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ABSTRACT 

Chacon, Rene. M.S.M.E., Purdue University, August 2014. Cylinder Block/Valve Plate 

Interface Performance Investigation through the Introduction of Micro-Surface Shaping. 

Major Professor: Monika Ivantysynova, School of Mechanical Engineering. 

 

 

Swash plate type axial piston machines are widely used positive displacement machines 

in different fields of industry ranging from aerospace, agriculture, automotive, heavy 

machinery, etc. Lubricating gaps are the main source of energy dissipation in axial piston 

machines. This type of machines have three lubricating interfaces: slipper/swash plate 

interface, piston cylinder and the cylinder block/valve plate interface. The cylinder 

block/valve plate interface being one of the most critical design elements of the machine. 

Extensive research has been done at Maha Fluid Power Research Center in Purdue 

University both to model this interface and to study the effects of micro-surface shaping 

on the solids interacting in this interface. The aim of this work was a more in-depth 

simulation-based investigation into optimizing the cylinder block/valve plate interface by 

introducing micro-surface shaping in order to achieve a fluid film thickness that 

compromises between leakage and viscous friction, maximizing the overall machine 

performance. 

 



1 

 

1
 

CHAPTER 1. INTRODUCTION 

Hydrostatic pumps and motors are positive displacement machines which are the heart of 

hydraulic systems. They are widely used in industry due to their compactness and high 

power density; some industry field examples: aeronautical, automotive, agriculture, 

heavy industries, construction, etc. Hydraulic pumps convert mechanical energy into 

hydraulic energy, and vice versa hydraulic motors convert hydraulic energy into 

mechanical energy. There are several types of positive displacement pumps, some of 

them are axial piston type, gear type, screw type, vane type, etc. 

 

Figure 1.1. Axial piston machine swash plate type cross-section. 

 

Axial piston machines of swash plate type are common positive displacement machines 

used in a wide range of hydraulic circuits. This type of machine has three lubricating 

interfaces: the slipper/swash plate, piston/cylinder, and the cylinder block/valve plate. 
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These lubricating gaps have to fulfill simultaneously a bearing and a sealing function 

under dynamic load conditions; on the other hand; they represent the main source of 

energy dissipation due to viscous friction and leakage flow. A cross-section of this 

machine is represented in Figure 1.1.  The cylinder block/valve plate interface being one 

of the most important designs elements. This interface is also present in axial piston 

machines of bent-axis type.  

 

1.1 State of the Art 

In the last few decades, a lot of research has been conducted in order to understand the 

physical phenomena in the cylinder block/valve plate interface. The previous work done 

on this interface can be classified into two main categories: experimental work and the 

development of models to predict the behavior of the interface. On the experimental 

research, Yamaguchi (1990) dealt with different valve plate designs; studied the effect of 

different designs over the leakage in the cylinder block/valve plate interface. Kim (2003, 

2005) focused in measuring the fluid film thickness between the cylinder block and the 

valve plate while using different valve plate designs and under different operating 

conditions.  Furthermore, Bergada (2011) did experimental work in measuring the fluid 

film thickness in the lubricating interface. More experimental work has been done by 

Olems (2000), Jouini (2008), and Zecchi (2013) in measuring the temperature in the solid 

bodies of the interface, since there is a close relationship with the temperature prediction 

of the interface and the fluid film thickness of the gap.  

 

In the modelling and prediction of performance of these machines as early as 1950 

Sartchenko described the various forces acting on the cylinder block without going into 

much detail of those fluid forces generated in the lubricating gap with the valve plate. 

Also, Franco (1961) derived for the first time the pressure field in the gap due to the 

hydrostatic pressure variation in radial direction, although it was only valid for points 

away from the end of the ports. More researchers have done work on the analytical 

prediction of the performance of the cylinder block/valve plate interface (Shute and 

Turnbull, 1964; Hibbert et al., 1971; Taylor and Lin, 1984; Yamaguchi, 1986 and 1990; 
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Matsumoto, 1991; Manring, 2000; Ivantysyn and Ivantysynova, 2001). These earlier 

developed models neglected many important physical effects impacting the fluid film 

behavior like micro motion, surface deformation due to pressure and thermal loading. 

Therefore these models allowed a very limited prediction of fluid film behavior and 

machine performance. In more recent years computational power has had great 

advancements and the cost has also been driven down; allowing for more complex and 

complete models to be developed and used.  

 

In 2002, Wieczorek and Ivantysynova developed the first model able to predict the fluid 

film thickness based on the assumption of force balance between external and fluid film 

forces. The model solved for the force balance between the external loads applied on the 

cylinder block and the fluid forces in the gap. They solved for the fluid film pressure field 

by solving the Reynolds and energy equation. The pressure field was generated by means 

of the hydrostatic pressure coming from the displacement chambers and the ports and 

also the hydrodynamic effects due to relative motion between the solids. This was big 

step forward towards a better calculation of the performance of the interface. 

 

Later, elasto-hydrodynamic (EHD) models were developed by Deeken (2003) and Huang 

and Ivantysynova (2003). In the last, the model developed by Wieczorek and 

Ivantysynova in 2002 was coupled with FEM commercial software to calculate the elastic 

deformations due to pressure on the cylinder block surface.  

Jouini (2008) extended on Huang’s (2003) model to be able to predict the temperatures in 

the solid bodies, by calculating the heat flux coming from the lubricating gap due to 

viscous friction. Additionally, experimental work was done to validate the model through 

the measurement of temperature on the valve plate by embedding thermocouples on the 

valve plate. The simulation results were able to match the general temperature trends 

obtained in measurement. 

 

More recently, Zecchi & Ivantysynova (2012) developed a novel fluid structure thermal 

interaction model able to predict more accurately the behavior of the fluid film. The 
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model includes different modules capturing the various physical phenomena like micro-

motion of the cylinder block, non-isothermal flow in the lubricating gap, and pressure 

and thermal elastic deformation on the solid bodies; on both, the cylinder block and the 

valve plate/end case assembly. This model was then validated with temperature 

measurements on a valve plate of a 130 cc axial piston machine (Zecchi, 2013). These 

measurements were obtained similarly as in Jouini (2008) thermocouples were embedded 

into the valve plate a few millimeters away from the running surface. Simulation results 

matched the temperature measurements closely, within a few degrees. 

 

Previous work on the micro-surface shaping has been done by Hargreaves (1990) and 

Rasheed (1998), which showed an improvement in the performance of lubricating film in 

sliding bearings. Baker and Ivantysynova (2008) predicted over a 50% reduction in total 

energy dissipation for a modified ±1 µm of amplitude and 15 waves in the 

circumferential direction. The highest reduction in energy dissipation was achieved at 

low pressure, low speed, and low displacement of a 75 cc/rev unit. The research was 

conducted using Huang’s (2003) model. The authors also manufactured a valve plate 

prototype and conducted measurements on a pump test rig. The measurements showed an 

increase of overall pump efficiency of up to 10% (Baker &Ivantysynova (2009). In 2012, 

Zecchi repeated simulations of Baker’s valve plate using his new fluid structure 

interaction model results showed the same trends however different magnitudes of 

reduction of energy dissipation. These results can be explained by effect of the elastic 

deformations due to thermal stresses on the lubrication film behavior. The elastic 

deformations due to thermal load are in the same order of magnitude as the introduced 

surface waves. Therefore a more comprehensive study of the impact of surface shaping 

on energy dissipation and load carrying ability of the fluid film is required using the new 

fluid structure interaction model developed by Zecchi.  

 

1.2 Aim of this Work 

The aim of the work presented in this thesis is to investigate the effects of micro-surface 

shaping on the cylinder block/valve plate interface utilizing the fluid structure interaction 
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model developed by Zecchi. The investigation has to be done over a comprehensive 

range of operating conditions, in order to understand the effect of the micro-surface 

waviness on the load carrying ability of the interface and the total energy dissipation of 

the lubricating gap. The trends found in this work will be useful in future design of this 

lubricating interface.  
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CHAPTER 2.  THE CYLINDER BLOCK/VALVE PLATE INTERFACE 

2.1 Introduction to Axial Piston Machines 

Axial piston machines are commonly comprised of a rotating group composed by a 

cylinder block, with finite number of piston/slippers. Each piston/slipper assembly is 

pushed against the stationary swash plate by means of a fixed hold down or a spring 

push-down system. The inclination of the swash plate causes the piston/slipper assembly 

to move axially in and out of the cylinder bore while the cylinder block is rotating. The 

fluid intake from the machine inlet port takes place when the piston moves from its inner 

dead center, i.e. the displacement chamber volume increases during the suction stroke. 

Fluid is displaced to the pump discharge port when the piston moves from its outer dead 

center to its inner dead center. This type of machines can work both as pump or motor. 

The machine runs as a motor when high pressure fluid enters the displacement chamber 

while the piston moves from its inner dead center to its outer dead center. This means that 

the machine can turn mechanical energy into hydraulic energy; or vice versa, hydraulic 

energy back into mechanical energy. 

 

2.2 Kinematics of Axial Piston Machines of Swash Plate Type 

In the following section the main parameters derived from the machine kinematics of 

swash plate type axial piston machines are described. The cross section of the machine 

can be seen in Figure 2.1 with the main coordinate system used to determine the 

machine’s kinematics.  
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Figure 2.1. Schematic of an axial piston machine (Seeniraj & Ivantysynova, 2009). 

 

The point O, references the origin of the coordinate system, it is determined by the 

intersection of the shaft axis and the plane parallel to the running surface of the swash 

plate, which intersects the centers of the ball joints between the slipper and piston. In 

Figure 2.1 the label ODP stands for the “Outer Dead Point” which is the position where 

the piston is the farthest from the cylinder bottom. Additionally, here is also where the 

machine operation transitions from the suction stroke into the delivery stroke. Similarly 

the label IDC stands for “Inner Dead Point” which is the position where the piston is the 

closest to the cylinder bottom; also, transitioning now from delivery to the suction stroke. 

 

This position of the piston is indicated with the variable Ks , along the z-axis can be 

defined as (Ivantysyn and Ivantysynova, 2001):   

 
Ks z  . (2.1) 

From Figure 2.1 follows: 

 tanz b   . (2.2) 

ODP 

 

IDP 
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And b R y  . (2.3) 

Where cosy R   . (2.4) 

 tan (1 cos )Ks R      . (2.5) 

 2 tanKH R    . (2.6) 

The piston velocity and acceleration are defined as:  

 tan sinKv R       . (2.7) 

 2 tan cosKa R       . (2.8) 

The geometric displacement:  

 2

tan
2

K
g K K

d
V z A H z R





       . 

(2.9) 

For the nominal flow: 

 
g K KQ n z A H    . (2.10) 

For a more complete derivation of the axial piston machine dynamics please refer to 

Ivantysyn and Ivantysynova (2001).  
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2.3 The Function of the Cylinder Block/Valve Plate Interface 

The cylinder block/valve plate lubricating gap is one of the more critical design elements 

in axial piston machines of swash plate and bent axis type. This lubricating interface has 

to fulfill two main functions; bearing the external loads and sealing the pressurized fluid. 

The interface requires a sufficiently stable fluid film to bear the loads, and a thin fluid 

film to seal efficiently the pressurized fluid. Additionally, the cylinder block/valve plate 

interface represents one of the main sources of energy dissipation of the machine. It is 

composed by two sources; the leakage flow through the interface and the viscous friction 

in the fluid. To minimize energy dissipation these losses have opposite requirements. To 

reduce leakage flow a low fluid film is desired, whereas to minimize viscous friction a 

thicker fluid film is preferred. 

 

Figure 2.2. Representation of the fluid film between the cylinder block and the valve 

plate in color the pressure of the fluid is represented. 
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2.4 External Loads Applied to the Cylinder Block 

The loads exerted on the cylinder block can be divided into two main categories. The first 

one being the loads directly applied to the cylinder block and the second one the loads 

related to the piston/slipper assembly. It is very important to correctly define the various 

forces that have an interaction with the cylinder block/valve plate interface in order to be 

able to understand and predict the performance of the machine. 

 

2.4.1 External Loads on the Cylinder Block 

The external forces exerted on the cylinder block are described on this section; and, they 

are represented in Figure 2.3. The cylinder is loaded simultaneously by all the pistons. 

The pressure in all the displacement chambers, the transverse forces and frictional forces, 

which will be transfer from all the pistons have to be considered. 

 

Figure 2.3. Cylinder block free body diagram. 

 

The main force applied on the cylinder block is due to the pressurized fluid in the 

displacement chamber. The pressure force FDB, pushes on the bottom of the displacement 

chamber. The surface area at the bottom of the displacement chamber AD is determined 

by the diameter of the piston and the area size of the displacement chamber opening. 
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DB Di DF p A   . (2.11) 

The surface area is defined by the geometry; piston diameter dK and displacement 

chamber opening area. 

   2

0
4

D KA d A


  . 
(2.12) 

Second, the spring force pushes down on the block in direction of the valve plate, on the 

z-axis, FFB. The spring is placed between the cylinder bore and the shaft in order to 

prevent the block from tipping under specific operating conditions. Third, the force due 

to the friction between the piston and the cylinder bore in the piston/cylinder interface, 

FTB, this force is calculated using a different model developed by Pelosi (2012). 

Furthermore, the force due to the centripetal acceleration of the piston/slipper assembly, 

FωB, acts on the radial direction of the cylinder block, defined as: 

   2

Bi K BF m R  . (2.13) 

The forces acting on the piston/slipper assembly are shown in Figure 2.4. 

 

Figure 2.4. Piston/slipper assembly free body diagram. 
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The main force acting on the piston/slipper assembly is due to the pressurized fluid in the 

displacement chamber, FDK, pushes the bottom of the piston in direction of the swash 

plate. The force due to the inertia of the piston/slipper assembly acts on the z-axis, FaK; 

and finally the force due to the friction between the piston and the cylinder bore also acts 

in the z-axis, FTK. This last force, FTK, has the same magnitude as FTB but has opposite 

sign. The total sum of these forces, FDK, FaK, and FTK, has to be reacted by the swash 

plate. Finally, the reaction force FSK of the swash plate is acting on the piston/slipper 

assembly. More forces have an impact on the piston/slipper assembly; such as: the 

viscous friction between the slipper and swash plate on the local xK direction as shown in 

Figure 2.4, FTG; and the body force due to centripetal acceleration, FωK. The latter force is 

the same force as the one represented in the Figure 2.3 by FωB. The forces related to the 

piston/slipper assembly are all transmitted to the block summed into a resultant side force, 

FRK, which is the same force represented for a single piston on Figure 2.3 as FRBi. This 

force can be defined as follows: 

 sin cos
i i iRBx K TGF F F    . (2.14) 

 cos sin
i i i iRBx SK K TGF F F F     . (2.15) 

 

The resulting forces and moments on the cylinder block can be expressed as follows: 

 

1 1

z z

BZ FB DBi TBzi

i i

F F F F
 

    . 
(2.16) 

 

1 1 1

z z z

Bx i DBi i TBzi i RByi

i i i

M y F y F z F
  

     . 
(2.17) 

 

1 1 1

z z z

By i DBi i TBzi i RBxi

i i i

M x F x F z F
  

      . 
(2.18) 
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The external forces and moments Eq. (2.16), (2.17), and (2.18) need to be balanced by 

the forces and moments generated by the fluid film pressure field: 

 
fB

sCB

F pda  . (2.19) 

 
fx

sCB

M pyda  . (2.20) 

 
fy

sCB

M pxda   . (2.21) 

 

2.5 Cylinder Block/Valve Plate Interface Fluid Film Geometry  

For the analysis of the performance of the fluid film in the cylinder block/valve plate 

interface it is necessary to define the fluid film geometry. A cylinder block and valve 

plate are shown in the Figure 2.5. This figure shows a design where both solids have a 

flat surface. 

 

Figure 2.5. Cylinder block and valve plate. 

 

In the case of a rigid model, i.e. without consideration of solid bodies, the fluid film 

geometry is described solely by the relative position of the cylinder block with respect to 

the valve plate.  This is represented in Figure 2.6, where 
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Figure 2.6. Fluid film geometry. 

 

The local coordinate system’s origin, OB, is located in the intersection of the valve plate’s 

running surface plane and the shaft axis, with the z-axis pointing towards the swash plate 

and the y-axis is pointing in the direction of the outer dead center of the machine, the x-

axis is pointed towards the high pressure port of the machine. The fluid film geometry 

can be described in any point P by the position of the cylinder block with three control 

points P1, P2, and P3, with respect to the valve plate surface (plane z=0). The geometry 

can be described as expressed by Eq. (2.22) as in Wieczorek and Ivantysynova (2002).  

 
2 3

1 2 3 1 2 3

1
( , ) sin )

3

1 1
                  cos (2 ) ( )

3 3

P P

B

P P P P P P

B

h r r h h
R

r h h h h h h
R

 



   

     

. (2.22) 

In case of considering, surface deformation due to pressure and thermal loading, as well 

as surface shaping (2.21) need to be modified in order to determine the film geometry. In 

order to capture the different possible designs, wear-in profiles and elastic deformations 

the fluid film is expressed as follows (Zecchi and Ivantysynova, 2013). 
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2 3

1 2 3 1 2 3

1
( , ) sin )

3

1 1
                  cos (2 ) ( ) ( , )

3 3
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B

P P P P P P CB

B

h r r h h
R

r h h h h h h h r
R

 

  

   

      

. (2.23) 

 ( , ) ( , )VP VPh r h r   . (2.24) 

In Eq. (2.23) and (2.24) the terms ( , )CBh r   and ( , )VPh r   were added to incorporate 

any elastic deformations due to pressure or thermal effects, and if desired micro-surface 

shaping. A representation of this is shown in were all the deformations and inclinations 

have been exaggerated for illustration purposes. 

 

Figure 2.7. Fluid film geometry with elastic deformations (Zecchi, 2013). 

 

The fluid film thickness at any point can be expressed by putting together Eq. (2.23) and 

(2.24) as follows, see (Zecchi and Ivantysynova, 2013): 

 
2 3

1 2 3 1 2 3

1
( , ) sin )

3

1 1
                  cos (2 ) ( )

3 3

                         +( ( , ) ( , ))

P P

B

P P P P P P

B

CB VP

h r r h h
R

r h h h h h h
R

h r h r

 



   

   

      



. 
(2.25) 

The cylinder block’s squeeze motion can be described by the time derivative of the fluid 

film height as in Eq. (2.26). 
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(2.26) 
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CHAPTER 3. NUMERICAL MODELS  

3.1 Overview of the Numerical Models 

In this section various numerical models that were utilized in the work done for this 

thesis are described. The models that were utilized in this simulation-based investigation 

were: a lumped parameter approach to calculate the instantaneous pressure in the 

displacement chamber, an influence matrix generator, and an in-house fluid structure 

thermal interaction model for the cylinder block/valve plate interface. 

 

3.2 Instantaneous Pressure in the Displacement Chamber  

The instantaneous pressure in each displacement chamber is a fundamental parameter in 

axial piston machines for the correct calculation of the forces exerted on the cylinder 

block. The instantaneous pressure in the displacement chamber changes continuously 

over one shaft revolution and it’s therefore a function of time; nevertheless, it can be 

assumed that the pressure is uniform in the entire displacement chamber. A lumped 

parameter approach can be applied.  

 

Figure 3.1. Instantaneous pressure calculation control volume.



18 

 

1
8
 

The pressure build-up equation can be written as: 

 
( )DCi

ri SKi SBi SGi

i

dp K dV
Q Q Q Q

dt V dt
     . 

(3.1) 

In Eq. (3.1), the left hand side is the derivative of the pressure over time, on the right 

hand side K is the bulk modulus, V is the fluid volume and dV/dt is its derivative over 

time; the various Q terms are the flow in and out of the volume, as illustrated in Figure 

3.1. Each flow is by convention positive when it enters in the control volume, since this 

would force the pressure to increase. The flow Qri is the main flow through the volume 

while the other flows labeled with QS are the corresponding leakages through the three 

lubricating gaps: the flow through the slipper/swash plate interface, QSGi; the flow 

through the piston/cylinder interface, QSKi; and finally, the flow through the cylinder 

block/valve plate interface, QSBi. 

 

Figure 3.2. Instantaneous pressure in a single displacement chamber. 

 

An example of the instantaneous pressure for a single displacement chamber is illustrated 

in the following Figure, for a 130 cc/rev unit in pumping mode at an operating condition 

of 3200 rpm, a pressure differential of 420 bar and full displacement. In the first 180° of 

the shaft revolution we can observe the delivery stroke of the piston as the pressure is 

built up over the first few degrees, and then we can observe the pressure pulsations due to 

the changing number of piston that are on the delivery stroke as they transition from one 

stroke to the next one. For more information on the lumped parameter approach to 
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calculate pDCi please refer to previous work done by Wieczorek and Ivantysynova (2002), 

Seeniraj (2009), and Klop (2010). 

 

3.3 Fluid Structure Thermal Interaction Model 

3.3.1 Overview of the Model 

The numerical model utilized to predict the behavior of the fluid film is a novel fluid 

structure thermal interaction model specifically designed for the prediction and 

calculation of the behavior of the lubricating gap in the cylinder block/valve plate 

interface; it was developed by Zecchi (2012). The model assumes full fluid film 

lubrication and accounts for all the machine kinematics, deformation of surfaces of the 

solids due to pressure and thermal loading, and micro-motion of the parts. It also 

calculates the power losses in the lubricating gap due to leakage flow and viscous friction. 

The model is composed of four main modules. The first one and most important is the 

gap flow module, where the Reynolds and the energy equation are solved. Second, an in-

house linear FEM module that solves for the elastic deformation due to the pressure field 

in the lubricating gap. Third, a finite volume module that solves for the temperature 

distribution in the 3D volume of the solids. Finally, another FEM module solves for the 

elastic deformation due to the thermal stresses. 

 

The Reynolds equation is solved to calculate the pressure field in the gap. The energy 

equation is solved to obtain the temperature distribution in the gap and additionally the 

heat flux towards the solid body surfaces. Both pressure and temperature have an impact 

in the fluid properties due to the high dependence to the pressure and temperature. These 

are used to update the fluid properties in the gap. The pressure field is fed into another 

module, an in-house linear FEM module, which using the linear superimposition 

principle using influence matrixes calculates for the elastic deformation due to pressure in 

the gap. The deflection of the bodies is then fed back into the gap flow module to update 

the fluid film geometry; this is done with every angle of rotation. Additionally, the heat 

flux calculated every degree step, in the gap module, is then used in the finite volume 

module to calculate the temperature in the solid bodies every revolution. Furthermore, 
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this temperature is then used to calculate the thermal stresses in the body. These are then 

fed to a second FEM module similar to the first to calculate the elastic deformations due 

to thermal effects. The elastic deformations due to thermal effects are fed back into the 

gap flow module to update the geometry of the fluid film. This process repeats until a 

steady state convergence is achieved. A general overview of the structure of the model is 

illustrated in the Figure 3.3: 

 

 

Figure 3.3. Fluid structure thermal interaction model (Zecchi, 2012). 

 

3.3.1.1 Work Flow 

In this section a more in-depth description of the general work flow of the fluid structure 

thermal interaction model is given. The general work flow can be observed on the block 
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diagram in Figure 3.4. The model begins with some initial value and goes in into the 

force balance loop, where it calculates the pressure in the fluid film gap by solving the 

Reynolds equation and it then calculates the external forces exerted by the kinematics of 

the machine. The model assumes full fluid film lubrication, so then the model checks for 

balance of forces between the external loads and the fluid forces in the gap, this is never 

the case on the first iteration, a multidimensional root finding Powell’s method is utilized 

to search for a different squeeze velocity that will aid in balancing the loads through 

generating more or less pressure through the squeeze motion. This goes on until some 

convergence is achieved or a maximum number of iterations have been completed.  

 

After the force balance loop, the model advances to the fluid structure interaction loop 

(EHD Convergence loop). The model uses the final pressure field obtained in the force 

balance loop and the influence matrices to calculate the elastic deformation of the solid 

bodies; the valve plate/end case assembly and the cylinder block. These elastic 

deformations are then used to update the fluid film geometry and a simple form of the 

Reynolds equation is solved. The solution of the Reynolds equation is very sensitive to 

the geometry of the fluid film so the solution will return a different fluid film which also 

corresponds to a different elastic deformation of the solid bodies. An under relaxed 

pressure field is utilized with a dynamic relaxation technique to avoid divergence. The 

model then solves the energy equation; calculates the gap temperature distribution and 

calculates the heat fluxes to the solid bodies.  

 

Both the pressure and the temperature are used to update the fluid properties. The 

squeeze velocity is used to update the new position of the cylinder block for the next time 

step, one degree of rotation. The model advances one time step (one degree of a 

revolution). If a whole revolution hasn’t been completed the model goes through the 

force balance and the fluid structure interaction loops again.   

At the end of a revolution, the thermal analysis is conducted in the finite volume method 

module; where the temperatures in the solid bodies are calculated. Later, the elastic 

deformations are calculated using the other FEM module. The new elastic deformations 
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and temperature distribution in the solid bodies is fed back into the gap module; starting 

with the force balance loop and following the fluid structure interaction loop. This 

process goes on for several iterations until the whole simulation has reached convergence. 

 

Figure 3.4. Work flow of the model (Zecchi, 2013). 

 

Further details of the different schemes represented in the block diagram in Figure 3.4 

can be found in Zecchi (2013).  
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3.4 The Gap Module  

In this section, the finite volume method module is used to solve a non-isothermal fluid 

flow which is governed by both the Reynolds and the energy equation is described. This 

module calculates the pressure and temperature distribution in the lubricating fluid film. 

These parameters are crucial for the correct prediction of the performance of the cylinder 

block/valve plate interface.  

 

3.4.1.1 The Reynolds Equation 

First, the Reynolds equation is derived from two main equations: the Navier-Stokes 

equation and the Continuity equation. The final derivation of the Reynolds equation as in 

Zecchi and Ivantysynova (2013): 

  3 31 1 1

12 12 2

CB
hhh p h p h

r r
r r r r t

 
  

     

         
         

           
. (3.2) 

On the left hand side of the equation model the hydrostatic component through the 

diffusion from the boundaries. The terms on the right hand side are the source in the 

Reynolds equation they include the physical wedge, the translational squeeze and the 

normal squeeze component. 

 

3.4.1.2 The Energy Equation 

The energy equation is solved to obtain the temperature distribution of the fluid film 

between the cylinder block and the valve plate; the temperature determines the fluid 

physical properties; i.e. density, viscosity, bulk modulus, etc. Additionally, the energy 

equation defines the heat flux that is transmitted to the solid bodies from the fluid film.  

The energy equation can be expressed as follows as in Zecchi (2013): 

 
V d

p p

T T
c c

 

 

      
 

. (3.3) 

The Eq. (3.3) contains the source term d , which is the mechanical dissipation function. 

It expresses the heat power generated per volume unit due to the viscous shear of the 
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fluid in the thin fluid film. It is assumed that all the work to change the fluid element 

shape at constant volume is all converted to heat. It can be expressed by Eq.(3.4).  

 2 2 2 2
4

3
d

u v u v

z z r r

        
           

        
. (3.4) 

For the full derivation of Eq.(3.4) please refer to Zecchi (2013). 

 

3.4.1.3 Calculation of the Total Energy Dissipation 

The mechanical dissipation function, described by Eq. (3.4), expresses the amount of 

power per unit volume that is dissipated into heat in the fluid flow; therefore the 

integration of Eq. (3.4) throughout the volume V of clearance determines the total power 

dissipated 

 

V

l dP dv  . (3.5) 

Eq. (3.5) also includes the power loss due to leakage flow. The mechanical energy in the 

pressurized fluid is dissipated into heat, when it leaks through the gap. The leakage flow 

can be calculated by integrating the velocity field of the film at the lateral boundaries.  

The velocity is expressed in Eq. (3.4). 
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. (3.6) 

In Eq.(3.6) u and v represent the radial and circumferential components, respectively. 

Most of the leakage in the cylinder block/valve plate interface comes from u, the radial 

component, due to the Poiseuille flow. The power loss related to the leakage can be 

calculated, as shown in  

 
,l s SBP Q p  . (3.7) 

The mechanical loss can be calculated as the difference of the total power dissipated 

Eq.(3.6) and the leakage loss Eq. (3.7). 
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3.5 Mesh Generation 

Two main types of meshes were used in the numerical models: the fluid mesh, used to 

solve the Reynolds and energy equation in the gap; and the solid mesh, used to calculate 

the temperature distribution of the bodies and to generate the influence matrices. 

 

3.5.1 Fluid Mesh 

The fluid mesh as mentioned previously was used to solve the Reynolds and energy 

equation. The correct definition of the mesh is important since the precision of the model 

depends on it. The generation of the fluid mesh represents a complex problem, since the 

geometry of the fluid film is defined by two different geometries: the cylinder block 

sealing surface and the valve plate running surface. Additionally, the geometry of the 

fluid film which is in contact with the solids is constantly changing over one shaft 

revolution due to the nature of the kinematics of the machine. As the cylinder block 

rotates over the valve plate, the geometry is changing as the displacement chamber 

openings keep rotating around the shaft axis. An example of the fluid domain for each 

solid is shown Figure 3.5; the intersection of the domain in both surfaces defines the fluid 

film computational domain. The definition of these areas is achieved via the use of CAD 

files in the STL format.  

 

As shown in Figure 3.5, the grid size is too coarse to correctly define the fluid film 

domain. The solution, when calculating the force due to the pressure field in the gap, is to 

interpolate the pressure to a different grid which covers exactly the interface’s area. As 

shown in the figure below: 
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Figure 3.5. Fluid mesh grid, on the left the cylinder block’s fluid domain is shown in 

yellow on the right the valve plate’s fluid domain (Zecchi, 2013). 

 

 

Figure 3.6. Fluid mesh with pressure representation on the left (a), interpolated pressure 

field to grid covering the fluid film area on the right (b) (Zecchi, 2013). 
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3.5.2 Solid Mesh & Influence Matrix Generation 

The solid mesh also represents an important input to the numerical model. It is used to 

generate the influence matrices which are then used to calculate online the deformation 

due to pressure; and also used to calculate the temperature in the solid bodies. For the 

generation of the solid meshes, commercial software HyperMesh Altair was utilized. 

Simple tri-elements for the 2D elements were used to define the surfaces. Tetrahedrons 

were used for the 3D elements due to their simplicity it made it easier to mesh the solids. 

Example of a 3D mesh shown in  

 

Figure 3.7. Solid mesh for the cylinder block. 

 

As mentioned this mesh is utilized to generate the influence matrices necessary to 

calculate the elastic deformation due to pressure on the fluid structure interaction model. 

Each of the faces that form part of the sealing gap, on the cylinder block or the valve 

plate, is loaded with a reference pressure of 100 bar including the displacement chambers, 

and suction and delivery ports. There are two possible options for the physical constraint 

of the solid body; fixed constraint, or inertia relief. The deformation for all the 3D 

tetrahedral elements is calculated but only the deformation in the z-direction of the 

elements conforming the sealing land are stored and save in an influence matrix. Later, 

when in the fluid structure interaction loop, these influence matrices are used to calculate 

the deformation of the sealing surface of the solid body by an off-line calculation method 

based on the superimposition principle and defines the deformation of the solid parts 
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through a certain number of influence matrices. An example of the influence matrices 

generated is shown in the following Figure 3.8. The deformation in the lubricating gap is 

shown for two cases, on the left a reference pressure is applied to a single face that 

composes the sealing surface of the lubricating gap, and on the right the deformation due 

to a reference pressure applied in the displacement chamber. 

 

 

Figure 3.8. Deformation due to the reference pressure of 100 bar applied on an element 

face on the sealing land (a) and in one of the displacement chambers (b) (Zecchi, 2013). 
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CHAPTER 4. INVESTIGATION OF SURFACE SHAPING 

In this section, the parameters and operating conditions for the simulation-based 

investigation are described. Some of these are the geometry definition of the sinusoidal 

wave, the selected operating conditions, and some boundary conditions. 

 

4.1 Sinusoidal Wave Geometry 

A micro-surface shaping of the running surface of the valve plate is proposed in this work. 

The sinusoidal wave is introduced in the circumferential direction of the valve plate. The 

following figure defines the coordinate system that is used in to define the waved surface. 

 

Figure 4.1. Coordinate system used to define micro-shaping. 

 

The wave has three main parameters that define its geometry: 

1. Amplitude: The amplitude is self-explanatory; it is the amplitude of the sine wave. 

This is illustrated in Figure 4.2
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Figure 4.2. Waved surface of valve plate (Scaled x1000) (a); amplitude of sinusoidal 

wave on (B) (Amplitude = 3 µm). 

 

2. Frequency: The frequency refers to the number of waves in the circumferential 

direction. 

3. Offset: The offset defines the starting point of the wave in the valve plate. In 

previous research (Baker, 2008; Zecchi, 2012) the sine wave always started at the 

outer dead point (φ=0°). When the offset is set to be 0° this means the wave will 

start on the point P1 represented in Figure 2.5Figure 4.3. 

The surface geometry of the valve plate is defined, as follows: 

 sin( ( ))VPh A f offset    . (4.1) 

One more example of the waved pattern on the valve plate is shown on the following 

Figure, where a view from the top (top) and a lateral view on the (bottom). 
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Figure 4.3. Waved pattern on valve plate, 2µm amplitude, frequency of 15 waves and 

offset of 9°. 

 

4.2 Waved Profiles Selected   

For this work, various designs were selected to identify the potentials of the micro-

surface shaping. Moreover, in order to be able to study the effects of the design 

parameters the simulations were run using different combinations of the parameters.  The 

amplitude was varied from 1-4 µm with a step of 1 µm. The frequency was varied from 

10 to 30 in steps of 5. Finally, the offset was varied in percentage; a full sinusoidal wave 

is of different length in degrees depending on the frequency; i.e. for a frequency of 10 a 

full sinusoidal wave occurs in 36° (an offset of 18° would be corresponding to a 50%) 

whereas for a frequency 15 the sinusoidal wave occurs in only 24° (an offset of 12° 

corresponds to a 50%). The offset was varied from 0-75% in steps of 25%. 

 

 A list of the various waved surface selected for the simulation-based investigation are 

shown in Table 4.1.  
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 Table 4.1. Waved surface parameter conditions. 

Design No. Amplitude [µm] Offset [%] Frequency [-] 

1 1 0 10-30 

2 1 25 10-30 

3 1 50 10-30 

4 1 75 10-30 

5 2 0 10-30 

6 2 25 10-30 

7 2 50 10-30 

8 2 75 10-30 

9 3 0 10-30 

10 3 25 10-30 

11 3 50 10-30 

12 3 75 10-30 

13 4 0 10-30 

14 4 25 10-30 

15 4 50 10-30 

16 4 75 10-30 

 

4.3 Operating Conditions 

In the simulation-based investigation a number of simulations were run using several 

selected operating parameters of the machine in pumping mode. The parameters that 

define the operating conditions considered in this work are the pressure differential in bar, 

Δp, rotational speed in rpm, n, and the machine’s displacement, β, expressed as a 

percentage. These operating conditions are listed in Table 4.2. . The fluid selected for 

these simulations was hydraulic oil with viscosity grade 32.  
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Table 4.2. Operating conditions. 

OC No. Δp [bar] n [rpm] Tinlet 

[°C] 

Toutlet 

[°C] 

Tcase 

[°C] 

β [%] 

1 50 1000 52 54 60.5 20 

2 50 1000 52 53 63 100 

3 420 1000 52 66 85 20 

4 420 1000 52 60.5 80 100 

5 50 3200 52 54 81 20 

6 50 3200 55 57 83 100 

7 420 3200 52 65 87 20 

8 420 3200 52 59 84 100 

 

These operating conditions were selected since they are the most extreme operating 

conditions for a selected 130 cc/rev axial piston machine unit. The main objective of this 

investigation study how the load carrying ability of the cylinder block/valve plate 

interface can be improved while simultaneously reducing the energy dissipation through 

a micro-surface shaping. The operating conditions simulated are represented in Figure 4.4. 
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Figure 4.4. Operating conditions. 

 

4.4 Boundary conditions 

The numerical models described in Chapter 3 require many different boundary conditions. 

These different boundaries will be described in this section. Some of the boundaries that 

need to be defined are the ones needed to solve the Reynolds equation in the lubricating 

gap, others the boundary conditions for the elastic deformation analysis of the solid 

bodies; both for the thermal and pressure problem.  

 

4.4.1 Gap Flow Boundary Conditions 

In the gap flow module the pressure boundary conditions need to be defined correctly in 

order for the correct calculation and prediction of the behavior of the cylinder block/valve 

plate interface. This is due to the fact that the Reynolds equation represents a full 

Dirichlet problem, where the pressure boundaries have to be defined.  
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Figure 4.5. Pressure boundary conditions for the Reynolds equation (Zecchi, 2013). 

 

4.4.2 Influence Matrix Boundary Conditions 

Moreover, when generating the influence matrices for the elastic deformation due to 

pressure the pressure boundary conditions have to be defined in the 3D volumes defining 

the solid. An example of the pressure boundaries for the generation of the influence 

matrix is shown in Figure 4.6. 
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Figure 4.6. Pressure boundary conditions to define IMs. 

 

4.4.3 Thermal Problem Boundary Conditions 

The boundary conditions are of a high significance for the thermal problem as well. Since, 

this will determine to which surface faces to apply different conditions: 

1. Constant temperature boundary condition (Dirichlet boundary): Utilized only 

when the boundary condition temperature is known. This boundary was not 

utilized in this investigation. 

2. Mixed boundary condition: In this boundary condition a temperature and a 

convection coefficient at infinite are specified for this boundary condition. This is 

typically applied to all the external surfaces of the cylinder block, since we know 

the operating rotational speed and temperature, the convection coefficient can be 

estimated from literature or some CFD approach. (Pelosi, 2012; Zecchi, 2013) 
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3. Neumann boundary condition: The normal gradient of temperature at the 

boundary cell is given. The average heat flux is calculated from the energy 

dissipated in the gap clearance and applied to the surface in contact.(Pelosi, 2012) 

 

In the following figure the boundary conditions that were used are represented. For more 

information on the calculation of the convection coefficient please refer to Zecchi (2013), 

since it is out of the scope of this work. Also the temperatures that were used together 

with the mixed boundary condition were taken from measurements. 

 

 

Figure 4.7. Thermal boundaries on the volume mesh. 
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CHAPTER 5. BASELINE SIMULATION RESULTS ANALYSIS 

5.1 Cylinder Block/Valve Plate Interface: Analysis of Gap Flow Results 

In this section, the simulation results for the standard design of 130 cc/rev unit in 

pumping mode are presented. The simulations were run for eight different selected 

operating conditions as described by Table 4.2. The results from these simulations will be 

shown and described in detail. In Figure 5.1, an example of the simulation results 

showing the fluid film thickness in the cylinder block/valve plate interface. The figure 

uses the same local coordinate described in section 2.5, where the fluid film geometry is 

described.  

 

Figure 5.1. Example of the pressure field (a), and the fluid film thickness (b). 

 

In Figure 5.2, simulation results shown are for operating conditions 1 and 2 defined in 

Table 4.2 (n = 1000 rpm, Δp=50 bar, β=20% and n = 1000 rpm, Δp=50 bar, β=100%, 

respectively). The low displacement results are shown on the top and full displacement 

results on the bottom. On the left, a 3D representation of the pressure is shown; and, on 

the right, the normalized fluid film thickness. The film thickness were normalized for all 
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presented results in thesis using time average of the maximum fluid film thickness of the 

baseline design. 

 

 

Figure 5.2. 3D Representation of the fluid film pressure (left) and thickness (right) for 

n=1000 rpm, Δp=50 bar, β=20% (top) and n=1000 rpm, Δp=50 bar, β=100% (bottom). 

 

In Figure 5.2, shows the results obtained from the model. Full and low displacement 

operating condition results exhibit similar results in terms of pressure fields and fluid film 

thickness. It is observed that the fluid film has difficulties carrying the loads exerted on 

the cylinder block. The pressure distribution across the fluid film is represented; the 

pressure field is dominated by the hydrostatic pressure diffused into the gap from the 

displacement chambers and ports. Moreover, the pressure due to hydrodynamic effects 

comes mostly from the squeeze motion of the block. Extremely low fluid film thicknesses 
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are present on the high pressure side of operation of the interface, which corresponds to 

the high pressure side near the outer dead point. This can be well explained by the tipping 

moments trying to rotate the block in the positive direction of the x- and y- axis. The 

moment on the x-axis, MBx, is much larger in magnitude which is the reason of the lower 

fluid film thickness on the high pressure side.  

 

 

Figure 5.3. 3D Representation of the fluid film pressure (left) and thickness (right) for 

n=1000 rpm, Δp=420 bar, β=20% (top) and n=1000 rpm, Δp=420 bar, β=100% (bottom). 

 

Figure 5.3 shows simulation results for operating conditions 3 and 4 (n = 1000 rpm, Δp = 

420bar, β = 20% and n = 1000 rpm, Δp=420bar, β=100%, respectively). The pressure 

field is also dominated by the pressure diffusion from the displacement chambers and 

ports. The fluid film thickness is sufficiently thick and seems to have an adequate load 

carrying capacity at this operating point. The fluid film is much thicker overall than in the 
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previous operating condition (low pressure). An overall good behavior of the fluid film at 

this operating condition. 

 

 

 

Figure 5.4. 3D Representation of the fluid film pressure (left) and thickness (right) for 

n=3200 rpm, Δp=50 bar, β=20% (top) and n=3200 rpm, Δp=50 bar, β=100% (bottom). 

 

Figure 5.4 shows simulation results for operating conditions 5 and 6 (n = 3200 rpm, 

Δp=50 bar, β=20% and n = 3200 rpm, Δp=50 bar, β=100%, respectively). The pressure 

field has pressure spikes near the areas of localized low fluid film. The thin fluid film is 

not able to carry the loads. Additionally, the fluid film thickness is high on the inner edge 

(inner radius) and extremely low in some point on the outer edge (outer radius). Poor 

performance of the cylinder block/valve plate interface at these operating conditions. 
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Figure 5.5. 3D Representation of the fluid film pressure (left) and thickness (right) for 

n=3200 rpm, Δp=420 bar, β=20% (top) and n=3200 rpm, Δp=420 bar, β=100% (bottom). 

 

Figure 5.5 shows simulation results for operating conditions 7 and 8 (n = 3200 rpm, Δp = 

420bar, β = 20% and n = 3200 rpm, Δp = 420bar, β = 100%, respectively). The pressure 

field is also dominated by the pressure diffusion from the displacement chambers and 

ports. Pressure spikes are present on the outer dead center (positive y-axis), 

corresponding to low fluid film. The fluid film thickness is extremely low close to the 

outer dead point; besides this the fluid seems to be able to carry the load without 

problems.  

 

More results have been illustrated in order to have a full comprehension of the 

performance of the interface at such operating conditions. The leakage and friction losses 
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were plotted in the following figures. The leakage values for all presented results in this 

thesis were normalized using the highest average leakage of the baseline design. 

Similarly, the friction torque losses were normalized using the highest friction torque loss 

from the baseline design. 

 

At operating condition 1, it is observed a very low leakage flow, which corresponds to 

the previous figures shown in Figure 5.2. An extremely low fluid film thickness was 

shown. Simultaneously the torque losses are quite high. 

 

Figure 5.6. Normalized leakage (left) and normalized friction losses (right) for n=1000 

rpm, Δp=50 bar, β=20% (operating condition 1). 

 

Operating condition 2 shows similar results to the ones seen in the previous figure. Low 

leakage and high friction loss both correspond to the fact that an extremely low fluid film 

thickness is observed at both operating conditions, also shown in Figure 5.2. 
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Figure 5.7. Normalized leakage (left) and normalized friction losses (right) for n=1000 

rpm, Δp=50 bar, β=100% (operating condition 2). 

 

In the following, operating condition 3, shows a higher leakage flow and a much lower 

friction loss. These results can be well explained with results shown previously on Figure 

5.3, the fluid film presented a more uniform and thicker thickness over the whole 

lubricating gap which results in a good load carrying ability; and simultaneously, 

moderate leakage and low friction torque loss. 

 

Figure 5.8. Normalized leakage (left) and normalized friction losses (right) for n=1000 

rpm, Δp=420 bar, β=20% (operating condition 3). 

 

Next operating condition 4 shows a moderate leakage flow and low friction loss, similar 

to operating condition 3. These results can be well explained with results shown 

previously on Figure 5.3, the fluid film also presented a more uniform and thicker 
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thickness which results in a good load carrying ability; and simultaneously, moderate 

leakage and low friction torque loss.  

 

 

Figure 5.9. Normalized leakage (left) and normalized friction losses (right) for n=1000 

rpm, Δp = 420 bar, β = 100% (operating condition 4). 

 

Operating condition 5, shows higher leakage. This can be explained by the fact that the 

fluid film thickness is thicker on the inner edges (or inner radius) as shown in Figure 5.4. 

Also, high friction torque losses are observed, again explained in the same Figure 5.4 

where low fluid film thickness is observed in the outer edge (or outer radius). This fluid 

film geometry or behavior can be explained by the thermal deformations of the solids 

(explained in the following section). 

 
Figure 5.10. Normalized leakage (left) and normalized friction losses (right) for n=3200 

rpm, Δp = 50 bar, β = 20% (operating condition 5). 
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Similarly as in the previous simulation results, but now for operating condition 6, 

relatively high leakage is observed. The leakage is explained by the thick fluid film in the 

inner radius shown in Figure 5.4. The friction torque loss is lower than the one shown for 

operating condition 5, but is still quite high. 

 

Figure 5.11. Normalized leakage (left) and normalized friction losses (right) for n=3200 

rpm, Δp = 50 bar, β = 100% (operating condition 6). 

 

Following, operating condition 7 and 8 show the highest leakages of all of them. Two 

main reasons, a thicker fluid film and higher pressure differential than operating 

condition 5 and 6. The friction torque loss is moderate relatively due to the fact that the 

operating condition pressure differential is higher. 

 

Figure 5.12. Normalized leakage (left) and normalized friction losses (right) for n=3200 

rpm, Δp = 420 bar, β = 20% (operating condition 7). 
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Figure 5.13. Normalized leakage (left) and normalized friction losses (right) for n=3200 

rpm, Δp = 420 bar, β = 100% (operating condition 8). 

 

From the previous results, it can be concluded that the fluid film thickness and 

performance is tightly related to the shaft rotational speed and the pressure differential, 

whereas not so much on the machine’s displacement.  

 

In the following figure the total energy dissipated from the interface was normalized with 

respect to the theoretical power delivered by the axial piston machine at different 

operating conditions (labeled in the x-axis; the numbering corresponds to Table 4.2. 

Operating conditions). 
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Figure 5.14. Normalized total energy dissipated with respect to theoretical power 

delivered. 

 

From this graph, it is clear that the total energy dissipated is higher at the lower pressure 

differential and lower displacement operating conditions, when compared to the 

theoretical power delivered. This last figure corresponds to the fact that the overall piston 

machine efficiency drops at lower pressures. The potential to improve the overall 

machine’s performance is significant, possible through improving the performance of the 

cylinder block/valve plate interface.  Is important to note, the cylinder block/valve plate 

interface is not the only source of power loss. Other main contributors exist such as the 

energy dissipated in the two other lubricating interfaces: piston/cylinder and 

slipper/swashplate interface.  

 

5.2 Cylinder Block/Valve Plate Interface: Elastic Deformations Effects 

In this work, elastic deformations of the solids were considered through the use of the 

model developed by Zecchi (2012). The elastic deformations of the solids due to pressure 
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and thermal loading have a great impact on the general performance of the fluid film. 

They directly impact the fluid film geometry.  

 

 

Figure 5.15. Example elastic deformation of the solids; cylinder block (top) and valve 

plate (bottom) (Scaled x1000). 

 

In Figure 5.15, an example deformation of the solids due to pressure and thermal effects 

are shown. It is seen the large deflection that the solids reflect on the lubricating surfaces. 

In Figure 5.16, these deformations on the surfaces have been broken down into: thermal 

deflections and pressure deformations. 
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Figure 5.16. Elastic deformations of the solids due to pressure and thermal effects. 

 

Figure 5.16 shows a representation of the deformation of the solids at a specific operating 

condition. The deflections on the surfaces are in the same order of magnitude than the 

fluid film thickness itself. In the case of pressure deformation it is beneficial for the 

performance of the cylinder block interface at some operating conditions. It is beneficial 

for two main reasons: 

1. Additional pressure generation due to hydrodynamic effects thus increased load 

carrying capacity. This extra hydrodynamic effect is explained by how the 

running surface of the cylinder block deforms. The cylinder block has pressurized 

fluid acting on the sealing land and inside the displacement chamber. The 

pressure in the displacement chamber makes the surface deform in a waved 

pattern shape, this induces extra hydrodynamic effects due to the wedge effect. 

The pressure deformation of the cylinder block is shown in Figure 5.17 (b). These 

deformations are the relative deformations of the solids in the z-direction, the 

deformations are relative to the undeformed surface of the valve plate (plane z=0) 
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in the case of the cylinder block the deformation is in the + z-direction and in the 

case of the valve plate the deformation is in the – z-direction. 

 

Figure 5.17. Pressure deformations; the cylinder block (a) on the left and the valve plate 

(b) on the right (Scaled x1000). 

 

2. The pressure deformation in both the cylinder block and valve plate is observed in 

Figure 5.17. It is clear that the surface deforms concavely, thus increasing the load 

carrying capacity of the interface. Moreover, the 3D representation of the fluid 

film between these two surfaces is represented in Figure 5.1, where the concavity 

of the surfaces is confirmed. 

 

The thermal effects are also of high significance. The solution of the Energy equation is 

used to calculate the temperature distribution in the gap and calculate an average heat 

flux transmitted from the gap towards the contacting surfaces of the solid bodies; cylinder 

block and valve plate. This information is in turn used to calculate the distribution of the 

temperature in the bodies. An example of this temperature distribution is shown in the 

following figure. 
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Figure 5.18. Temperature distribution of cylinder block and valve plate solid bodies. 

 

Figure 5.18 shows the temperature distribution of the solid bodies composing the cylinder 

block/valve plate interface. It is shown that the hot spots are clearly on the surfaces 

contacting the lubricating film. These temperature gradients in the solids introduce 

thermal stresses into the solid bodies and cause them to deflect elastically.  

 

Examples of such elastic deformations due to thermal effects are shown in Figure 5.19 

and Figure 5.20, where the temperature and thermal deflection are shown for the valve 

plate and the cylinder block, respectively.  

 

Figure 5.19. 3D Representation of the deformation of the solid bodies (Scaled x1000); 

temperature distribution represented in (a) and thermal deflection magnitude in (b). 
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Figure 5.20. 3D Representation of the deformation of the solid bodies (Scaled x1000); 

temperature distribution represented in (a) and thermal deflection magnitude in (b). 

 

In the figures above, thermal deflections are explained by the two predicted temperature 

fields of the cylinder block, and valve plate/end case assembly. The temperature profile 

of the valve plate is typically non-symmetric; the region at high temperature is related to 

the low fluid film region location. A convex deformation is observed on the valve plate 

due to the geometry of the valve plate and end case, thus reducing the load carrying 

capacity of the gap. The cylinder block is characterized by an axisymmetric temperature 

profile, where the higher temperature region is over the sealing land. The deformation is 

concave about the shaft axis, axisymmetric; it deforms the fluid film in the same order of 

magnitude as the fluid film thickness itself. It is critical to account for thermal effects for 

the correct prediction of the fluid film thickness and shape, in order to predict the 

behavior of the thin fluid film accurately.  
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CHAPTER 6. MICRO-SURFACE SHAPING ON THE VALVE PLATE 

In this section, complete analyses of micro-surface shaping effects on the cylinder 

block/valve plate’s interface are described. First, the simulation results for the best design 

are shown. Second, in the parameters used to define the sinusoidal wave on the valve 

plate’s running surface were studied; varying amplitude, frequency (number of waves), 

and offset (starting point). The purpose of this section is to understand the effects of the 

micro-surface shaping on the cylinder block/valve plate’s interface performance. the 

overall simulation results will be analyzed. Finally, the simulation results will be divided 

into three more sections; the effects of the amplitude, the frequency and the offset on the 

performance of the interface. 

 

6.1 Results for a 2µm Amplitude, Frequency 15 and 75% Offset Profile 

The base design of 2µm amplitude, frequency 15 and 75% offset, was chosen to illustrate 

the simulation results of this investigation. It presents the best compromise between 

reduction in total energy dissipation at low pressure operating conditions, and a moderate 

increase in leakage at higher pressure operating conditions.  

 

In Figure 6.1, a 3D representation of the pressure and fluid film thickness are shown; on 

the left hand side the pressure and on the right the fluid film thickness values. The figures 

on the top are the results for the standard design valve plate, and the results for the micro 

shaping for design 2 µm amplitude, frequency of 15 and 75% offset are shown in the 

bottom. These simulation results are for operating condition 1 (n=1000 rpm, Δp=50 bar, 

and β=20%) defined in Table 4.2. Various features represented in this figure are 

significant for the performance of the interface. In Figure 6.2 (top-left), the pressure in 

the standard design is presented and in (top-right) the fluid film thickness is illustrated, 
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the fluid film thickness as seen is presenting an extremely low fluid film thickness. This 

condition can lead to high torque losses and possible contact solid to solid, which could 

cause wear-in or catastrophic failure. On the other hand, the representation for the micro-

surface shaping results are presented in Figure 6.1 on the bottom. The effect of the waves 

is clear; hydrodynamic pressure is built in in the gap. Additional pressure spikes are 

observed at every location where it coincides with the peak of a wave, due to the wedge 

effect. The additional hydrodynamic pressure built in the gap results in an increase of the 

load carrying ability of the interface; thus increasing the fluid film thickness throughout 

the gap. 

 

 

Figure 6.1. Comparison between standard and micro-shaping (2 µm, frequency 15, and 

75% offset) at n=1000 rpm, Δp=50 bar, and β=20%; pressure (left) and fluid film 

thickness (right). 

 



56 

 

5
6
 

The results for operating condition 1 are shown in Figure 6.1. A thicker fluid film is 

observed for the waved valve plate resulting in lower friction torque losses and a 

moderate increase in leakage. 

 

Figure 6.2. Leakage flow and friction torque loss for the standard and micro-shaping 

design (1000 rpm, 50 bar and 20% displacement). 

 

In Figure 6.2, the leakage flow and torque loss predicted at this operating condition (1000 

rpm, 50 bar, and low displacement) are represented, the standard design (top) and the 

micro-surface shaping design (bottom), respectively. It is clear that the fluid film is 

having problems carrying the load exerted on the cylinder block, thus experiencing 

extremely low fluid film thickness and high friction torque losses. This is why we see 
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such disturbances on the torque loss. On the other hand, the waved design shows a very 

smooth friction torque loss, which reflects an increased load carrying ability of the fluid 

film. A total of 40% reduction in total energy dissipation is achieved for the interface. 

 

 

Figure 6.3. Comparison between standard (top) and micro-shaping (bottom, 2 µm, 

frequency 15, and 75% offset) at n=1000 rpm, Δp=50 bar, and β=100%; pressure (left) 

and fluid film thickness (right). 

 

In Figure 6.3, the pressure and fluid film thickness are represented for the standard (top) 

and the micro-surfaced design (bottom). This operating condition, n=1000 Δp=50bar 

β=100%, shows a similar behavior as the previous operating condition discussed. Both 

show a significant increase in load carrying capacity due to the additional hydrodynamic 
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pressure built up in the gap. Simultaneously, the fluid film becomes thicker and the 

friction torque losses are significantly reduced.  

 

Figure 6.4. Leakage flow and friction torque loss for the standard and micro-shaping 

design (1000 rpm, 50 bar and 100% displacement). 

 

In Figure 6.4, the leakage flow and torque loss predicted at this operating condition (1000 

rpm, 50 bar, and low displacement) are represented, the standard design (top) and the 

micro-surface shaping design (bottom), respectively. The increase in load carrying ability 

increased the fluid film thickness, thus reducing the high friction torque losses. On the 

top-right figure, disturbances on the torque loss are visible due to the extreme low fluid 

film thickness. On the other hand, the waved design shows a very smooth friction torque 
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loss, which reflects an increased load carrying ability of the fluid film. A decrease in total 

energy dissipated in the gap of 34% relative to the baseline design was achieved. 

 

Figure 6.5. Comparison between standard (top) and micro-shaping (bottom, 2 µm, 

frequency 15, and 75% offset) at n=1000 rpm, Δp=420 bar, and β=20%; pressure (left) 

and fluid film thickness (right). 

 

Figure 6.5, shows the simulation results for operating condition 3 (n=1000 rpm, Δp=420 

bar, and β=20%). Pressure (left) and fluid film thickness (right) represented for both 

designs; the standard and micro-surfaced valve plate. Additional hydrodynamic pressure 

built up in the gap is present as well. In this case, increased fluid film thickness results in 

an increase of energy dissipated due to leakage flow in the gap.   
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Figure 6.6. Leakage flow and friction torque loss for the standard and micro-shaping 

design (1000 rpm, 420 bar and 20% displacement). 

 

Figure 6.6, shows a slight decrease in friction torque loss and an increase in leakage flow. 

In this case, the increase in energy dissipated due to leakage flow overcomes the 

reduction in energy dissipation due to reduced viscous friction; thus increasing the total 

energy dissipated in the thin fluid film by 23% relative to the baseline design. 

 

 



61 

 

6
1
 

 

Figure 6.7. Comparison between standard (top) and micro-shaping (bottom, 2 µm, 

frequency 15, and 75% offset) at n=1000 rpm, Δp=420 bar, and β=100%; pressure (left) 

and fluid film thickness (right). 

 

In Figure 6.7, the simulation results for operating condition 4, defined in Table 4.2, are 

shown. As in previous results the additional hydrodynamic pressure due to the waves is 

present. A slight increase in fluid film thickness is present as well. 
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Figure 6.8. Leakage flow and friction torque loss for the standard and micro-shaping 

design (1000 rpm, 420 bar and 100% displacement). 

 

Figure 6.8, shows the simulation results in terms of leakage flow (left) and friction torque 

loss (right). The power losses due to the leakage flow overpass the reduction in energy 

dissipation due to a reduced friction torque loss. This results in an overall increase of total 

energy dissipation of 22% relative to the original design.  
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Figure 6.9. Comparison between standard (top) and micro shaping (bottom, 2 µm, 

frequency 15, and 75% offset) at n=3200 rpm, Δp=50 bar, and β=20%; pressure (left) and 

fluid film thickness (right). 

 

In Figure 6.9, the simulation results for operating condition 5 are shown. The additional 

hydrodynamic pressure built up in the fluid film is increasing the load carrying capacity 

of the interface. These are shown as additional spikes on the bottom-left figure, which 

correspond to the location of the wave in the valve plate. It results in a much more stable 

fluid film. The extreme low fluid film thicknesses observed in the top-right figure are 

significantly reduced, compared to the bottom-right figure. 
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Figure 6.10. Leakage flow and friction torque loss for the standard and micro-shaping 

design (3200 rpm, 50 bar and 20% displacement). 

 

Figure 6.10, shows the leakage flow and torque loss corresponding to rotational speed of 

3200 rpm, 50 bar and low displacement (20% β). At this operating condition the benefits 

of the micro-surfaced pattern on the valve plate reduce both the leakage flow and the 

friction torque loss in the interface. This is explained by the fluid film geometry of the 

baseline (Figure 6.9). It shows a thick fluid film in the inner radius, which corresponds to 

a high leakage flow. Furthermore, an extremely low fluid film thickness is shown in the 

outer radius, which would generate high friction torque loss. The increase of load 

carrying capacity of the gap creates a better fluid film geometry which leaks less and 
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generates less viscous friction. These effects result in a reduction of total energy 

dissipation of 8% in the interface, compared to the baseline design. 

 

 

Figure 6.11. comparison between standard (top) and micro shaping (bottom, 2 µm, 

frequency 15, and 75% offset) at n=3200 rpm, Δp=50 bar, and β=100%; pressure (left) 

and fluid film thickness (right). 

 

Figure 6.11 shows similar results to those shown in Figure 6.9, but now for operating 

condition 6. The additional load carrying ability of the fluid film results in a more 

uniform fluid film thickness. The extremely low fluid film thickness condition on the 

outer radius of the gap is significantly improved; thus reducing the viscous friction in the 

interface.  
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Figure 6.12. Leakage flow and friction torque loss for the standard and micro-shaping 

design (3200 rpm, 50 bar and 100% displacement). 

 

Figure 6.12, differently from Figure 6.10 shows a slight increase in leakage. The friction 

torque loss is decreased considerably. This also can be explained with the increase of 

fluid film thickness on the outer edge, which reduces the torque loss. This result in a 

reduction of total energy dissipated in the gap of 9% relative to the baseline.  
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Figure 6.13. Comparison between standard (top) and micro shaping (bottom, 2 µm, 

frequency 15, and 75% offset) at n=3200 rpm, Δp=420 bar, and β=20%; pressure (left) 

and fluid film thickness (right). 

 

Figure 6.13 illustrates the simulation results at n=3200 rpm, Δp=420 bar, and β=20% 

operating condition. Additional hydrodynamic pressure is built in the gap due to the 

wedges introduced in the valve plate. A thicker fluid film is observed all around. 
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Figure 6.14. Leakage flow and friction torque loss for the standard and micro-shaping 

design (3200 rpm, 420 bar and 20% displacement). 

 

Figure 6.14 shows the leakage flow and friction torque loss results of operating condition 

7. The leakage flow is increased in the micro-surfaced design and the friction torque loss 

was slightly reduced. The increase in energy dissipation due leakage flow is larger than 

the reduction in energy dissipation due to the reduced viscous friction; thus resulting in a 

4% increase in total energy dissipated in the fluid film. 
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Figure 6.15. Comparison between standard (top) and micro shaping (bottom, 2 µm, 

frequency 15, and 75% offset) at n=3200 rpm, Δp=420 bar, and β=20%; pressure (left) 

and fluid film thickness (right). 

 

Figure 6.15 represents the simulation results for operating condition n=3200 rpm, 

Δp=420 bar and full displacement. The hydrodynamic pressure built up is increased due 

to the wedging on the valve plate’s surface. The fluid film thickness is significantly 

thicker all around in the interface although it maintains localized low fluid film thickness. 
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Figure 6.16. Leakage flow and friction torque loss for the standard and micro-shaping 

design (3200 rpm, 420 bar and 100% displacement). 

 

Figure 6.16 illustrates the leakage and torque loss in the interface at operating condition 8. 

The leakage flow is slightly increase and the friction torque loss reduced by a small 

amount. Again, the increase of energy dissipation due to leakage flow overcomes the 

reduction in energy dissipation due to reduced viscous friction. This results in a 3% 

increase in total energy dissipation in the cylinder block/valve plate interface. 
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6.2 Design Space Analysis Overview 

In this first section, a general overview of all the simulation results is provided for a 

selected number of operating conditions. The operating conditions selected to be 

analyzed in this section are the most representative of the general effects of the micro-

surface shaping on the cylinder block/valve plate; this is why they were selected. The 

advantages of the micro-surfaced design will be compared against the standard (flat) 

design. Moreover, the limitations of this type of design will be discussed in brief. 

 

In Figure 6.17, the simulation results for a single operating condition are shown, shaft 

rotational speed, 1000 rpm; pressure differential, 50 bar; and low displacement (20%). 

On the x-axis, the design number is displayed; this corresponds to the design number 

described in Table 4.1. The amplitude and offset were varied for every design. Each line 

in the figure represents a different frequency value; thus represents the impact of the 

design parameters on total energy dissipation. On the y-axis, the normalized total energy 

dissipation is shown; the total energy dissipation calculated was normalized against the 

standard design (baseline). At this operating condition, the micro-surface shaping 

presents the most significant positive impact on the performance of the lubricating gap. A 

maximum 46% reduction in total energy dissipation is seen in Figure 6.17. This was 

observed for design number 15 with a frequency of 10 waves.  

 

Figure 6.17. Micro-shaping results for OC 1000 rpm, 50 bar and 20% displacement. 
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The effects of the micro-surface shaping are of positive impact at this operating condition 

due to the increased load carrying capacity. This results in a thicker fluid film thickness, 

as mentioned, which in turn reduces the viscous friction in the gap. A slight increase in 

leakage is seen.  

 

In Figure 6.18, a similar representation as in the previous figure is shown for a different 

operating condition, rotational speed, 3200 rpm; pressure differential, 420 bar; and full 

displacement. Similarly as in the previous figure the results are shown in the same 

manner. On the x-axis the design number and on the y-axis the normalized total energy 

dissipation with respect to the standard design is shown. As seen in this figure, it is 

shown that as the magnitude of the amplitude increases the total energy dissipation 

increases as well. The increase in total energy dissipation is due to the increase in leakage 

flow through the lubricating interface. The leakage flow is characterized by a cubic 

dependence to the fluid film thickness, whereas the viscous friction decreases linearly 

with the increase of the fluid film thickness.  

 

Figure 6.18. Micro-shaping results for OC 3200 rpm, 420 bar and 100% displacement. 

 

6.3 Analysis of the Effects due to the Amplitude Parameter 

In this section, an in-depth analysis of the impact of the amplitude on the fluid film 

thickness was performed. As shown in the previous section, the amplitude has the biggest 
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impact on the total energy dissipation on the cylinder block/valve plate interface due to 

the high sensibility of the Reynolds equation to the geometry. Simulation results are 

shown for the eight selected operating conditions described in Chapter 4.  

 

In Figure 6.19, the normalized total energy dissipation is illustrated. The total energy 

dissipation was normalized with respect to the results from the standard design (flat 

surface on the valve plate), such that all the values where in the same order of magnitude. 

On the x-axis, the operating conditions are labeled, these correspond to the operating 

conditions described in Table 4.2. On the y-axis, the normalized total energy dissipation 

is shown. Each bar represents a different design varying the amplitude magnitude. The 

first one, is the standard design (blue bar); the second, sinusoidal wave with an amplitude 

of 1µm; and the following increment in steps of 1µm. For this analysis, the other two 

design parameters, the frequency and offset, were held fix (Frequency 15 and Offset 

75%). These parameters were fixed at these parameters since they represent a good 

compromise between the total energy dissipation reduction and leakage increment at high 

pressure operating conditions. As mentioned in the previous section, the total energy 

dissipation reaches up to a maximum of 45% reduction at the operating condition: low 

rotational speed, low pressure differential and low displacement (1000rpm, 50 bar and 20% 

displacement). On the other hand, the total energy dissipation increases as the amplitude 

increases at high pressure differential of operation.  

 

The sinusoidal wave aids the load carrying capacity of the interface by introducing an 

additional generation of pressure via hydrodynamic effects due to the wedge effect. 
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Figure 6.19. Sinusoidal wave amplitude effects on the total energy dissipation. 

 

The increase of energy dissipation at the higher pressure differential operating conditions 

is explained by the increase in leakage flow over the cylinder block interface, while the 

reduction of the viscous friction is not in the same order of magnitude. The cubic 

dependence to the fluid film thickness of the leakage can be clearly seen in the Figure 

6.20. 
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Figure 6.20. Sinusoidal wave amplitude effects on the leakage flow. 

 

As presented in the figure above, the leakage increases for all the operating conditions. 

This is explained by the direct modification of the fluid film thickness geometry via the 

introduction of the micro shaping in the running surface. The leakage flow is a result of a 

thicker fluid film thickness, which is desired at low operating pressures.  

 

6.4 Analysis of the Effects of the Frequency Parameter 

The frequency parameter, as described in Chapter 4, defines the number of waves in the 

circumferential direction of the valve plate. This parameter is analyzed meticulously in 

this section. The effects on the total energy dissipation are reflected in the Figure 6.21. 

The operating conditions are labeled on the x-axis and the normalized energy dissipation 

with respect to the standard design is shown in the y-axis. Each bar represents a different 

design by modifying the frequency (number of waves) on the surface, and by holding fix 

the amplitude and offset. In this case, the amplitude is held at 2 µm and the offset at 75%. 

The reason for the selected parameters is the same as in the previous section; it represents 



76 

 

7
6
 

the best compromise between total energy dissipation reduction at low pressure operating 

conditions and leakage at higher pressure differentials. 

 

 

Figure 6.21. Normalized total energy dissipation varying the frequency parameter. 

 

In Figure 6.21, the effect of the frequency on the energy dissipation is shown. At low 

pressure operating conditions the frequency of 15 decreases the total energy dissipation 

compared to the frequency of 10. There is no decrease of total energy dissipation as the 

magnitude increases after a frequency of 15; on the contrary, it increases the total energy 

dissipation. At higher pressure operating conditions, the total energy dissipation increases 

as the magnitude of the frequency increases. The best compromise comes from frequency 

of 15, since it achieves a high total energy dissipation reduction at low pressures and only 

a slight increase in total energy dissipation at high pressure operating conditions. 
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Figure 6.22. Normalized leakage flow varying frequency. 

 

The results in Figure 6.21 can be well explained by the results displayed in Figure 6.22. 

Figure 6.21, illustrates the normalized leakage flow in the cylinder block/valve plate 

interface while varying only the frequency of waves on the circumferential direction. 

Operating conditions are labeled in the bottom axis and normalized leakage on the 

vertical axis. The leakage flow increases with increasing magnitude of the frequency, 

except at the operating condition of low pressure and high speed for both; low and high 

displacement.  

 

6.5 Analysis of the Effects of the Offset Parameter 

In this section, the offset parameter effect on the lubrication between the valve plate and 

the cylinder block is studied. The offset, defines the starting point of the sine wave as 

defined in Chapter 4. This is the first time that such parameter is studied in the influence 

of the sinusoidal wave on the performance of the lubricating gap. The purpose of this was 
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to further understand how the waviness pattern influences the behavior of the fluid film 

and learn if such parameter had an impact at all.   

 

The normalized total energy dissipation with respect to the standard is displayed in 

Figure 6.23, Figure 6.24 and Figure 6.25. The operating conditions are labeled on the 

bottom axis and the normalized energy dissipation is displayed on the vertical axis. The 

amplitude parameter is held constant at 2 µm, since it is the best compromise between 

power loss reduction and increase in leakage at high operating conditions. The effect due 

to the change in the offset is displayed for three different frequencies; 10, 15 and 20 

waves on the circumferential direction, in Figure 6.23, Figure 6.24 and Figure 6.25, 

respectively.  

 

 

Figure 6.23. Normalized total energy dissipation varying offset. 

 

In Figure 6.23, the offset has a large impact on the total energy dissipation, with 

frequency 10. This impact is larger at the high pressure operating conditions, from this 
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results it is clear that the 75% offset is the best across the board being the one with lowest 

energy dissipation at high pressure operating conditions. 

 

 

Figure 6.24. Normalized total energy dissipation varying offset. 

 

In Figure 6.24, the offset has a significant impact on the total energy dissipation, with 

frequency 15. This impact is larger at the high pressure operating conditions, from this 

results, as in the previous result, it is clear that the 75% offset is the best across the board 

being the one with lowest energy dissipation at high pressure operating conditions. 
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Figure 6.25. Normalized total energy dissipation varying offset. 

 

In Figure 6.24, the offset does not have a significant impact on the total energy 

dissipation, with frequency 20.  Similarly for greater frequencies, the offset loses 

relevance on the impact on total energy dissipation. This can be explained by the fact that 

at a lower number of waves, the fluid film is more sensitive in which direction the 

cylinder block tips toward. The cylinder block tilts during its operation. The tilt or tipping 

of the block depends on the operating condition. This has been proven in previous 

research done by Jouini (2008) and Zecchi (2013), where in separate test rigs they 

measured the valve plate’s temperature at different points, by embedding thermocouples 

underneath the running surface of the valve plate. This was done in order to validate the 

numerical models developed by the authors to predict the performance of the cylinder 

block/valve plate interface. Their published measurements demonstrate that the 

temperature fields vary with the change in operating conditions, the temperature field is 

associated directly to the fluid film thickness in the gap. Zecchi (2013) matched the 

measured temperature fields in simulation, within a few degrees Celsius (°C). This was 

only possible through considering the relative motion of the block, translation on the z-
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axial direction and rotation over the x- and y-axis, and elastic deformations due to 

pressure and thermal effects. This means the lubricating gap has localized areas of fluid 

film thickness at every specific operating condition. Depending on where the minimum 

fluid film thickness is located in the valve plate is going to determine if the offset is going 

to have a positive impact on the thin fluid film.  

 

 

Figure 6.26. Normalized leakage flow in the cylinder block/valve plate interface varying 

the offset. 

 

In Figure 6.26, illustrates the normalized leakage as the offset varies in steps of 25% for a 

frequency of 10. The offset has an impact on the leakage of the interface represented in 

the Figure 6.26. Which means that the increase in total energy dissipation represented in 

Figure 6.23 at high pressure operating conditions is caused by an increase in energy 

dissipation due to an increase in leakage flow. The difference in the leakage flow is due 

to the difference in positioning of the wave relative to the low fluid film thickness on the 

baseline design.  
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Figure 6.27 shows the baseline design fluid film thickness on the left, is clearly seen that 

the standard design presents low fluid film thickness near the outer dead center. and on 

the right multiple designs for varying offsets. As seen the fluid film thickness values are 

different between each design. On the right the same color scale is shown in order to 

make more apparent the differences in fluid film thickness. The z-x and z-y cross sections 

are shown for every design with the waved patter introduced on the valve plate. The 

design with 75% offset shows the lowest average fluid film thickness in the cross sections, 

especially if compared against the 0 and 25% offset designs. These results correspond to 

what was previously shown in Figure 6.26, a lower leakage for the 75% offset design. 

 

Figure 6.27. Comparison for different offset values (at 3200 rpm, 420 bar and full 

displacement). 
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Figure 6.28. Normalized leakage flow in the cylinder block/valve plate interface varying 

the ofsset. 

 

In Figure 6.28, the normalized leakage flow is shown for a frequency of 15. The offset 

doesn’t have a significant impact on the leakage of the interface represented in the Figure 

6.28. Which means that the increase in total energy dissipation represented in Figure 6.24 

comes solely from an increase in viscous friction due to the different location of the 

peaks and valleys of the wave in the valve plate. The difference on the fluid film shape is 

better illustrated in the following figures. 
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CHAPTER 7. MICRO-SURFACE SHAPING ON THE CYLINDER BLOCK 

7.1 Overview and Purpose 

In this Chapter, the sinusoidal wave is introduced to the cylinder block’s running surface 

instead of applying it on the valve plate. The purpose of this chapter is to investigate the 

advantages of introducing the micro-surface shaping on the cylinder block. The micro-

surface shaping pattern on the cylinder block should have a different effect on the fluid 

film behavior than the one applied on the valve plate; because, of the elastic deformation 

caused by the pressure in the displacement chambers. As shown previously in the Chapter 

3, is represented in Figure 7.1 when the inside of one displacement chamber is loaded 

with a reference pressure of 100 bar.  

 

 

Figure 7.1. Deformation of the cylinder block surface due to pressure in a single 

displacement chamber (Zecchi, 2013). 

 

The surface deformation of the cylinder block is a physical phenomenon that occurs 

during the normal operation of the machine. It creates a wavy profile on the high pressure 

side of the cylinder block, as mentioned in Chapter 5 this introduces an additional 
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generation of pressure due to the wedge effect. An example of the deformation of the 

cylinder block’s running surface is shown in Figure 7.2. 

 

Figure 7.2. Pressure deformation of the cylinder block surface (3200 rpm, 420 bar and 

full displacement). 

 

The idea of applying the sinusoidal wave on the cylinder block, is basically to apply the 

inverse sine wave of how the cylinder block deforms due to the pressure inside the 

displacement chamber. A visualization of this is shown in the following Figure. 

Additionally, an example of how the fluid film thickness would be shaped without elastic 

deformations or relative motion of the cylinder block is shown in Figure 7.4. 

 

Figure 7.3. Cross section of the cylinder block and micro surface shaping representation 

(Scale x1000). 
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Figure 7.4. Fluid film thickness example with a 2 µm amplitude, 9 frequency and 10° or 

25% offset (No Tilting and No Elastic Deformations on Both Solids). 

 

The advantage, of the shaping on the cylinder block, would be that the shape of the fluid 

film would become pressure dependent. In the previous Chapter, it was noted that the 

sinusoidal wave can increase the total energy dissipation at high pressure operating 

conditions, due to the increase leakage flow in the interface. If the elastic pressure 

deformation cancels out the micro-surface shaping the fluid film thickness should be 

minimized thus reducing the leakage flow.  

 

7.2 Simulation Results and Analysis 

In this section, the simulation results for the micro-surface shaping on the cylinder block 

are analyzed in-depth. The purpose is to investigate if the shaping on the cylinder block 

has any advantages over the application of the micro-surfaced shaping on the valve plate, 

by making the fluid film geometry pressure dependent. 
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Figure 7.5. Pressure and fluid film thickness for the standard, micro shaping on valve 

plate and micro shaping on cylinder block (1000 rpm, 50 bar, 20% displacement). 

 

The Figure 7.5 shows the pressure and the fluid film thickness for the baseline, waved 

valve plate and waved cylinder block at 1000 rpm, 50 bar and 20% displacement. The 

additional hydrodynamic pressure built up in the gap is evident for both waved designs. 

The number of waves in the gap is also seen in the number of additional pressure spikes 

observed. In the case of the valve plate a design with 15 waves is shown, whereas on the 

cylinder block only 9 waves were introduced (same number of displacement chamber in 

the cylinder block). The additional hydrodynamic pressure on the waved valve plate also 

corresponds to a higher load carrying capacity which also results in a higher reduction in 

total energy dissipation (40%). The waved cylinder block has an increase load carrying 

capacity compared to the baseline but only achieves 35% reduction in total energy 

dissipation relative to the baseline.  
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Figure 7.6. 3D Pressure and fluid film thickness representation (1000 rpm, 420 bar and 

full displacement). 

 

In Figure 7.6, shows the pressure and fluid film thickness for 1000 rpm, 420 bar and full 

displacement. Similarly as in the previous operating condition, additional hydrodynamic 

pressure is present. The major difference between the previous operating condition (low 

pressure) and this one (high pressure) is the fluid film thickness shape on the waved 

cylinder block design. The waves on the high pressure side are less evident if compared 

to the waved valve plate. This will result in a lower fluid film thickness average and no 

localized low fluid film thickness areas; corresponding to a reduction in leakage flow and 

friction torque loss with respect to the waved valve plate design. The waved valve plate 
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design increases by 22% the total energy dissipation in the cylinder block interface, 

whereas the waved cylinder block raises it by 10%.  

 
Figure 7.7. 3D Pressure and fluid film thickness representation (3200 rpm, 420 bar, 100% 

displacement). 

 

In Figure 7.7, a comparison between the standard design and applying the wave on the 

cylinder block or on the valve plate is done by comparing the pressure and fluid film 

thickness in the cylinder block/valve plate interface. A similar behavior to the one 

previously discussed is observed. The waved geometry is almost not distinguishable in 

the waved valve plate, whereas the waved valve plate is clear. As mentioned before, this 

results in reduced leakage flow and less viscous friction, since the average fluid film 

thickness is lower and the localized low fluid film is reduced. 
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The normalized energy dissipation with respect to the standard design is represented in 

Figure 7.8. The amplitude was varied for every design and is labeled on the horizontal 

axis. In the vertical axis, the normalized total energy dissipation is displayed. Three 

different operating conditions are shown in the figure; 1000 rpm, 50 bar and low 

displacement (left), and 3200 rpm, 420 bar and full displacement (right), and 1000 rpm, 

420 bar and full displacement (bottom) . These operating conditions were chosen since 

they are the most representative of the differences between applying the wave on the 

cylinder block or on the valve plate surface. 

 

Figure 7.8. Normalized total energy dissipation comparison between valve plate and 

cylinder block. 

 

In Figure 7.8, the reduction in total energy dissipation is slightly less for the micro-

surface applied on the cylinder block surface at low pressure operating conditions. On the 

other hand, the increase in total energy dissipation at higher operating conditions is 
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considerably lower both at high and low speeds as seen in Figure 7.8. These results can 

be explained with Figure 7.5, Figure 7.6, and Figure 7.7.  

 

The simulation results shown in Figure 7.9 are for operating condition 1000 rpm, 420 bar, 

and full displacement. The amplitude of the wave is labeled in the bottom axis. Leakage 

flow and friction torque loss are shown for the waved valve plate and cylinder block. The 

leakage flow is consistently higher for the micro-surfaced applied on the valve plate. The 

friction torque loss is lower for the waved cylinder block up to amplitude of 2 µm. The 

waved valve plate has a larger reduction for 3 and 4 µm, but both are still comparable in 

magnitude. This also can be explained by previously shown figures, where the fluid film 

has a lower average fluid film thickness and less localized low fluid film thickness points. 

 

Figure 7.9. Simulation results comparison between wave on the VP or CB (1000 rpm, 

420 bar, and full displacement). 

 

In Figure 7.10, the normalized total energy dissipation with respect to the baseline design 

is represented for the standard, micro-surfaced valve plate (2 µm, frequency of 15 and 75% 

offset), and cylinder block (2 µm amplitude, frequency of 9 waves and 25% offset). On 

the horizontal axis the eight operating conditions selected for this thesis were labeled. 

Similarly as it was mentioned previously, a maximum reduction in total energy 

dissipation for both the waved valve plate and the cylinder block are shown; 40% and 35% 

respectively at low pressure, low speed and low displacement. Additionally, the waved 

cylinder block shows a lower increase in total energy dissipation in the cylinder 



92 

 

9
2
 

block/valve plate interface compared to the waved valve plate at high pressure operating 

conditions.  

 

Figure 7.10. Normalized total energy dissipation in the cylinder block/valve plate 

interface comparison between wave on the VP or CB. 
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CHAPTER 8. CONCLUSIONS 

The micro-surface shaping on the cylinder block/valve plate interface presents an 

interesting opportunity to improve the load carrying ability and to reduce the energy 

dissipation of the interface, therefore improving the overall performance of the axial 

piston machine. The design parameters, amplitude, frequency, and offset, were analyzed 

in-depth and the impact on the load carrying ability of the fluid film and energy 

dissipation are discussed and analyzed. These trends should enable improved designs in 

the future. 

 

The amplitude, on the sinusoidal wave applied in the circumferential direction, is the 

parameter with the strongest impact on the performance of the cylinder block/valve plate 

interface. The Reynolds equation is extremely sensitive to film thickness changes, thus 

affecting the hydrodynamic pressure built up in the thin fluid film. It was found that for 

the range of operating conditions analyzed the given base design of 2 µm wave amplitude 

created the best results in reducing the total energy dissipation at low pressure operating 

conditions and the leakage increase at higher pressure conditions. 

 

Moreover, the frequency (number of waves) plays an important role in the design of 

micro-surface shaping with a sinusoidal wave in the circumferential direction. It doesn’t 

have a large impact on low pressure operating conditions. On the other hand, it does 

increase the total energy dissipation as the number of waves increase at high pressure 

operating conditions and will not benefit from more than a frequency of 15 at low 

pressure operating conditions. 
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These results predict up to 40% reduction in total energy dissipated in the lubricating gap 

at low pressure, low speed and low displacement while staying within bounds of 

reasonable limits of leakage increments at higher pressure operating conditions. This was 

achieved utilizing ±2 µm amplitude, 75% offset and a frequency of 15 waves on the 

circumferential direction on the valve plate surface. 

Also, the offset of the wave with respect to the outer dead center of the piston was studied 

in this thesis for the very first time. It was found that the offset has a large impact on 

designs with a low number of waves (10-15) on the circumferential direction; whereas on 

designs with a large number of waves it doesn’t have big effect. The effect has to do with 

the relative position of the cylinder block which is operating condition dependent, it was 

found that for frequencies of 10 and 15, an offset of 75% is the best compromise. 

 

Moreover, a simulation-based comparison between the application of the micro-surface 

shaping, on the cylinder block or the valve plate running surface, was performed for the 

first time. It was found that the elastic deformation on the cylinder block due to the 

pressure inside the displacement chambers improves the performance of the interface 

compared to the waved valve plate design. It improves the performance by cancelling out 

the micro-surface waviness with the over imposed elastic deformation from the cylinder 

block. This flattens the surface thus decreasing the fluid film thickness; and reduces the 

leakage flow and in some case the viscous friction compared to the waved valve plate 

design. It can be used as a pressure dependent feature and help to improve the fluid film 

conditions in the entire range of operating conditions. 

 

It was found that applying a sinusoidal wave of ±2 µm amplitude, 25% offset and a 

frequency of 9 waves on the cylinder block surface predicts up to 35% reduction in total 

energy dissipation at low pressure, low speed, and low displacement; whereas applying 

the shaping on the valve plate achieves a 40% reduction. On the other hand, it 

significantly improved the performance of the fluid film in comparison with the waved 

valve plate at high operating pressures. The waved valve plate (±2 µm amplitude, 75% 

offset and a frequency of 15) increased the total energy dissipation by ~3% at high speed, 
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high pressure and full displacement, but the cylinder block only increased by ~1%. 

Similarly at low speed, high pressure and full displacement, the waved valve plate 

increase the total energy dissipation by ~22%, whereas the waved cylinder block only 

raised it ~10%. This is explained by both lower leakage flow and lower friction torque 

loss, due to the more uniform shape of the fluid film. The localized low fluid film 

thickness conditions are reduced and the average of the fluid film thickness is reduced on 

the high pressure side. 
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