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Can Flight Data Recorder Memory Be Stored on the Cloud?
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Abstract

Flight data recorders (FDRs, or black boxes) generate data that is collected on an embedded memory device. A well-known difficulty
with these devices is that the embedded memory device runs out of space. To avoid getting into this problematic situation, the software
of the FDR is designed to operate in a watchful mode, constantly working to minimize the use of memory space; otherwise a larger
FDR would be needed. However, larger FDRs can be a problem because they have very rigorous requirements; thus, enlargement is
costly. Outcomes of this research include the recommendation to send FDR data to a remote cloud storage system, so the data memory
device will be unbounded.
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Introduction

The information produced by flight data recorders (FDRs, or black boxes) is by and large gathered on an embedded
memory device within the FDR itself; however, this embedded memory device faces capacity issues. In order to avoid this
problematic circumstance, the FDR has to attentively manage memory. Manufacturing larger memories for FDRs is very
difficult because they have challenging physical constraints, making any potential enlargement a high cost. Thus, FDRs
are designed to continually minimize memory space utilization, in order to avoid the need for enlargement. Improving upon
this method for efficiency, our implementation makes the memory of the FDR effectively unlimited by transmitting the
information produced by the FDR to a remote cloud storage system. Essentially, investment in remote FDRs can be
classified as a preventive investment. With growing costs related to air disasters, investment in improving their prevention
should increase over time to balance the cost vs. investment in the optimal manner. See, for example, Giat, 2013.

1. Motivation

An FDR is a replaceable computer element used in airplanes. Its task is to record pilots’ inputs, electronic inputs, sensor
positions, and information sent to any electronic systems on the airplane (You, Ye, & Yang, 2014). An FDR is informally
referred to as a ‘‘black box.’’ FDRs are designed to be quite small and are carefully manufactured to withstand the impact of
both high speed and extreme heat (Endre & Winterhalter, 2012).
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Today, passengers in airplanes can use both the Internet
and cell phones (Ehssan & Jamalipour, 2006); the ability
to wirelessly connect the network is mainly based upon
two techniques:

1. Cellular-based network that employs many cell phone
towers over ground. This method is obviously unsuit-
able over bodies of water. The towers have been fabri-
cated to direct their signals at the sky rather than
along the ground. The airplanes catch the information
using a receiver installed on their undersides. When
the information arrives at an airplane, it will be distri-
buted throughout the cabin by the use of a conventional
Wi-Fi system.

2. Satellite Internet access provided through communi-
cations satellites. Similar to the cellular-based net-
work, when the information arrives at an airplane it
will be distributed throughout the cabin by the use of
a conventional Wi-Fi system.

We suggest using these communication techniques to
send FDR information to an IaaS cloud. This method elimi-
nates the need for the FDR’s embedded memory device
to handle memory storage, and transfers that burden to the
cloud. However, the transmitted data might be exceedingly
large; therefore, compression might be needed prior to
transmission.

Furthermore, as was noted by Kavi (2010) and Purcell
and colleagues (2011), after a crash the FDR cannot always
be found. For example, Air-France Flight 447 crashed into
the Atlantic Ocean on June 1st, 2009. In that accident,
228 people were killed. Since the FDR was not recovered
from the ocean floor until May 2011, nearly two years later,
it was hard to determine the causes of the crash. Additionally,
no immediate action was taken to remedy the failures.

Another case is the disappearance of Antonov An-72 on
December 22, 1997. This airplane went missing on a flight
from Port Bouet Airport, Côte d’Ivoire to Rundu Airport,
Namibia, but never arrived at Rundu Airport. Five crew
members and the airplane vanished over the southern Atlantic
Ocean, but since the FDR has not been found, the reason
for the disappearance remains unknown (Ranter & Lujan,
2010).

One more notable disappearance is Malaysia Airlines
Flight 370, which disappeared on March 8, 2014 while
flying from Kuala Lumpur International Airport in Malaysia
to Beijing Capital International Airport in China, carrying
12 crew members and 227 passengers (McNutt, 2014).
It was published that the battery for the FDR of this airplane
expired in December 2012 (Hawley, 2015). Regardless, the
FDR itself has not been found, so the cause of the incident
remains undetermined.

These cases illustrate how FDR memory stored in a cloud
system can be a practical answer for this obstruction.
Up-to-date high density FLASH memory devices have
facilitated the SSFDR (solid-state flight data recorder) to be

manufactured with a substantially larger memory size.
Many airplanes are now equipped with SSFDRs and no
longer make use of disk drives (Wiseman & Barkai, 2013).
Additionally, in the past twenty-five years, the density
of memory chips has significantly multiplied, and the cap-
ability to record thousands of parameters for hundreds
of flight hours in FDRs or quick assess recorders is now
possible. So the old question ‘‘Can flight data recorders
hold enough data for an international flight?’’ is no longer
relevant. The new question is ‘‘How many parameters,
videos, and other data can be added to the memory of the
flight data recorder?’’

FAA regulations stipulate that FDRs retain just the
last two hours of recorded information (FAA, 2011). Thus,
many of the recorders have capacity to store only 2 hours of
data. Unlike the debate in the personal computers arena, in
the embedded computing arena—particularly with regard
to FDRs—there is a concensus: the memory space size is
too small. Actually, the memory storage space in FDRs
is less than one percent of storage space available on a
conventional desktop computer. Typically, in an unexcep-
tional embedded computer system there is an electronic
card with a plain processor supporting a small solid-state
device that has just about 1–4GB of memory space for
all of the system files. Usually it is impossible to insert
additional memory space such as a hard disk drive or even
a Secure Digital (SD) reader because of hardware con-
straints, system constraints, size constraints, and power
consumption constraints (Yaghmour, Masters, Gerum, &
Ben-Yossef, 2008).

Therefore, it is understandable why we cannot install a
full operation system environment, which includes a compila-
tion chain (tool chain), in such a small memory space. For
instance, basic installation of a Gentoo Linux distribution
with a command line user interface, a stage-3 compilation
tool chain, and its Portage package manager, without any
graphical interface or other packages, requires 1.5 GB.
Installation of the Windows operating system takes up
much more memory space.

The easiest solution is removing features, installing only
the essentials, and developing lighter applications for the
embedded cards of FDRs. Compression algorithms are
employed by the manufacturers of FDRs and may turn out
to be even more relevant with the introduction of video
FDRs. Although video FDRs are quite old (Armstrong,
1989), the latest video compression techniques have a con-
siderable compression ratio, which is commonly more than
some hundreds (i.e. the compressed file will be much less
than 1% of the original data; Horowitz et al., 2012). This
explains why the compression concern has resurfaced, even
though the memory capacity is much larger now (Yang,
Dick, Lekatsas, & Chakradhar, 2005; Xu, Clarke, & Jones,
2004).

A common difficulty is when FDRs run out of memory
space (Weisberg & Wiseman, 2013). Because the designers
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of the FDR are concerned about this lack of memory, they
design the FDRs’ memory management process to make
a constant effort to reduce the used memory space (Wu,
Banachowski, & Brandt, 2005). Unlike FDRs, in many
other embedded computer systems, more often than not
disks are not overloaded; therefore, usually it is better to
keep old versions of important files on the disks even though
in most cases the old versions are not used (Muniswamy-
Reddy, Wright, Himmer, & Zadok, 2004).

Enabling Data Transmission From an FDR to a Cloud
Storage System

With the aim of transferring an adequate amount of
data from an FDR to the cloud, compression is required.
For such purposes, as with the computational codes that run
across today’s FDRs, compression techniques cannot be
used arbitrarily. Their use must be dynamically configured
to match current requirements (i.e., desired transmission
rates and current platform resources, or network bandwidth
and CPU load).

The system presented in this paper enables the FDR
to automatically configure the compression technique to
fit the current requirements. When enough network band-
width is available, for instance, no compression will be
applied, thereby the computational loads will be reduced;
however, when network bandwidth is not enough for
the transmitted data, the transmitted data will be com-
pressed. The particular compression technique will be
automatically selected, using dynamic data sampling
techniques to assess the effectiveness and current rapi-
dity of compression.

The objective of this paper is to guarantee that the rate of
compression speed due to available CPU resources and the
compression efficiency will create suitable data volumes
transmitted over the network at rates that match current
available network resources as well as application require-
ments. Given the datasets, the trade-offs in compression
rapidity vs. reductions in required network bandwidth will
be calculated. A configurable process to select a suitable
compression technique based on the calculation has been
developed. The technique selection process takes into
account compression rapidity, current machine load, effi-
ciency of the compression techniques, type of data, and
available network bandwidth. Because platform resources
change, technique selection is performed frequently, through-
out the lifetime of data transmitted by the FDR.

3. Compression Methods

Compression techniques reduce data size by applying
compression and decompression techniques to data. This
section succinctly reviews the techniques employed in
this work, in order to show the trade-offs in using these
different techniques.

Huffman Compression

Huffman coding (Huffman, 1952) has been the first
practical compression method. Huffman coding is usually
not used in a stand-alone mode (Dandekar, 2013); rather,
it is used within more complex compression techniques like
JPEG (Wallace, 1991; Wiseman, 2014). The concept of
Huffman coding is assigning a shorter codeword to a com-
mon item and a longer codeword to an uncommon item.
The following algorithm shown in the recursive pseudo
code below describes how Huffman chooses these code-
words with minimum average size for items A1, . . . , An of
lengths L1, . . . , Ln, where P1, . . . , Pn are the items’
probabilities.

If (n 5 2), then
{0, 1}

Else
Combine the two smallest probabilities Pn, Pn – 1
Solve for P1, P2, . . . , Pn – 2, Pn – 1 + Pn

If Pn – 1 + Pn is represented by x, then
Pn – 1 will be represented by x0
Pn will be represented by x1

‘‘Solve for’’ means calling the function again with n – 1
elements because Pn – 1 and Pn become one element, as
indicated by Pn – 1 + Pn.

The main advantages of Huffman codes are their
simplicity and rapidity. These codes work well for binary
data when string repetition is rare. Huffman assumes that
each character has no relation to the adjacent one; therefore
Huffman usually does not perform well on texts. Huffman’s
complexity is O(m + nlogn) where m is the size of the text
and n is the size of the alphabet. It should be noted that this
is much better than the Burrows-Wheeler compression
technique described below, which has a complexity of
O(mlogm).

Lempel-Ziv Methods

The conventional dictionary compression technique is
Lempel-Ziv coding (Wiseman, 2007b). WINZIP (WinZip,
1998) and gzip (Deutsch, 1996), among other common
practical compression tools, employ versions of Lempel-
Ziv coding. Whereas Huffman coding does not consider an
item’s surroundings, the main advantage of Lempel-Ziv
methods is that they consider previous appearances of
strings. The concept of the algorithm is described herein:

Let x1, . . . , xn be a sequence of items.
We want to find a sub-sequence xk, . . . , xm which holds

Eqn (3):

P(xk,:::,xm)w P
m

i~k
P(xi) ð3Þ

For example, p(qu) . p(q) ? p(u).
The Lempel-Ziv scheme puts a pointer into the place of

each previewed string. We use a version of Lempel-Ziv that
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compresses these pointers by Huffman coding (Peterson,
2013). The pointers of Lempel-Ziv look like (345, 8),
which means go backward 345 bytes and copy 8 characters.
Most pointers point to close data, and a copy of only a
small number of bytes is done, so both of the numbers have
a tendency to be small. These pairs of numbers are then
replaced by Huffman codewords, which give shorter repre-
sentation for small numbers.

The Burrows-Wheeler Transformation

The Burrows-Wheeler transformation (Burrows & Wheeler,
1994) is a dictionary compression technique. This techni-
que utilizes repetitions of words’ sequences in order to
improve compression. The technique is lossless (i.e., no
information is lost in the compression procedure). Burrows-
Wheeler transformation outperforms Lempel-Ziv coding;
therefore, the use of Burrows-Wheeler transformation in a
variety of compression utilities is widespread. However,
the execution time of Burrows-Wheeler transformation is
normally very long.

The technique has several steps: The first step produces
pointers to all characters of the data being compressed.
The pointers are sorted according to the characters to which
they are pointing. The preceding characters of each of the
pointers are conveyed to the next step according to the
order of the sorted pointers. Essentially, this sequence of
characters in the output of this step has the same characters
as in the original data, but the order of the characters is
different.

The second step performs a ‘‘move to front’’ algorithm.
This algorithm keeps all 256 potential characters in a list.
When a character is sent to the next step, its position in the
list is sent in its place. After a replacement of a character is
sent, it is moved from its current position in the list to the
front of the list. The next step applies a run-length coding to
the output of the previous step. The output of the run-length
coding is compressed usually by Arithmetic coding (Howard &
Vitter, 1994; Wiseman, 2001); however, Huffman coding
can also be applied.

The main disadvantage of the Burrows-Wheeler trans-
formation is its slow execution time, because of the need to
sort the data. In order to reduce this execution time, usually
the data is split into blocks, at some loss in compression
efficiency, because shorter data is less effectively compressed.

This paper uses the SGI version of the Burrows-Wheeler
Transform (Wiseman, 2007a).

In order to enable us to decompress the data when the
order of blocks received does not exactly correspond to the
order in which it is sent, we have adapted the Burrows-
Wheeler method, as explained here: Each data is split into
blocks of a number of bytes. The Burrows-Wheeler Trans-
form compresses each block. Then, blocks are processed by
the move to front procedure, followed by run-length
coding. The run-length coding has been changed to use a
run-length of at most 254 characters, so that the 255th

character never appears. Instead, the 255th character is
placed at the end of each compressed block. Next, all of the
blocks are compressed together using Huffman coding.
Huffman can be synchronized easily (Klein & Wiseman,
2000; 2003). This indicates that if a Huffman-encoded data
is read from any arbitrary point, it possibly will have a few
erroneous bytes in the beginning, but the rest of the
characters will be correct. So, the compressed data can be
decoded from any arbitrary point, since Huffman will keep
track of character positions, and when position 255 is
observed, a new block has been detected.

Method Comparison

The attributes of these compression techniques have been
evaluated; accordingly, the system will be able to choose
the most appropriate compression technique for any given
attribute of the data, the available communication band-
width, and available CPU cycles.

Table 1 qualitatively ranks compression techniques,
scaled on four levels:

N Excellent
N Good
N Satisfactory
N Poor

Given these technique evaluations, the following selec-
tion algorithm chooses the compression technique most
suitable for the current execution environment.

In this algorithm, we use the term ‘‘reducing speed’’ to
capture the speed at which a certain technique can com-
press data, given currently available CPU cycles. This
speed is checked repeatedly, as subsequent blocks of data
are compressed. In addition, the speed with which compressed

Table 1.
Attributes of compression techniques.

Burrows-Wheeler Lempel-Ziv Huffman

Compress Files With String Repetitions Excellent Excellent Poor
Compress Files With Low Entropy Excellent Poor Excellent
Compression Efficiency Excellent Good Poor
Time of Compression Poor Satisfactory Excellent
Time of Decompression Satisfactory Excellent Excellent
Global Time Poor Good Excellent
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blocks are accepted by receivers is repeatedly checked,
thereby analyzing both current network bandwidth and
receiver speed. These end-to-end numbers are more relevant
than knowledge of actual network bandwidth, because
decompression requires the use of receivers’ CPU cycles.

The sizes of the blocks have been preferred based on the
common page size (Weisberg & Wiseman, 2009; Itshak &
Wiseman, 2009) and the efficiency of compression tech-
niques derived from Klein & Wiseman (2005). The ratios
between the sending time and the reducing speed size have
been set according to the statistics detailed in Figure 3. The
efficiency of the sampling has been set according to the
numbers in Figure 1. Obviously, this information is specific
to the particular data; however, these numbers can be easily
tuned if needed by sampling even a small piece of data
(Wiseman, Schwan, & Widener, 2005) extracted from the
original data and sending this piece of data over an unloaded
line employing unloaded CPUs. It should be noted that usually
the numbers being used are very close to the constants that are
detailed here, so we use these constants to give an impression
of the scope of numbers.

Assume the reducing size speed of the first block is
infinity.

While not EOF
Take a block of 128 kB.

If (sending time) . 0.83*(the reducing size speed of
Lempel-Ziv)

If sampling has been compressed into less than 48.78%

If (sending time) . 3.48*(the reducing size
speed of Lempel-Ziv)

Use Burrows-Wheeler
Else

Use Lempel-Ziv
Else

Use Huffman
Else

Do not compress
Fork a sampling process to compress the first page

(4 kB) of the next block by Lempel-Ziv and use its output
to decide on the reducing speed size and the compression
ratio for the next 128 kB block.

Send the block.
Wait for the child process.

Experimental Results

FDRs generate various information; therefore, the com-
pression techniques used in this paper (i.e., Huffman,
Lempel-Ziv, and Burrows-Wheeler) have been tested with
multiple datasets, including a text dataset and a binary
dataset. The text dataset includes these parameters:

(1) Time;
(2) Altitude;
(3) Airspeed;
(4) Vertical acceleration;
(5) Heading;

Figure 1. Compression ratios.
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(6) Time of each radio transmission either to or from air
traffic control;

(7) Pitch attitude;
(8) Roll attitude;

(9) Longitudinal acceleration;
(10) Pitch trim position;
(11) Control column or pitch control surface position;
(12) Control wheel or lateral control surface position;

Figure 2. Reducing size speed.

Figure 3. Switching of compression techniques.
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(13) Rudder pedal or yaw control surface position;
(14) Thrust of each engine;
(15) Position of each thrust reverser;
(16) Trailing edge flap or cockpit flap control position; and
(17) Leading edge flap or cockpit flap control position.
The binary dataset is the cockpit voice data. Actually,

the cockpit voice data is now usually compressed by mp3
(Kawakita, 2001), which is a version of Huffman, so in this
attribute we did not contribute further compression.

For the text dataset, the compression ratios are shown in
Figure 1.

Decisions about suitable compression techniques should
be based not only on data sizes or link speeds, but also
on data characteristics. Huffman codes are suitable for
low entropy data, while Lempel-Ziv methods are good at
handling data with string repetitions. Burrows-Wheeler
handles both of these cases.

The consequent approach taken in our work is one that
samples data as it is being produced and transported, to
detect whether data has low entropy, string repetitions, or
both. The results of such sampling are used to choose a
suitable compression method.

The crucial statistics from these experiments is the speed
with which a CPU compresses some large amount of data.
Figure 2 summarizes the test results accomplished with
two FDRs. Because of confidential commercial issues, we
cannot detail the names of the FDRs and we will refer to
them simply as ‘‘New FDR’’ and ‘‘Old FDR.’’

Figure 2 shows what is called in this paper the ‘‘reducing
size speed’’ of different FDR processors, which is the
ability of an FDR’s processor to reduce the amount of bytes
per second. If such a memory space reduction can be per-
formed faster than the transfer time for a given amount of
data, it is worth it (time-wise) to compress the data.

If an FDR processor is fast but the communication line is
slow, even a multipart compression method can be used.
Conversely, if the CPU is slow and the communication line
is fast, no compression technique will be assigned. Between
those two extremes, the use of a fast and uncomplicated
compression method will be used.

Usually cell phone and Internet lines have a large standard
deviation of the transfer speed. This brings about different
compression technique selections at different points of time.

The conclusion from the above figures is that if the
CPU is very fast, then Burrows-Wheeler will be the best
technique. Burrows-Wheeler has a poor ratio of reducing
MBits per second, but if the CPU is fast enough, the CPU
will be able to pay back any lost time. If the communication
line is very fast, Huffman will be the best technique.
Huffman has a poor compression ratio but compresses data
quite fast. When an intermediate case occurs, Lempel-Ziv
seems to be a good compromise between compression time
and transfer time.

Figure 3 illustrates the switching of compression tech-
niques over time. The data being compressed, transported,
and decompressed is a set of information captured from a

Figure 4. CPU time compression.
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large company. This dataset has a high rate of data repeti-
tions, so the best techniques used were Lempel-Ziv and
Burrows-Wheeler. This analysis explains the automatic
decision-making depicted in Figure 3. Initially, with no
network load, no compression is performed (labeled as ‘‘1’’
in the figure). With increasing network load, the first com-
pression method used is Lempel-Ziv (see ‘‘2’’ in the figure),
followed by Burrows-Wheeler (see ‘‘3’’) under high net-
work loads.

Figure 3 depicts the selection of compression technique
over time, whereas Figures 4 and 5 show the compression
times and the sizes of the compressed blocks, respectively,
achieved by these techniques. These figures clearly show
that the relatively small improvement in data reduction
achieved by the use of Burrows-Wheeler justifies its usage
only under very high network loads.

Conclusions

Several benefits have been achieved by placing the FDR
in an IaaS cloud:

(1) Safer FDR memory;
(2) Extensive enlargement of the FDR memory; and
(3) Faster transmission of data.

These results are encouraging. The transmission system
is able to select the compression algorithm intensity and
whether to compress or not at real time based on available
CPU cycles and the load on the network line, so the cloud

can be a replacement for the internal memory device.
Additionally, clouds are crash-proof. The possibility of a
traditional FDR being damaged in a crash is low, because
FDRs are designed to sustain even very severe crashes;
however if an airplane does crash, potential damage to the
cloud is absolutely zero.
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