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A Study of the Duality between Kalman Filters
and LOQR Problems

Donghwan Lee and Jianghai Hu

Abstract

The goal of this paper is to study a connection between thefirdrizon Kalman filtering and the
LQR problems for discrete-time LTI systems. Motivated frone recent duality results on the LQR
problem, a Lagrangian dual relation is used to prove thatkihkenan filtering problem is a Lagrange

dual problem of the LQR problem.

I. INTRODUCTION

In this paper, we will consider the Kalman filtering and LQRIplems [L], [2], each of which
is one of the most fundamental agendas in systems and cahéoly. There is a well-known
duality between them: the Kalman filter design for a stocbdstl system is equivalent to the
LQR design problem for its dual system. The goal of this papdo study a duality relation
between them in terms of the Lagrangian duality in optinidzatheories B]. There are several
duality relations in systems and control theory, which hatteacted much attention during the
last decades. For instance, a new proof of Lyapunov's mataguality was developed 4]
based on the standard semidefinite programming (SBPJyality. A SDP formulation of the
LQR problem was presented i][and [7] using the SDP duality. Comprehensive studies on
the SDP duality in systems and control theory, such as then&alYakubovich-Popov (KYP)
lemma, the LQR problem, and th€.,.-norm computation, were provided ii8][ More recent
results include the state-feedback solution to the LQR Iprobf9] and the generalized KYP
lemma [LO] derived using the Lagrangian duality.

The results of this paper are mainly motivated from the ideg®]. First of all, the finite-

horizon LQR and Kalman filtering problems are reformulatedptimizations subject to matrix
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equalities, which represent the covariance updates otticbastic systems. Using the Lagrangian
duality, it is proved that one problem can be converted ihtodther problem. It is expected that
the proposed analysis can shed an insight into understtigénrelations between the LQR and
Kalman filtering problems. In addition, it is proved that tReccati equation and its solution for
the finite-horizon LQR problem corresponds to its dual peabland the Lagrange multipliers,

respectively.

[I. PRELIMINARIES AND PROBLEM FORMULATION
A. Notation

The adopted notation is as follow: set of nonnegative integer®; set of real numbersg™:
n-dimensional Euclidean spad@?*™: set of alln x m real matricesA”: transpose of matrix;
A=0(A=<0,A>0,andA <0, respectively): symmetric positive definite (negative iédi
positive semi-definite, and negative semi-definite, repeyg) matrix A; I: identity matrix of
appropriate dimensions§)”: symmetricn x n matrices;S’: cone of symmetrio: x n positive
semi-definite matrices§’; , : symmetricn x n positive definite matricesyec(A): vectorization
for matrix A; A® B: Kronecker’s product of matriced and B; Tr(A): trace of matrixA4; E(-):

expectation operator.

B. Problem formulation

Consider the discrete-time stochastic LTI system
x(k+1)=Azx(k) +w(k), yk)=Cx(k)+ v(k) 1)

wherek € N, z(k) € R" is the state vectory(k) € R™ is the output vectorw(k) € R™ and
v(k) € R™ are independent Gaussian random vectors with zero meancwadiance matrices
Q €S} andR € S, respectively, i.e.w(k) ~ N(0, Q) andv(k) ~ N (0, R). The initial
statex(0) € R™ is also an independent Gaussian random vector with zero ae#mcovariance

Qs € S7. Consider the Kalman filter
z(k+1) = Az(k) + Lp(Cz(k) — y(k)) (2

where z(k) € R" is the state estimation,; is the Kalman gain over the finite-horizdn
{0, 1,..., N — 1} given by

L, =—-AP,CY(R+ CP.CT)™. (3)



and { P}, is a solution to the Riccati equation
Py = APAT + Q — AR.CT(R+ CP,CT)'CP AT
= (A+ L,O)Py(A+ LiO)" + Q + LyRL, Py = Qy. (4)
Each P, can be viewed as the covariance matrix of the estimatiorr etrdme & defined by
e(k) := z(k) — z(k). The estimation error system is given by
e(k+1)=(A+ LyC)e(k) — w(k) — Lyv(k),
wheree(0) € R is a Gaussian random vectef0) ~ A (0, Q). It can be represented by
e(k+1)=(A+ L,C)e(k) + o(k), (5)

where ¢(k) = —w(k) — Liv(k) is Gaussian random vectaik) ~ N(0, Q + L,RLY). From
the duality between the Kalman filtering problem and the LQBbjem, the equation2)-(4)

are equivalent to the Riccati equation for the LQR problemhef dual system
E(k+1) = ATE(k) + CTu(k), (6)

whereé(k) € R™ is the state vector of the dual systemik) € R? is the control input vector, and
the initial state$(0) is a independent Gaussian random veg(on ~ N (0, Wy) with W, € S.

Define the quadratic cost function

Ty = E (s<N>T@fs<N> >

1

5 (e Qs() + u(h) Ruth))
overmy = (lo, f1,---, n—1) Such thatu(k) = i (Ix), where
I .= (£(0), &(1),..., &(k), u(0), u(1),..., u(k —1)).
Problem 1 (Stochastic LQR problem for the dual systerSplve
7 = argmin J,, subjectto (6)

wn€Elly

wherelly is the set of all admissible policies.

From the standard results of the stochastic LQR thebrypdge 150], the optimal solution is

obtained as
u(k) = Fpé(k), Fp,=L% , | = —(R+CPy__1CT)'OPy__1 AT
k:G{O,l,...,N—l} (7)

and the optimal value of the cost functionTs(WW; Py ).



[11. DUALITY FOR ANALYSIS

In this section, we assume that the state-feedback gging < {0,1,..., N — 1} are

arbitrarily fixed, and then consider the following problem.

Problem 2. Consider the dual systerf6) and assume thaf, £ € {0, 1,..., N — 1} are

arbitrarily fixed. Compute the cost function valdg, with 7y = {F.&(k)} o,

Proposition 1. Let W, € S be given and consider the optimization problem

N-—1
min (TT(SNQf) + 22 Tr(Sp@ + SkLN—k—lRLIZCIkl)) (8)
Sty SneS™ k=0
subject to

Sps1 = (AT + CTF)SHAT + CTF)T, ke {0,1,..., N -1},

where S, = W;. The optimal objective function value @) is equal to the cost function value
J

. in Problem 2
Proof. First of all, since
E(&(k+ )&k +1)") = E([ATE(k) + CTFE(R)][ATE(R) + CTF&(R)]T)
= (AT + CTF)EE(R)E(R)T) (AT + CTF)T,
the covariance update equation 6§ {s

Skl = (AT + CTFk)Sk(AT + CTFk)T, ke {0, 1,..., N — 1}, Sy = Wf,

where S, := E(£(k)¢(k)T). Moreover, J,,, can be written as

N-1
JWN = TI(SNQf> + Z Tl"(SkQ + SkLN—k—lRL%,kfl)
k=0
From the identitiesProblem 2is equivalent to the optimizatio@. This completes the proof.

]

Remark 1. The optimization(8) is a equality constrained optimization (linear programigin

problem) with a unique feasible point. Therefore, its optipaint is the unique feasible point.

The dual problem of§) is established in the following result.



Proposition 2. Let Q; € S’} be given. The Lagrangian dual problem () is given by
Plfr?lg]}v(eSn Tr(SoPy) subject to 9)
Piy = (A + LkC)Pk(A + LkC)T +Q+ LszLZ, k e {O, 1,..., N — 1},
wherePy = Qpand L, = K, _;.

Proof. Introduce the Lagrangian for the optimization problesh (

N—1
L‘(S, P) = TI(SNQf) + Z Tl"(SkQ + SkLN—k—lRL%_k_l)
k=0
N—-1
+ Z Tr(Py—g-1[(A+ Ly-5-1C)" X Sg(A+ Ly_-1C) — S41)),
k=0

whereS := {S;}_, andP := {P}_,. The Lagrangian functior’(S, P) can be written by

L(S, P) = TI((Qf — Po)SN) + Tr(PNSO)

+ > Tr([(A+ BFy)" Py_r-1(A+ BFy) — Py_x + Q + F} RF,]S)).
k=0

The dual function iD(P) = infgcs» £(S, P), and the dual problem isipp-g. D(P). Since
infg £(S, P) is finite only when the constraints i) are satisfied, the dual problem can be
formulated as9). For the unique dual feasible poift= { P, }1, satisfying the constraints in
(9), we havel(S, P) = Tr(PnSp). In addition, by a direct calculation, it can be proved that

N-1

Tr(PySo) = Tr(SiQ + SeLy—r—1RLY 1)

k=0
Since the objective function value of the dual feasible paimd the objective function value

of the primal feasible point are identical, both points arenpl and dual optimal points, and

there is no duality gap. This completes the proof. n

Remark 2. Several remarks are in order.

1) The result ofProposition 2can be also obtained using algebraic manipulations (without
using the Lagrangian duality).
2) The constraints ir(9) are equivalent to the Riccati equatiqd). Therefore, the matrices

Py, ..., Py can be interpreted as the Lagrange multipliers for the eijyalonstraints in

9.



3) The constraints in(9) can be viewed as a covariance update of the estimation error
system(5).

4) The cost function value of the terminal error (8) has the same value as the quadratic
cost function valug5) of the dual system. Roughly speaking, the existence of twdrafic

cost function corresponds to the existence of the noisets iduial system.
Conversely, consider the following problem.

Problem 3. Assume that the estimator gaidsg, £ € {0, 1,..., N — 1} are arbitrarily fixed.

For the estimation error systeifp), compute the cost function value
N-1

Job :=E (e(N)Ter(N) + e(k)TVVe(k)) (10)

k=0

Problem 3can be converted into the covariance optimization problem.

Proposition 3. Consider the optimization problem

N-1
P, min Tr(PyW;) + ; Tr(PW) (11)
subject to

Pei1 = (A+ LiO)P(A+ LiC)" + Q + LyRL; ,k € {0, 1,..., N — 1},

where P, = ();. The optimal objective function value ¢f1) is equal to the cost function value

Jop, In Problem 3

Proof. Straightforward from the previous results. n

This problem has a unique feasible point, and the matrix l@ggu@anstraints are the covariance
updates of the estimation error system. Following similaed to the proof oProposition 2 its

Lagrangian dual problem can be obtained.

Proposition 4. Assume that the estimator gaihg, & € {0, 1,..., N — 1} are arbitrarily fixed.
The Lagrangian dual problem ofll) is given by

N-1
5 max Tr(QSy) + kz_o Tr([Q + Ly RLEY]SN_11) (12)
subject to

Sps1 = (A+ Ly 4 1O) ' Sp(A+ Ly, 1C)+W, ke{0,1,..., N—1},



where Sy = W5.
Proof. It can be readily proved following similar lines to the praaff Proposition 2 ]

Remark 3. The matrix equality constraints fL2) can be interpreted as the covariance update
of the dual system
§(k+1) = (A" + CTLy_;,)8(k) + o (k) (13)

where&(0) ~ N (0, W;) and o (k) ~ N(0, W) are independent Gaussian random vectors. The
objective function of(12) can be also written by, with 7y = {LN_k_lg(O)}kN:‘ol. Therefore,

we haveJ,, = J.

TN "

V. KALMAN FILTERING PROBLEM IN THE COVARIANCE OPTIMIZATION FORM

In this section, we will study the Kalman filtering problemtire covariance optimization form,
and discuss about its solution. Consider the estimatiorr sgrstem §) and the corresponding

guadratic cost function1Q) again.
Problem 4. Solve min Job-

From the results of the previous section, it can be provetiRhablem 4is equivalent to the

following covariance optimization problem.

Problem 5. Solve

N—-1

' Tr(PyW Tr(PW
n D TPNW))+ D TH(AW)
Lo,..., LN,1€R7L><m k=0
subject to

Peo1 = (A+ LiC)Po(A+ LiC)" + Q + LyRL], ke {0,1,..., N —1},
with By = Qf.
Regarding this problem, we can make the following conclusion

Proposition 5. Let {L}, P;.,}, -, be an optimal solution t&roblem 5 Then, it is equivalent
to the pairs of the Kalman gain matric€8) and the corresponding covariance matricgy,

respectively.



Proof. By plugging eachP, in the equality constraints d?roblem 5into its objective function,

Problem 5can be written by the unconstrained optimization problem

min F({L:}5")

Lo,..., Ly _qeRnxm
with some functior". By algebraic manipulations, it can be proved that, for eagH ({L;} X"

can be written as
P({Li}i5o") = Tr([(A + LyC) Pe(A + LiC)" + Q + Ly RL{]My) + i,

for someM;, € S} and~;, > 0. Rearranging terms, it can be rewritten as

P({Li}i5") = Tr([La[CP.CT + RILy | My,)

+ 2T (L C P AT My) + Tr(AP AT My) + Tr(QMy) +

= Tr(vec(L})" (M), ® [CP.C" + R])vec(L}))

+ 2T (L C P AT My) + Tr(AP,AT My) + Tr(QMy,) + .

SinceM;®[CP,CT+R] € S*, I'({L;}Y;") is a convex quadratic function with respect to each

Ly. Therefore, settingf(Ly)/OLy, = 0, Ly € argming cgnxmI'({L:}1,") is obtained ad;, =
—AP,CT(R+ CP,CT)~!. Since the optimal solutior,, does not depend ofiLy_1,..., L},

it can be proved that the principle of optimality holds. Imet words, if we define the function

‘/t({LNfl,..., Lt}) = min F({LNfl,..., Lt; Ltfl,..., Lo})

Lo,..., Li_1€Rnxm

forallt € {1, 2,..., N — 1}, then it obeys

Vier(Ln—1, -, Lyyr) = min Vi(Ly_y, ..., Ly)

LieRnxm

forall t € {1,2,..., N — 1}. Therefore, a global minimizer dProblem 5can be obtained

sequentially by solving

Ly, = argmin Tr(Pyq)
LkeRnX'm

subject to
Ppy1 = (A+ LyO)Po(A+ LiC)' + Q + LyRLE

for all k € {0,1,..., N — 1}. Since B, € S ., each subproblem is a convex quadratic
programming with a unique solutialy, = —AP,CT(R+CP,CT)~L. Therefore, a global solution
to Problem 5is identical to the solution to the Kalman filtering proble8). (This completes the

proof. ]



V. DUALITY OF THE LQR PROBLEM
Consider the stochastic LTI system
z(k+1) = Az(k) + Bu(k) + w(k) (14)

wherek € N, z(k) € R" is the state vectory(k) € R™ is the control input vectorg(0) ~
N (0, Wy) andw(k) ~ N (0, W) are independent Gaussian random vectors. Define the gicadrat
cost function of {4)

N-1

o = B (N Qua(N) + T (k) Qelh) + k)" R
over y := (fo, f1,-- -, in—1) Such thatu(k) = i (Ix), where
I := (2(0), z(1),..., x(k), u(0), u(1l),..., u(k — 1))
Then, the stochastic LQR problem can be stated as follows.
Problem 6 (Stochastic LQR problem)Solve
Ty = argmin J,, subjectto (14)

TI'NEHN

wherelly is the set of all admissible policies.

The goal of this section is to derive a dual form of the stotbhd<QR problem. First of all, the

stochastic LQR problem can be formulated as the followingagance optimization problem.

Problem 7. Solve

Fo,..., Fyn_jeRm*n
S1,..., SNES™

min_ Tr(QSy) + NZ Te([Q + FY RF)Sy)
k=0
subject to
Sps1 = (A+ BF)Se(A+ BE)" +W, ke{0,1,..., N1},
where Sy = W5.
The Lagrange dual problem é&froblem 7is established below.
Proposition 6. The Lagrange dual problem éfroblem 7is given by

max_ Tr(PyWy) + Z Te(P,W) (15)



10

subject to
P =ATPA—-ATP.B(R+B"P.B) 'B"P,A+Q, kec{0,1,...,N—1}.

with P, = Q;. In addition, the strong duality holds, and the primal opgirpoint { Sy, Fj._1}i,

and dual optimal poinf{ P}~ ' are given by
Fy=—(R+ B"Py_;_1B)'B"Py_;_1A
Ser1 = (A+ F.B)Sp(A+ Fy,B)" + W
Peon = ATPLA— A"P.B(R+ B"P.B)'B"P,A+Q

ke{0,1,...,N—1}

Proof. Define the Lagrangian function éfroblem 7
N-1
L(S, F, P):=Tr(SxQy) + > _ Tr(Sk@Q + SpFy RF})
k=0
N-1
+ > Tr([(A+ BF)Su(A+ BE)" + W — Sp1]Py_ii),
k=0

where S = {S;}¥ ,F = {F.} ', P = {P}), . Rearranging some terms, it can be

represented by

,C(S, F, P) = TI'((Qf - Po)SN) + TI'(PNSO)
N-1
+ Z TI"([(A + BFk>TPN_k_1<A + BFk) — PN—k + Q + FgRFk]Sk>
k=0
The dual function iD(P) := infr s L£(S, F, P), and the Lagrangian dual problensigpp D(P).

We first prove that the Lagrangian functioS, F, P) is convex inS, F under a certain
condition onP. Since S, > 0, k € {1, 2,..., N}, there exist nonsingular matrice;, k €
{1,2,..., N} such thatS, = Z,Z], k € {1, 2,..., N}. Letting F.Z, = Gy, it can be proved
that infr s £(S, F, P) is equivalent to minimizing the following function with resct to Z;
andGy:

TH(ZyQsZN)
N-1
+ TI"(Z,?QZk + GZRGk)
k=0
N-1
+ Y Tr((AZy, + BGy)" Py_x-1(AZy, + BGy) + WPN_j—1 — Z} 1\ Pn—k-17141)
k=0
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= vec(Zy)" (I ® (Qf — Py))vec(Zy)

T T
vec(Z vec(Z, N1 vec(Z vec(Z Nl
@] vtz | 2 e Pz 52,
vec(Go) vec(Gy) 1 | vec(Gy) vec(Gy) 1
where
. I®(Q+ ATPy_1A) I® APy 1B

Y

I®B"Py_1A  1®(R+B'Py_1B)

O = [I ®(Q+ ATPy_p_ 1A — Py_y) I® ATPy_1_1B ]
I®@BTPy ;1A I®(R+ BT"Py_x_1B)

The above function is quadratic. @§; — Py = 0 andQ + A" Py_x_1A — Py, = 0 for each
k, then it is convex. Otherwise, we haitefr s L(S, F, P) = —oo, which implies that the given
P should not be dual feasible. WitR satisfying the two conditions, solvingfr s £(S, F, P)
is a convex optimization problem. Letting the derivativés(dS, F, P) with respect tofS, F}

be zero, a primal feasible poi8*, F*) = infr s L(S, F, P) can be obtained as
Fy=—R+ B"Py_4_1B) 'B"Py_s_1 A
Ser1 = (A+ F,B)Sy(A+ E.B)Y + W
So=Wy, ke{0,1,..., N—-1}

Let F* := {—(R+ B"Py_4 1B) " 'BTPy_,_1 A}~ SinceF* is not dependent o}, k €
{1, 2,..., N}, we first plugF* into (S, F, P) and obtain

N-1
L(S, F*, P) = Tr((Qy — Po)Sw) + Tr(PnSo) + Y Tr(Py_y—1W)
k=0
N-1
+ > Tr([A"Py_y A — A"Py_4 1 B(R+ B Py_;_1B) ' B"Py_y_1A+ Q — Py_i)Sk)
k=0

Then, the dual functiorD(P) := infr s £L(S, F, P) = infs £(S, F*, P) has a finite value
only when the constraints irL§) hold. Therefore, the dual problesnp, D(P) is given by (5).
Finally, note that the dual problem has a unique feasiblatpaind this implies that the dual
feasible point is also the dual optimal point. By pluggingritai its objective and rearranging
terms, we can prove that the dual objective function valuthéssame as the primal objective
function value. By the weak duality, the objective value of fhrimal optimal point should be

larger than or equal to the objective value of the dual oftipaént. Since both objective values
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are identical, there is no duality gap, abd is the primal optimal point. This completes the

proof. n

Remark 4. The result ofProposition 6proves that the Riccati equation and its solution corre-
sponds to the equality constraints of the Lagrange dual leroband the Lagrange multipliers,

respectively, oProblem 7

VI. CONCLUSION

In this paper, the relation between the Kalman filtering amel QR problems was studied
by using the Lagrangian duality theory. We first arbitraryetixhe gain matrices of the Kalman
filtering and proved that the Kalman filtering problem is a taaggian dual problem of the LQR
problem. Next, we considered the case that the Kalman gairices are also the optimization
parameters. In this case, the problem becomes harder leetasisiot clear whether or not the
optimization formulation of the Kalman filtering problemadsnvex. It is proved that the optimal
solution to the optimization formulation of the Kalman fiitegy problem can be derived as the
standard Ricatti equations.

On the other hand, the Lagrangian dual problem of the LQR lpnotwas derived as well.
It was proved that the solution of the Ricatti equation is th&mal solution to the Lagrangian
dual problem of the LQR problem.

In the future work, a clearer connection between the Kalmigrifig and the LQR problem

will be explored.
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