is clear that the dual optimal objective function value is lower bounded as follows:

sup
Pk�0, P̄k�0

k∈{0,..., N−1}

inf
{Sk, Fk}

N−1

k=0

L({(Sk, Fk, Pk, P̄k)}
N−1
k=0

)

≥ sup
Pk∈F , P̄k�0

k∈{0,..., N−1}

inf
{Sk, Fk}

N−1

k=0

L({(Sk, Fk, Pk, P̄k)}
N−1
k=0

) (12)

Now, let us focus on the term in the Lagrangian (5)
N−1
∑

k=1

Tr(Γ(Fk, Pk)Sk−1), which can be repre-

sented by

N−1
∑

k=1

Tr(Γ(Fk, Pk)Sk−1) =
N−1
∑

k=1

E

(

[

z

Fkz

]T

Pk

[

z

Fkz

]

)

+
N−1
∑

k=1

Tr

([

Q 0
0 R

]

Sk−1

)

where z := Ax(k − 1) +Bu(k − 1), and is lower bounded as follows:

N−1
∑

k=1

Tr(Γ(Fk, Pk)Sk−1) ≥
N−1
∑

k=1

E

(

min
u∈Rm

(

[

z

u

]T

Pk

[

z

u

]

))

+
N−1
∑

k=1

Tr

([

Q 0
0 R

]

Sk−1

)

The function

[

z

u

]T

Pk

[

z

u

]

inside the bracket is a convex quadratic function and has a unique

optimizer u∗ = −P−1
22, kP

T
12, kz if

[

0
Im

]T

Pk

[

0
Im

]

≻ 0. Therefore, the dual optimal objective function

value (12) has the lower bound

sup
Pk�0, P̄k�0

k∈{0,..., N−1}

inf
{Sk, Fk}

N−1

k=0

L({(Sk, Fk, Pk, P̄k)}
N−1
k=0

)

≥ sup
Pk∈F , P̄k�0

k∈{0,..., N−1}

inf
{Sk}

N−1

k=0

L({(Sk, F̄k, Pk, P̄k)}
N−1
k=0

)

where F̄k := −P−1
22, kP

T
12, k. Since inf

{Sk}
N−1

k=0

L({(Sk, F̄k, Pk, P̄k)}
N−1
k=0

) has a finite value only when

Γ(F ∗
k , Pk)− P̄k−1 = Pk−1, k ∈ {1, 2, . . . N − 1} and Γ(0, PN )− P̄N−1 = PN−1, the problem (12)

can be formulated as

max
P0,...,PN−1∈S

n
+

P̄0,..., P̄N−1∈S
n
+

Jd({Pk, F̄k}
N−1
k=0

)

subject to

Γ(F̄k, Pk)− P̄k−1 = Pk−1, k ∈ {1, 2, . . . N − 1}

Γ(0, PN )− P̄N−1 = PN−1

or equivalently,

max
P0,...,PN−1∈S

n
+

Jd({Pk, F̄k}
N−1
k=0

)



subject to

Γ(F̄k, Pk) � Pk−1, k ∈ {1, 2, . . . N − 1}

Γ(0, PN ) � PN−1

which proves the first statement.

Proof of the statement 2): Note that from the solution to the KKT condition in Theorem 1, there

exists at least one dual optimal point (11), which satisfies

[

0
Im

]T

Pk

[

0
Im

]

≻ 0. This ensures that

the optimal objective function value of the dual problem (6) is not changed when the constraints
[

0
Im

]T

Pk

[

0
Im

]

≻ 0, k ∈ {0, 1, . . . , N − 1} is added. Therefore, the optimal objective function

value of (12) is identical to the optimal objective function value of the dual problem (6). This
completes the proof.

4 Relations with previous results

In this section, equivalence relations between the problem (3) and the problem in [5, Proposition
1] are established. To do so, the SDP problem in [5, Proposition 1] is introduced below.

Problem 5. ( [5, Proposition 1]) Solve

p̄opt := min
S0,...,SN−1∈S

n+m

+

Jp({Sk}
N−1
k=0

) (13)

subject to

Wf = ΠTS0Π,

[

AT

BT

]T

Sk−1

[

AT

BT

]

+W = ΠTSkΠ

k ∈ {1, 2, . . . N − 1}

where Π :=

[

I

0

]

.

In the following proposition, it is proved that Problem 5 and the problem (3) is equivalent in some
sense.

Proposition 3. The following statements are true:

1. p̄opt = popt holds;

2. As before, let S be the set of all optimal solutions of the form {(Fk, Sk)}
N−1
k=0

of the problem (3).

Define a subset G ⊆ S of S such that {(Fk, Sk)}
N−1
k=0

∈ G is an optimal solution to the
problem (3) that takes equalities in the constraints of (3). Moreover, define the projection
mapping F := {{Sk}

N−1
k=0

: {(Fk, Sk)}
N−1
k=0

∈ G}. Then, the set of all optimal solutions of
(13) is identical to F .

Proof. Proof of the statement 1): The proof will be completed by showing both p̄opt ≤ popt and
popt ≤ p̄opt. To prove p̄opt ≤ popt, let {(Sk, Fk)}

N−1
k=0

∈ F . This optimal point satisfies the equality
constraints

Φ(Fk, Sk−1) = Sk, k ∈ {1, 2, . . . , N − 1}



[

I

F0

]

Wf

[

I

F0

]T

= S0

By pre- and post-multiplying the constraints by ΠT and Π, respectively, we obtain

ΠTΦ(Fk, Sk−1)Π =

[

AT

BT

]T

Sk−1

[

AT

BT

]

+W = ΠTSkΠ

and ΠT

[

I

F0

]

Wf

[

I

F0

]T

Π = Wf = ΠTS0Π. This means that {Sk}
N−1
k=0

is guaranteed to be a feasible

point of (13). Therefore, p̄opt ≤ popt holds. To prove the opposite inequality, suppose that {Sk}
N−1
k=0

is an optimal point of (13). Let

Sk =

[

Sk, 11 Sk, 12

ST
k, 12 Sk, 22

]

, k ∈ {0, 1, . . . N − 1}

Since the equality constraints of (13) ensure Sk, 11 ≻ 0 for all k ∈ {0, 1, . . . N − 1}, applying the
Schur complement to Sk � 0 leads to

ST
k, 12S

−1
k, 11Sk, 12 � Sk, 22, k ∈ {0, 1, . . . N − 1}

and

[

Sk, 11 Sk, 12

ST
k, 12 Sk, 22

]

�

[

Sk, 11 Sk, 12

ST
k, 12 ST

k, 12S
−1
k, 11Sk, 12

]

=

[

I

ST
k, 12S

−1
k, 11

]

Sk, 11

[

I

ST
k, 12S

−1
k, 11

]T

(14)

for all k ∈ {0, 1, . . . N − 1}.

On the other hand, by pre- and post-multiplying the equality constraints of (13) by
[

I Fk

]T
and

its transpose, where Fk = ST
k, 12S

−1
k, 11, and using the above inequalities, we have

[

I

Fk

]

(

[

AT

BT

]T

Sk−1

[

AT

BT

]

+W

)

[

I

Fk

]T

�

[

Sk, 11 Sk, 12

ST
k, 12 Sk, 22

]

, k ∈ {1, 2, . . . N − 1}

implying that {(Sk, Fk)}
N−1
k=0

is a feasible point of the problem (3). Therefore, popt ≤ p̄opt, and
one concludes p̄opt = popt.

Proof of the statement 2): From the above proof, if {Sk}
N−1
k=0

is an optimal point of (13), then

{(Sk, Fk)}
N−1
k=0

with Fk = ST
k, 12S

−1
k, 11 is also an optimal point of (3). Therefore, F includes the set

of all the optimal solutions of (13). Conversely, if {(Sk, Fk)}
N−1
k=0

∈ G, then following the same line

of the proof of the statement 1), {Sk}
N−1
k=0

is an optimal point of (13). Therefore, the set of all the
optimal solutions of (13) includes F . Therefore, the desired result is obtained.

Next, an equivalence between the dual problem (10) and the problem in [5, Theorem 1] is proved
in the sense that the optimal objective function values of both problems are identical.

Problem 6. ( [5, Theorem 1]) Solve

d̄opt := max
X0,..., XN−1∈Sn

Tr(WfX0) +
N
∑

k=1

Tr(WXk) (15)



subject to
[

Q+ATXk+1A−Xk ATXk+1B

BTXk+1A R+BTXk+1B

]

� 0, k ∈ {0, 1, . . . N − 1}

where XN = Qf .

Proposition 4. d̄opt = dopt holds.

Proof. The proof will be completed by showing both d̄opt ≤ dopt and dopt ≤ d̄opt. To prove
d̄opt ≤ dopt, let {Xk}

N−1
k=0

be an optimal solution to (15). Since R + BTXk+1B ≻ 0, the Schur
complement can be applied to have

Q+ATXk+1A−ATXk+1B(R+BTXk+1B)−1BTXk+1A

� Xk, k ∈ {0, 1, . . . N − 1} (16)

Multiplying the last inequality by [A, B]T from the left and by [A, B] from the right and adding
[

Q 0
0 R

]

to both sides of the inequality yield

[

AT

BT

] [

I

Fk

]T [
Q+ATXk+1A ATXk+1B

BTXk+1A R+BTXk+1B

] [

I

Fk

] [

AT

BT

]T

+

[

Q 0
0 R

]

�

[

Q+ATXkA BTXkA

ATXkB R+BTXkB

]

(17)

where Fk := −(R+BTXk+1B)−1BTXk+1A. From the result, it is easy to prove that

Pk =

[

Q+ATXk+1A BTXk+1A

ATXk+1B R+BTXk+1B

]

, k ∈ {0, 1, . . . , N − 1}

is a feasible solution of (10). On the other hand, using the inequalities (16), an upper bound on
the objective function (15) can be obtained as

Tr(WfX0) +

N
∑

k=1

Tr(WXk)

≤ Tr(Wf (Q+ATX1A−ATX1B(R+BTX1B)−1BTX1A))

+
N
∑

k=1

Tr



W





Q+ATXk+1A

−ATXk+1B(R+BTXk+1B)−1

×BTXk+1A









= Tr

(

Wf

[

I

F0

]T

P0

[

I

F0

]

)

+
N
∑

k=1

Tr

(

W

[

I

Fk

]T

Pk

[

I

Fk

]

)

(18)

which is identical to the formulation of the objective function of (10). This implies that we can
always find a feasible point of (10) such that the corresponding objective function value is larger
than or equal to d̄opt. Therefore, one concludes d̄opt ≤ dopt.

Next, we will prove the opposite inequality dopt ≤ d̄opt. Consider the optimal solution (11)

{

Pk =

[

Q+ATXk+1A BTXk+1A

ATXk+1B R+BTXk+1B

]}N−1

k=0



to the problem (10), where {Xk}
N−1
k=0

solves the Riccati equation (7). Using the Riccati equation (7)
and following similar lines to derive (18), one gets

dopt = Tr

(

Wf

[

I

F0

]T

P0

[

I

F0

]

)

+

N
∑

k=1

Tr

(

W

[

I

Fk

]T

Pk

[

I

Fk

]

)

= Tr(WfX0) +
N
∑

k=1

Tr(WXk) (19)

Moreover, substituting {Pk}
N−1
k=0

into the constraints of (10) leads to (17). Since (A, B) is control-
lable, there exists a state-feedback gain H ∈ R

m×n such that A + BH is nonsingular. Pre- and
post-multiplying (17) by [In, F

T
k ] from the left and by [In, F

T
k ]T from the right, one gets

(A+BH)T
(

Q+ATXk+1A−ATXk+1B(R+BTXk+1B)−1BTXk+1A
)

(A+BH)

� (A+BH)TXk(A+BH), k ∈ {0, 1, . . . N − 1}

Since A+BH is nonsingular, (16) is satisfied. By the Schur complement, it is proved that {Xk}
N−1
k=0

is a feasible point of (15). Therefore, it is proved that there always exists a feasible point of (15)
such that (19) holds. This implies dopt ≥ d̄opt. Combining d̄opt ≤ dopt and dopt ≤ d̄opt, one
concludes d̄opt = dopt.

Solving the KKT condition in the proof of Theorem 1 gives the primal and dual optimal points. It
can be proved that under a certain condition, it is possible to solve the KKT condition without the
knowledge of the system matrices [A, B], which provides a way to adaptively implement the LQR
problem. In this respect, the following result will be useful.

Proposition 5. Assume that W = 0, and {Fk, Sk}
N−1
k=0

is a feasible point of the problem (3) which
takes the equalities

Φ(Fk, Sk−1) = Sk, k ∈ {1, 2, . . . , N − 1}
[

I

F0

]

Wf

[

I

F0

]T

= S0 (20)

Then, the following statements are true:

1. The complementary slackness condition (9) is satisfied;

2. Suppose that {Pk}
N−1
k=0

satisfies Γ(Fk, Pk) = Pk−1, k ∈ {1, 2, . . . N − 1}, Γ(0, PN ) = PN−1

with PN =

[

Qf 0
0 0

]

. Then

Tr

(

PkSk −Pk−1Sk−1 +

[

Q 0
0 R

]

Sk−1

)

= 0, ∀k ∈ {1, 2, . . . , N − 1} (21)

Proof. Proof of the statement 1): It can be readily proved from (20).

Proof of the statement 2): From Γ(Fk, Pk) = Pk−1, k ∈ {1, 2, . . . N − 1}, it follows that

Tr

(

PkSk −Pk−1Sk−1 +

[

Q 0
0 R

]

Sk−1

)



= Tr

(

PkSk +

([

Q 0
0 R

]

−Pk−1

)

Sk−1

)

= Tr

((

Sk −

[

A B

FkA FkB

]

Sk−1

[

A B

FkA FkB

]T
)

Pk

)

= 0, ∀k ∈ {1, 2, . . . , N − 1}

where the last equality follows from Φ(Fk, Sk−1) = Sk, k ∈ {1, 2, . . . , N − 1}. This completes
the proof.

Remark 1. The result of Proposition 5 is related to the so-called the Q-learning in [12,13], which
is an adaptive LQR approach. If we solve the finite-horizon LQR problem for a sufficiently large
N , then the dual variable converges as follows:

lim
k→∞

Pk = P∗ =

[

P11 P12

P T
12 P22

]

=

[

Q+ATPA ATPB

BTPA R+BTPB

]

where P solves the algebraic Riccati equation (ARE) ATPA−ATPB(R+BTPB)−1BTPA+Q = P .

Then, Q(x, u) =

[

x

u

]T

P∗

[

x

u

]

is called the Q-function [12,13], and the optimal policy can be deduced

by u(k) = argmin
u

Q(x(k), u). Equivalently, the state-feedback gain of the optimal policy is computed

as F = −P−1
22 P T

12. The Q-function provides a way to adaptively implement the optimal control
without the knowledge of the system matrices [A, B]. In [12], the Q-function is computed from the
input and state measurements using the least-square method. The approach can be interpreted as
solving the condition (21). Very roughly speaking, for given stabilizing state-feedback gain F and
Pk, the input and state vectors are collected during a certain time interval k ∈ [k1, k2 + 1], and
construct the matrices

Sk−1 =

k2
∑

k=k1

[

x(k)
u(k)

] [

x(k)
u(k)

]T

, Sk =

k2+1
∑

k=k1+1

[

x(k)
u(k)

] [

x(k)
u(k)

]T

which still satisfy the constraint Φ(F, Sk−1) = Sk. By solving the equality (21), the dual feasible
point Pk−1 which satisfies the necessary condition for the dual feasibility. Then, the state-feedback
gain F can be appropriately updated by using the dual feasible point. Because a rigorous theoretical
analysis is beyond the scope of this paper, we will not discuss this issue in detail.

5 Decentralized LQR performance analysis and design

In this section, we study the decentralized LQR problem by combining the developments of the
previous sections and the decentralized controller design technique developed in [2]. The decen-
tralized control problem is a special class of more general structured control design problems. The
proposed approach can be extended to the general structured control design problems including the
distributed controller design. In particular, the structure of the optimization in Theorem 1 allows
us to derive a sufficient but simple convex relaxation for designing a decentralized LQR controller.
Consider the stochastic LTI system composed of M interconnected subsystems

xi(k + 1) =
M
∑

j=1

Aijxj(k) +Biui(k) + wi(k) (22)



for i ∈ {1, 2, . . . , M}, where k ∈ N, xi(k) ∈ R
ni is the state vector, ui(k) ∈ R

mi is the control vector,
xi(0) ∼ N (0, Wf ) and wi(k) ∼ N (0, W ) are mutually independent Gaussian random vectors. Let
us define

x(k) =







x1(k)
...

xM (k)






u(k) =







u1(k)
...

uM (k)






w(k) =







w1(k)
...

wM (k)






(23)

Then, the system dynamics (22) can be written as

x(k + 1) = Ax(k) +Bu(k) + w(k)

where A =







A11 · · · A1M

...
. . .

...
AM1 · · · AMM






∈ R

n×n, B = diag(B1, . . . , BM ) ∈ R
n×m, n = n1 + · · ·+ nM , and

m = m1 + · · ·+mM . We consider the decentralized static state-feedback LQR problem.

Problem 7 (Decentralized stochastic LQR problem). Solve

J∗
K := min

Fk∈R
m×n

k∈{0, 1,..., N−1}

E(x(k)TQfx(k)) +
N−1
∑

k=0

E

(

[

x(k)
u(k)

]T [
Q 0
0 R

] [

x(k)
u(k)

]

)

subject to x(k + 1) = Ax(k) +Bu(k) + w(k)

u(k) = Fkx(k) Fk ∈ K

where K is a linear subspace defined as K := {K ∈ R
m×n : K = diag(F1, F2, . . . , FM ), Fi ∈

R
mi×ni , i ∈ {1, . . . , M}}.

Equivalently, the problem can be converted into (2) and (3) with the additional constraint Fk ∈
K, k ∈ {0, 1, . . . , N − 1}. The problem is a non-convex structured static state-feedback design
problem. When Fk ∈ K, k ∈ {0, 1, . . . , N − 1} is given, then its exact cost can be evaluated as
follows.

Proposition 6. Let Fk ∈ K, k ∈ {0, 1, . . . , N − 1} be given. The cost corresponding to the given
structured static state-feedback gain is J∗(F0, . . . , FN−1) := Jp({Sk}

N−1
k=0

) where Sk = Φ(Fk, Sk−1), k ∈

{1, . . . , N − 1} with S0 =

[

In
F0

]

Wf

[

In
F0

]T

.

Remark 2. The cost can be also evaluated using Problem 3, which is simply a SDP if Fk ∈ K, k ∈
{0, 1, . . . , N − 1} are constants.

Next, motivated by the LMI-based decentralized control design method in [2], we suggest a simple
convex relaxation of the problem.

Problem 8. Solve

(S∗
k, L

∗
k, G

∗
k)

N−1
k=0

:= argmin
Sk∈S

n+m, Lk∈R
n×m, Gk∈R

n×n

k∈{0, 1,..., N−1}

fp({Sk}
N−1
k=0

) (24)

subject to









Sk ∗

[

Gk Lk

]

(

Gk +GT
k −

[

AT

BT

]T

Sk−1

[

AT

BT

]

−W

)






� 0, ∀k ∈ {0, 1, . . . , N − 1} (25)

Gk = diag(Gk, 1, . . . , Gk,M )

Lk = diag(Lk, 1, . . . , Lk,M )

Lk, i ∈ R
ni×mi , Gk, i ∈ R

ni×ni

where S−1 = 0.

Proposition 7. Let (S∗
k, L

∗
k, G

∗
k)

N−1
k=0

be an optimal point of the problem (24) and let J̃∗
K be the

optimal objective function value. Then, J∗
K ≤ J̃∗

K is satisfied under the decentralized control policy
ui(k) = (L∗

k, i)
T (G∗

k, i)
−Txi(k) for all k ∈ {0, 1, . . . , N − 1} and i ∈ {1, 2, . . . , M}.

Proof. The proof follows similar lines as in the proof of Proposition 1. Pre- and post-multiplying
both sides of (25) by





−I 0
0 −I

I (G∗
k)

−1L∗
k





T

, k ∈ {0, 1, . . . , N − 1}

and its transpose yield

Φ(F ∗
k , S

∗
k−1) � S∗

k k ∈ {1, 2, . . . , N − 1}
[

I

F ∗
0

]

Wf

[

I

F ∗
0

]T

� S∗
0

with F ∗
k = (L∗

k)
T (G∗

k)
−T , k ∈ {0, 1, . . . , N − 1}. By using Theorem 1, one concludes that J∗

K ≤ J̃∗
K

is satisfied under the policy u(k) = F ∗
kx(k), k ∈ {0, 1, . . . , N − 1}. Since F ∗

k has a block diagonal
structure according to the state and input partitions in (23), the desired result can be obtained.

Remark 3. It can be readily proved that J∗
P ≤ J∗

K ≤ J∗(F ∗
0 , . . . , F

∗
N−1) ≤ J̃∗

K holds, where
J∗(F ∗

0 , . . . , F
∗
N−1) is the exact cost evaluated using F ∗

0 , . . . , F
∗
N−1 obtained from (24).

Example 1. Consider the interconnected system

x1(k + 1) = A11x1(k) +A12x2(k) +B1u1(k) + w1(k)

x2(k + 1) = A21x1(k) +A22x2(k) +B2u2(k) + w2(k)

where

A11 =

[

0.8220 −0.0898
−0.2389 0.9358

]

, A12 =

[

0.4860 −0.1820
0.1680 −0.3143

]

A21 =

[

0.1891 −0.3195
0.2067 −0.6610

]

, A22 =

[

−0.6404 1.4540
0.2067 −0.6610

]

B1 =

[

−0.3505
−1.9788

]

B2 =

[

−0.4901
−0.0515

]

Solving Problem 8 with Q = Qf = In, R = In, W = 0.01In, Wf = In, and N = 30 yields
J̃∗
K = 19.6799 and J∗(F ∗

0 , . . . , F
∗
N−1) = 18.0598. On the other hand, the optimal cost correspond-

ing to the centralized LQR is J∗
p = 16.2610. Therefore, one concludes J∗

p = 16.2610 ≤ J∗
K ≤



J∗(F ∗
0 , . . . , F

∗
N−1) = 18.0598. The time histories of the state under the obtained decentralized con-

trol policy is shown in Fig. 1 and the histogram of the cost of 3000 simulations is plotted in Fig. 2.
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Figure 1: Example 1. The time histories of the state under the obtained decentralized control
policy.
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Figure 2: Example 1. The cost histogram of 3000 simulations

6 Conclusion

We presented a new convex formulation of the finite-horizon LQR problem and its dual prob-
lem. Connections between the proposed formulations and the existing ones were established. The
proposed formulation was also applied to the decentralized LQR design problem.
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