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ABSTRACT

Coventry, Brandon S. M.S.E.C.E., Purdue University, August 2014. Particle Swarm
Optimization Using Multiple Neighborhood Connectivity and Winner Take All Acti-
vation Applied to Biophysical Models of Inferior Colliculus Neurons. Major Profes-
sors: Edward L. Bartlett and Thomas M. Talavage.

Age-related hearing loss is a prevalent neurological disorder, affecting as many as

63% of adults over the age of 70. The inability to hear and understand speech is

a cause of much distress in aged individuals and is becoming a major public health

concern as age-related hearing loss has also been correlated with other neurologi-

cal disorders such as Alzheimers dementia. The Inferior Colliculus (IC) is a major

integrative auditory center, receiving excitatory and inhibitory inputs from several

brainstem nuclei. This complex balance of excitation and inhibition gives rise to

complex neural responses, which are measured in terms of firing rate as a given pa-

rameter is varied. A major obstacle in understanding the mechanisms involved in

generating normal and aberrant auditory responses is estimating the strength and

tuning of excitatory and inhibitory inputs that are integrated to form the output

firing of IC neurons.

To better understand IC response generation, biophysically accurate, conductance-

based computational models were used to recreate IC frequency tuning responses. The

problem of fitting response curves in vivo was approached using particle swarm op-

timization, an optimization paradigm which mimics social networks of flocking birds

to solve problems. A new social network modeling winner-take-all activation found in

visual neuron coding was developed in which agents are divided into social hierarchies

and compete for leadership rights. This social network has shown good performance

in benchmark optimization problems and is used to recreate IC frequency tuning re-



xiv

sponses which can be used to further understand pathological aging in the auditory

system.
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1. INTRODUCTION

The ability to hear is central to a person’s every day life. It is critical for social

interaction, the ability to work, and for personal safety. Due to its integration into

every aspect of the individual’s daily life, hearing loss is a medical condition that

severely affects a patients quality of life. Hearing loss can manifest itself in many

ways with several symptoms. First, the ability to hear can be compromised in the

peripheral auditory system, including the inner ear, cochlea, and auditory nerve. This

damage can occur due to extreme or prolonged noise exposure [1], Ototoxicity [2], or

disease [3].Finally, hearing loss can result from developmental changes co-occurring

in both the central and peripheral nervous system. Age-related hearing loss (ARHL),

also known as Presbycusis, is a prevalent condition whose occurrence roughly doubles

from the second to seventh decade of life, affecting 29% of males and 23% of females

in their sixties, 39% of males and 37% females in their seventies, and 65% of males

and 59% of females in their eighties in the United States [4]. Patients suffering from

AHRL often have trouble isolating speech in adverse, noisy listening environments,

sometimes known as the cocktail party effect [5, 6]. Patients will also often present

with side effects of peripheral changes including reductions in the high frequency

range and elevated thresholds [7] as well as a loss of processing speed [8]. Along

with the reduced ability to hear, patients also experience a variety of other co-morbid

psychological symptoms such as feelings of social isolation [9,10], depression [11], and

a general reduction in a person’s quality of life [10]. Structural MRI studies have

linked loss of auditory function with reductions in brain volume [12]. Notably, loss

of auditory function can be a marker for Alzheimer’s Dementia [13], creating a link

of auditory health with normal aging. With its myriad of sensory and psychological

symptoms and high prevalence, ARHL is a disease that needs to be treated. Tradi-
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tionally, ARHL was thought to be a purely peripheral auditory pathology and has

been treated by hearing aids. However, many studies have shown substantial phys-

iological changes throughout the entire central auditory system which are not well

treated by traditional hearing aids. To better treat ARHL, central mechanisms of

central auditory pathologies must be better understood. To begin, we first conduct

a brief review of the auditory system.

As discussed in [14], which will be referred to throughout this discussion, the pe-

ripheral and central pathways are complex network beginning with the manifestation

of sound as the propagation of pressure waves which first hit the outer ear. The outer

ear acts as a filter and a dampening mechanism to ensure effective transduction to

middle and inner ear. Within the middle ear, pressure waves reach the tympanic

membrane, which converts the pressure wave to mechanical movements through the

malleus, incus, and stapes. These ossicles act as mechanical transducers and push

against the oval window of the scala vestibuli of the cochlea. Within this fluid filled

structure, mechanical energy from the stapes is converted to fluidic energy. The basi-

lar membrane acts as a frequency detector, with a continuum of resonance points along

its length which can transduce complex stimuli. This is the first point of tonotopic

mapping which will be present throughout the rest of the auditory system. Vibration

of the basilar membrane in turn vibrate hair cells on the organ of corti. Movement

of these hair cells causes the opening and closing of ion channels at the base of the

hair cell stereocilia. This causes changes in neurotransmitter release at the hair cell

ribbon synapses that form with auditory nerve fibers. Thus hair cells convert the

mechanical motion of the inner hair cells to electrical neural signals which propagate

through the auditory nerve. From the auditory nerve, the neural signal is relayed to

the auditory brain stem where it first arrives in the central auditory pathway at the

cochlear nucleus. The cochlear nucleus then sends projections to the superior olivary

complex, trapezoid body, lateral lemniscus, and inferior colliculus [15] and has been
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suggested to project to the medial geniculate body in rodents [16].

The inferior colliculus(IC) is a major integrative center, receiving excitatory pro-

jections from the dorsal and ventral cochlear nucleus (DCN,VCN) as well as medial

and lateral superior olive (MSO,LSO) and inhibitory projections from the dorsal and

ventral regions of the lateral lemniscus (DNLL,VNLL), ipsilateral LSO and the su-

perior paraolivary nuclei [17]. The IC also receives feedback projections from layer

five of auditory cortex(A1) [18]. The central nucleus of the IC, like the rest of the

core auditory pathway, is tonotopically organized. Convergence of inputs from lower

auditory structures also create functional zones in the IC with CN and VNLL projec-

tions corresponding to monoaural inputs and MSO inputs creating a functional zone

for binaural information [19]. The IC contains two functionally distinct cell classes;

flat(disc) shaped cells and stellate cells. Within these classes about 20-25% of these

neurons are GABAergic with the rest being glutamatergic [20]. The inferior collicu-

lus has its main output projections to the medial geniculate body (MGB) which then

projects primarily to auditory cortex. The work presented in this thesis will primarily

deal with central nucleus of the IC neuron responses. As such, we continue with an

overview of receptive field generation and physiological roles of the IC, which for our

purposes only includes the tonotopically organized IC central nucleus, but not the IC

dorsal and external cortices.

The concept of the receptive field was first thoroughly explored in the seminal

work of Hubel and Weisel [21] mapping the receptive fields of cat visual cortex as well

as Barlow mapping receptive fields in frog retinal cells [22]. A cell’s receptive field

can be thought of as the set of stimulus parameters which can be altered to influence

cell responses, such as light intensity and orientation in retinal cells or frequency and

level in auditory cells [23]. For example, many studies have shown distinct response

classes of IC neurons to sinusoidal tone stimuli, which are but a subset of a continua

of frequency response area types [24]. Receptive fields can also be generated from
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several types of integration patterns including 1.) inheritance, emerging from inputs

with identical functionality, 2.) construction, which is formed by the grouping of

functions of the properties of functionally different inputs, and 3.) ensemble, which

inherits shared traits from inputs [25]. Receptive field properties can also be stud-

ied by using reverse correlation techniques such as spectro-temporal receptive fields,

which describes the first order spectral and temporal processing mechanisms of the

inferior colliculus [26] and have been used in many studies, including demonstrating

that the IC is divided into highly localized spectral and temporal zones [27], the

transformation from single to multiple feature selectivity between the IC and A1 [28],

and the coding of direction and velocity of frequency modulated sounds in the bat

IC [29]. While the MSO is considered the physiological center of binaural tuning,

IC neurons also show dual type interaural time differences in slow and fast envelope

modulation in sinusoidal amplitude modulated stimuli (SAM) which can be explained

by convergent inputs from MSO and LSO [30] while the IC also is implicated in spa-

tial localization via interaural level differences(ILD) which are coding with a balance

of excitation and inhibition [31].

One metric of auditory processing in the IC is the frequency tuning curve (FTC).

FTCs are elicited from sinusoidal tone stimuli and are used to classify a neuron’s best

frequency(BF). BFs can be thought of as a neuron’s resonance point as it is the fre-

quency at which the neuron fires action potentials at the highest rate. Each neuron in

the IC, as it is tonotopically organized, exists in regions with similar best frequencies.

A related metric is the neurons response to the sound level of tonal stimuli. Like

the neurons BF, there is also a corresponding best level(BL) indicative of the level

eliciting the highest spike rate for a particular neuron.

There are several physiological changes in the auditory system that occur due

age. First, temporal processing, which is responsible identification of time dependent

auditory precepts such as consonants with sharp formant transitions [32] as well as
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music [33]. Previous evoked recording studies have shown changes in temporal pro-

cessing in auditory neural populations due to age in rats [34,35]. Age related changes

are also seen in spectral tuning of IC neurons, manifesting in significantly reduced

rate-level functions, reduction of frequency selectivity by increased filter widths, and

a reduction in ”V” shaped frequency response areas [36]. Palombi and Caspary [37]

also found a decrease in the number of nonmontonic rate level functions, changes in

max firing rates, elevated thresholds and an overall reduction in inhibitory processing

in Fischer 344 rat ICs. These changes in summed evoked behavior thus spurs the

question of what is physiologically changing to alter these responses. At the level of

the IC, Caspary et al. have shown decreases in GABAergic markers in aged animals,

implying a loss of inhibition [38]. Other studies have also shown increases in parvalbu-

min, a calcium binding protein, and nitric oxide synthase NADPH correlating to aged

auditory brain stem responses and pure tone averages in rhesus monkeys, suggesting

a physiological compensation to the decreases in inhibition in the IC [39]. Studies in

single unit recordings in the IC show a decrease in the selectivity of the aged neu-

ron along with altered receptive fields compared to young animals, suggesting that

offsetting of the excitatory and inhibitory balance gives rise to temporal processing

deficits [40].

Knowledge of age related changes in central mechanisms in the auditory pathway

has grown substantially. However, exact neural mechanisms of ARHL are still not

widely known. Uncovering these mechanisms in biological systems is not a trivial

task, as many circuits are difficult to probe. To this end, we utilize computational

methods to help elucidate IC central nucleus frequency tuning responses.
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2. COMPUTATIONAL METHODS

2.1 Introduction to Computational Neuroscience

Computational neuroscience aims to utilize computational and engineering meth-

ods to analyze the nervous system at all levels of abstraction; from the single cell to

entire neural networks. Computational neuroscience is primarily driven by the ground

breaking work of Hodgkin and Huxely which quantified membrane current recorded

from the giant squid neuron both as a network circuit model and as explicit differ-

ential equations [41]. Much of the interest in computational methods stems from the

fact that, with the advent of more powerful computation systems, complex neuronal

dynamics can be easily and rapidly simulated on personal computers. Therefore, a

computational model can be used to test a sample stimulus set and make predictions

about biophysical outcomes, allowing for a more focused set of stimuli to be used in

biological experiments, saving time and resources.

The use of modern computational tools in biology began in the 1960s when molec-

ular biologists began gathering amino acid data sets to assess the information capacity

of protein encoding, which was an intractable problem without the aid of computing

systems [42]. These tools quickly expanded to neuroscience applications, where anal-

ysis of complex systems can be expedited by use of computational systems. Modern

computational neuroscience emerged in the 1990s with cellular modeling in visual

cortex [43]. In general, computational models fall into two categories; phenomenolog-

ical and biophysical. Phenomenological models reproduce responses seen in in vivo

recordings, but do not model individual ion channel biophysical processes. Biophys-

ical models in general model actual ion channel interactions via numerical analysis
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of the Hodgkin-Huxely equations in recreating responses seen in vivo. Biophysical

models, with the tradeoff of higher numerical complexity, allow for better predictions

and more insight into the biological processes that occur. Also, biophysical models

can allow for the development of testable hypotheses that can be verified in electro-

physiology studies. The choice of each is highly dependent on the level of abstraction

and how much the model hopes to explain physiological processes.

Auditory neuroscientists have used computational modeling with great success.

Beginning in the periphery, Zhang et al. developed a phenomenological auditory

nerve fiber model [44] and extensions [45,46] of this model have been used in a wide

variety of studies, including exploring the role that the medial olivocochlear reflex

has on signal in noise detection and discrimination [47], the role speech envelope and

temporal fine structure play in speech perception [48], and as inputs in other modeling

studies [49]. Like the auditory nerve model, other areas of the auditory pathway have

also been modeled, including cochlear nucleus [49, 50], Lateral [51] and medial [52]

superior olive, inferior colliculus [53, 54], Medial Geniculate Body [55], and auditory

cortex [56]. Computational models are also used to gain insight into physiological

mechanisms by probing the system in ways that are difficult or impossible in animal

models. Finally, computational models can be integrated into biological experiments.

For example, the dynamic clamp, an electrophysiological technique can be used to

create a ”hybrid computer-biological neural circuits” [57] which allows the model to

act as a presynaptic input to a biological process. Here a model neuron can be con-

nected to a biological neuron to probe the biological neuron with novel stimuli which

can give deeper insight into biophysical mechanisms. With so many applications and

experimental possibilities, computational modeling has become an important com-

ponent in biological studies. In this work, biophysically accurate conductance-based

computational models will be used to recreate physiological responses in order to ex-

plore age related changes in frequency tuning in IC neurons. The following sections

will discuss model creation and optimization.
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2.2 Methods

2.2.1 Single Unit Recordings

Responses were modeled from single unit recordings from young and aged Fischer-

344 rats made by another researcher utilizing methods similar to those presented

in [53]. In short, single unit recordings were made from the central nucleus of the

inferior colliculus(CIC) in a 9’ by 9’ anechoic sound chamber. Anesthesia was induced

by a mixture of ketamine and medetomidine. Anesthesia was reduced for aged animals

to account for reduced liver function. Animals were maintained on an oxygen manifold

and pulse rate and oxygen saturation were monitored by a pulse-oximeter. A constant

body temperature was maintained utilizing a water-circulating heating pad. The IC

was located stereotaxically using a rat atlas and physiological recordings, and central

nucleus was identified by short latency responses to tones and tonotopic organization.

2.2.2 Computational Methods

For this study, the single compartment conductance based biophysical IC model

was adjusted from [53](see Appendix A for model parameters). The model was im-

plemented in NEURON [58] which numerically creates and solves the biophysical ion

channel processes. This modeling tool is written in the HOC programming language

and individual ion channel models are written in NMODL modeling language. NEU-

RON Models are developed by specifying cell morphology and ion channel types. For

this study, lumped single compartment models were used. Overall program control

is implemented in MATLAB R©, which generates input peri-stimulus time histograms

and runs data analysis. The adapting and sustained response models from [53] were

adapted in order to model frequency tuning responses. Responses of these models to

square pulse current injections can be seen in figure 2.1. The sustained response is

based on sustained regular cells seen in vivo and are characterized by a large, con-

stant frequency onset and a lower sustained response. The adapting model is based
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on the adapting cells seen in vivo and are characterized by a high frequency burst fol-

lowed by lengthening inter-spike intervals with increasing time. The sustained model

contains a fast transient Na+ current (INa), a delayed rectifier potassium current

(IkDr), a high threshold potassium current (IkHt), a TEA-sensitive potassium cur-

rent (IkTEA), a potassium leak current (Ileak), and an Ornstein-Uhlenbeck fluctuating

point process current (IGfluct). The Adapting model includes a fast transient sodium

current (INa), a delayed rectifier potassium current (IkDr), a TEA-sensitive potas-

sium current (IkTEA), low (IT ) and high (IL) calcium currents, an apamin-sensitive

calcium-activated potassium current (ISk), an apamin-sensitive high conductance cal-

cium dependent sodium channel (IBk), a hyperpolarization activated cation current

(Ih), a potassium leak channel (Ileak), and an Ornstein-Uhlenbeck fluctuating point

process current(IGfluct). Kinetics for sustained and adapting models are as follows:

dV

dt
=

1

Cmem

∗ (INa + IkDr + IkHt + IkTEA + Ileak) (2.1)

dV

dt
=

1

Cmem

∗ (INa + IkDr + IT + IL + IkTEA + ISk + IBk + Ih + Ileak) (2.2)

While both neurons where available for the model, most results are based on the

sustained model. Models were modified to recreate both frequency tuning and level

tuning data. In both frequency and level tuning, the user specifies one excitatory

and one inhibitory input. Model responses were created assuming inherited receptive

fields, but input shapes can be specified for future exploration into receptive field

construction. Input nuclei to the IC model were modeled phenomenologically. For

the frequency tuning model, Excitatory peri-stimulus time histograms were generated

for DCN [59, 60], VCN [61, 62], and LSO [63, 64]. Inhibitory inputs were generated

for dorsal [65] and ventral [66] lateral lemniscus.

Input responses were modeled from published recordings phenomenologically as

follows. First, based on inputs given by the user, excitatory and inhibitory input

peri-stimulus time histograms (PSTHs) are generated. Peri-stimulus time histograms

are histograms that represent a summed activity in small bin intervals over a section
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of time and can be used to determine the probability of a neuron firing in a certain

time interval. To generate PSTH’s, input nuclei’s best frequency rate, and tuning

curve Q10 bandwidth, the bandwidth of the neuron at 10 dB above threshold, were

obtained from previous studies. Using this information, the PSTH is generated by

declaring a bin size identical to that employed in respective experiments conducted

in previous literature. Bins were then created and spikes placed in bin to create a

sustained response input corresponding to response statistics. The height of the bins

is given by ki
n∗S , where ki is the number of spikes in bin i, n is the number of stimulus

repetitions, and S is the bin division. Example PSTHs are shown in figure 2.2. Input

Fig. 2.1. Sustained and Adapting response models to square depo-
larizing and hyper-polarizing current pulses. A.) Sustained model
responses. Sustained firing cells show a near constant frequency spike
events under depolarizing currents. B.) Adapting model responses.
Adapting cells respond to depolarizing pulses by a onset high fre-
quency burst followed by a responses inter-spike intervals which in-
crease with time

spike times care then drawn according to this distribution. First, a curve is fit to

the PSTH to estimate its probability distribution function (PDF) using Matlab’s

curve fitting toolboxTM using Gaussian or Fourier fits(Figure 2.2). The PDF was

then integrated to create the cumulative distribution function (CDF). Spike times

were then drawn from the CDF using the inverse transform method, which maps

a uniform random number to a probability distribution [67], allowing the user to



11

draw spike times from arbitrary distributions with ease. The inversion method first

generates samples of a uniform distribution and then finds

X ← F−1(U) (2.3)

where X is now a set of samples, in our case spike times, which are drawn from the

input nuclei spike CDF. These spike times are then input into NEURON software.

Once in NEURON, excitatory and inhibitory channel kinetics are modeled as in [53].

Fig. 2.2. Example input cell PSTHs: Left image displays an example
DCN input PSTH and the right an example DNLL input PSTH. In
both cases, the red trace shows the fitted PDF

Standard trial runs included 10 repetitions across 64 logarithmicly spaced input tones

from .5 to 40kHz. Often, analysis was truncated to an octave around best frequency

as outside this area only produces spontaneous activity, and thus carried no addi-

tional information concerning the FTC. Tuning curves were generated by calculating

mean spike rate per a given stimulus frequency. First spike latency was calculated

as the time of the first spike after stimulus onset. Peak latency was measured using

a two window method. First, a moderate size window (10ms wide) is generated and

sampled across data. In each window, the total number of spikes was calculated. The

window with the largest spike rate was selected and subjected to a finer window(5ms)

to determine the latency of the peak firing rate, though true IC resolution is much

finer than 5ms [68].
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Level tuning responses, similar to the frequency tuning model, were created by

first modeling input level tuning responses. To replicated results found in in vivo

recordings, the range of levels modeled was from 4 to 84 dB SPL. In some cases,

data for sound levels above 64dB were not available. Rather than extrapolating this

data and potentially creating non biological responses, these sound levels were not in-

cluded. Input rates were modeled from excitatory DCN [59], LSO [63], and VCN [69]

inputs, while inhibitory inputs were modeled from DNLL [65] recordings. The model

can recreate both monotonic tuning curves, characterized by a sharp increase in fir-

ing rate at increasing sound pressure level and saturation of spike rate at BL, and

non-monotonic functions, which reach a peak rate and experience a greater than two

standard deviation drop in firing rate after reaching BL. Like the frequency tuning

model, the level tuning model assumes inherited receptive fields. Figure 2.3 demon-

strates model monotonic and nonmonotonic rate level functions. At the start of the

model, tone stimuli are assumed to be presented at the neuron’s best frequency. Input

rate-level functions were modeled phenomenologically. Peri-stimulus time histograms,

probability density functions, and input spike times were created as before.

2.2.3 Spontaneous Rate Modeling

A substantial modification to the model in [53] was the addition of spontaneous

rate. Spontaneous activity is the observed firing of a neuron without the apparent

presence of a stimulus. It is tempting to downplay the significance of spontaneous

activity as it is an unevoked response. However, spontaneous fluctuations in neu-

rons raises neuron excitability and even carries information about local network cir-

cuits [70], making it a critical component in understanding the neural code. To model

spontaneous activity, the membrane potential fluctuations across a neuron need to

be modeled. Destexhe et al. [71]have previously modeled membrane fluctuations in

cortex using an Ornstein-Uhlenbeck noise process. This model was then adapted to
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Fig. 2.3. Example of rate-level tuning responses. Top: Monotonic
responses. Bottom: Nonmonotonic responses. Responses were clas-
sified nonmonotonic if the mean spike rate decreased by 2 standard
deviations below the best level.

model spontaneous rates seen in the IC.

The Ornstein-Uhlenbeck (O-U) process is a filtered Gaussian process with a mean

reverting characteristic, meaning that given an initial starting condition, the process

returns to its mean after a given time. The O-U process for synaptic mechanisms can

be reformulated as the following stochastic differential equation [71]:

dge,i(t)

dt
=
−1

τe,i
(ge,i(t)− ge0,i0) +

√
2σ2

e,i

τe,i
ξe,i(t) (2.4)

where ge,i designates excitatory or inhibitory conductance respectively, τe,i is conduc-

tance time constant, σ2 is the conductance process variance, and ξe,i(t) is a white
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noise process. This process is biophysical in that it has been reformulated to mimic

ion channel kinetics. Reversal potentials for excitatory and inhibitory noise processes

are 0mV and −75mV respectively. Figure 2.4 demonstrates sample O-U excitatory

noise paths at varying starting points. The mean reverting characteristic becomes

evident in a relatively small amount of time. In this model, the user supplies ex-

Fig. 2.4. Sample paths of the synaptic O-U process: This figure
demonstrates that given 3 different initial starting conditions, after
a certain time t the O-U process will eventually return to its mean
value. In this figure, the random seeding variable was kept constant
to show mean reversion.

citatory and inhibitory conductance mean and standard deviation values as well as

respective time constants. While this model was developed for cortical neurons which

may have different spontaneous activity in general than subcortical areas, Figure 2.5

demonstrates that this model can be adjusted to model activity seen in the IC, recre-

ating the range mean firing rates and STDs from recorded IC data. With the loss

of inhibition due to aging, there is a change in spontaneous activity. This change

is subtle: a chi-squared test revealed that there is a higher percentage of aged units

with rates greater than 4 Hz (p < 0.05)(ASC13 abstract).
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Fig. 2.5. Range of physiologically relevant spontaneous rates recreated
in noise model: This figure demonstrates the ability of the OU noise
process to recreate spontaneous spike rates seen in young and aged
animals. Coefficient of variation for this test was set to 1.

2.2.4 Optimization Using Swarm Intelligence

Optimization procedures provide a fast and robust platform for tuning system

parameters to optimize function results or recreate desired responses. Classical opti-

mization procedures, such as linear programming, provide relatively fast and accurate

methods for finding optimal solutions for a given problem. However, these methods

are ineffective when the problem’s derivative is not explicitly known or difficult to

approximate. To circumvent this problem, derivative free methods can be employed.

The particle swarm optimization (PSO) method was chosen as it can be applied to a

variety of general problems, does not require a function derivative, and is relatively

simple to implement [72]. Swarm intelligence methods, such as PSO, model flocks of

biological organisms, such as swarming bees, colonies of ants, and flocking birds [73],

which works on the principle of emergent behavior of groups of simple, individual

agents working together in complex social networks to solve problems.
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Particle swarm optimization, an evolutionary computational method developed by

Kennedy and Eberhart, models the social behavior of flocking birds [72,74]. Problems

are formated in the form of fitness functions, which quantify the goodness of fit of the

objective. The true power of PSO is embedded in the social networks in which the

agents act. The design of social networks is not trivial, as there needs to be a balance

between swarming, the movement of agents in a search space, and convergence, the

ability for the swarm to come to a solution. Too much emphasis on swarming causes

the swarm to loose its objective and diverge, while too much emphasis on convergence

will cause the swarm to be trapped in local minima and miss global solutions. To best

meet social network and model constraints, a new social structure was developed.

Following the metaphor of flocking birds, each agent is assigned a position and

velocity as well as some memory to store its best position. Individually, these agents

are simple; it is when these agents are connected in social networks that intelligent

problem solving behavior manifests. These social networks are described quantita-

tively by mathematical graphs (see appendix B). Qualitatively, the social network

can be thought of as the instruction set for agent updating and is critical to algo-

rithm performance [75]. The proposed social network bridges the gap between fully

informed and canonical ring topologies and can be seen in figure 2.6. At each update

cycle, a global leader is decided based on best fitness function value. Then, from

each neighborhood, neighborhood leaders are assigned based on agent performance

on the fitness function. These leaders act as delegates to the global leader and work to

inform neighborhood agents, encouraging them to mimic the leaders actions. The del-

egates also inform the leader of any better positions found by its constituent members.

At first, each member was fully informed, meaning that a neighbor being updated

was informed by his fellow neighborhood agents as well as the neighborhood leader.

However, this did not provide good solutions and catastrophically failed optimization

benchmarks, being significantly outperformed by other social networks. The reason

for this failure may lie in the fact that a given agent under update, especially in the
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Fig. 2.6. Winner Take All Social Network. Agents are divided into
neighborhoods with delegates and a global leader elected by goodness
of fitness. Here, agents compete to update other agents, with only
good influences able to update agents. This figure demonstrates the
update of a delegate. The delegate is updated only by the global
leader and the best neighborhood constituent agent.

neighborhoods, is being weighted more by bad influences, agents with poor solutions,

than leaders. Therefore, the social network was reconfigured to model the winner take

all coding scheme seen in the visual system. In the winner take all (WTA) scheme,
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input neurons compete for activation [76, 77], as the target inherits the response of

the strongest response of its input neurons while ignoring the rest. In a similar way,

agents compete for the ability to update other agents with individual agents only

being updated by the agents in its neighborhood with the best fitness. Agents that

continually have better fitness are more often allowed to update its neighbors, which

may lead to advancement in the social structure. The global leader is only influenced

by his past best and the best neighborhood delegate, neighborhood delegates by the

global leader and the best constituent, and constituents by the neighborhood delegate

and the best neighbor. Update equations are as follows:

vbesti+1 = χ ∗ (vbesti + U(0, φ1)⊗ (pg − xbesti) + U(0, φ2)⊗ (pn − xbesti)) (2.5)

xbesti+1 = vbesti+1 + xi (2.6)

where χ is the constriction coefficient defined by [74] with φ = φ1 + φ2 > 4 and

χ =
2

φ− 2 +
√
φ2 − 4φ

(2.7)

Typically, φ1 = φ2 = 2.05, leaving χ = .7298 [74]. U(0, phi1,2) is a uniform random

variable between 0 and φ1,2, pn is the best delegate position, and ⊗ designates a vector

multiplication. In similar fashion, delegates are updated according to:

vdeli+1 = χ ∗ (vdeli + U(0, φ1)⊗ (pg − xdeli) + U(0, φ2)⊗ (pb − xdeli)) (2.8)

xdeli+1 = vdeli+1 + xdeli (2.9)

where pb is the best neighborhood agent. Finally, individual neighborhood agents are

updated according to:

vneii+1 = χ ∗ (vneii + U(0, φ1)⊗ (pn − xneii) + U(0, φ2)⊗ (pb − xneii)) (2.10)

xneii+1 = vneii+1 + xneii (2.11)

where pb is the position of the best neighborhood agent. In general, the PSO algo-

rithm is as follows:
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1 . I n i t i a t e swarm by randomly s c a t t e r i n g n agents on s o l u t i o n space

2 . Ca l cu la t e i n i t i a l f i t n e s s va lue s

3 . Form neighborhood topology and choose l e ad e r s

4 . For i i t e r a t i o n s :

Update each agent

Reass ign l e ad e r sh i p

Ca l cu la te new F i tne s s

end

5 . Global bes t agent i s minimum

2.3 Optimization Benchmarks and Sample Problems

Many benchmark problems have been developed to test optimization methods for

robustness and error. To test our PSO neighborhood topology, we ran the method

on Rosenbrock’s function, a common benchmark for Optimization problems. Rosen-

brock’s function, often called the banana function due to its contour plot, is defined

in 2 dimensions as [78]:

f(x1, x2) = 100 ∗
(
x2 − x21

)2
+ (1− x1)2 (2.12)

and in n dimensions as [79]:

f(x) =
n∑

i=1

[
100

(
x2i − xi+1

)2
+
(
xi − 1)2

)]
(2.13)

Rosenbrock’s function has a global minimum of 0 when x1, x2, ...xn = 1. This is

used as a protytpe function as it is easy to find local minima, due to the structure

of the problem, but much harder to find the global minimum. Figure 2.7 shows the

convergence of the PSO method on the 2D Rosenbrock function. In this case, 21

agents were used at 50 iterations. The global solution was found at x1 = x2 = 1.

Collective motions of each agent, shown as blue circles, were tracked and plotted.

The fitness function for this optimization was simply the minimum of Rosenbrock’s

function. Intuitively, higher dimensional problems will be harder to solve. Since

our NEURON model is 10 dimensional and computationally costly, we quantify the
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Fig. 2.7. Solution of the Rosenbrock function in 2 dimensions. Indi-
vidual agent movements were tracked and plotted as blue circles. The
program was allowed to run for 50 iterations.

ability of our social network to solve problems at relatively low iterations versus the

common ring social network (see appendix B) in similar tests done in Mendes:2004.

Optimizations consisting of 1000 swarm updates were completed. Mean and standard

deviation values were collected for 500 trials with results are shown in Tables 2.1 and

2.2. As it can be seen, the WTA social network has better mean fitness with smaller

deviations in every dimension as compared to the Ring PSO, but not with a different

ring update scheme.

When working with stochastic optimization problems, the no free lunch theorem

must be considered. The no free lunch (NFL) theorem states that there is no one op-
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timization scheme which performs better on all problems than any other optimization

scheme. Specifically, when an optimization scheme gains some performance advan-

tage over a set of problems, it looses its efficacy on others [80]. Consider the canonical

ring (RingC) network which is topologically the same as the ring network presented

earlier, but updates its agents based on the agents best past performance and the

best of its two neighbors. Table 2.3 demonstrates the canonical ring performance

across Rosenbrock input dimensionality. The addition of updating based on previous

experience gives the method a performance advantage on low dimensional problems

with a trade off in performance on medium to high dimensional problems. Likewise,

WTAPSO trades low dimensional performance for better results in medium to high

dimensional problems.

Table 2.1: Performance of WTA social network

Dimension WTA Mean WTA STD WTA Median

2 2.134e-7 1.142e-6 3.606e-9

3 .3823 1.714 3.424e-5

4 1.769 4.6317 0.0293

5 7.1907 36.66 .3595

6 23.966 88.9570 2.437

7 46.0340 121.54 7.81

8 92.76 279.63 16.404

9 182.896 703.4818 25.217

10 229.609 679.226 39.08
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Table 2.2: Performance of Ring social network

Dimension WTA Mean WTA STD WTA Median

2 2.134e-7 1.142e-6 3.606e-9

3 .3823 1.714 3.424e-5

4 1.769 4.6317 0.0293

5 7.1907 36.66 .3595

6 23.966 88.9570 2.437

7 46.0340 121.54 7.81

8 92.76 279.63 16.404

9 182.896 703.4818 25.217

10 229.609 679.226 39.08

Another equally important concern with any optimization paradigm is the speed

at which solutions are found. Figure 2.8 demonstrates fitness paths of the WTAPSO

and Ring PSO. In these tests, the algorithm was allowed to run for 1000 iterations

and was repeated 500 times on the 30 dimensional Rosenbrock function (Rosen30).

WTAPSO fitness functions decay faster than Ring PSO fitness functions and find

better fitness solutions at algorithm termination. In theory this should manifest as

better solutions in faster time. To test convergence speed, the Rosen30 function was

again used in tests similar to [75]. The algorithm was allowed to run until it reached

a fitness value of 10, a very tight fitness for Rosen30or reached 100000 iterations,

indicating a failure of solution convergence. Each optimization was repeated 500

times.
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Table 2.3: Performance of RingC Social Network

Dimension Ring Mean Ring STD Ring Median

2 9.861e-35 2.205e-33 0

3 1.146e-9 2.562e-8 0

4 0.918 1.60 3.048e-26

5 3.081 15.593 0.002

6 99.309 569.082 4.021

7 3.484e3 2.651e4 76.356

8 1.424e4 5.092e4 781.860

9 9.290e4 3.130e5 6.402e3

10 2.503e5 6.888e5 4.613e4

As this data suggests, not only does the WTAPSO on average find better solu-

tions, it also finds them much faster. These two traits are critical when optimization

problems are high dimensional or has a high cost per iteration. However, one con-

sideration with PSO methods is that it is inherently stochastic, meaning that some

starting points and updates may not lead to a convergent solution. This is mitigated

by choosing proper model parameters and some intuition on good starting positions.

Also, PSO optimization does not guarantee global minimums are found [81]. While

this may be critical in some applications, it may not be a concern in cases where

solutions are not necessarily unique such as in the reconstruction of neural response

curves. However, performance on the convex Rosenbrock function with a global min-

imum and many local minima is quite good.

Table 2.4: Iteration Run Time

Topology Mean Iteration STD Median

WTA 23070 35066 45375
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Fig. 2.8. WTA vs. Ring topology run times. Each optimization
was allowed to run for 1000 iterations and was repeated 500 times.
WTAPSO shows much sharper slopes and overall better fitness than
Ring topologies over the 30 dimensional Rosenbrock Problem at al-
gorithm termination.

The same test was applied to the ring topology. After an extended run time, only

70 iterations could complete with 0 optimizations reaching tolerance. It should be

noted that a tolerance fitness value of 10 is much tighter than what is seen in [75].

More telling is that our method was able to meet this fitness well within 100000 it-

erations while the ring could not. When applied to biological optimization problems,

such good performance on high dimensional test problems should translate to bet-

ter solutions in a lower iteration time than traditional or canonical particle swarm

methods.
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3. RESULTS

Computational models can be used to make predictions about neural responses and

elucidate mechanisms involved in response generation. In this section we will explore

how well the proposed model recreates IC frequency tuning neuron responses.

3.1 Spontaneous Rate Modeling

Spontaneous spiking activity resulting from membrane voltage fluctuations is an

important component in the modeling of response generation processes. To test the

effects of hyper-excitability due to spontaneous rates, model responses were created

in the presence of mean spontaneous rates seen in vivo in young and aged rats (Table

A.3.) and compared to noiseless responses. To quantify difference, a percent differ-

ence metric was used. Figure 3.1 demonstrates the effect synaptic fluctuations and

spontaneous rate have on frequency tuning curve responses in young animals. While

it is expected that there is a large increase in zero response regions where spontaneous

rate dominates the response, there is also a large change within the tuning curve in-

cluding as much as a 20 percent difference around BF. This supports the observation

that synaptic noise increases excitability leading to higher firing rates than would

be seen in relatively silent recordings such as in vitro slice recordings. This effect

was also be studied in aged responses, as shown in Figure 3.2, demonstrating that

aged responses increase in firing rate compared to young responses (20 vs 40 percent

difference) as well as a shift in the position of BF. These changes in frequency tun-

ing response properties in the presence of O-U noise give credence to spontaneous

activity’s role in raising membrane excitability and will be used for the remainder of

the computational experiments. These two figures are used to illustrate changes that
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may occur in the presence of spontaneous activity, but individual features such as

shifts in BF may not be general due to the stochastic nature of the input.

Fig. 3.1. The effect of spontaneous activity on frequency tuning curves
is large, creating a nearly 20 percent increase in responses at BF. The
blue trace corresponds to the noiseless model, the red to the model
with spontaneous activity, and the green line to the percent difference.

3.2 Frequency Tuning

The IC is a tonotopically organized nucleus with spatial distribution of best fre-

quencies. In vivo responses were elicited from tone stimuli as described earlier. First,

mean spontaneous rates were fixed. For a young animal model, experimentally found

excitatory noise conductance value of 0.935 nS and inhibitory conductance value of

0.5nS were used to set a mean rate of 2.449 spikes per second, similar to what has
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Fig. 3.2. Like young neurons, the effect of spontaneous activity on
frequency tuning curves is large in aged neurons. In this case, the
presence of in vivo like noise shifts the location of the BF under in-
dentical inputs.

been recorded in our studies. To recreate an aged response, inhibitory conductance

was lowered to 0.29nS, which generated a firing rate of 3.42 spikes per second which

is again similar to what has been seen in our lab(for full details on input parameters,

see Appendix 1). Figure 3.3 shows an example of a recreated neuron from a young rat

with a BF of 6.5kHz. In this model, inputs into the IC cell were 3 LSO and 3 DNLL

inputs with AMPA and NMDA conductances set to 100 percent and GABA set to
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75 percent. Goodness of fit, characterized by a mean square error metric, was 276.3.

To recreate aged responses, GABAa conductance was lowered, reflecting the loss of

Fig. 3.3. Recreation of a young frequency tuning curve. Model inputs
were 3 LSO and 3 DNLL inputs. AMPA and NMDA strength were
set to 100 percent while GABAa conductance was set to 75 percent.
Mean square error was 276.3

GABA-ergic markers seen in aged rats as discussed earlier. Figure 3.4 demonstrates

the recreated aged responses. To better understand the mechanistic changes in aging

and to reduce the confounding effects such as tuning curve width changes in shifted

BFs, an aged neuron at the same BF as Figure 3.3 was used. AMPA and NMDA

strengths were kept constant, but GABAa conductance strength was lowered 35%

from the young model. Mean square error for this reconstruction was 230.8. For each

model, spontaneous rates were set to recreate mean values seen in young and aged

neurons respectively. While aged response shape were recreated by simply lowering
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Fig. 3.4. Recreation of an aged frequency tuning curve. Model inputs
were 3 LSO and 3 DNLL inputs. AMPA and NMDA strength were
set to 100 percent while GABAa conductance was set to 40 percent.
Mean sqaure error was 230.8

inhibition, actual auditory neural changes leading to central auditory deficits are cer-

tainly more complex. For example, compensation mechanisms may work to correct

inhibition decreases [37]. Other variables, such as inhibitory latency and input time

constants may also change. With the multiplicity of variables active in the system,

fitting responses by hand precisely becomes far to difficult. Therefore, the particle

swarm optimization paradigm will be utilized to logically fine tune input variables to

recreate IC responses.
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3.3 Level Tuning

Level tuning characterizes a neurons response to pure tones at varying stimulus

presentation levels. As demonstrated earlier, the computational model can create two

classes of responses, monotonic and nonmonotonic(Figure 2.3). To test the ability

of the model to recreate level tuning responses, the model was fit by hand using in

vivo data. Figure 3.5 demonstrates a recreated nonmonotonic response. Error was

calculated as the mean sqaure error of model and in vivo. Spontaneous rates were

set as a young response. Model response is truncated after 64 dB due to unavailable

data.

Fig. 3.5. Recreation of a level tuning neuron response. Inputs were
2 LSO and 1 DNLL with AMPA and NMDA set ot 27 percent and
GABAa set to 30 percent. Mean square error = 5.2253
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3.4 Response Recreation using Particle Swarm Optimization

The ability to recreate IC responses from in vivo recording would allow for valuable

insight into neural response creation. To this end, the winner take all particle swarm

optimization method was utilized. The model was adjusted such that only 1 AMPA,

1 NMDA, and 1 GABA input were used, and allowed its conductance strength to

vary. The lumping of these parameters is a reasonable simplification and allows for

a dimensionality reduction in optimization. Input parameters optimized over were

AMPA, NMDA, and GABA conductance values and time constants and inhibitory

input delay, creating an optimization over ten variables. For our fitness function, it is

important to recreate not only response magnitude, but to preserve response shape as

well. Therefore, we utilized a fitness function that has been used in x-ray reflectivity

to fit data that consists of highly oscillatory data [82]. The function is as follows:

F = 1−
(
1 + [RMSE(xc, xm) [1 + r(xc, xm)]]−3)−1

(3.1)

where xc is the calculated, model curve, xm is the recorded curve, RMSE is the

root mean square error function, and r is the correlation coefficient between xc and

xm. For this function, lower fitness values correspond to better fits. Tuning curves

were generated at ±1.5 octaves around BF. This captures the entirety of the tuning

curve plus some of the spontaneous activity at the tails. The rest was truncated

as it would only generate spontaneous activity. While in vivo response curves were

created with ten repetitions of the stimulus, this caused an unacceptable run time for

the swarm method. Since most IC responses modeled were well driven, a compromise

of 5 repetitions of each stimulus was used. Figure 3.6 demonstrates the reconstruction

of a young neuron tuning curve after 50 iterations. While the recreated response has

a faster firing rate at BF, the difference is small (4.3672 spks/sec) and within one

standard deviation of the recorded response. The shape has been well reconstructed

with a 50% firing rate bandwidth differences between model and recorded responses

of 396 Hz.
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Table 3.1: Young Reconstruction

Parameter Value

AMPA % 205.3723

NMDA % 226.9570

GABA % 124.3821

AMPA τ1(ms) 1.0963

AMPA τ2(ms) 5.8759

NMDA τ1(ms) 32.1961

NMDA τ2(ms) 50.4178

GABA τ1(ms) 2.8390

GABA τ2(ms) 14.9868

GABA delay(ms) 1.1908

Next, an aged neuron was reconstructed. Earlier reconstructions have simply

lowered the inhibition strength while keeping excitation and other parameters set.

While this is a decent approximation, certainly other parameters change with age,

owing to compensation mechanisms, membrane property compensation, or age related

changes. Therefore, the swarm was reinitialized and allowed to run on the aged

response. Figure 3.7 demonstrates the recreation of an aged neuron utilizing LSO

excitatory and DNLL inhibitory inputs.
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Table 3.2: Aged Reconstruction

Parameter Value

AMPA % 199.5712

NMDA % 109.4907

GABA % 61.7082

AMPA τ1(ms) 0.2080

AMPA τ2(ms) 6

NMDA τ1(ms) 32.9026

NMDA τ2(ms) 51.5274

GABA τ1(ms) 2.8959

GABA τ2(ms) 15.3124

GABA delay(ms) -2.7914

Light bounds were placed on neurotransmitter conductance strengths to prevent

variables from reaching nonphysiological negative values. Spontaneous rate was set

to match what was seen in in vivo recordings and optimized parameters are reported

in Table 3.2. Again responses were well recreated with a peak spike rate difference of

6.0865 spks/sec, a 50% bandwidth difference of 536 Hz, and fitness of 0.3649.
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Fig. 3.6. Recreation of a young neuron tuning curve. Fitness for this
graph was .3773 after 50 iterations
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Fig. 3.7. Reconstruction of an aged neuron response. Optimization
routine was identical to that of the young response. Fitness criterion
for this response was 0.3649 after 50 iterations
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4. DISCUSSION

4.1 Computational Models

In this study, neuron spontaneous activity, frequency tuning, and level tuning

were modeled and fit to experimental data. In the spontaneous rate case, our results

demonstrate the importance of modeling spontaneous activity. Physiologically, mem-

brane voltage fluctuations may come from the flickering of ion channels and contains

information that can describe overall network architecture [70]. Our model results

show that spontaneous activity has a nontrivial impact on membrane excitabilty and,

given identical stimulus parameters, may increase firing rate by 20 to 30 percent.

This can be further tested in slice recording experiments by use of dynamic clamp

techniques. Our results also extend Rudolph and Destexhe’s O-U noise model [71] to

mid brain IC neurons and can recreate spontaneous rates seen in young and aged rats.

Utilizing and extending the IC model presented in [53], we were able to recreate

frequency tuning curves seen in young and aged rats. While tuning curves are fairly

recreated with a young mean square error of 276.3 and aged mean square error of

230.8. Error in the aged model can possibly be explained by the fact that this study

was cross sectional and from a different animal. While the young response did have a

narrower tuning width(Q50 ≈ 1402 Hz) as compared to the aged neuron(Q50 ≈ 2722

Hz) as expected, the model results by simply lowering inhibition recreates an aged

response with a much wider bandwidth. This is most likely caused by the fact that the

model assumes co-tuned inhibition as opposed to lateral inhibition. Rerunning the

model with lateral inhibition on the falling edge changed the response shape (Figure

4.1) with a slight increase of mean square error (231.0449). Tuning width also seems
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to be a function of input driving strength as well, with higher input conductances

giving rise to wider tuning curves(Figure 4.2) for certain input conditions. Eventually,

lateral inhibition will be included in the PSO optimization variables. It should be

Fig. 4.1. This model utilizes lateral inhibition at 6964Hz to decrease
bandwidth. Mean square error = 231.0449. This demonstrates that
modulation of inhibitory BF of the FTC can alter tuning curve widths
in our model.

also noted that these results are not unique in the sense that there is a one-to-one

mapping of input parameters to response type. This can be easily mitigated by swarm

optimization by allowing the best frequency of the inhibitory input to vary slightly

about a point.
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Fig. 4.2. The effect of conductance strength on tuning bandwidth
is seen here. It is seen that at higher excitatory conductances that
tuning curves tend to widen in the model

4.2 PSO response recreation

Frequency tuning response curves were reconstructed autonomously utilizing a

new particle swarm optimization network that models winner-take-all coding schemes

seen in the visual system. While results had good fitness values, there is room for

improvement. The primary source of error stems from the fact that excitatory and

inhibitory inputs were individually aggregated. Additional inputs from other input

nuclei should further shape tuning curves, including implementing lateral inhibition

into age models to attempt to explain bandwidth changes in aged responses.

A key aspect of neuron response recreation via particle swarm optimization is

whether or not optimized results are physiologically relevant. In some cases, WTAPSO
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was allowed to run unconstrained with no physiologically adverse results. However,

some input sets resulted in neurotransmitter conductance values which were negative.

The resulting fits, however, were quite good, as can be seen in Figure 4.2. Particle

swarm optimization is a purely unconstrained optimization paradigm owing to its

derivative free nature [83]. Therefore, any constrained optimization must be con-

verted to an unconstrained problem which can be done via a variety of techniques [84].

However, Poli et al. [74] suggest that light constraints that bound maximum or min-

imum values of an agents position are acceptable with unconstrained PSO. Results

shown in Figure 4.2 demonstrate the necessity to evaluate model results for physio-

logical relevance. However, as demonstrated earlier, light bounds do seem to allow

for physiologically relevant input parameters.

Finally, in non-optimized reconstructions, aged responses were constructed from

young responses by simply lowering the inhibitory conductance value. In recreating

the aging mechanism, it is expected to see a similar decrease between young and aged

reconstructions utilizing the same inputs. Figure 4.3. displays the recreation of a

young neuron response curve using LSO and DNLL inputs. The optimized results

will be compared the aged response recreation in Figure 3.7. Transitioning between

the two resulted in a 43% change in GABA conductance strength, on order with what

was done in non-optimized reconstruction. AMPA conductance strength changed only

slightly with a percent change of −15%. NMDA conductance, however, had a fairly

drastic change of 97%. This may not completely reflect physiology and may lessen

the effect of decreased inhibition. Future tests will explore this mechanism by refor-

mulating the optimization problem to more tightly constrain excitatory conductance

values.
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Fig. 4.3. Some input sets can recreate neuron frequency tuning curves
quite well, but do so with negative neurotransmitter conductance val-
ues. This curve had a fitness function value of 0.4313.
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5. FUTURE WORK

5.1 Further Improvements to WTAPSO

Inducing competition into PSO comes with the tradeoff that many more agents

are lost, meaning that they no longer make progress towards better solutions. While

performance using this method is better in medium to high dimensions as compared

to ring topologies, these lost agents constitute an unnecessary computational load.

The next version of this method will include a grim reaper scheme, in which agents

who do not make effective progress are reinitialized and placed back into the neigh-

borhood. In theory, this will kick out the agent from local minima that has trapped

it. It will introduce more competition into the system as well, as more agents will

be viable update candidates and should improve algorithm performance further with

only slightly higher computational load.

To further improve performance, multi-pass optimization will be utilized. Input

parameters will be optimized as discussed in this work. Once these parameters are

found, they will be fixed and more excitatory and inhibitory inputs will be placed into

the cell. This mimics the convergence on many inputs into the IC and should also

allow for better response fitting as well. Finally, the WTAPSO will be extended to

a multi-objective paradigm. This will allow for more complex modeling of individual

neuron parameters, such as competing spontaneous rate parameters. As a major

source of error, optimizing input spontaneous rate, which is a function of 4 dependent

parameters, will better recreate responses and drive fitness error down.
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5.2 Multicompartment and network modeling

Our current model consists of a single compartment containing all ion channels

and point processes. While this is a good approximation to an IC neuron, several

biophysical processes, such as dendritic processing, a missed. By creating a more

realistic representation of IC neuron geometry, better predictions can be made with

regards to relevant biophysical processes.

Another aspect that the neuron model currently does not account for is the fact

that IC neurons receive feedback projection from interneurons within the IC as well

as projections from layer V of auditory cortex [18]. This network architecture can

account for more complex forms of inhibition as opposed to simple co-tuning or lateral

inhibition in the current model and can thus be used to recreate complex responses.
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A. MODEL VALUES AND PARAMETERS

The following tables are model neuron parameter values. These have been adapted

from [53]. Figure A.1 gives a basic block diagram of the model.

Fig. A.1. Block Diagram of the IC Neuron Model. The Model Re-
ceives Excitatory projections from DCN,VCN,MSO, and LSO and
inhibitory projections from DNLL and VNLL. A point process noise
current in injected into the center of the model cell.
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Table A.1: Sustained Firing Model

Parameter Value

Cell Body Diameter 32.65 um

Cell Body Length 32.65 um

Axial Resistance 150 ohm-cm

Passive Mean Conductance .19 mS

Passive Reversal Potential -70 mV

Fast Transient Sodium Mean Conductance .1 mS

Fast Transient Sodium Reversal Potential 50 mV

Delayed Rectifier Potassium Mean Conductance .1 mS

Delayed Rectifier Reversal Potential -90 mV

High Threshold Potassium Mean Conductance 0.005 mS

High Threshold Potassium Reversal Potential -90

TEA sensitive Potassium Mean Conductance 0.014 mS

TEA sensitive Potassium Reversal Potential -90 mV

Low Threshold Potassium Mean Conductance 0 mS

Low Threshold Potassium Reversal Potential -90 mV
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Table A.2: Adapting Model

Parameter Value

Cell Body Diameter 34.5 um

Cell Body Length 34.5 um

Axial Resistance 150 ohm-cm

Passive Mean Conductance .149 mS

Passive Reversal Potential -70 mV

Fast Transient Sodium Mean Conductance .2 mS

Fast Transient Sodium Reversal Potential 50 mV

TEA sensitive Potassium Mean Conductance 0 mS

TEA sensitive Potassium Reversal Potential -85 mV

Low Threshold Potassium Mean Conductance 0 mS

Low Threshold Potassium Reversal Potential -90 mV

Table A.3: O-U Noise Conductance Parameters

Parameter Value

Mean Excitatory Conductance .935 nS

Mean Inhibitory Conductance .5 nS

Excitatory Conductance Standard Deviation .8891 nS

Inhibitory Conductance Standard Deviation .5 nS

Excitatory Conductance Time Constant 2 ms

Inhibitory Conductance Time Constant 10 ms

Mean Firing Rate 2.236 Spks/s

Firing rate Standard Deviation .6162
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B. PARTICLE SWARM PARAMETERS

B.1 WTA PSO parameters

The following Table describes relevant parameters for the proposes PSO social

network. All graph analysis was performed using Gephi [85]. Average path length is

a metric which quantifies the shortest path distance from one arbitrary node in the

graph to another. The diameter of a graph describes the greatest distance from a

given node to another node. The radius is a global network measure which, looks for

the minimum max distance between two nodes. Modularity quantifies the graph’s

division into smaller subset components. Finally, the average clustering component

describes how nodes are connected in neighborhoods.

Table B.1: Swarm Social Network Parameters

Parameter Value

Avg. Path Length 2.971

Diameter 4

Radius 2

Modularity .664

Avg. Clustering Coeff .584

B.2 Ring Topology

The ring topology is a common network used in PSO [75]. Our implementation

only polled data from surrounding neighbors for update. Unless an agent is connected
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to the global leader, no direct influence is created. Topology can be seen in Figure

B.1. Graph metrics for the Ring topology are found in Table B.1

Fig. B.1. Network diagram of the ring network
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Table B.2: Swarm Social Network Parameters

Parameter Value

Avg. Path Length 5.5

Diameter 10

Radius 10

Modularity .56

Avg. Clustering Coeff 0

The ring network was updated as follows:

vi+1 = χ ∗ (vi + U(0, φ1)⊗ (pl − xi) + U(0, φ2)⊗ (pr − xi)) (B.1)

xi+1 = xi + vi+1 (B.2)

where U is a random variable between 0 and φ1,2, φ1,2, χ are constriction variables,

xi is the current position of the variable being updated, pl, r correspond to the best

position of the left and right updating agent respectively.



VITA



56

VITA

Brandon was born on August 13th, 1987 in Decatur Illinois. He received a Bach-

elor of Science in Electrical Engineering from Saint Louis University in 2012. His

senior design project, ”‘Movement Assistance Technology and Engineering Parkin-

son’s Assistance Device”’ was awarded an ASEE/NISH development award and went

on to win the award for outstanding senior design project in computer engineering.

While at SLU, Brandon conducted research in cardiac signal processing and nonlinear

biological systems under Cecil W. Thomas, PhD.

Brandon entered the department of electrical and computer engineering at Purdue

University in the Fall of 2012. During his masters, Brandon worked in the Central

Auditory Processing lab under the direction of Edward Bartlett, PhD. Brandon’s

research interests fall in the area of computational neuroscience, biomedical signal

processing, and cochlear implant stimulation paradigms. Since coming to Purdue,

Brandon has been inducted into Eta Kappa Nu, the electrical and computer engi-

neering honors society.

In Fall 2014, Brandon will begin his PhD in Biomedical Engineering under a

Ross Fellowship. He will continue his work under Edward Bartlett in the area of

computational and systems neuroscience. In his down time, Brandon plays guitar or

bass in several bands. He has three commercially available cds to his name.


	Purdue University
	Purdue e-Pubs
	Summer 2014

	Particle Swarm Optimization Using Multiple Neighborhood Connectivity And Winner Take All Activation Applied To Biophysical Models Of Inferior Colliculus Neurons
	Brandon S. Coventry
	Recommended Citation


	BC_Thesis

