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A Study of the Duality between Kalman Filters

and LQR Problems

Donghwan Lee and Jianghai Hu

Abstract

The goal of this paper is to study a connection between the finite-horizon Kalman filtering and the

LQR problems for discrete-time LTI systems. Motivated fromthe recent duality results on the LQR

problem, a Lagrangian dual relation is used to prove that theKalman filtering problem is a Lagrange

dual problem of the LQR problem.

I. I NTRODUCTION

In this paper, we will consider the Kalman filtering and LQR problems [1], [2], each of which

is one of the most fundamental agendas in systems and controltheory. There is a well-known

duality between them: the Kalman filter design for a stochastic LTI system is equivalent to the

LQR design problem for its dual system. The goal of this paperis to study a duality relation

between them in terms of the Lagrangian duality in optimization theories [3]. There are several

duality relations in systems and control theory, which haveattracted much attention during the

last decades. For instance, a new proof of Lyapunov’s matrixinequality was developed in [4]

based on the standard semidefinite programming (SDP) [5] duality. A SDP formulation of the

LQR problem was presented in [6] and [7] using the SDP duality. Comprehensive studies on

the SDP duality in systems and control theory, such as the Kalman-Yakubovich-Popov (KYP)

lemma, the LQR problem, and theH∞-norm computation, were provided in [8]. More recent

results include the state-feedback solution to the LQR problem [9] and the generalized KYP

lemma [10] derived using the Lagrangian duality.

The results of this paper are mainly motivated from the ideasin [9]. First of all, the finite-

horizon LQR and Kalman filtering problems are reformulated as optimizations subject to matrix
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equalities, which represent the covariance updates of the stochastic systems. Using the Lagrangian

duality, it is proved that one problem can be converted into the other problem. It is expected that

the proposed analysis can shed an insight into understanding the relations between the LQR and

Kalman filtering problems. In addition, it is proved that theRiccati equation and its solution for

the finite-horizon LQR problem corresponds to its dual problem and the Lagrange multipliers,

respectively.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Notation

The adopted notation is as follows:N: set of nonnegative integers;R: set of real numbers;Rn:

n-dimensional Euclidean space;R
n×m: set of alln×m real matrices;AT : transpose of matrixA;

A ≻ 0 (A ≺ 0, A � 0, andA � 0, respectively): symmetric positive definite (negative definite,

positive semi-definite, and negative semi-definite, respectively) matrix A; I: identity matrix of

appropriate dimensions;Sn: symmetricn × n matrices;Sn
+: cone of symmetricn × n positive

semi-definite matrices;Sn
++: symmetricn × n positive definite matrices;vec(A): vectorization

for matrix A; A⊗B: Kronecker’s product of matricesA andB; Tr(A): trace of matrixA; E(·):

expectation operator.

B. Problem formulation

Consider the discrete-time stochastic LTI system

x(k + 1) = Ax(k) + w(k), y(k) = Cx(k) + v(k) (1)

wherek ∈ N, x(k) ∈ R
n is the state vector,y(k) ∈ R

m is the output vector,w(k) ∈ R
n and

v(k) ∈ R
m are independent Gaussian random vectors with zero mean and covariance matrices

Q ∈ S
n
+ and R ∈ S

n
++, respectively, i.e.,w(k) ∼ N (0, Q) and v(k) ∼ N (0, R). The initial

statex(0) ∈ R
n is also an independent Gaussian random vector with zero meanand covariance

Qf ∈ S
n
+. Consider the Kalman filter

x̂(k + 1) = Ax̂(k) + Lk(Cx̂(k)− y(k)) (2)

where x̂(k) ∈ R
n is the state estimation,Lk is the Kalman gain over the finite-horizonk ∈

{0, 1, . . . , N − 1} given by

Lk = −APkC
T (R + CPkC

T )−1. (3)
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and{Pk}
N
k=0 is a solution to the Riccati equation

Pk+1 = APkA
T +Q− APkC

T (R + CPkC
T )−1CPkA

T

= (A+ LkC)Pk(A+ LkC)T +Q+ LkRLT
k , P0 = Qf . (4)

EachPk can be viewed as the covariance matrix of the estimation error at timek defined by

e(k) := x̂(k)− x(k). The estimation error system is given by

e(k + 1) = (A+ LkC)e(k)− w(k)− Lkv(k),

wheree(0) ∈ R
n is a Gaussian random vectore(0) ∼ N (0, Qf ). It can be represented by

e(k + 1) = (A+ LkC)e(k) + φ(k), (5)

whereφ(k) = −w(k) − Lkv(k) is Gaussian random vectorφ(k) ∼ N (0, Q + LkRLT
k ). From

the duality between the Kalman filtering problem and the LQR problem, the equations (2)-(4)

are equivalent to the Riccati equation for the LQR problem of the dual system

ξ(k + 1) = AT ξ(k) + CTu(k), (6)

whereξ(k) ∈ R
n is the state vector of the dual system,u(k) ∈ R

p is the control input vector, and

the initial stateξ(0) is a independent Gaussian random vectorξ(0) ∼ N (0, Wf ) with Wf ∈ S
n
+.

Define the quadratic cost function

JπN
:= E

(

ξ(N)TQfξ(N) +
N−1
∑

k=0

(ξ(k)TQξ(k) + u(k)TRu(k))

)

over πN := (µ0, µ1, . . . , µN−1) such thatu(k) = µk(Ik), where

Ik := (ξ(0), ξ(1), . . . , ξ(k), u(0), u(1), . . . , u(k − 1)).

Problem 1 (Stochastic LQR problem for the dual system). Solve

π∗

N := argmin
πN∈ΠN

JπN
subjectto (6)

whereΠN is the set of all admissible policies.

From the standard results of the stochastic LQR theory [1, page 150], the optimal solution is

obtained as

u(k) = Fkξ(k), Fk = LT
N−k−1 = −(R + CPN−k−1C

T )−1CPN−k−1A
T

k ∈ {0, 1, . . . , N − 1} (7)

and the optimal value of the cost function isTr(WfPN).
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III. D UALITY FOR ANALYSIS

In this section, we assume that the state-feedback gainsFk, k ∈ {0, 1, . . . , N − 1} are

arbitrarily fixed, and then consider the following problem.

Problem 2. Consider the dual system(6) and assume thatFk, k ∈ {0, 1, . . . , N − 1} are

arbitrarily fixed. Compute the cost function valueJπN
with πN = {Fkξ(k)}

N−1

k=0
.

Proposition 1. Let Wf ∈ S
n
+ be given and consider the optimization problem

min
S1,..., SN∈Sn

(

Tr(SNQf ) +
N−1
∑

k=0

Tr(SkQ+ SkLN−k−1RLT
N−k−1)

)

(8)

subject to

Sk+1 = (AT + CTFk)Sk(A
T + CTFk)

T , k ∈ {0, 1, . . . , N − 1},

whereS0 = Wf . The optimal objective function value of(8) is equal to the cost function value

JπN
in Problem 2.

Proof. First of all, since

E(ξ(k + 1)ξ(k + 1)T ) = E([AT ξ(k) + CTFkξ(k)][A
T ξ(k) + CTFkξ(k)]

T )

= (AT + CTFk)E(ξ(k)ξ(k)
T )(AT + CTFk)

T ,

the covariance update equation of (6) is

Sk+1 = (AT + CTFk)Sk(A
T + CTFk)

T , k ∈ {0, 1, . . . , N − 1}, S0 = Wf ,

whereSk := E(ξ(k)ξ(k)T ). Moreover,JπN
can be written as

JπN
= Tr(SNQf ) +

N−1
∑

k=0

Tr(SkQ+ SkLN−k−1RLT
N−k−1)

From the identities,Problem 2is equivalent to the optimization8. This completes the proof.

Remark 1. The optimization(8) is a equality constrained optimization (linear programming

problem) with a unique feasible point. Therefore, its optimal point is the unique feasible point.

The dual problem of (8) is established in the following result.
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Proposition 2. Let Qf ∈ S
n
+ be given. The Lagrangian dual problem of(8) is given by

max
P1,..., PN∈Sn

Tr(S0PN) subject to (9)

Pk+1 = (A+ LkC)Pk(A+ LkC)T +Q+ LkRLT
k , k ∈ {0, 1, . . . , N − 1},

whereP0 = Qf andLk = KT
N−k−1.

Proof. Introduce the Lagrangian for the optimization problem (8)

L(S, P) := Tr(SNQf ) +
N−1
∑

k=0

Tr(SkQ+ SkLN−k−1RLT
N−k−1)

+
N−1
∑

k=0

Tr(PN−k−1[(A+ LN−k−1C)T × Sk(A+ LN−k−1C)− Sk+1]),

whereS := {Sk}
N
k=1 andP := {Pk}

N
k=1. The Lagrangian functionL(S, P) can be written by

L(S, P) = Tr((Qf − P0)SN) + Tr(PNS0)

+
N−1
∑

k=0

Tr([(A+ BFk)
TPN−k−1(A+ BFk)− PN−k +Q+ F T

k RFk]Sk).

The dual function isD(P) = infS⊂Sn L(S, P), and the dual problem issupP⊂Sn D(P). Since

infS L(S, P) is finite only when the constraints in (9) are satisfied, the dual problem can be

formulated as (9). For the unique dual feasible pointP = {Pk}
N
k=1 satisfying the constraints in

(9), we haveL(S, P) = Tr(PNS0). In addition, by a direct calculation, it can be proved that

Tr(PNS0) =
N−1
∑

k=0

Tr(SkQ+ SkLN−k−1RLT
N−k−1).

Since the objective function value of the dual feasible point and the objective function value

of the primal feasible point are identical, both points are primal and dual optimal points, and

there is no duality gap. This completes the proof.

Remark 2. Several remarks are in order.

1) The result ofProposition 2can be also obtained using algebraic manipulations (without

using the Lagrangian duality).

2) The constraints in(9) are equivalent to the Riccati equation(4). Therefore, the matrices

P1, . . . , PN can be interpreted as the Lagrange multipliers for the equality constraints in

(8).
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3) The constraints in(9) can be viewed as a covariance update of the estimation error

system(5).

4) The cost function value of the terminal error of(5) has the same value as the quadratic

cost function value(5) of the dual system. Roughly speaking, the existence of the quadratic

cost function corresponds to the existence of the noises in its dual system.

Conversely, consider the following problem.

Problem 3. Assume that the estimator gainsLk, k ∈ {0, 1, . . . , N − 1} are arbitrarily fixed.

For the estimation error system(5), compute the cost function value

Job := E

(

e(N)TWfe(N) +
N−1
∑

k=0

e(k)TWe(k)

)

(10)

Problem 3can be converted into the covariance optimization problem.

Proposition 3. Consider the optimization problem

min
P1,..., PN∈Sn

Tr(PNWf ) +
N−1
∑

k=0

Tr(PkW ) (11)

subject to

Pk+1 = (A+ LkC)Pk(A+ LkC)T +Q+ LkRLT
k , k ∈ {0, 1, . . . , N − 1},

whereP0 = Qf . The optimal objective function value of(11) is equal to the cost function value

Job in Problem 3.

Proof. Straightforward from the previous results.

This problem has a unique feasible point, and the matrix equality constraints are the covariance

updates of the estimation error system. Following similar lines to the proof ofProposition 2, its

Lagrangian dual problem can be obtained.

Proposition 4. Assume that the estimator gainsLk, k ∈ {0, 1, . . . , N − 1} are arbitrarily fixed.

The Lagrangian dual problem of(11) is given by

max
S1,..., SN∈Sn

Tr(QfSN) +
N−1
∑

k=0

Tr([Q+ LkRLT
k ]SN−k1) (12)

subject to

Sk+1 = (A+ LN−k−1C)TSk(A+ LN−k−1C) +W, k ∈ {0, 1, . . . , N − 1},
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whereS0 = Wf .

Proof. It can be readily proved following similar lines to the proofof Proposition 2.

Remark 3. The matrix equality constraints of(12) can be interpreted as the covariance update

of the dual system

ξ(k + 1) = (AT + CTLT
N−k−1)ξ(k) + σ(k) (13)

whereξ(0) ∼ N (0, Wf ) and σ(k) ∼ N (0, W ) are independent Gaussian random vectors. The

objective function of(12) can be also written byJπN
with πN = {LN−k−1ξ(0)}

N−1

k=0
. Therefore,

we haveJob = JπN
.

IV. K ALMAN FILTERING PROBLEM IN THE COVARIANCE OPTIMIZATION FORM

In this section, we will study the Kalman filtering problem inthe covariance optimization form,

and discuss about its solution. Consider the estimation error system (5) and the corresponding

quadratic cost function (10) again.

Problem 4. Solve min
L0,..., LN−1∈R

n×m

Job.

From the results of the previous section, it can be proved that Problem 4is equivalent to the

following covariance optimization problem.

Problem 5. Solve

min
P1,..., PN∈Sn

L0,..., LN−1∈R
n×m

Tr(PNWf ) +
N−1
∑

k=0

Tr(PkW )

subject to

Pk+1 = (A+ LkC)Pk(A+ LkC)T +Q+ LkRLT
k , k ∈ {0, 1, . . . , N − 1},

with P0 = Qf .

Regarding this problem, we can make the following conclusions.

Proposition 5. Let {L∗

k, P
∗

k+1}
N−1

k=0
be an optimal solution toProblem 5. Then, it is equivalent

to the pairs of the Kalman gain matrices(3) and the corresponding covariance matrices(4),

respectively.



8

Proof. By plugging eachPk in the equality constraints ofProblem 5into its objective function,

Problem 5can be written by the unconstrained optimization problem

min
L0,..., LN−1∈R

n×m

Γ({Li}
N−1

i=0 )

with some functionΓ. By algebraic manipulations, it can be proved that, for eachLk, Γ({Li}
N−1

i=0 )

can be written as

Γ({Li}
N−1

i=0 ) = Tr([(A+ LkC)Pk(A+ LkC)T +Q+ LkRLT
k ]Mk) + γk,

for someMk ∈ S
n
+ andγk > 0. Rearranging terms, it can be rewritten as

Γ({Li}
N−1

i=0 ) = Tr([Lk[CPkC
T +R]LT

k ]Mk)

+ 2Tr(LkCPkA
TMk) + Tr(APkA

TMk) + Tr(QMk) + γk

= Tr(vec(LT
k )

T (Mk ⊗ [CPkC
T +R])vec(LT

k ))

+ 2Tr(LkCPkA
TMk) + Tr(APkA

TMk) + Tr(QMk) + γk.

SinceMk⊗[CPkC
T+R] ∈ S

n
+, Γ({Li}

N−1

i=0 ) is a convex quadratic function with respect to each

Lk. Therefore, setting∂f(Lk)/∂Lk = 0, L̄k ∈ argminLk∈R
n×mΓ({Li}

N−1

i=0 ) is obtained as̄Lk =

−APkC
T (R+ CPkC

T )−1. Since the optimal solution̄Lk does not depend on{LN−1, . . . , Lk},

it can be proved that the principle of optimality holds. In other words, if we define the function

Vt({LN−1, . . . , Lt}) := min
L0,..., Lt−1∈R

n×m

Γ({LN−1, . . . , Lt, Lt−1, . . . , L0})

for all t ∈ {1, 2, . . . , N − 1}, then it obeys

Vt+1(LN−1, . . . , Lt+1) = min
Lt∈R

n×m

Vt(LN−1, . . . , Lt)

for all t ∈ {1, 2, . . . , N − 1}. Therefore, a global minimizer ofProblem 5can be obtained

sequentially by solving

L̄k = argmin
Lk∈R

n×m

Tr(Pk+1)

subject to

Pk+1 = (A+ LkC)P̄k(A+ LkC)T +Q+ LkRLT
k

for all k ∈ {0, 1, . . . , N − 1}. Since P̄k ∈ S
n
++, each subproblem is a convex quadratic

programming with a unique solution̄Lk = −APkC
T (R+CPkC

T )−1. Therefore, a global solution

to Problem 5is identical to the solution to the Kalman filtering problem (3). This completes the

proof.
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V. DUALITY OF THE LQR PROBLEM

Consider the stochastic LTI system

x(k + 1) = Ax(k) + Bu(k) + w(k) (14)

wherek ∈ N, x(k) ∈ R
n is the state vector,u(k) ∈ R

m is the control input vector,x(0) ∼

N (0, Wf ) andw(k) ∼ N (0, W ) are independent Gaussian random vectors. Define the quadratic

cost function of (14)

JπN
:= E

(

x(N)TQfx(N) +
N−1
∑

k=0

(x(k)TQx(k) + u(k)TRu(k))

)

over πN := (µ0, µ1, . . . , µN−1) such thatu(k) = µk(Ik), where

Ik := (x(0), x(1), . . . , x(k), u(0), u(1), . . . , u(k − 1))

Then, the stochastic LQR problem can be stated as follows.

Problem 6 (Stochastic LQR problem). Solve

π∗

N := argmin
πN∈ΠN

JπN
subject to (14)

whereΠN is the set of all admissible policies.

The goal of this section is to derive a dual form of the stochastic LQR problem. First of all, the

stochastic LQR problem can be formulated as the following covariance optimization problem.

Problem 7. Solve

min
F0,..., FN−1∈R

m×n

S1,..., SN∈Sn

Tr(QfSN) +
N−1
∑

k=0

Tr([Q+ F T
k RFk]Sk)

subject to

Sk+1 = (A+ BFk)Sk(A+ BFk)
T +W, k ∈ {0, 1, . . . , N − 1},

whereS0 = Wf .

The Lagrange dual problem ofProblem 7is established below.

Proposition 6. The Lagrange dual problem ofProblem 7is given by

max
P1,..., PN∈Sn

Tr(PNWf ) +
N−1
∑

k=0

Tr(PkW ) (15)



10

subject to

Pk+1 = ATPkA− ATPkB(R +BTPkB)−1BTPkA+Q, k ∈ {0, 1, . . . , N − 1}.

with P0 = Qf . In addition, the strong duality holds, and the primal optimal point {Sk, Fk−1}
N
k=1

and dual optimal point{Pk}
N−1

k=0
are given by

Fk = −(R +BTPN−k−1B)−1BTPN−k−1A

Sk+1 = (A+ FkB)Sk(A+ FkB)T +W

Pk+1 = ATPkA− ATPkB(R + BTPkB)−1BTPkA+Q

k ∈ {0, 1, . . . , N − 1}

Proof. Define the Lagrangian function ofProblem 7

L(S, F, P) := Tr(SNQf ) +
N−1
∑

k=0

Tr(SkQ+ SkF
T
k RFk)

+
N−1
∑

k=0

Tr([(A+ BFk)Sk(A+ BFk)
T +W − Sk+1]PN−k−1),

where S := {Sk}
N
k=1,F := {Fk}

N−1

k=0
, P := {Pk}

N−1

k=0
. Rearranging some terms, it can be

represented by

L(S, F, P) = Tr((Qf − P0)SN) + Tr(PNS0)

+
N−1
∑

k=0

Tr([(A+BFk)
TPN−k−1(A+BFk)− PN−k +Q+ F T

k RFk]Sk)

The dual function isD(P) := infF,S L(S, F, P), and the Lagrangian dual problem issupPD(P).

We first prove that the Lagrangian functionL(S, F, P) is convex inS, F under a certain

condition onP. SinceSk ≻ 0, k ∈ {1, 2, . . . , N}, there exist nonsingular matricesZk, k ∈

{1, 2, . . . , N} such thatSk = ZkZ
T
k , k ∈ {1, 2, . . . , N}. Letting FkZk = Gk, it can be proved

that infF,S L(S, F, P) is equivalent to minimizing the following function with respect toZk

andGk:

Tr(ZT
NQfZN)

+
N−1
∑

k=0

Tr(ZT
k QZk +GT

kRGk)

+
N−1
∑

k=0

Tr((AZk + BGk)
TPN−k−1(AZk + BGk) +WPN−k−1 − ZT

k+1PN−k−1Zk+1)
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= vec(ZN)
T (I ⊗ (Qf − P0))vec(ZN)

+





vec(Z0)

vec(G0)





T

Φ





vec(Z0)

vec(G0)



+
N−1
∑

k=1





vec(Zk)

vec(Gk)





T

Ωk





vec(Zk)

vec(Gk)



+
N−1
∑

k=1

WPN−k−1

where

Φ :=





I ⊗ (Q+ ATPN−1A) I ⊗ ATPN−1B

I ⊗ BTPN−1A I ⊗ (R + BTPN−1B)



 ,

Ωk :=





I ⊗ (Q+ ATPN−k−1A− PN−k) I ⊗ ATPN−k−1B

I ⊗BTPN−k−1A I ⊗ (R + BTPN−k−1B)





The above function is quadratic. IfQf − P0 � 0 andQ+ATPN−k−1A− PN−k � 0 for each

k, then it is convex. Otherwise, we haveinfF,S L(S, F, P) = −∞, which implies that the given

P should not be dual feasible. WithP satisfying the two conditions, solvinginfF,S L(S, F, P)

is a convex optimization problem. Letting the derivatives of L(S, F, P) with respect to{S, F}

be zero, a primal feasible point(S∗, F∗) = infF,S L(S, F, P) can be obtained as

Fk = −R + BTPN−k−1B)−1BTPN−k−1A

Sk+1 = (A+ FkB)Sk(A+ FkB)T +W

S0 = Wf , k ∈ {0, 1, . . . , N − 1}

Let F∗ := {−(R + BTPN−k−1B)−1BTPN−k−1A}
N−1

k=0
. SinceF∗ is not dependent onSk, k ∈

{1, 2, . . . , N}, we first plugF∗ into L(S, F, P) and obtain

L(S, F∗, P) = Tr((Qf − P0)SN) + Tr(PNS0) +
N−1
∑

k=0

Tr(PN−k−1W )

+
N−1
∑

k=0

Tr([ATPN−k−1A− ATPN−k−1B(R + BTPN−k−1B)−1BTPN−k−1A+Q− PN−k]Sk)

Then, the dual functionD(P) := infF,S L(S, F, P) = infS L(S, F
∗, P) has a finite value

only when the constraints in (15) hold. Therefore, the dual problemsupPD(P) is given by (15).

Finally, note that the dual problem has a unique feasible point, and this implies that the dual

feasible point is also the dual optimal point. By plugging it into its objective and rearranging

terms, we can prove that the dual objective function value isthe same as the primal objective

function value. By the weak duality, the objective value of the primal optimal point should be

larger than or equal to the objective value of the dual optimal point. Since both objective values
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are identical, there is no duality gap, andF∗ is the primal optimal point. This completes the

proof.

Remark 4. The result ofProposition 6proves that the Riccati equation and its solution corre-

sponds to the equality constraints of the Lagrange dual problem and the Lagrange multipliers,

respectively, ofProblem 7.

VI. CONCLUSION

In this paper, the relation between the Kalman filtering and the LQR problems was studied

by using the Lagrangian duality theory. We first arbitrary fixed the gain matrices of the Kalman

filtering and proved that the Kalman filtering problem is a Lagrangian dual problem of the LQR

problem. Next, we considered the case that the Kalman gain matrices are also the optimization

parameters. In this case, the problem becomes harder because it is not clear whether or not the

optimization formulation of the Kalman filtering problem isconvex. It is proved that the optimal

solution to the optimization formulation of the Kalman filtering problem can be derived as the

standard Ricatti equations.

On the other hand, the Lagrangian dual problem of the LQR problem was derived as well.

It was proved that the solution of the Ricatti equation is the optimal solution to the Lagrangian

dual problem of the LQR problem.

In the future work, a clearer connection between the Kalman filtering and the LQR problem

will be explored.
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