
Purdue University
Purdue e-Pubs
Department of Electrical and Computer
Engineering Technical Reports

Department of Electrical and Computer
Engineering

10-17-2016

RowCore: A Processing-Near-Memory
Architecture for Big Data Machine Learning
Nitin .
Purdue University, nnitin@ecn.purdue.edu

Mithuna Thottethodi
School of Electrical and Computer Engineering, Purdue University, mithuna@purdue.edu

T.N. Vijaykumar
Purdue University, vijay@ecn.purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

., Nitin; Thottethodi, Mithuna; and Vijaykumar, T.N., "RowCore: A Processing-Near-Memory Architecture for Big Data Machine
Learning" (2016). Department of Electrical and Computer Engineering Technical Reports. Paper 473.
http://docs.lib.purdue.edu/ecetr/473

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/77952191?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F473&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F473&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F473&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F473&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F473&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F473&utm_medium=PDF&utm_campaign=PDFCoverPages


RowCore: A Processing-Near-Memory Architecture for Big
Data Machine Learning

Nitin, Mithuna Thottethodi, and T. N. Vijaykumar
School of Electrical and Computer Engineering

Purdue University, West Lafayette, IN
{nnitin,mithuna,vijay}@ecn.purdue.edu

ABSTRACT
The technology-push of die stacking and application-pull of
Big Data machine learning (BDML) have created a unique
opportunity for processing-near-memory (PNM). This paper
makes four contributions: (1) While previous PNM work
explores general MapReduce workloads, we identify three
workload characteristics: (a) irregular-and-compute-light (i.e.,
perform only a few operations per input word which include
data-dependent branches and indirect memory accesses); (b)
compact (i.e., the computation has a small intermediate live
data and uses only a small amount of contiguous input data);
and (c) memory-row-dense (i.e., process the input data with-
out skipping over many bytes). We show that BDMLs have
or can be transformed to have these characteristics which,
except for irregularity, are necessary for bandwidth- and energy-
efficient PNM, irrespective of the architecture. (2) Based on
these characteristics, we propose RowCore, a row-oriented
PNM architecture, which (pre)fetches and operates on en-
tire memory rows to exploit BDMLs’ row-density. Instead
of this row-centric access and compute-schedule, traditional
architectures opportunistically improve row locality while
fetching and operating on cache blocks. (3) RowCore em-
ploys well-known MIMD execution to handle BDMLs’ ir-
regularity, and sequential prefetch of input data to hide mem-
ory latency. In RowCore, however, one corelet prefetches
a row for all the corelets which may stray far from each
other due to their MIMD execution. Consequently, a lead-
ing corelet may prematurely evict the prefetched data before
a lagging corelet has consumed the data. RowCore employs
novel cross-corelet flow-control to prevent such eviction. (4)
RowCore further exploits its flow-controlled prefetch for fre-
quency scaling based on novel coarse-grain compute-memory
rate-matching which decreases (increases) the processor clock
speed when the prefetch buffers are empty (full). Using sim-
ulations, we show that RowCore improves performance and
energy, by 135% and 20% over a GPGPU with prefetch,
and by 35% and 34% over a multicore with prefetch, when
all three architectures use the same resources (i.e., number
of cores, and on-processor-die memory) and identical die-
stacking (i.e., GPGPUs/multicores/RowCore and DRAM).

1. INTRODUCTION
The technology-push of die stacking and the application-

pull of Big Data have created a unique opportunity for processing-
near-memory (PNM). Die stacking (e.g., Hybrid Memory
Cube [1], High Bandwidth Memory [2]) is emerging as a

way to achieve unprecedented high-bandwidth connection
between memory and processor dies using thousands of fast,
through-silicon vias (TSVs) instead of a few hundreds of
slower, traditional pins. At the same time, prevalent Big
Data machine learning (BDML) applications process vast
amounts of data, are abundantly parallel, and require mas-
sive memory bandwidths (e.g., naive bayes, k-means, and
principal component analysis). Thus, it is time for PNM ar-
chitectures to match up die-stacking with BDMLs.

While processing-in-memory (PIM) has been around for
decades [3, 4, 5, 6, 7, 8, 9, 10, 11, 12], there are three prob-
lems. The first is the mismatch between DRAM and logic
processes. While some past proposals have addressed this
mismatch by advocating PIM with SRAM [13], die stack-
ing offers a higher-density solution. The second, more fun-
damental, problem is that two-input-one-output operations
with more than one large operand pose the difficulty that the
processor can be near only one of the operands, requiring
massive data movement for the other operand(s) like non-
PNM architectures and thereby losing PNM’s bandwidth ad-
vantage. We show that only one of the input operands is
large in BDMLs. The final problem is the lack of workloads
with the right characteristics which BDMLs have.

We identify three key characteristics, which BDMLs ei-
ther have naturally or can be transformed to have, that fit
PNM: irregular-and-light-compute, compact, and memory-
row-dense. First, BDMLs often perform data-dependent com-
putation to differentiate among data which is fundamental to
learning. Such computation involves data-dependent branches
and/or irregular memory access to intermediate program state
but not input data (e.g., counter[label] for 100 randomly-
occurring labels). Further, BDMLs perform only a few op-
erations per input data word (e.g., under 10) implying that
the compute bandwidth needed is small, and simple, energy-
efficient pipelines suffice. Conversely, compute-heavy ap-
plications would be compute-bound and not benefit much
from PNM’s bandwidth advantage, irrespective of the archi-
tecture. Second, BDMLs perform an acute data reduction
via summarization so that the output is much smaller than
the input (e.g., clustering data into a few clusters). Con-
sequently, BDMLs access, at a time, often just one input
record and a small amount of intermediate program state, the
partially-reduced output, which fits in a small local memory
(e.g., 8 KB per core). This compact nature ensures avoids
PIM’s second problem above. the input data in and pro-
cess almost all the data without skipping over sub-streams



or leaving gaps in the input, resulting in dense accesses to
the memory rows holding the data. This density implies ef-
ficiency of memory bandwidth which is PNM’s key advan-
tage. General spatial locality (of Map [11, 9]) does not nec-
essarily imply the lack of gaps which is key for bandwidth
efficiency. Except for irregularity, these characteristics are
necessary for bandwidth- and energy-efficient PNM, irre-
spective of the architecture (see Section 3.4).

Following widespread practice for programmability rea-
sons, we use MapReduce [14] (or Spark [15]) to implement
BDMLs. While recent PNM work (e.g.,[9, 8]) considers
general MapReduce workloads with a broad set of charac-
teristics (see Section 2), our novelty is in identifying the spe-
cific characteristics that fit PNM, which is our first contribu-
tion.

Vector (SIMD), GPGPU (SIMT) and multicore, are well-
known parallel architectures. However, BDMLs’ irregular-
ity makes SIMD and SIMT execution inefficient. While
multicore’s MIMD execution can handle irregularity, the cores
stray far from each other in execution, interleave accesses to
many memory rows, destroy row locality, and squander die-
stacking bandwidth. Instead, we propose RowCore, a PNM
architecture based on BDMLs’ characteristics, with the key
goal of utilizing the full bandwidth of die stacking while
remaining energy-efficient. Before describing RowCore’s
novel features, we list its skeleton of well-known features:
For one (or a few) memory array, there is a RowCore proces-
sor comprising a wide set of cores, called corelets, to exploit
BDMLs’ parallelism. RowCore employs MIMD execution
for BDMLs’ irregularity. BDMLs’ light-compute nature af-
fords simple corelets which employ small-scale hardware
multithreading to tolerate pipeline hazards instead of com-
plex branch prediction and register bypassing (e.g., 4 con-
texts). BDMLs’ compact nature enables each corelet to em-
ploy a small register file and local memory. To hide memory
latency of input data, RowCore employs sequential prefetch
which exploits BDMLs’ row-dense nature; RowCore does
not employ hardware-managed, deep cache hierarchies.

While the above skeleton is not new, RowCore’s novelty
stems from being a memory-row-oriented architecture which
(pre)fetches and operates on entire rows of die-stacked mem-
ory before moving on to the next row (i.e., row-centric ac-
cess and compute-schedule). This row-orientedness exploits
BDMLs’ row density to achieve RowCore’s goal of utiliz-
ing the full die-stacking bandwidth. Such deliberate access-
schedule coupling differs from best-effort row locality in
traditional architectures which fetch and operate on cache
blocks. Recent PNM work does not target row-orientedness,
except for considering row locality in Joins [16] which are
fundamentally not compact as we discuss in Section 3.4.
This row-orientedness is our second contribution.

RowCore’s MIMD execution also incurs the above-mentioned
straying problem. Because one corelet prefetches for all
the other corelets in a RowCore processor, a leading corelet
may prematurely re-allocate a prefetch buffer to a new mem-
ory row while some lagging corelets have not yet fully con-
sumed the previous memory row. RowCore employs cross-
corelet flow control to prevent such premature re-allocation
and thus preserves prefetch efficiency despite MIMD. While
prefetching is well-studied, the main concerns have been

accuracy and timeliness but not premature re-allocation in
either self prefetching (i.e., each core prefetches for itself)
or cross-core prefetching [17, 18, 19]. Addressing accu-
racy and timeliness are easy in BDMLs due to sequential
input data accesses and loops that can overlap the next row
prefetch with the current row computation. While the flow
control imposes a global barrier across the corelets, such a
barrier occurs only when the prefetch buffers overflow and
not at every instruction as in SIMT. This flow-controlled
cross-corelet row prefetching is our third contribution.

Finally. BDMLs, being compute-light, are likely to be
memory-bandwidth bound whose energy can be reduced.
To that end, we leverage the prefetch flow control to rate-
match the RowCore processor and die-stacked memory via
frequency scaling (or voltage-frequency scaling, if possible).
The rate-matching increases (decreases) the processor clock
speed whenever a leading corelet finds the prefetch buffers
to be full (empty). While the corelets may diverge from
each other at fine time granularities, they perform statisti-
cally similar amount of work over the full application exe-
cution (e.g., 10 billion records). Further, because the same
computation is repeated for billions of records, BDML be-
havior does not change during execution. Accordingly, our
rate-matching is at the coarse granularity (in space) of the
processor and not the individual corelets, and (in time) of the
full application and not smaller code sections. This compute-
memory rate-matching is our fourth contribution. While rate-
matching is well-known. our novelty is coarse-grained compute-
memory rate-matching. Previous work explores rate-matching
in hardware at the fine granularity of pipeline sub-components
(space) and program phass (time) [20, 21], statically in the
compiler [22], or by trading off accuracy [23].

To summarize, the key contributions of this paper are:
• identifying irregular-and-light-compute, compact, and

row-dense as key workload characteristics that fit PNM;
• a row-oriented microarchitecture;
• flow-controlled cross-corelet row prefetching; and
• coarse-grain compute-memory rate-matching.
Using software simulations running BDMLs, we show

that RowCore improves performance and energy by 135%
and 20% over a comparable GPGPU with prefetch, and by
35% and 34% over a comparable multicore with prefetch,
when all three architectures use the same resources (i.e., num-
ber of cores and on-processor-die memory) and identical die-
stacking (i.e., GPGPUs/multicores/RowCore and DRAM).

The rest of the paper is organized as follows. We con-
trast RowCore to related work in Section 2. Section 3 dis-
cusses workload characteristics. Section 4 describes Row-
Core’s microarchitecture. Section 5 describes our evaluation
methodology. In Section 6, we present our experimental re-
sults. Finally, we conclude in Section 7.

2. RELATED WORK
We discuss previous work related to our key contributions.
Workload characteristics: As discussed in Section 1,

previous work explores general workloads, including MapRe-
duce, which include applications both with and without inter-
thread communication or row locality. In contrast, we iden-
tify the key characteristics that fit PNM. Specifically, pre-
vious work labels workloads with inter-thread communica-

2



tion and without row locality as irregular [9]. In fact, our
characterization excludes such workloads because the for-
mer may imply lack of parallelism, the latter would imply
lack of memory bandwidth efficiency (see Section 3.4). In-
stead, our irregularity stems from data-dependent branches
and indirect memory accesses to the intermediate state in lo-
cal memory, not the input data which is row-dense.

Row-orientedness: Past PNM architecture work has ex-
plored vectors [4], VLIW [6], and GPGPUs [24] which are
neither row-oriented (i.e., row-centric access and compute-
schedule) nor MIMD, uniprocessors [5] and multicores [4,
7, 8, 9, 25], which are MIMD but not row-oriented, for near
data processing. Vectors (SIMD), GPGPUs (SIMT), and
VLIW perform poorly in the face of data-dependent branches
and irregular memory accesses. GPUs employ heavy multi-
threading to tolerate the latency due to unpredictable mem-
ory accesses. Unfortunately, the interleaving of numerous
contexts destroys cache locality [26] and row locality. While
GPGPU’s multithreading degree can be turned down (e.g.,
assign only a few Warps to an SM) and supplemented with
prefetching for the predictable BDMLs, even 100%-accurate
cache-block prefetching does not address GPGPU’s diffi-
culty with irregularity. In multicores, the unavoidable vari-
ability in the cores’ record-processing work causes the MIMD
cores to stray from each other (similar to RowCore corelets
without flow-controlled prefetch), interleaving accesses to
different rows and destroying row locality. Here again, 100%-
accurate cache-block prefetching does not address multicores’
poor row locality. DIVA [7] targets irregular applications
by supporting address translation and coherence but does
not address row-orientedness. Centip3de [25] exploits die-
stacking using a multicore architecture without any row-orientedness.
None of the NDP workshop 2014-2015 papers [27] address
row-orientedness.

There are a number of recently-proposed PNM architec-
tures for various computational patterns. For example, NDA [11]
maps dataflow programs to a coarse-grain reconfigurable ar-
chitecture (CGRA) nodes that communicate over a network.
RowCore targets BDMLs with abundant data parallelism for
which general dataflow over communication networks is overkill.
Further, though NDA’s CGRAs can work in MIMD fash-
ion, NDA does not have row-orientedness to maximize die-
stacked bandwidth utilization. AC-DIMM [28], based on
STT-MRAM, combines ternary associative search with PNM
by co-locating key-value pairs in the TCAM. RowCore (a)
explicitly stripes records to capture inter-record parallelism
in the same DRAM row whereas AC-DIMM co-locates an
entire record/tuple in the same TCAM row, and (b) exploits
row-orientedness instead of just co-locating key-value pairs.
While data reorganization acceleration for 3D-stacked mem-
ory [29] is orthogonal to our work, RowCore can leverage
this work for our interleaved (struct of arrays of structs) lay-
out (see Section 3.2). While Tesseract [10] targets graph-
analysis workloads via MIMD processing and inter-core com-
munication, such workloads are not row-dense or compact,
and Tesseract is not row-oriented and would incur row-locality
problems similar to multicores. Other work [30] develops
PNM-enabled instructions which are offloaded to PNM cores
if the data is not present in the caches. For our datasets which
are much larger than caches, we expect that PNM accelera-

Pseudocode (Comments in gray)
// Single N-dimensional record with associated year
typedef struct {

int year;
int X[NUM_DIMENSIONS];

} bayes-struct;

// Dataset – Large collection of records
bayes-struct bayes-struct-array[100000000]

// Live state – Aggregated conditional probabilities (Cprob) of
the two classes
int Cprob[NUM_DIMENSIONS][K][2]
int classCount[2]
const int threshold

// PNM code – Map task and combine/partial-reduce
for each record in bayes-struct-array {

int class
if (record.year > threshold) class = 1;
else class = 0;
for each dim in NUM_DIMENSIONS {

Cprob[dim][record.X[dim]][class] ++
}
classCount[class]++;

}

// Host code – Final reduction
Sum classCount arrays of all corelets.
Sum Cprob matrix of all corelets.

Table 1: Walk-through example of Naive Bayes

tion is unavoidable.
Architectures in other compute-intensive domains are spe-

cialized for their specific purpose (e.g.,. [31, 32, 33, 34,
35]). Unlike these compute-intensive architectures, Row-
Core is a data-intensive architecture.

Flow-controlled cross-corelet row prefetching: While
prefetching is well-studied in terms of accuracy and time-
liness, we focus on cross-core prefetching where one core
prefetches for others, as do our corelets, using helper threads [17],
in GPUs [36], and in multicores [18, 19]. All but the last
paper focus on accuracy or timeliness via helper threads or
sharing history [18] whereas our concern is cross-core co-
ordination to avoid premature eviction of prefetched data.
The last paper regulates each core’s prefetching into a shared
LLC to ensure that cores do not overprefetch and hog the
cache capacity. In contrast, RowCore’s flow control ensures
cross-core use of the prefetched data and not equitable shar-
ing of the cache capacity.

Coarse-grain compute-memory rate-matching: Row-
Core achieves dynamic compute-memory rate-matching in
hardware. While rate-matching is well-known, our novelty
is the coarse granularities of entire cores (space) and full
applications (time). Previous work has proposed compute-
compute rate-matching in hardware in globally-synchronous,
locally-asynchronous (GALS) designs at the fine granulari-
ties of pipeline sub-component clock domains and program
phases [20, 21]. These papers attempt to rate-match pipeline
sub-components running typical sequential programs with
high variability in instruction-level parallelism. Other work
employs the compiler and profiling for static, compute-compute
rate-matching in streaming applications [22]. Finally, work
on compute-pin-I/O rate-matching for multimedia workloads
(e.g., h.264) trades-off accuracy for energy by using application-
level hints [23] or heterogeneous cores with varying power

3



/performance/reliability characteristics [37]. In contrast, Row-
Core achieves energy savings without diluting the accuracy.

3. SOFTWARE
BDMLs are written commonly as MapReductions where

the Map tasks are completely independent of each other and
the Reduce tasks are often commutative and associative, at
least partially, so that they can be run concurrently [38].

3.1 MapReduce programming model
BDML MapReductions process a stream of records. Each

Map task sequentially processes a series of records and par-
tially reduces each record’s Map output into a local interme-
diate state. This partial Reduce is local to each Map task and
reduces only the records processed by a Map task (i.e., the
reduction is not across multiple Map task outputs). In some
cases due to local memory limitation, the intermediate state
is partially-reduced across a subset of Map tasks which are
still local to a corelet. Traditional MapReduce’s Map tasks
perform only Mapping optionally followed by some com-
bining which is a form of within-Map-task partial Reduce.
The final Reduce (with Shuffle) computes the final result by
reducing the partially-reduced outputs across all Map tasks.

While the above description holds for any MapReduction
in general, our contribution is in identifying the characteris-
tics of irregular-and-compute-light, compact, and row-dense
to be suited for PNM architectures. The Map and partial
Reduce functions require only a few operations per word but
involve data-dependent branches and memory accesses mak-
ing BDMLs’ compute irregular-and-light. Only the input
data, and not any other computed data, is large in BDMLs.
The input data access is naturally, or as we show below can
be made to be, row-dense and compact. Recall that gen-
eral spatial locality implies spatially-nearby accesses but not
the lack of gaps which is key for bandwidth efficiency. As
discussed in Section 1, BDMLs naturally accomplish the se-
vere reduction of the huge input data, and therefore, main-
tain only small amounts of intermediate program state. This
small state is in contrast to datacenter-scale MapReductions’
intermediate state which can be so large as to spill to the disk
from memory (i.e., the intermediate Map output is written to
the disk before being shuffled to the reduce tasks). BDMLs’
intermediate state includes any constant data and each Map’s
partially-reduced output accumulated at any point in execu-
tion. BDMLs’ being compute-light further helps in keeping
the intermediate state small. The final Reduce combines the
small per-Map task partially-reduced output to produce the
final output.

Table 1 shows the memory organization, the local state
and the map/reduce operations needed for Naive Bayes, a
prominent BDML kernel (despite being named “naive”). The
example in Table 1 assumes a large collection of n-dimensional
records with an additional year field. Each record is logi-
cally in one of two classes depending whether the year ex-
ceeds the threshold. The key computation is the counting
of conditional probabilities depending on the class (based
on year) of each record. The computation makes row-dense
and compact accesses to each record’s coordinates in each
each dimension and year of the record (nested loops in PNM
code). The computation per dimension is light-weight (sin-

Figure 1: Interleaved layout

gle increment of conditional probabilities per dimension and
a single increment of record label frequency per record). The
computation results in irregularity because of (1) the branch
to identify the subset of records of interest and (2) the indi-
rect data-dependent access of the conditional probability ma-
trix. (Alternately, the indirect access code could be rewritten
with if-then-else constructs to increment the counters for the
appropriate class; but that would lead to more control-flow
irregularity.) Accumulating the counts into the small local
state effectively acts as a partial reduction. Finally, the Shuf-
fle and reduction across all corelets and PNM processors oc-
curs at the host processor (similar to [8, 11]).

3.2 Layout issues
One key observation for BDML is that the parallelism is

primarily inter-record. Unfortunately, a “row-major”-like or
an “array of structs” layout in memory, as shown in Fig-
ure 1(a), cannot efficiently capture inter-record parallelism.
Because consecutive records would fall in possibly differ-
ent rows of memory as shown in Figure 1(a), accessing the
records in parallel would destroy row locality. This layout
issue is common to all the workloads and architectures.

One way to achieve better row locality would be a “col-
umn major”-like interleaved “array of structs of arrays” lay-
out, as shown in Figure 1(b), where each record is striped
over several rows and the same field of consecutive records
fall in the same row. This interleaved layout does not have
the alignment problem because each row holds as many words
(from distinct records) as would fit, and as such is preferred.
However, because there are likely more words in a row than
there are cores, each core would have to process more than
one record. Fortunately, the live state of the records pro-
cessed by a core can be partially reduced to prevent increase
in each core’s live state. Nevertheless, because this layout
implies that a core (a lane, or a corelet) processes an en-
tire record, the full live state needs to fit in the core’s re-
sources. Fortunately, this state is small enough for most
common BDMLs to fit in 4-8 KB of local memory. As such,
our evaluation uses this interleaved layout for all the three
architectures we compare – GPGPUs, multicores, and Row-
Core.

3.3 Workloads
Table 2 summarizes some of the BDMLs we consider.

We show that these BDMLs are irregular-and-compute-light,

4



Workload Input record Per-node live state Ops per byte
Random Sample Movie rating tuple Rating counts per bin +

total elements per bin
O(1)

Count Movie rating tuple Bin Count O(1)
Variance Movie rating tuple Bin Count + Bin sum-of-

squares
O(1)

Naive Bayes (NB) N-dimensional point +
Bin-id

Conditional probabilities
for each bin

O(1)

Kmeans (1-iteration) N-dimensional point N-dimensional centroids O(1) for new centroid
computation, O(k) for
nearest centroid

Classify N-dimensional point N-dimensional centroids O(k) for nearest centroid
Principal Components
Analysis (PCA)

N-dimensional point Mean and covariance O(1) for mean, O(N) for
covariance

Gaussian Determinant
Analysis (GDA)

N-dimensional point +
Bin-id

Bin-specific
means/covariance

O(1) for mean, O(N) for
covariance

Table 2: Summary of workload behavior
compact, and row-dense. while all the workloads are light
(i.e., no super-linear compute complexity), two of them have
relatively more compute than the others. Recall our stipula-
tion that the workloads are naturally or, with some modifica-
tions, can be made to be compact and row-dense. Some of
these BDMLs are naturally compact and row-dense. For ex-
ample, the computation for kmeans involves computing the
distance from each datapoint in a multi-dimensional space
to a set of centroids. Because each datapoint is saved as a
set of coordinates, the computation is inherently compact.
Because every coordinate is used in the computation of the
distance, the computation is dense. Note that the centroids
are part of the live state that persists across datapoints. As
such, they do not perturb the density or the compactness of
the computation. However, the distance computation from
each of the k centroids may require proportional effort (i.e.,
O(k)).

Other BDMLs, with appropriate data layout, can be made
compact. For example, BDMLs like NB and GDA (Table 2)
typically process a training set that includes: (1) co-ordinates
of each datapoint in a multidimensional space, and (2) the
bin/class to which the datapoint belongs. There are two ways
to organize such training-set data. One way is to maintain
two separate arrays for data-points and for the classifica-
tion. However, such an organization leads to non-compact
accesses because the computation accesses the datapoint with
its corresponding classification. Instead, an array of structs
organization, in which the coordinates of each datapoint and
its classification are contiguous, enables acceleration. Sub-
sequently, the applications’ compact computation includes
partial mean/covariance (for GDA) and partial conditional
probabilities (for SB) depending on the bin to which each
data-point belongs. PCA, which computes the mean and the
covariance matrix as key steps of the kernel, is inherently
row-dense and compact.

The above workloads cover many important BDML sub-
domains. Further, because RowCore is targeted toward inter-
record parallelism — a specific form of data parallelism at
the granularity of medium-granularity data records (e.g., 100-
dimensional record) which is common in BDMLs, we antici-
pate that either many of the as-yet unanalyzed BDML work-
loads already fit RowCore or can be transformed to fit. In

future work, we will expand the set of our BDMLs.
3.4 Implications of workload characteristics

Absence of the characteristics identified by us have strong
implications. (1) Regular computation would mean that vec-
tor or GPGPUs may suffice. (2) Compute-heavy would im-
ply compute-boundedness making PNM’s bandwidth advan-
tage less relevant. (3) Not compact (naturally nor through
transformation) would mean that some data other than the
input is large (the old PIM problem, as discussed in Sec-
tion 1). Because the processor can be near only one large
data (the input), the other data would have to use, and be
bottlenecked by, traditional, non-die-stacked channels and
networks, again, making PNM’s bandwidth advantage less
relevant. Consider an example where a computation uses
another piece of large data, with the input present in the ar-
rays stacked above the processor and the other data stacked
above (an)other processor (or worse, the other data is off-
package on another stack). Then the second data has to
be moved through an on-PNM-die network to the first pro-
cessor. Assuming all the processors are active in parallel,
there is data movement to all the processors (and numerous
corelets) in parallel. If the second data is needed at a rate
similar to the high die-stacked rate of the first, then the net-
work needs to support such high rates for each of the proces-
sors (i.e., a multiplicative effect). While such a network is
likely to be expensive in energy and area, a lower-bandwidth
network would become a bottleneck, forcing PNM’s band-
width to be underutilized for the first data. While the prob-
lem does not occur if the second data is needed at low rates,
such a case degenerates to a computation that predominantly
uses only one large data (i.e., is compact). Such data move-
ment is discussed in [9] but not the implication of compact-
ness. A non-compact example is a join operation on unstruc-
tured, unindexed data (as is common in BDMLs as opposed
to databases), which requires pairwise comparisons of all
the records in two large tables. Such joins cannot be made
compact because while one of the tables can be tiled and
streamed in, multiple passes are needed over the other table.
As such, both tables are accessed at high rates. (Databases
may employ hash-joins on previously-indexed data, but the
hashing incurs its own problem of lack of row locality espe-
cially in PNM [16].) While poor row locality would mean

5



Figure 2: RowCore Architecture

poor performance [16], our point is that even with good row
locality, joins are not compact and therefore would underuti-
lize PNM’s bandwidth and perform well below PNM’s full
potential. (4) Not row-dense (naturally nor through trans-
formation) would mean memory bandwidth inefficiency and
degrading of PNM’s advantage.

Except for irregularity, these characteristics are necessary
for efficient PNM, irrespective of the architecture. As such,
all but the first implication expose the fundamental limits of
PNM, irrespective of the architecture. While PNM’s advan-
tage is diminished for workloads that violate these character-
istics, this limitation is not specific to RowCore but applies
to any PNM architecture. On the positive side, we have iden-
tified BDMLs, which are used prevalently in the real world
today. to fit within PNM’s constraints. PNM not working for
some other workloads does not diminish the fact that PNM
works for the important BDMLs. This limitation is similar
to how GPUs perform poorly for all but the most regular
workloads but are still prevalent. Further, the idea of an ar-
chitecture is to target a specific but important workload, and
not a wide spectrum of workloads, for energy reasons. Our
point is that RowCore can exploit the full die-stacking band-
width in an energy-efficient manner for BDMLs.

3.5 Workload/Architecture match
We briefly consider mapping Naive Bayes to a GPGPU,

multicore, and RowCore. The mapping for the other appli-
cations is similar. The indirect access would cause uncoa-
lesced accesses to the L1 D-cache in a GPGPU. Instead, the
per-thread live state can be allocated in the GPGPU Shared
Memory and striped across its banks (i.e., ith thread’s state
in the ith bank). Because Shared Memory has as many banks
as lanes with word-level interleaving, the indirect access in
each thread can access any word within its bank in paral-
lel with the other threads. The input data can be prefetched
in cache blocks from the die-stacked DRAM to the L1 D-
cache. In a multicore, both the live state and the input data
are placed in the L1 D-cache to which both cache-block
prefetches and demand accesses of the input data occur. In
RowCore, the live state is in the per-corelet local memory,
and the input data row prefetches and demand accesses go
to the prefetch buffer.

Despite these good mappings, GPGPUs and multicores
incur problems which RowCore solves. As discussed in Sec-
tion 2, GPGPUs SIMT incurs performance loss due to data-
dependent branches (the indirect memory accesses to the live
state can be handled by GPGPU’s Shared Memory). While
multicores’ MIMD can avoid these SIMT penalties, the vari-

ability in per-record work across cores causes the cores to
stray far from each other, interleave accesses to multiple
rows, and destroy row locality (as explained in Section 2).
Synchronizing the cores at each record would push multi-
core execution closer to SIMT and its overheads. As dis-
cussed in Section 2, even 100%-accurate cache-block prefetches
do not address these problems of GPGPUs and multicores
(row locality is a bandwidth problem whereas prefetching
improves latency but not bandwidth). To avoid the SIMT
problems, RowCore also employs MIMD. Unlike multicores,
however, the row-oriented RowCore prefetches entire rows
and employs flow-control to limit the corelets’ straying from
each other and avoid premature eviction of prefetched data.
Thus, RowCore utilizes the full die-stacking bandwidth while
enjoying MIMD’s benefits.

Nevertheless, two key reasons for GPGPUs to use SIMT
instead of MIMD are (1) wide access to registers, caches,
and memory greatly amortizes the bandwidth and energy
cost of each access, and (2) the amortization of instruction
processing costs over multiple threads. In general, MIMD
execution loses these benefits. Nevertheless, the relative preva-
lence of branch and memory irregularity in BDMLs impedes
SIMT execution and renders wide accesses ineffective. As
such, we carefully model the energy differences between
SIMT and MIMD in our results.

4. ROWCORE
Recall from Section 1 that there is a RowCore processor

for each memory array (or a few arrays), as shown in Fig-
ure 2. Each processor comprises a wide set of simple cores,
called corelets, which employ some well-known ideas (listed
in Section 4.1). The key novel ideas are: row-oriented mi-
croarchitecture, flow-controlled, cross-corelet, row prefetch-
ing, and coarse-grained compute-memory rate-matching.

4.1 Corelets (Well-known ideas)
To handle our irregular data-dependent branches and mem-

ory accesses to the intermediate program state (input data is
row-dense and sequential), RowCore employs MIMD exe-
cution among the corelets each of which has its own instruc-
tion cache. Because the code size of BDMLs is small, we
broadcast the code once at the beginning of execution (our
BDMLs fit under 1 KB). Because the workloads are com-
pact, each corelet has a small register file and local memory.

Because the workloads are compute-light, the corelets’
pipeline is simple and energy-efficient. Accordingly, we
avoid complex register bypassing and branch prediction. In-
stead, we employ small-scale hardware multithreading to

6



tolerate pipeline hazards like GPGPUs (e.g., 4 contexts). Be-
cause memory latency is hidden by prefetching, the live state
is held in fast local memory, and the pipeline is shallow, the
pipeline hazards are short. Consequently, small-scale multi-
threading suffices. The hardware uses a simple round-robin
policy to schedule the contexts. Each context needs its own
registers which are only a few; hence, the register file re-
mains small. The local memory holds the partially-reduced
live state which is shared among the contexts and therefore
need not be replicated. GPGPUs and multicores can also
employ such small-scale hardware multithreading to toler-
ate their pipeline hazards. In our evaluation, we assume so.

4.2 Row-orientedness
Millepede processors fetch and operate on entire rows be-

fore moving on to the next row (i.e., row-centric access and
compute-schedule). RowCore employs simple row prefetch-
ing to exploit die-stacking’s full bandwidth for the memory-
row-dense BDMLs. Each corelet works on a slab of the in-
put data brought into the prefetch buffer (e.g., 64 B). Thus,
this deliberate access-schedule coupling preserves full row
bandwidth. Recall from Section 3.2 that in the interleaved
layout each slab holds the same field(s) of one or more records
whose Map tasks are completely independent of each other.
Each corelet runs the Map for each of its records which
successively update the partially-reduced intermediate state
held in the corelet’s local memory. The main CPU runs Fi-
nal Reduce to combine this state from all the processors, as
discussed later in Section 4.4.

4.3 Flow-controlled cross-corelet prefetch
The next row prefetch occurs before the current row pro-

cessing starts. This simple prefetch could be in hardware but
because the processing of a record is easily identifiable in
MapReduce, this simple prefetch could also be in software.
Each slab is large enough that its processing is enough to
hide the next row access latency (else we can prefetch one
more row ahead). However, such prefetching faces a prob-
lem. Because all the corelets execute the same Map code,
there may be redundant prefetches to the same row from
all the corelets. while redundant prefetches from one core
can be avoided easily (by checking the MSHRs), preventing
redundant prefetches from multiple corelets to the memory
controller is not easy without extra coordination among the
corelets. Avoiding this redundancy in the code is hard be-
cause any of the corelets can be ahead of the others due to
MIMD execution. Instead, we employ a hardware scheme
which sets a prefetch-trigger bit in the prefetch buffer en-
try upon a prefetch fill; each entry holds an entire row. The
scheme clears the bit when the first demand fetch (Map ac-
cess) from any of the corelets sees a set bit and issues the
next prefetch. Later demand fetches see a clear bit and do not
issue any prefetch. The bit indicates only whether the next
prefetch has been issued, and not whether the buffer has been
consumed fully and can be re-allocated; that detail comes
later. While previous hardware prefetchers [39] use bits to
indicate whether the prefetch is useful (i.e., prefetched data
has been accessed) and further prefetches should be done,
our scheme uses the prefetch-trigger bit to prevent redun-
dant prefetches. Our hardware scheme can take hints from
software about how far ahead to prefetch (usually only one

Figure 3: Flow control operation

row ahead).
A central issue is that the corelet’s MIMD execution im-

poses a need for flow control in the prefetch buffer which
is organized as a circular queue. Upon the first access to a
buffer entry (matched by an address tag), the next entry is
allocated for the accompanying prefetch. A leading corelet
may surge past the other corelets and issue prefetches for all
the buffer entries wrapping around to the head entry which
has not been consumed fully yet. To prevent such premature
re-allocation, RowCore provides a per-entry demand-fetch
counter which is incremented upon demand fetch. An entry
is re-allocated only after the counter saturates at the corelet
count, indicating that the entry has been consumed fully. The
counter is reset upon re-allocation and subsequent prefetch
fill. Normally, the next entry has been consumed fully and
can be re-allocated for the next prefetch (i.e., the circular
queue is not full). When the queue is full, the counter of the
next entry (the head entry) is unsaturated. Then, the leading
corelet does not trigger a prefetch upon a demand fetch to
the tail entry even if the tail entry’s prefetch-trigger bit is set
(see Figure 3). A later access to the head entry causes the en-
try’s demand-acccess counter to saturate. The next demand
fetch to the tail entry issues the next prefetch and clears the
prefetch-trigger bit (see Figure 3). Because BDMLs access
rows sequentially, the head entry’s counter is guaranteed to
saturate before the last demand fetch to the tail entry, ensur-
ing that the next prefetch ia not missed. Because BDMLs are
compute-light, the amount of variability in the corelets’ exe-
cution times can be absorbed by a modest number of entries
(e.g., 16 2-KB entries).

An important implementation consideration is that DRAM
interface is subject to JEDEC standards. The row prefetches
can comply with JEDEC in that the entire row need not be
transferred in one super-wide access (e.g., 2 KB) which may
be disallowed by the standards. Instead, the transfer can oc-
cur in JEDEC-allowed units (e.g., 128 B). As long as the raw
DRAM internal bandwidth, the interface bandwidth and the
RowCore processor’s compute-rate match, there is no band-
width loss. The interface bandwidth being lower than the
DRAM bandwidth implies a JEDEC limitation (highly un-
likely, as the whole point of die stacking is to deliver the
internal bandwidth at the interface). The compute rate being
lower than the DRAM bandwidth implies that the applica-
tion is compute-bound and the slack in the memory band-
width can be consumed based on area and power consid-

7



erations (more or faster corelets). Conversely, the DRAM
bandwidth being lower means a memory-bound application.
A key point is that because the JEDEC-allowed transfer units
for a memory row arrive at the prefetch buffer in a staggered
manner, a leading corelet may find its slab to be present even
though the rest of the units have not arrived yet. The corelet
is free to proceed without waiting for the other corelets’ units
to arrive as would be the case with SIMT (which essentially
imposes a barrier at every access and exposes the transfer
latency). Thus, the prefetch needs to hide only the row ac-
cess latency under the compute, and not the transfer latency.
Without this concession, either a longer prefetch lookahead
and more prefetch buffers would be needed, or the compute,
being light, is likely to expose some or all of the transfer
latency.

Because of the corelets’ MIMD execution, the corelets
access the prefetch buffers at different times. To provide
full bandwidth to all the corelets, we break up each prefetch
buffer entry into as many slabs as corelets so that a slab is
accessed by only one corelet. Thus, each corelet’s prefetch
buffer access goes only to a slab-wide slice of the prefetch
buffer entries, which is quite small (e.g., 64-byte slabs and
16 entries means 1-KB prefetch buffer slice). By using fixed-
size slabs, the interconnection between the prefetch buffer
and the corelets remains simple (see Figure 2). In our in-
terleaved layout, a slab contains either words each from a
contiguous set of records (word-interleaving), or contigu-
ous words of a record (e.g., for a record’s field larger than a
word) where the next slab contains the next record and so on
(slab-interleaving). Thus, each corelet can flexibly process
multiple records or one record. while GPGPUs are forced
to use word-size columns to achieve coalesceable accesses
(wider columns would mean the lanes’ accesses span multi-
ple cache blocks), RowCore can use wider columns for lay-
out flexibility.

The full-row prefetch and the flow control are fundamen-
tal for RowCore but not the prefetch buffers. The prefetches
can bring the data into the local memory instead of the prefetch
buffers. The slabs from a prefetched row would go to their
respective corelets. Then, the above-mentioned per-buffer
bits and counters would exist, but without the accompany-
ing buffers, and function as before. However, such an im-
plementation would need address tags in the local memory
to detect presence of prefetch data whereas the above imple-
mentation needs tags only in the prefetch buffers.

4.4 Final Reduce
Because the final Reduce is much smaller than the Map

and partial Reduce but also requires data from all the pro-
cessors, providing support for communication among all the
processors may not be worth it (e.g., Map and partial Re-
duce of billions of records versus final Reduce of 32 Row-
Core processors’ partial reductions in their local memories).
As such, this step can be done by the main CPU, as observed
in [8, 11].

4.5 Memory Interface
RowCore assumes a discrete GPU-like memory interface

where the main CPU copies the input data into the die-stacked
memory before processing and copies out the output data
in the corelets’ local memories after processing. The die-

stacked memory and local memories are not part of the main
CPU’s physical memory address space. The corelets do not
provide support for virtual memory or coherence, which we
leave for future work.

4.6 Coarse-grain compute-memory rate-matching
BDMLs, being compute-light, are likely to be memory-

bandwidth-bound. Being memory-bound implies that cores
idle when waiting for memory; the goal of our rate-matching
is to eliminate such idling energy. To that end, we leverage
the prefetch buffer flow control to rate-match the RowCore
processor and die-stacked DRAM via dynamic frequency
scaling (DFS). In our evaluation, we conservatively assume
that further voltage scaling (i.e., DVFS) is not possible. If
possible, our energy savings can be higher. While the corelets
may diverge from each other at fine time granularities, they
perform statistically similar amount of work over the full
BDML execution (e.g., 10 billion records). Further, because
the same computation is repeated for billions of records,
BDML behavior does not change across code sections. Ac-
cordingly, our rate-matching is at the coarse granularity (in
space) of the processor and not the individual corelets, and
(in time) of the full application execution and not smaller
code sections.

Because of the coarse application-level granularity, we
employ a simple hill-climbing control algorithm that decreases
the processor clock speed in small steps (e.g., 5%) via fre-
quency scaling whenever a leading corelet (defined in Sec-
tion 4.3) finds the prefetch buffers to be empty, signifying a
DRAM-bandwidth-bound application. The processor clock
controls all the processor’s corelets. Similarly, the algo-
rithm increases the clock speed whenever a leading corelet
finds the buffers full, signifying a compute-bound applica-
tion. The small steps suffice due to the application-level
granularity where the algorithm needs to converge just once
at the start of the application whose compute-work behav-
ior does not change during the entire application execution.
For instance, a small 5% step, a large 4x required change in
the clock speed, and 200 cycles of computation per DRAM
row (typical for our applications which are compute-light)
implies convergence in 16,000 cycles compared to a few bil-
lions of cycles of application execution time. Though this
simple algorithm would fluctuate after convergence within a
band of the size of the step, the step is small enough that any
resulting inefficiency is acceptable.

5. METHODOLOGY
We modify GPGPUsim to implement RowCore. For com-

parison purposes, we also simulate a GPGPU and a multi-
core using GPGPUsim. To capture their MIMD execution,
we simulate a multicore and a RowCore processor each as
an SM with only one lane corresponding to a simple core
or corelet. Our simulation assumes that each architecture
(i.e., multicore, GPGPU, and RowCore) is on the logic die
with stacked DRAM and is separate from the host CPU.
In addition, we ensure that the number and pipeline of the
cores and the on-processor-die memory size are identical
in all the three systems. All three systems use the inter-
leaved layout (Section 3.2). While RowCore uses sequen-
tial row prefetch, the GPGPU and multicore use sequential
cache-block prefetch. Thus, our results isolate the benefits

8



#RowCore processors
# GPGPU SMs
# multicores

1

Compute clock 700 MHz
# Corelets/lanes/cores
per processor/SM/multicore 32
# Multithreading contexts
per processor/SM/multicore 4
# Registers per corelet/lane/core 32
L1 I-cache per
corelet/SM(not lane)/core 4 KB, 128B line,

Local memory per corelet 4 KB
Prefetch buffer per corelet 16 x 64B
L1 D-cache per SM 32 KB, 128B line
Shared memory per SM 128 KB, 4B interleaving
L1 D-cache per core 5 KB, 128B line
Die-stacked DRAM capacity 4 GB
# Die stack layers 4
# Memory channels 32
Channel clock 1.2 GHz
Channel width 128 bits
DRAM tCAS-tRP-tRCD-tRAS 9-9-9-27
Memory Controller FR-FCFS (16 deep)
DRAM Access Energy 6pJ/bit [29]
Core Technology node 22nm

Table 3: Hardware Parameters

Workload R
ec

or
d

Si
ze

In
pu

tS
iz

e

in
st

rs
pe

r
in

pu
tw

or
d

B
ra

nc
h

fr
eq

.
(b

ra
nc

he
s/

in
st

.)

m
ul

tic
or

e
ro

w
-

m
is

se
s

pe
rr

ow

sample 8B 128MB 10 0.2 4.7
count 8B 128MB 7 0.14 8.0
variance 8B 128MB 12 0.08 11.2
nbayes 256B 128MB 14 0.11 11.0
kmeans 1024B 128MB 44 0.05 12.3
classify 1024B 128MB 40 0.05 12.6
pca 128B 128MB 150 0.02 15.9
gda 128B 128MB 180 0.015 15.9

Table 4: Benchmark parameters and characteristics

of RowCore’s novel features while holding the effects of
technology (CMOS and die-stacking), well-known archi-
tecture schemes (simple cores, hardware multithreading,
and sequential prefetch) and software (interleaved lay-
out) to be the same for all the architectures.

The hardware parameters are shown in Table 3. We sim-
ulate a 32-corelet RowCore processor, a 32-core multicore,
and a 32-lane GPGPU SM. All the three systems use simple,
in-order-issue pipelines with 4-way hardware multithread-
ing to tolerate pipeline hazards. Each corelet has 4-KB local
memory and 1-KB prefetch buffer (total 160 KB per pro-
cessor); each multicore core has 5-KB L1-D (160 KB per
multicore); and each GPGPU SM has 32-KB L1-D and 128-
KB Shared Memory (total 160 KB per SM). Each RowCore
corelet and each core in the multicore has an L1 I-cache. The
GPGPU SM has an L1 I-cache shared among the lanes. We
account for the extra I-cache in RowCore and multicore in
the energy estimates. The die-stacked DRAM’s parameters,
shown in Table 3, are typical [29]. The bandwidth is simi-
lar to HBM’s specification of 128-bits per bank, with 1Gbps
bandwidth per pin [2].

We implement the workloads in Table 2 in CUDA. Table 4

shows the record size, total input size, the branch frequency,
and the number of row misses to each input data DRAM row
in multicores (explained in Section 2). To achieve realistic
simulation times, we limit the input data to 128MB and run
the benchmarks to completion on one processor. The repet-
itive nature of record processing results in the workload be-
havior for a large-enough set of records being identical to
that of any other. As such, the steady-state behavior (which
was achieved well before 128 MB), will not change with
larger datasets or more processors.

We use GPUWattch to estimate energy (parameters in Ta-
ble 3). Recall from Section 3.5 that BDMLs access the input
data (prefetches) and intermediate live state. In GPGPUs,
the live state is in the Shared Memory and the input data is
cache-block prefetched into the L1 D-cache. The live state is
not in the L1 D-cache because BDMLs’ indirect memory ac-
cesses would cause uncoalesced accesses to the L1 D-cache
whereas the Shared Memory supports 32 uncoalesced word
accesses, one from each lane, by using 32-way banking and
a 32x32 switch. While the Shared Memory is power-hungry,
the GPGPU enjoys the energy benefits of wide accesses to
the register file and L1 D-cache, and shared access to the L1
I-cache whenever SIMT execution succeeds (Section 3.5).
However, such success is not often due to BDMLs’ control-
flow and memory irregularity (Section 3.3). We ensure that
these benefits do not exist in RowCore and the multicore
due to their MIMD execution. In multicores, the live data,
input data cache-block prefetches and demand accesses all
go to the L1 D-cache. In RowCore, the live state is in the
per-corelet local memory, the input data is row-prefetched
into the prefetch buffers (Section 4.3). Both the local mem-
ory and prefetch buffer are small and therefore dissipate low
power. Each architecture’s energy includes the components
for the core (which includes the pipeline energy, L1 I-cache,
local memory (or L1 D-cache, as appropriate) and idle dy-
namic energy due to imperfect clock gating), DRAM energy
dissipated in the stacked memory dies, and leakage energy
of the logic die.

6. RESULTS
We start by comparing RowCore against GPGPUs and

multicores in terms of performance and energy. We iso-
late the impact of each of our contributions: memory row-
orientedness, cross-core flow-controlled prefetching, and coarse-
grain compute-memory rate-matching (workload character-
istics is covered in Section 3.3). We then study RowCore’s
sensitivity to the system size and the number of prefetch
buffers.

6.1 Performance
We compare a 32-corelet Millepede processor against a

32-lane GPGPU SM and a 32-core multicore, both with in-
put data cache-block prefetch into their L1 D-caches. Recall
from Section 5 that all the three systems use the same (a)
number and type of cores, (b) amount of on-processor-die
memory, and (c) interleaved layout. Further, all systems as-
sume that each system places compute resources (i.e., cores,
corelets, or GPGPU SMs) on a logic die with memory dies
stacked above. Figure 4 shows these architectures’ perfor-
mance, on the Y axis, normalized to that of GPGPU and the
benchmarks on the X axis in increasing order of the num-

9



Figure 4: Performance

ber of instructions per input data word to show the trends
clearly. The graph also shows RowCore without flow con-
trol (RowCore-no-flow-control) to isolate the impact of flow
control. Table 4 shows the number of instructions per in-
put data word, the branch frequency, and the number of row
misses per row in multicores.

RowCore performs, on average, 135% and 35% better
than GPGPU (with prefetch) and multicore (with prefetch),
respectively. GPGPU (with prefetch) loses performance due
to branches impeding SIMT execution (Table 4) but not due
to irregular memory accesses which are handled by Shared
Memory. Multicore (with prefetch) loses performance due
to the cores straying from each other and destroying row lo-
cality (Table 4). In contrast, RowCore’s row-oriented MIMD
architecture avoids both problems. The difference between
RowCore and GPGPU highlights the need for MIMD be-
cause both architectures enjoy row locality whereas the dif-
ference between RowCore and multicore highlights the need
for row-orientedness because both architectures employ MIMD
execution; the only differences between RowCore and mul-
ticores are row-orientedness and flow control. These num-
bers isolate the impact of RowCore’s novel architectural fea-
tures over GPGPU and multicore while holding technology
(CMOS and die-stacking) and software (layout) effects con-
stant.

The benchmarks are in the order of increasing number of
instructions per input data word from left to right in Fig-
ure 4 (top to bottom in Table 4). Consequently, memory-
bandwidth-boundedness and branch frequency decrease from
left to right (i.e., computation per record increases while
memory accesses and branches per record stays the same).
Accordingly, RowCore’s MIMD and row-orientedness ad-
vantages, respectively, over GPGPUs and multicore decrease
from left to right causing RowCore’s speedups to decrease.

Comparing RowCore-no-flow-control and multicore iso-
lates the benefits of row-orientedness. The former includes
row-centric access and compute-schedule via full-row prefetch-
ing (Section 4.2) but not flow control so that filling up of the
prefetch buffers can cause premature eviction of prefetched
data due to corelet straying (Section 4.3). However, such
eviction is not common with 16 buffers allowing RowCore-
no-flow-control to improve over multicores. Adding flow

Figure 5: Energy

B
en

ch
m

ar
k

sa
m

pl
e

co
un

t

va
ri

an
ce

nb
ay

es

km
ea

ns

cl
as

si
fy

pc
a

gd
a

Clock
freq. 528 544 581 565 613 625 644 644
(MHz)

Table 5: Rate-matching Frequency for RowCore

control improves performance further by avoiding such evic-
tions (the RowCore bars). Thus, this graph isolates the bene-
fits of RowCore’s row-orientedness and flow-controlled prefetch
(our second and third contributions). RowCore’s rate-matching
is an energy optimization analyzed next.

6.2 Energy
We now compare the three architectures in terms of en-

ergy. Figure 5 shows the architectures’ energy on the Y
axis, normalized to that of GPGPU. We show two variants
of RowCore, one with rate-matching and the other without
rate-matching. Each bar shows the breakdown between core
energy (which includes cores, caches and idle dynamic en-
ergy), DRAM energy, and static leakage energy of the cores
as stacked bars.

GPGPUs incur higher core energy than multicores due to
(1) higher local memory energy than multicores due to the
power-hungry Shared Memory (Section 3.5), and (2) higher
idle energy due to branches (Section 3.5). However, GPG-
PUs achieve lower DRAM energy than multicores because,
unlike MIMD multicores, their memory accesses do not stray
across rows. The net result of these factors is that multi-
cores expend more energy than GPGPUs. Comparing multi-
cores to RowCore without rate-matching, we see that Row-
Core achieves similar core energy as multicore because both
architectures (1) use private, local memories avoiding the
crossbar energy of GPGPU’s Shared Memory, and (2) avoid
GPGPU’s branch inefficiency via MIMD execution. How-
ever, RowCore achieves much better (lower) memory en-
ergy due to its row-orientedness. Recall from Section 4.6
that RowCore’s rate-matching slows down the corelets when
applications are memory-bandwidth-bound. Figure 5 shows
RowCore with rate-match further reduces the core energy

10



Figure 6: Speedup versus system size

over RowCore without rate-matching by 15% via DFS. While
the nominal frequency is 700MHz (Table 3), Table 5 shows
the clock speeds under rate-matching which inversely corre-
late with the number of instructions per input word in Table 4
(i.e., fewer instructions implies more DRAM-bandwidth-bound
and therefore slower clock). These numbers isolate the im-
pact of RowCore’s rate-matching (our fourth contribution).
Static energy of the cores and caches are comparable across
the architectures with GPGPUs consuming slightly less en-
ergy than multicore and both RowCore variants due to their
extra I-cache (Section 5). Overall, RowCore with rate-matching
dissipates 20% and 34% less energy than GPGPU and mul-
ticore, respectively. Note that though multicore is closer to
RowCore in performance for PCA and GDA than the other
benchmarks (Figure 4), multicore incurs higher energy than
RowCore for these benchmarks (Figure 5) due to numerous
row misses (Table 4) which can be hidden in execution time
but not in energy.

6.3 Sensitivity to system size
We change the number of corelets, lanes, and cores per

RowCore processor, GPGPU SM, and multicore, from 32
(default) to 64, and correspondingly double the memory band-
width. Figure 6 shows the performance of the three archi-
tectures normalized to that of a 64-lane GPGPU. As the lane
count increases, GPGPU’s branch inefficiency increases com-
pared to RowCore which can gainfully utilize more corelets.
Consequently, RowCore’s speedup over GPGPU increases
with more corelets (32 corelets in Figure 4 versus 64 corelets
in Figure 6). Similarly, as the core count increases, the cores
of a multicore stray from each other more disrupting row lo-
cality more. Therefore, RowCore’s speedup over multicore
also increases with more cores (Figure 4 versus Figure 6).

6.4 Sensitivity to prefetch buffer count
Recall from Section 4.3 that the prefetch buffers decou-

ple the corelets from each other by absorbing any temporary
work imbalance among the corelets. We vary the prefetch
buffer count as 2, 4, 8, 16 (default), and 32 in Figure 7. As
expected, more buffers improve performance by absorbing
more imbalance though the incremental improvement de-
creases as the exposed imbalance decreases. Performance
levels off around 32 buffers which amount to a reasonable

Figure 7: Speedup versus prefetch buffer count

64 KB per RowCore processor for 2-KB rows.

7. CONCLUSION
This paper matched Big Data machine learning (BDML)

applications with die-stacking via processing-near-memory
(PNM). BDMLs are: (a) irregular-and-compute-light (i.e.,
perform only a few operations per input word which include
data-dependent branches and indirect memory accesses); (b)
compact (i.e., the computation has a small intermediate live
data and uses only a small amount of contiguous input data);
and (c) memory-row-dense (i.e., process the input data with-
out skipping over many bytes). While previous PNM work
explores general MapReduce workloads, these characteris-
tics (except for irregularity) are necessary for bandwidth-
and energy-efficient PNM, irrespective of the architecture.

Based on these characteristics, we proposed RowCore,
a row-oriented PNM architecture, which exploits BDMLs’
row-density by (pre)fetching and operating on entire mem-
ory rows. Instead of this row-centric access and compute-
schedule, traditional architectures opportunistically improve
row locality while fetching and operating on cache blocks.
RowCore handles BDMLs’ irregularity and memory latency
by employing MIMD execution and sequential prefetch of
input data. However, one RowCore corelet prefetches a row
for all the corelets which may stray far from each other due
to their MIMD execution. Consequently, a leading corelet
may prematurely evict the prefetched data before a lagging
corelet has consumed the data. RowCore employs novel
cross-corelet flow-control to prevent such eviction. Row-
Core further exploits this flow control for frequency scaling
based on novel coarse-grain compute-memory rate-matching.
Using simulations, we show that RowCore improves per-
formance and energy, by 135% and 20% over a GPGPU
with prefetch, and by 35% and 34% over a multicore with
prefetch, when all three architectures use the same resources
(i.e., number of cores and on-processor-die memory) and
identical die-stacking (i.e., GPGPU/multicore/RowCore and
DRAM.

8. REFERENCES
[1] J. T. Pawlowski, “Hybrid memory cube (hmc),” in 2011 IEEE Hot

Chips 23 Symposium (HCS), pp. 1–24, Aug 2011.

11



[2] J. Kim and K. Tran, “Hbm: Memory solution for bandwidth-hungry
processors,” Presented at ’Hot Chips: A Symposium on High
Performance Chips’, 2014.

[3] H. S. Stone, “A logic-in-memory computer,” Computers, IEEE
Transactions on, vol. C-19, pp. 73–78, Jan 1970.

[4] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick, “A case for intelligent ram,”
IEEE Micro, vol. 17, pp. 34–44, Mar. 1997.

[5] J. B. Brockman, S. Thoziyoor, S. K. Kuntz, and P. M. Kogge, “A low
cost, multithreaded processing-in-memory system,” in Proceedings
of the 3rd Workshop on Memory Performance Issues: In Conjunction
with the 31st International Symposium on Computer Architecture,
WMPI ’04, (New York, NY, USA), pp. 16–22, ACM, 2004.

[6] R. Nair, S. F. Antao, C. Bertolli, P. Bose, J. R. Brunheroto, T. Chen,
C. Y. Cher, C. H. A. Costa, J. Doi, C. Evangelinos, B. M. Fleischer,
T. W. Fox, D. S. Gallo, L. Grinberg, J. A. Gunnels, A. C. Jacob,
P. Jacob, H. M. Jacobson, T. Karkhanis, C. Kim, J. H. Moreno, J. K.
O’Brien, M. Ohmacht, Y. Park, D. A. Prener, B. S. Rosenburg, K. D.
Ryu, O. Sallenave, M. J. Serrano, P. D. M. Siegl, K. Sugavanam, and
Z. Sura, “Active memory cube: A processing-in-memory architecture
for exascale systems,” IBM Journal of Research and Development,
vol. 59, pp. 17:1–17:14, March 2015.

[7] M. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame, J. Draper, J. LaCoss,
J. Granacki, J. Brockman, A. Srivastava, W. Athas, V. Freeh, J. Shin,
and J. Park, “Mapping irregular applications to diva, a pim-based
data-intensive architecture,” in Proceedings of the 1999 ACM/IEEE
Conference on Supercomputing, SC ’99, (New York, NY, USA),
ACM, 1999.

[8] S. H. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian,
V. Srinivasan, A. Buyuktosunoglu, A. Davis, and F. Li, “NDC:
analyzing the impact of 3d-stacked memory+logic devices on
mapreduce workloads,” in 2014 IEEE International Symposium on
Performance Analysis of Systems and Software, ISPASS 2014,
Monterey, CA, USA, March 23-25, 2014, pp. 190–200, 2014.

[9] M. Gao, G. Ayers, and C. Kozyrakis, “Practical near-data processing
for in-memory analytics frameworks,” in 2015 International
Conference on Parallel Architecture and Compilation (PACT),
pp. 113–124, IEEE, 2015.

[10] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable
processing-in-memory accelerator for parallel graph processing,” in
Proceedings of the 42Nd Annual International Symposium on
Computer Architecture, ISCA ’15, (New York, NY, USA),
pp. 105–117, ACM, 2015.

[11] A. Farmahini-Farahani, J. H. Ahn, K. Morrow, and N. S. Kim, “Nda:
Near-dram acceleration architecture leveraging commodity dram
devices and standard memory modules,” in High Performance
Computer Architecture (HPCA), 2015 IEEE 21st International
Symposium on, pp. 283–295, Feb 2015.

[12] Y. Kang, W. Huang, S.-M. Yoo, D. Keen, Z. Ge, V. Lam, P. Pattnaik,
and J. Torrellas, “Flexram: toward an advanced intelligent memory
system,” in Computer Design, 1999. (ICCD ’99) International
Conference on, pp. 192–201, 1999.

[13] M. Gokhale, B. Holmes, and K. Iobst, “Processing in memory: The
terasys massively parallel pim array,” Computer, vol. 28, pp. 23–31,
Apr. 1995.

[14] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing
on large clusters,” in OSDI 2004, pp. 137–150, 2004.

[15] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proceedings of the
2Nd USENIX Conference on Hot Topics in Cloud Computing,
HotCloud’10, (Berkeley, CA, USA), pp. 10–10, USENIX
Association, 2010.

[16] N. Mirzadeh, O. Kocberber, B. Falsafi, and B. Grot, “Sort vs. Hash
Join Revisited for Near-Memory Execution,” in 5th Workshop on
Architectures and Systems for Big Data (ASBD 2015), 2015.

[17] M. Kamruzzaman, S. Swanson, and D. M. Tullsen, “Inter-core
prefetching for multicore processors using migrating helper threads,”
in Proceedings of the Sixteenth International Conference on
Architectural Support for Programming Languages and Operating
Systems, ASPLOS XVI, (New York, NY, USA), pp. 393–404, ACM,
2011.

[18] C. Kaynak, B. Grot, and B. Falsafi, “Shift: Shared history instruction
fetch for lean-core server processors,” in Proceedings of the 46th

Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO-46, (New York, NY, USA), pp. 272–283, ACM, 2013.

[19] E. Ebrahimi, O. Mutlu, C. J. Lee, and Y. N. Patt, “Coordinated
control of multiple prefetchers in multi-core systems,” in
Proceedings of the 42Nd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 42, (New York, NY,
USA), pp. 316–326, ACM, 2009.

[20] Q. Wu, P. Juang, M. Martonosi, and D. W. Clark, “Voltage and
frequency control with adaptive reaction time in
multiple-clock-domain processors,” in High-Performance Computer
Architecture, 2005. HPCA-11. 11th International Symposium on,
pp. 178–189, Feb 2005.

[21] A. Iyer and D. Marculescu, “Power efficiency of voltage scaling in
multiple clock multiple voltage cores,” in Computer Aided Design,
2002. ICCAD 2002. IEEE/ACM International Conference on,
pp. 379–386, Nov 2002.

[22] T. W. Bartenstein and Y. D. Liu, “Green streams for data-intensive
software,” in Proceedings of the 2013 International Conference on
Software Engineering, ICSE ’13, (Piscataway, NJ, USA),
pp. 532–541, IEEE Press, 2013.

[23] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal,
and M. Rinard, “Dynamic knobs for responsive power-aware
computing,” in Proceedings of the Sixteenth International
Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XVI, (New York, NY, USA),
pp. 199–212, ACM, 2011.

[24] B. Y. Cho, W. S. Jeong, D. Oh, and W. W. Ro, “XSD: Accelerating
MapReduce by Harnessing GPU inside SSD,” in 1st Workshop on
Near Data Processing (WoNDP 2013) In Conjunction with the 46th
International Symposium on Microarchitecture, 2013.

[25] R. G. Dreslinski, D. Fick, B. Giridhar, G. Kim, S. Seo, M. Fojtik,
S. Satpathy, Y. Lee, D. Kim, N. Liu, M. Wieckowski, G. Chen,
D. Sylvester, D. Blaauw, and T. Mudge, “Centip3de: A 64-core, 3d
stacked near-threshold system,” IEEE Micro, vol. 33, pp. 8–16,
March 2013.

[26] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Cache-conscious
wavefront scheduling,” in Proceedings of the 2012 45th Annual
IEEE/ACM International Symposium on Microarchitecture,
MICRO-45, (Washington, DC, USA), pp. 72–83, IEEE Computer
Society, 2012.

[27] R. Balasubramonian, J. Chang, T. Manning, J. H. Moreno,
R. Murphy, R. Nair, and S. Swanson, “Near-data processing: Insights
from a micro-46 workshop,” IEEE Micro, vol. 34, pp. 36–42, July
2014.

[28] Q. Guo, X. Guo, R. Patel, E. Ipek, and E. G. Friedman, “Ac-dimm:
Associative computing with stt-mram,” in Proceedings of the 40th
Annual International Symposium on Computer Architecture, ISCA
’13, (New York, NY, USA), pp. 189–200, ACM, 2013.

[29] B. Akin, F. Franchetti, and J. C. Hoe, “Data reorganization in
memory using 3d-stacked dram,” in Proceedings of the 42Nd Annual
International Symposium on Computer Architecture, ISCA ’15, (New
York, NY, USA), pp. 131–143, ACM, 2015.

[30] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “Pim-enabled instructions: A
low-overhead, locality-aware processing-in-memory architecture,” in
Computer Architecture (ISCA), 2015 ACM/IEEE 42nd Annual
International Symposium on, pp. 336–348, June 2015.

[31] R. St. Amant, A. Yazdanbakhsh, J. Park, B. Thwaites,
H. Esmaeilzadeh, A. Hassibi, L. Ceze, and D. Burger,
“General-purpose code acceleration with limited-precision analog
computation,” in Proceeding of the 41st Annual International
Symposium on Computer Architecuture, ISCA ’14, (Piscataway, NJ,
USA), pp. 505–516, IEEE Press, 2014.

[32] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng,
Y. Chen, and O. Temam, “Shidiannao: Shifting vision processing
closer to the sensor,” in Proceedings of the 42Nd Annual
International Symposium on Computer Architecture, ISCA ’15, (New
York, NY, USA), pp. 92–104, ACM, 2015.

[33] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy,
J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo,
Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba,
A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha,
“A million spiking-neuron integrated circuit with a scalable
communication network and interface,” Science, vol. 345, no. 6197,

12



pp. 668–673, 2014.

[34] D. E. Shaw, M. M. Deneroff, R. O. Dror, J. S. Kuskin, R. H. Larson,
J. K. Salmon, C. Young, B. Batson, K. J. Bowers, J. C. Chao, M. P.
Eastwood, J. Gagliardo, J. P. Grossman, C. R. Ho, D. J. Ierardi,
I. Kolossváry, J. L. Klepeis, T. Layman, C. McLeavey, M. A. Moraes,
R. Mueller, E. C. Priest, Y. Shan, J. Spengler, M. Theobald,
B. Towles, and S. C. Wang, “Anton, a special-purpose machine for
molecular dynamics simulation,” in Proceedings of the 34th Annual
International Symposium on Computer Architecture, ISCA ’07, (New
York, NY, USA), pp. 1–12, ACM, 2007.

[35] J. P. Grossman, J. S. Kuskin, J. A. Bank, M. Theobald, R. O. Dror,
D. J. Ierardi, R. H. Larson, U. B. Schafer, B. Towles, C. Young, and
D. E. Shaw, “Hardware support for fine-grained event-driven
computation in anton 2,” in Proceedings of the Eighteenth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’13, (New York, NY,
USA), pp. 549–560, ACM, 2013.

[36] J. Lee, N. B. Lakshminarayana, H. Kim, and R. Vuduc, “Many-thread
aware prefetching mechanisms for gpgpu applications,” in
Proceedings of the 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO ’43, (Washington, DC,
USA), pp. 213–224, IEEE Computer Society, 2010.

[37] Y. Yetim, S. Malik, and M. Martonosi, “Eprof: An
energy/performance/reliability optimization framework for streaming
applications,” in Design Automation Conference (ASP-DAC), 2012
17th Asia and South Pacific, pp. 769–774, Jan 2012.

[38] C. Chu, S. K. Kim, Y. Lin, Y. Yu, G. R. Bradski, A. Y. Ng, and
K. Olukotun, “Map-reduce for machine learning on multicore,” in
Advances in Neural Information Processing Systems 19, Proceedings
of the Twentieth Annual Conference on Neural Information
Processing Systems, Vancouver, British Columbia, Canada,
December 4-7, 2006, pp. 281–288, 2006.

[39] A. J. Smith, “Cache memories,” ACM Comput. Surv., vol. 14,
pp. 473–530, Sept. 1982.

13


	Purdue University
	Purdue e-Pubs
	10-17-2016

	RowCore: A Processing-Near-Memory Architecture for Big Data Machine Learning
	Nitin .
	Mithuna Thottethodi
	T.N. Vijaykumar

	Introduction
	Related Work
	Software
	MapReduce programming model
	Layout issues
	Workloads
	Implications of workload characteristics
	Workload/Architecture match

	RowCore
	Corelets (Well-known ideas)
	Row-orientedness
	Flow-controlled cross-corelet prefetch
	Final Reduce
	Memory Interface
	Coarse-grain compute-memory rate-matching

	Methodology
	Results
	Performance
	Energy
	Sensitivity to system size
	Sensitivity to prefetch buffer count

	Conclusion
	References

