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ABSTRACT 

Carroll, Dereka M.S., Purdue University, August 2014. Assessing Inland Hazards 
Associated with Hurricanes in the U.S. Atlantic Basin. Major Professor: Robert J. Trapp. 
 
 
The skill of tropical-cyclone (TC) track forecasts has steadily improved over the past 

decades, as has the understanding of TC risk in coastal regions.  However, there is still 

much to be learned about the TC risk in inland regions, which is complicated by the 

presence of coastal evacuees, and includes hazards such as inland flash flooding and 

tornadoes. This was exemplified by Hurricane Ivan (2004), which spawned 118 

tornadoes and produced significant rainfall amounts contributing to flooding inland. Ivan 

was responsible for 25 deaths in the U.S. and $18.8 billion (2004 USD) in damages. As 

part of a larger effort to improve the decision support tools available to emergency 

managers, this project seeks to map the inland U.S. hazards associated with TCs in the 

Atlantic Basin.   

 The specific hazards of TC-associated flash flooding (TCFF) and tornadoes 

(TCT) are assessed over approximately the last two decades using GIS.  The highest 

TCFF hazard is indicated in southern Mississippi, Alabama, North Carolina and the Mid 

Atlantic Region, and TCT hazard is highest in the same region as TCFF, including 

Florida; stream-gage data additionally show that the highest TC-flood potential is in 

southern Florida.  The TCFF and TCT data are smoothed at a county/parish level and 



xii 

then combined with a quantification of the social vulnerability of the exposed populations 

to derive a hurricane disaster risk index.  The disaster risk index is also used in 

experiments with agent based modeling to assess evacuation behavior. 
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CHAPTER 1. BACKGROUND INFORMATION 

1.1 Defining Risk and Assessing Hurricane Fatalities 

1.1.1 Definitions 

Before one can begin to discuss disaster risk, it is important to identify what risk is in 

relation to its proposed use. For this thesis, the following definition of disaster risk as 

described in IPCC (2012) applies:  Disaster risk is defined as the possible adverse effects 

deriving from interactions between social and environmental processes. The combined 

effects of the physical hazard and the vulnerability drive this risk. Hazard is the pending 

occurrence of a physical natural or man made event adversely effecting a vulnerable 

population or exposed element. Lastly, exposure references the population within the 

domain of the hazard. Using these definitions, disaster risk is therefore: 

  Risk = Hazard × Vulnerability × Exposure    (1.1) 

Note that if the population and associated resources are not located or exposed to the 

hazard, then disaster risk would be nonexistent. IPCC (2012) also discusses the 

distinction between vulnerability and exposure, which are commonly, yet mistakenly 

interchanged. For example, low-income residents would have little ability to rebuild their 

homes if a disaster occurs, and thus would have high vulnerability. On the other hand, 

these same residents must live in a hazard-prone region, i.e., be exposed to a hazard in 

order to be deemed vulnerable. (IPCC 2012
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For the purpose of this thesis, the hazards are the wind (implicitly defined in the domain), 

flooding and tornadoes associated with an Atlantic-Basin tropical system making landfall 

in the U.S.  The exposed populations are considered all those within the hazard region.  

Vulnerability pertains to social aspects such as age, gender, income, and race. 

1.1.2 Hurricane Fatalities 

The hazards that hurricanes pose to communities are well known (NOAA 2012; 

Davidson and Lambert 2002; Pomp and Haluska 2011). Figure 1 shows a decline in the 

number of fatalities by decade with some credit given to well-timed evacuations from 

storm surge flood zones (Rappaport 2000; Willoughby et al. 2007).  However, 

Czajkowski and Kennedy (2010) mention that when the number of inland deaths due to 

flooding is included, there is not a downward trend in the lethality of these tropical 

cyclones.  Indeed, although great efforts have been made to decrease the lethality of 

hurricanes near landfall (Kunkel et al. 1999; Rappaport 2000; Sadowski and Sutter 2005; 

Baker et al. 2007), fewer efforts have focused on inland communities, being that the main 

impacts are along the coast. Strong winds, tornadoes and flooding rains accompany the 

tropical cyclone as it moves over land (Czajkowski and Kennedy 2010). The overall risk 

of inland communities is difficult to assess due to the omission of fatalities from 

freshwater flooding in the official statistics (Czajkowski et al. 2011). Despite this, 

research has shown that freshwater flooding is the cause of the majority of tropical 

cyclone related deaths. In fact, about 63% of deaths from 1970-99 occurred inland, at 

distances as much as hundreds of miles from the coast (Fig. 1.2; see Rappaport 2000).  
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Figure 1.1 Tropical storm-related fatalities in the U.S. by decade. Fatalities exceeded 
1000 in the first four decades of the twentieth century, and then gradually fell to under 

about 200 through the 1990s. In 2005, hurricane Katrina noticeably reversed this 
downward trend. (Czajkowski et al. 2000) 

 

Figure 1.2 Geographical distributions of 468 deaths in the contiguous United States 
associated with Atlantic tropical cyclones during 1970-99. Map excludes remaining 132 
cases occurring offshore or where county or parish could not be identified (Rappaport 

2000). 
 

1.2 Tropical Cyclone Hazards 

1.2.1 Tornadoes 

Tropical cyclone tornadoes (TCTs) are often unexpected and are difficult to forecast 

during tropical cyclone events. This is in part what makes this phenomenon interesting to 
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the research community. One would think that TCTs are a relatively new discovery but 

records of TCT events date as far back as 1811. It is uncommon, however, to have more 

than a few tornadoes per tropical cyclone, and until Hurricane Beulah only a few TCT 

events per storm were recorded on average. There are a few anomalous cases in which 

over a hundred tornadoes were spawned, such as the aforementioned Hurricane Beulah 

1967 (115 TCTs), Hurricane Frances 2004 (103 TCTs), and Hurricane Ivan 2004 (117 

TCTs). Such events create major forecasting issues and can place evacuating populations 

in the path of TCTs. Although the majority of TCT events are on the lower end of the 

Fujita- and Enhanced-Fujita scale, stronger tornadoes have occurred. For this reason, an 

updated climatology and assessment of tornado hazard is essential to decreasing the 

lethality of Atlantic Basin hurricanes. 

 TCTs are commonly found in the outer rainbands, 200-400 km from the cyclone 

center. However, McCaul (1991) found that some tornadoes have formed within the eye 

wall and inner core. The right front quadrant (RFQ) of the TC is favored for tornado 

development due to its ample convective available potential energy (CAPE) and vertical 

wind shear (McCaul, 1991; Verbout et al. 2007). It is also found that TCs making landfall 

along the U.S. Gulf Coast are more likely to produce tornadoes since that coast is 

exposed to the RFQ longer than landfalling TCs in the Atlantic that obliquely strike the 

U.S. coast (Verbout et al. 2007). The curvature of TCs is also known to affect tornado 

development. Using synoptic composites of 83TCs, Verbout et al. (2007) showed that 

mid latitude troughs provide additional deep-layer and low-layer vertical wind shear to 

re-curving TCs which favor mesocyclogenesis and tornadogenesis respectively.  
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1.2.2 Flooding 

Flooding is the second most fatal natural disaster in the U.S., after heat, with trends 

increasing since the mid-20th century (Kunkel et al. 1999; Pielke and Downton 2000; 

Pielke et al. 2002; Downton et al. 2005).  Several factors contribute to flood events, 

including rainfall totals/rate, topography, land use of the affected region, soil type, 

watershed type, and prior moisture conditions in the flood region (Ashley and Ashley 

2008). Orography also has an impact on flooding.  Hart and Evans (2001) found there 

was minimal flooding in regions directly upwind and downwind of the Appalachian 

Mountains. In central Texas, the Balcones Escarpment results in a dramatic descent of the 

elevated topography into the flat lands.  Less rainfall is required to reach peak discharge, 

and thereby causes this area to be prone to severe flooding (Abbott et al 1986). 

 Flooding is defined in three categories according to the National Weather Service 

(NWS): flash flooding, river flooding, and coastal flooding. Flash flooding occurs as a 

result of heavy rain over a short period of time; the convention is six hours. River 

flooding occurs due to an overflow of its natural banks, causing threatening damage. 

Lastly, coastal flooding is a result of storms pushing water onto land from an adjacent 

body of water.  

 Flooding has a range of socioeconomic impacts that contribute both to life loss 

and economic loss. Certain flood characteristics contribute to fatalities, such as the water 

depth, velocity of the flow, and rise rate. Socio-economic and behavioral factors also 

contribute to fatalities, such as reception of a flood warning, response (or lack thereof) in 

the form of evacuation and sheltering, and failure of structure (Jonkman et al 2009). 

Historically, roughly 90% of flood related fatalities are due to flash flooding, with 
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roughly 40% of those related to vehicles that cross streams and standing water (French et 

a. 1983; Zevin 1994); this is suggestive of a disregard to, or lack of understanding of the 

danger posed by flooding.  In Mooney's (1983) study, 60% of flood fatalities between 

1977 and 1981 occurred in urban areas, with 75% of those fatalities occurring during 

evening and overnight hours. A more recent study by Ashley and Ashley (2008) shows 

that 63% of fatalities in which location of death was known, occurred in vehicles.  The 

age group of victims are primarily less than 20 years of age and older than 60 years of 

age. In terms of gender, the majority of the victims were males, of which 35% were 

between the ages of 10 and 29 (Ashley and Ashley 2008). 

 Distinctive seasonal peaks in flooding fatalities were noted by Ashley and Ashley 

(2008). In June and July summer months, peak fatalities were seen in the eastern and 

central portions of the U.S.  This finding is largely attributed to the amount of convective 

rainfall in this area, during this time period. The large number of fatalities in August and 

September are attributed to monsoon rains in the southwest, and to tropical cyclones in 

the southeast; over all months, 20% of all flood related fatalities are a result of tropical 

cyclones.  What is interesting to note is that the peak month for tropical cyclones is in 

September, while the peak fatalities are in August (41%). East coast states in general, 

along with states along the Gulf of Mexico are most susceptible to the most tropical 

storm fatalities.  Specifically focusing on TC-related fatalities (between 1970 and 1999), 

Rappaport (2000) found that 82% of deaths were a result of drowning, in particular, 52% 

of all TC related deaths were due to freshwater flooding.  More recently, Rappaport 

(2013) showed that storm surge caused 50% of TC fatalities (between 1963 and 2012), 

and rain contributed to 27% of TC fatalities (Fig. 3b).  However, the percent occurrence 
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of rain fatalities (~47%) surpasses that of surge deaths (10%) for deadly cyclones (Fig. 

3a); the same is true for all Atlantic TCs (~9.5% rain, ~2.1% surge). This information 

suggests that although more storm surge deaths have occurred, it is more likely to have 

fatalities as a result of rain events. 

 
 

 

 

Jonkman et al (2009) conducted a more detailed study on life loss due to flooding 

during Hurricane Katrina. Hurricane fatality studies have excluded fatalities due to 

Katrina, because the total number was unknown and there were ongoing investigations on 

the cause of deaths for many evacuees. This study, however, aimed to provide a link 

between flood characteristics (flow velocity, rise rate and flood arrival time) and 

mortality, defined here as the number of fatalities divided by the exposed population. The 

exposed population can be calculated as the difference of the original population at risk 

minus the evacuated and sheltering population. Mortality will be highest near the 

breaches, areas with large water depth, high rise rate, and large building collapses or 

a b 

  Figure 1.3 (a)Percent occurrences of fatalities from 1963 to 2012 due to Atlantic tropical 
cyclones (right scale) and deadly U.S. tropical cyclones (left scale) in which noted types 
of fatalities occurred in the United States. (b) Cause of death in the United States directly 

attributed to Atlantic tropical cyclones, 1963 to 2012. (Rappaport 2013)   
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infrastructure failure, which from the Ashley and Ashley (2008) study made up 12% of 

the fatalities as a low probability high impact event. Jonkman et al. (2009) suggest that 

mortality can be crudely estimated as at least 1% of the exposed population. 

1.3 Decision Support Tools for Hurricane Preparedness and Disasater Management 

1.3.1 Hurricane Disaster Risk Index 

The significant decrease in hurricane losses have corresponded with the development of 

decision support tools such as the Hurricane Disaster Risk Index (HDRI) (Davidson and 

Lambert 2002). Commonly after natural disasters, an assessment of the social 

vulnerability of the impacted communities is performed so that the efficiency of 

emergency management capabilities can be enhanced in the future. These assessments 

can also aid in identifying areas most at risk for natural hazards (Tapsell et al. 2010). The 

HDRI is a composite index created to compare the risk of hurricane disasters in U.S. 

coastal counties. It was designed to support the local, state, and national agencies that: 1) 

make resource allocations and decisions, 2) make high-level planning decisions, and 3) 

raise public awareness of hurricane risks. The developers of HDRI identified the factors 

that contributed to economic and life loss during hurricanes in the U.S., such as 

geographic location, topography, and socio economic status. Next, measurable scalar 

indicators were chosen to represent each of the previously identified factors, based on 

their ability to be represented in the conceptual framework and on the availability of data 

in the U.S. After that, a mathematical index was developed to combine the indicators into 

two composite index values, one representing economic loss and the second representing 

life disaster risk. The four factors that were included in the HDRI are: 1) hazard, 2) 

exposure, 3) vulnerability, and 4) emergency response and recovery capability (Davidson 
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and Lambert 2002). Since the HDRI is limited to coastal hazards and there are clear 

indicators of increased losses of lives inland due to tropical cyclones, an additional index 

is needed that will include both inland and coastal vulnerabilities. 

1.3.2 Hurricane Evacuation Tool 

The HURRicane EVACuation tool (HURREVAC) is one of the current decision support 

tools for emergency managers.  It was produced by the National Hurricane Program 

(NHP). NHP is a partnership between the Federal Emergency Management Agency 

(FEMA), U.S. Army Corps of Engineers (USACE), and the National Oceanic and 

Atmospheric Administration (NOAA). HURREVAC was developed and is maintained by 

Sea Island Software.  

 HURREVAC incorporates hurricane tracks, forecasts and advisories from the 

NOAA/National Hurricane Center, and individual state hurricane evacuation studies 

(HES). Information such as storm arrival time and potential hazards such as storm surge 

and wind are included. Emergency managers use this tool to keep track of the storm as it 

travels inland, and has the potential of becoming a threat to inland communities.  

 While HURREVAC is very effective in providing real time hurricane 

information, paired with risk information for the emergency region, it does not have the 

capability to track the risk and associated vulnerabilities as those residents move to 

safety. This serves as partial motivation for the work presented herein. 
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1.3.3 Modeling Hurricane Evacuations 

1.3.3.1 Agent Based Modeling 

Following hurricane events, the evacuation behaviors and details are often assessed by 

organizations such as the USACE.  Information collected in such assessments may 

include: distance traveled to flee danger, destination type, likelihood of evacuating, and 

source of evacuation and hurricane information 

(http://www.csc.noaa.gov/hes/about.html).  This information allows decision makers to 

gain insight into the strengths and weaknesses of their evacuation procedures. It also 

offers insight into what future evacuations will be like should the event occur again, and 

what changes should be made to mitigate future disaster.  

A common practice by emergency management agencies is to conduct full-scale 

exercises to practice procedures during emergency events.  A full-scale exercise for 

hurricane evacuations is not feasible, however, due to the magnitude of the event and the 

scale on which evacuations for this weather phenomenon take place. Therefore 

evacuation simulation tools and models are developed using behavioral information from 

the aforementioned surveys, as well as from census data and risk assessments to test 

evacuation scenarios and behavior during hurricane events. An example of such a 

simulation is shown in Zou et al. (2005), who built an interactive emergency evacuation 

tool, or principle component model for Ocean, City Maryland. The principle model 

consists of five modules, the Input module, consisting of the control parameters and 

model base; the Optimization module generates the most optimal routes; the Simulation 

module analyzes traffic conditions based on the model input; the Database module stores 
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the various scenarios from the input, as well as allow the user to load new scenarios while 

the simulation is still running; and lastly the Output module displays the custom output 

from the simulation runs. Essentially their tool is able to perform real-time simulations of 

traffic conditions integrated with an optimization model that assesses the best possible 

evacuation plan under the current traffic conditions.  

Agent-based modeling has also been demonstrated as an effective tool in 

modeling hurricane evacuation decisions. This type of modeling tool allows one to 

simulate “interactions of autonomous agents in various environments” (Macal and North 

2005). The agents are unique in that they can make decisions based on their pre-described 

environment; the agents can also interact with other agents in their environment (Zhang 

et al. 2009). Zhang et al. (2009) developed an agent-based model to capture how humans 

behave on the household level during the evacuation process.  The main goal of their 

research was to assess how the proportion “normal” and “greedy” agents affected the 

efficiency of evacuation. Greedy agents were allowed to switch evacuation routes if their 

original route became congested, and normal agents followed a specified route regardless 

of the congestion on that route.  Zhang et al. showed that greedy agent behavior can 

reduce the amount of time it takes for an individual agent to reach its destination.   

However, having a high percentage of greedy agents in the environment reduces the 

efficiency of overall evacuations. Another example of agent-based models of hurricane 

evacuations is that of Chen et al. (2006). The purpose of their study was to assess the 

ideal amount of time to evacuate 92,596 residents from the Florida Keys, and to 

determine how many evacuees would be stranded on the Overseas Highway (U.S. 

Highway 1)  serving as the only route out of the Keys if it were to become impassable as 
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a result of flooding. Along with the census data of residents in the Keys, the study 

included the number of tourists that would also need to evacuate. Chen et al. found that 

their clearance time of 20 hr and 14 min was less than the 24-hr clearance time mandated 

in Florida. Another interesting finding was that if people evacuated 48 hours ahead of the 

storm, with a traffic flow observed in a previous hurricane event, then only about 460 

people would be stranded if the road became impassable after that period. However if 

that 48-hr period was reduced to 40 hours, then 14,000 evacuees would be stranded under 

the same traffic flow. In both examples of agent-based models, not only were agents 

assigned to the environment with allocated behavior (e.g. greedy, normal, tourist, 

motorists), but traffic information and rules such as stop lights, traffic speed, and 

congested roads were used to create realism of an event on a micro scale.  The 

capabilities seen in agent based modeling are very beneficial in simulating large scale 

events that otherwise would not be able to be exercised.  

These studies and others (e.g. Zhan 2008; Hasan et al. 2011; Hasan and Ukkusri 

2011) show the benefit in agent based modeling and other simulation tools for hurricane 

evacuations. While the models are beneficial in their respected aspects, little is known 

about the dynamic behavior of evacuations. More specifically, there is a current lack of 

knowledge of how the evacuees change the vulnerability of the communities in which 

they inhabit. Resources such as shelter, food, and even mobility become limited in a 

community when there is an influx of evacuees.  Disaster risk also changes in ways that 

are often overlooked in inland communities. Hurricanes not only pose a threat to coastal 

communities who may flee the storm, but inland communities as well due to tropical 

cyclone tornadoes and inland flooding. People seeking shelter can inherently increase the 
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vulnerability, thereby possibly increasing the risk of disaster in the area to which they 

flee. This information is not well known and has not been included in the aforementioned 

risk surveys.  

As will be shown in Chapter 6, the research herein will capitalize on AnyLogic 

(http://www.anylogic.com/use-of-simulation), a tool that will be used to model the 

dynamic variability in risk due to hurricane hazards. AnyLogic is a modeling tool with 

the functionality to use three dynamic simulation platforms independent of each other, or 

in combination. Systems Dynamic, Discrete Event and Agent Based modeling are 

common simulation methodologies that many different businesses and entities use to 

dynamically simulate the complexities of various economic and social and business 

systems. 

1.4 Risk Assessment Procedures 

According to Session 6-Handbook-GIS Based Hazard Assessment (Cutter et al. 1997), 

the schematic below represents the steps necessary in preparing a hazard assessment, 

which is the basic goal of the research presented herein. These steps are slightly modified 

and incorporate efforts to assess the inland hazards of hurricanes that make mainland 

U.S. landfall from the Atlantic Basin. It is expected that this research will be an addition 

to methods currently used to prepare for and mitigate against hurricane disaster. 
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The first step in conducting an assessment is to identify the hazard as well as to 

determine the vulnerable populations and subgroups. Next, data from each category are 

acquired using available resources. Thirdly, an analysis of the hazard frequency and 

calculation of social vulnerability is done. The fourth step defines the hazard zone and 

maps the social vulnerability. Lastly both simultaneous processes are overlaid on one 

map to assess the hazard risk as defined for this research. The remaining steps listed in 

the hazard assessment procedures, which are beyond the immediate scope of the current 

Figure 1.4 Risk assessment procedures adapted 
from Cutter et. al 1997 
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research include: Identify special needs, identify lifelines and infrastructure, and add 

context to place vulnerability. 

 The components of the procedure in Fig. 1.4 frame the research to be presented in 

the subsequent chapters.  The objective of this research is to develop a risk index that 

includes the main threats to inland communities.  In Chapter 2, the social vulnerability is 

assessed. Chapter 3 develops the hazard map for tropical cyclone tornadoes. In Chapter 4, 

tropical cyclone flooding, particularly flash flooding is assessed and Chapter 5 brings 

together all of the aforementioned components into a risk map. Chapter 6 uses AnyLogic 

to show an example of the dynamic variability of risk. Chapter 7 summarizes this 

research, providing a brief discussion, conclusions and future work.    
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CHAPTER 2.  ASSESSNG THE EXPOSURE AND SOCIAL VULNERABILITY TO 
HURRICANES IN THE ATLANTIC BASIN 

Development of the exposure and social vulnerability maps is discussed in this chapter. 

Compared to previous vulnerability maps, this map focuses solely on potential life loss in 

lieu of economic losses. The first step in the developmental process is to determine the 

impacted region, which is followed by a quantification of the spatial variability of social 

vulnerability.  Implicitly, the impacted region is also the exposed region, and thus the 

methodology presented below also serves to develop the exposure map.   

2.1 Methodology 

2.1.1 Determining Hurricane Impact Regions 

The hurricane impact region is assessed by identifying the TC-producing severe winds 

the farthest inland, in each region of the Atlantic. Once this is done, the severe wind 

swaths will be combined, forming the hazard domain, which will be large enough so that 

all possible tropical cyclone tornado and flash flood cases will be included. This process 

is further discussed below.  

2.1.1.1 50 kt Wind Extent 

Vickery (2005) found that modeling the decay of storms is crucial to accurately assessing 

the vulnerability to wind damage. Instead of modeling the decay of wind speed as in 

Kaplan and DeMaria (1995; 2001), the decay of central pressure is modeled. Vickery 

(2005) also noted that hurricane models that simulate decaying central pressure are also 
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able to give a mathematical representation of the hurricane wind field using the gradient 

wind balance equation combined with information on the characteristics of tropical 

cyclones (translation speed, central pressure and radius to maximum winds). Therefore, 

the steps taken here to determine the inland extent of damaging tropical cyclone winds 

are as follows: 

1. Obtain the historical landfalling tropical cyclone track data from 1988-2010 using 

IBTrACS data (Knapp et al. 2010); 

2. Extract storm variables (including pressure difference between the storm center 

and the environment, translation speed, and the radius of maximum winds) and 

calculate the storm decay rate (a), following Vickery (2005);  

a = ao + a1(∆poVT/RMW)    (2.1) 

where VT is the translation speed, RMW is the radius of maximum winds, ao is the 

intercept, and a1 is the slope in this linear regression equation.  The specific regression 

equations below are for different regions follow Vickery (2005): 

  

Gulf Coast:   a = 0.0413 +  0.0018 (∆poVT/RMW);             (2.2) 

Florida Peninsula Coast:   a = 0.0225 +  0.0017 (∆poVT/RMW);             (2.3) 

Mid-Atlantic Coast:   a = 0.0364 +  0.0016 (∆poVT/RMW);             (2.4) 

New England Coast:   a = 0.0034 +  0.0010 (∆poVT/RMW);             (2.5) 

 

3. Substitute the decay rate a from Eq. (2.2), (2.3), (2.4), or (2.5) into the Vickery 

(2005) filling model. The filling model is in the form of an exponential decay 

function: 
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∆p(t) =∆po exp(-at)     (2.6) 

where ∆ p(t), is the central pressure difference in hPa between the storm center and the 

far field pressure (assumed to be a constant 1013mb) t hours after landfall. ∆po is the 

pressure difference (in hPa) at the time the storm makes landfall.  

 

4. Convert the pressure decay to wind decay using gradient wind balance (see 

Holland et al. 2010 for details): 

                                                                 (2.7) 

where vc is the wind decay, b is the scaling parameter defining the proportion of pressure 

gradient near the radius of maximum winds, ∆ps is the pressure drop from a predefined 

external pressure to the center of the cyclone, ρ is the air density at the gradient level, r is 

the radius and rvm is the radius of maximum winds.  

 

5. Extrapolate winds down to the surface using a constant factor of 0.72 and account 

for wind gusts using a constant factor of 1.25, both following Vickery (2005), and 

convert winds from storm relative to ground relative by adding the storm 

translation speed: 

        v = 1.25 × (vc × 0.72) +  VT_lf                                      (2.8) 

 where vc is the surface wind speed, and VT_lf is the storm translation speed. 
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6. Determine the farthest reach of 50 kt wind speed from the historical storm dataset 

for each of the four regions of the U.S. coast.  The 50 kt threshold was chosen 

because it is the magnitude of wind that is defined as severe by the NWS. The 

historical storms by region and 50 kt wind maximum include: 

 

                        New England: Hurricane Floyd 1999, 50kt winds 2100 km inland 

                        Mid-Atlantic: Hurricane Hugo 1989, 50kt winds 1780 km inland 

                        Florida Peninsula: Hurricane Gabrielle 2001, 50kt winds 990 km inland 

                        Gulf Coast: Tropical Storm Opal 1995, 50 kt winds 930 km inland 

Thus, the maximum inland extent of 50 kt winds for the four regions occurred between 

930 and 2100 km reaching beyond the coast, well into the inland areas (Fig 2.1). This 

domain will be further modified cutting off Colorado, New Mexico, and the western 

portion of Texas, due to the 0 value of the TCT hazard (See Chapter 3). 
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Figure 2.1 Hazard domain as defined by states impacted by severe winds. 
 

2.1.2 Assessing and Mapping Social Vulnerability 

Recalling from Chapter 1 that vulnerability here pertains only to social aspects, the 

following definitions for social vulnerability specifically will apply: 

 

“The characteristics of a person or group and their situation that influence their 

capacity to anticipate, cope with, resist and recover from the impact of a natural 

hazard … It involves a combination of factors that determine the degree to which 

someone’s life, livelihood, property and other assets are put at risk by a discrete 

and identifiable event … in nature and in society.” (Wisner et al. 2004) 

 

“…social factors that place people in highly exposed areas, affect 
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the sensitivity of people to that exposure, and influence their capacity to respond 

and adapt.” (Yarnal 2007) 

 

The former is a broader definition, whereas the latter is more specific to people and how 

society tends to place them in harm’s way.  

The components of social vulnerability listed in Parker et al. (2009) and Tapsell et 

al. (2010) include security, economic, and social. Security includes the safety and 

stability of the built environment, along with effective response and minimal disruption 

in daily life. Economic refers to the access of resources available to communities that are 

considered socially vulnerable; conditions prior to a hazard have an effect on the quality 

of life post hazard event. Lastly, social characteristics include demographic factors (age, 

gender, disability etc.) that influence the sensitivity of a communities risk to hazards. 

2.1.2.1 Vulnerability Factors and Indicators 

Most vulnerability assessments have been developed using the “top down” approach that 

makes general assumptions for the whole; this is the approach used here. Even though 

such an approach ignores small-scale or local drivers of vulnerability, factors are 

generally chosen to identify vulnerable populations within limitations posed by data 

restrictions and other factors. In this regard, assumptions about what makes a community 

vulnerable may be incorrect. For example, a community with a large population over age 

65 may be deemed relatively more vulnerable under the assumption that the majority of 

these residents are immobile and cannot care for themselves. However, in the case of 
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Hurricane Andrew, many elderly residents did not evacuate because of “familiarity” to 

hurricanes, not because they had no means of leaving (Peacock et al. 1997, p. 66). 

Despite this limitation, this approach is useful in that it gives a detailed enough 

assessment on the county level that one could glean valuable information regarding the 

social vulnerability. 

2.1.3 Developing the Social Vulnerability Map   

The demographic factors discussed here and listed in Table 2.1 were chosen to be 

included in this study based on evidence from existing statistical and theoretical studies 

in the literature. 

Age is one of the most commonly used vulnerability factors (Blaike et al. 1994; 

Davidson and Lambert 2002; Cutter, et al. 2000; O’Brien and Mileti 1992; Hewitt 1997; 

Ngo 2001; Cutter et al. 2003). Infants, defined as age 0-5 years, and elderly, defined as 

age  65 years, are relatively more likely to be at risk during severe weather events. For 

example, 36.7% of Americans age 65 and over are disabled compared to the 10% in the 

18-64 brackets (2010 U.S. Census Bureau).  

Gender plays a strong role in decision-making responsibilities. If a woman is a 

single parent, she will probably take more precaution in determining evacuation 

decisions. Statistics show men are more likely to be killed in hazardous weather than 

women. In a study by Rappaport (2010), out of 392 fatalities due to freshwater flooding 

in which gender was known, 71% were men and 29% were women. The reasons for this 

difference are unknown but possibly include chivalry, or not perceiving a weather event 

as “high risk.” 
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Race/ethnicity is a factor in vulnerability due to disparities in socioeconomic 

class, along with language and cultural barriers among the various groups within the U.S. 

However it cannot be presumed a culture is more at risk just because it is different. For 

example some Native Americans are able to interpret weather events and, based off their 

knowledge, make sound decisions for their community; this is not necessarily true for 

every culture. For instance, the majority of African Americans make up the poorer 

demographic in the U.S., and therefore often do not possess the resources to properly 

evade a hazard (evacuate) and otherwise educate themselves on hazards. Another 

example is Hispanic populations: with the growing number of immigrant and migrant 

Hispanics near the Mexican border, there may exist a language barrier preventing them 

from fully understanding their risk in certain hazards. 

Education is important and it can be presumed that the more educated the 

community members, the more likely they are to be able to understand warnings and take 

action. It is also an indicator of wealth (U.S. 2010 Census), due to the high cost of private 

schooling and college. Personal wealth plays a role in many social issues. The wealthier 

the community members, the more likely they are to build a quality home that can be 

considered storm ready.   Income also plays a role in the amount of resources available to 

a potential evacuee, and is linked to education as previously stated. 

Renters, of apartments in particular, are vulnerable due to the typical lack of safe 

rooms and other durable shelters, and of severe weather planning (Mitchem 2003); a 

similar comment may be made about residents of mobile homes, who are likely at equal 

risk to hurricanes as are residents of apartments.  Renters are also connected to the 

personal wealth factor. People who rent homes are probably less likely to be able to 
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afford a home of their own and are also less likely to have home-owner’s insurance. This 

puts them at risk of incurring large financial losses with no means of recovery.  

If a state has poor building codes [as will be assessed using the Building Code 

Effectiveness Grading Schedule (BCEGS)], then the residents that inhabit that state 

would be considered highly vulnerable, as they do not have the proper shelter to protect 

them from certain hazards, such as severe wind, flooding and tornadoes. Mobile homes 

will also be a component of this factor due to their being the most vulnerable structures 

during weather events.  

Special needs populations include those who are disabled, based on blindness, 

hearing impaired, mental health, and mobility. The higher the percentage of the 

population with special needs, the more resources are required during evacuation to 

ensure the safety of those individuals, and in turn an enhanced vulnerability. 

Emergency planning is essential in understanding how well a community is 

prepared in the event of a disaster. This could include, but not limited to: the amount of 

information made available to the public, the ease of access to such information, and even 

programs and campaigns dedicated to severe weather. A similar factor is seen in the 

HDRI  “public education factor” from Davidson and Lambert (2002). Population density 

will be an additional component to this factor as it relates to how many people are at risk 

who may need to evacuate and could possibly congest roads during the evacuation 

process. 

Each factor contains one or more indicator as shown in Table 2.1. Within each 

factor, the indicators are given equal weights in the absence of information to suggest 

otherwise. The exception is the gender factor, in which males were weighted more than 
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females. This is based on Rappaport (2010), who showed a much higher percentage 

(71%) of male fatalities due to freshwater flooding.  Each factor is then normalized to a 

value between 0 and 1 using a standard approach (i.e., x-xmin/xmax-xmin, for each 

factor x).  Finally all normalized factors are added together to give a total score of 1-10, 

with 10 being the most vulnerable.  

Factor Indicators Data Location 
Age 0-5 

65+ 
U.S. Census 

Race/Ethnicity Black or African American 
Native Americans 
Hispanic-Latino 

U.S. Census 

Gender %male (accounts for female) U.S. Census 
Education Pop 25 and older w/ 

   Less than 9th grade 
   9-12 no diploma 
   H.S. Diploma 

U.S. Census 

Personal Wealth Below Poverty Level U.S. Census 
Disability Hearing 

Ambulatory 
Vision 
Cognitive 

U.S. Census 

Renter Apartments U.S. Census 
Building Grade codes and 
Mobile Homes 

%1-2 
%4-7 
%8-10 
% Mobile Homes 

BCEG 
U.S. Census 

Emergency Planning and 
Population Density 

Rate on accessibility 
Population Density 

Survey 
U.S. Census 

Table 2.1 List of indicators and associated contributing factors to social vulnerability 
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2.2 Data Caveats 

Limitations in the availability of data from both the physical and social perspectives 

presented numerous challenges to this study. When looking for data for the building 

codes, some states did not participate in the survey, so assumptions were made, and states 

with missing values were assigned the mean value over all states. Native American 

populations were difficult to assess because all tribes are not federally recognized, which 

means that during disasters, they would not receive federal or state funding. Some tribes, 

however, have signed treaties with certain states but this information would only be 

found by contacting each head tribal member (personal communication with Ma’Ko Qua 

Jones). For the emergency preparedness factor, there was little information that was 

publicly available pertaining to the preparedness of a particular state or county. Therefore 

this factor was assessed subjectively, in the absence of studies, through tests developed to 

determine the usability, available planning information, and length of time it took to find 

disaster such information in each state. Lastly, the census data had percentage errors (as 

the data is representative of a sample portion of the U.S.) that were not accounted for in 

this study. 

2.3 Results  

Examples of the indicators and their contributions to the index are shown in Figs. 2.2a-d. 

Note the use of different color scales to highlight the spatial variability of each indicator. 

For a given location, each indicator does not contribute equally to vulnerability; the 

contribution depends on the value of the indicator relative to the range of values of the 

indicator over all counties within the hazard prone region. For example, the Native 

American population in our domain is less than the Black/ African American population, 
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so the Black/African American populations in areas where the contribution is highest will 

weigh more than Native Americans in the index. 

 

 

 
 
 
 
 
 
 
  

Figure 2.2 Spatial distribution of the contributions to vulnerability from four example 
indicators: (a) Native American population, (b) Black/ African American population, 

(c)Education, and (d) Hispanic/Latino population  
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A map of the social vulnerability is shown in Fig. 2.3. In general, the southern portions of 

the United States (from Texas to the Carolinas) have high vulnerability, with Arkansas 

having the most counties with high vulnerability. This is a result of the large 

contributions from lack of emergency preparedness and the BCEG in Arkansas. There is 

also high vulnerability in west Texas and New Mexico, especially along the Mexican 

border due to high contributions from lack of education and large Hispanic populations; 

however, a correlation cannot be made between the two without further research. 

 

Figure 2.3 Spatial map of the vulnerability index. Here, “High” corresponds to index 
values of .511-.334, “Medium” to .333-.167, and “Low” to .166-0.  

 

2.4 Summary 

A social vulnerability index was developed in this study that includes both inland and 

coastal vulnerabilities to hurricanes making landfall in the Atlantic Basin. A major 

finding is that the most vulnerable communities are found inland, providing evidence that 

inland communities should be considered during planning in hurricane disaster 

prevention. It is found that the most vulnerable counties were located in portions of west 
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Texas, New Mexico, Arkansas and the Carolinas. The least vulnerable near-coastal area 

was near Washington, D.C.  

To truly reduce the lethality of hurricanes, a thorough assessment of the 

communities that will be impacted is necessary. Emergency managers use various tools 

to aid them in determining when and where to allocate funding and resources to prevent 

hurricane disaster. The vulnerability index developed in this chapter presents additional 

important information on all counties within the hazard prone regions, not just coastal 

communities.  It will be combined with exposure and hazard information developed in 

subsequent chapters, to culminate in a new risk index. 
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CHAPTER 3. CLIMATOLOGICAL DISTRIBUTION OF TROPICAL CYCLONE 
TORNADOES 

3.1 Methodology 

3.1.1 Dataset 

A record of tropical cyclone tornadoes that have occurred in the United States is obtained 

using the dataset developed by Edwards (2010) (who also continues to provide annual 

updates http://www.spc.noaa.gov/misc/edwards/TCTOR/tctor.xls). Relative to that used 

in previous TCT climatologies (e.g., Pearson and 

Sadowski 1965; Hill et al. 1966; Novlan and Gray 1974; McCaul 1991; Schultz and Cecil 

2009; Edwards 2011), this more detailed and modern dataset “ameliorates impacts of 

systematic ‘shocks’ to the data record” (Edwards 2010) yet still offers enough data to 

analyze TCT events occurring between 1995 and 2011.  Edwards’ (2010) dataset is 

derived from the tornado-report database maintained by the NOAA Storm Prediction 

Center (SPC), which has been used in numerous studies of tornadoes (e.g., Brooks et. al 

2003; Trapp and Brooks 2013; Rhodes and Senkbeil 2014).  To determine the presence of 

a TCT within the circulation of a tropical cyclone or the remnants thereof, Edwards 

(2010) matched reports with imagery from archived NEXRAD Level II data (Kelleher et 

al. 2007). Qualifying TCTs were then separated from the SPC database and then assigned 

to their respective TCs by name. 
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There are a total of 1203 TCT events that occurred between 1995 and 2011 (Fig. 

3.1). These have damage-based intensities that range from Enhanced-Fujita scale (EF)-0 

to EF-4.  Although both 2004 and 2005 hurricane seasons were active, the 2005 hurricane 

season produced significantly less TCTs compared to the 2004 season (Fig. 3.2).  Thus, 

there is not necessarily a direct relationship between the number of Atlantic Basin TCs 

per year and the number of U.S. TCTs per year. 

 

Figure 3.1 Geographical location of the 1203 TCTs that occurred during the interval 
1995-2011. 

 

 
Figure 3.2 Comparison of TC (a) and TCT occurrence (b). Theses maps show there is not 

a connection between an active TC season and active TCT events. While the 2004 TC 
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season was moderately active, there was a high TCT occurrence, the opposite is true for 
the 2005 season. 

 
3.1.2 Geospatial Analysis of the TCT Data: Interpolation and Smoothing 

A multi-step procedure was used to prepare the TCT data for incorporation into the 

county-based risk index.  This procedure included interpolation of the geo-referenced 

TCT reports (λreport, ϕreport)  to a uniform Cartesian grid (Xunigrid, Yunigrid) , and 

then an application of a spatial smoother within geographic information systems (GIS) 

using the ArcGIS software, which was then used to assign a TCT frequency to each 

county within the analysis domain. 

The data were interpolated to a 3750 × 3750 km Cartesian grid assuming, for 

simplicity, a cylindrical equidistant projection, e.g.,  

  

                              Xunigrid = λreport × re                                               (3.1) 

                              Yunigrid = ϕreport × re                                               (3.2) 

 

and a grid spacing of 50 km; here, re is the radius of the Earth.  To carry out the 

interpolation, uniform weighting was applied to all reports within a box surrounding the 

grid point (see Fig. 3.3); consequently, the grid point was assigned a value equaling the 

number of TCTs falling within that box. 

  



33 

 
Figure 3.3 Example Cartesian grid used in the data interpolation (left panel); right panel 
shows a zoomed view of sample grid and data points.  TCT events represent the smaller 

circles, and the white circle represents the grid point. 
 
Figure 3.4 shows the gridded TCT report data at a county level.  Note that the 

majority of TCT reports concentrated in the Southeastern and Mid-Atlantic states.   This 

figure also reveals some of the potential representativeness errors inherent in data that 

derive from eyewitness reports.  Thus, smoothing is applied to account for these potential 

errors (e.g., Brooks et al. 2003).   
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Figure 3.4 Unsmoothed county-level TCTs from 1995-2011. 
 

As required for smoothing in GIS, the data were assigned latitude and longitude values 

using essentially an inverse of Eqs. 3.1-3.2, i.e.,  

                     λunigrid = Xunigrid/re                                                 (3.3)                                     

                       ϕunigrid = Yunigrid/re                                        (3.4) 

where λunigrid and ϕunigrid  is longitude and latitude, respectively.  These data were 

imported into ArcGIS, and then a diffusion kernel smoother without barriers was applied 

to the TCT data (Silverman 1986; Brooks et al. 2003; Trapp and Brooks 2012). Note that 

this diffusion kernel behaves similarly to a kernel smoother with a Gaussian distribution, 

as used by Brooks et al. (2003) and Trapp and Brooks (2012).  The steps taken within 

ArcGIS are outlined in Appendix A. 
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3.2 Results 

The result here is presented as a smoothed mean annual occurrence, relative to the 16-y 

dataset of Edwards (2010).  High TCT occurrence (0.135-0.208 TCTs per TC season) is 

shown in the Mid Atlantic Coastal States, Florida, southern Alabama, and central 

Mississippi, with decreasing probability farther inland (Fig. 3.5).  

 

Figure 3.5 Smoothed TCT data from 1995-2011 using diffusion kernel without barriers 
 

3.2.1 Summary 

In summary, this chapter focused on developing an annual mean frequency of TCT 

events occurring between 1995 and 2011, to be included in a risk index for Atlantic Basin 

hurricanes (see Chapter 5). High TCT frequency is shown to occur in the Mid Atlantic 

Coastal States, Florida, southern Alabama, and central Mississippi.  
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CHAPTER 4. CLIMATOLOGICAL DISTRIBUTION OF TROPICAL CYCLONE 
FLASH FLOODING 

The purpose of this chapter is to develop a climatological distribution of tropical cyclone 

flash flooding (TCFF) that can be integrated with exposure and vulnerability data to 

assess TC risk.  TC flash flooding is a particular hazard to inland communities. To date a 

TC flash-flood climatology has not been developed and is motivated by Ashley and 

Ashley's (2008) charge that national and regional studies should examine “localized 

[flooding], human perception and socio-economic characteristics of flood casualties.” 

4.1 Methodology 

Villarini (2011, 2012) correlated tropical cyclone rainfall to stream-gauge data to develop 

a climatology of tropical cyclone flooding (TCF).  Given this approach, the Villarini 

(2011, 2012) data necessarily includes river flooding but excludes coastal (surge) 

breaches.  It may or may not include flooding associated with sub-diurnal-scale TC 

rainfall, especially within inland urban areas.  Thus, in an effort to isolate such TC flash 

floods, a comparative study is conducted herein of flash-flood reports (FFRs) and flash 

flood warnings (FFWs) issued by the NWS.  As detailed below, the FFR data are used to 

construct a TCFF hazard map. 

4.1.1 Flash-flood Report and Warning Data Analysis 

FFWs and FFRs were chosen here as a means to represent short-duration “freshwater” 

flooding, especially in inland urban areas, which may be well away from a major river or 
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stream but still be affected by run-off from drains and small basins; such flash flooding is 

separate from river and coastal (surge) breaches, although inland flash flooding may 

eventually lead to river flooding.  The respective FFW and FFR datasets have unique 

advantages and disadvantages in their use toward creation of a TC flash-flood 

climatology.   For example, the FFW record is fairly long [a 28-yr archive is available 

through the Iowa Environmental Mesonet (IEM)] but there are questions as to how well a 

FFW serves as a proxy for an actual flash flood.  On the other hand, a FFR is definitive 

evidence of a flash flood, but the archive is relatively short [a 17-yr archive is available 

directly through the NOAA National Climatic Data Center (NCDC)].  A comparison of 

analyses of both datasets follows.  

The NWS “Flash Flood Warning Best Practices” can be found at:  

http://www.wdtb.noaa.gov/courses/ffw_bp/.  Each NWS office issues FFWs based on 

their knowledge of prior and current weather conditions in their forecast area. They also 

closely monitor the thresholds of the various basins in their respective forecast areas and 

can quickly act if a weather system is expected to produce enough precipitation that will 

breach those basins. Forecasters are also aware of topographical features that may 

increase the likelihood of flash flooding, such as aforementioned urban development that 

may inhibit rain water from soaking into the ground. The specific topography of the 

Balcones Escarpment in Texas, for example, is responsible for a large number of flood 

related fatalities. Since these warnings incorporate information about location and time, 

they are useful to gain insight into inland flooding.  To use the FFW data, two 

assumptions were made: 

1. A flash flood occurred somewhere within the warning polygon. 
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2. The flash flood posed an immediate threat to the inhabitants within the warning 

polygon. 

It is likely that a FFW does not always mean the event actually occurred, thereby 

bringing the first assumption into question; this is explored below using corresponding 

FFR data for a subset of the FFWs.  

Archived FFWs were taken from the IEM, which is maintained by Iowa State 

University’s Department of Agronomy.  To be consistent with the TC rainfall cases 

analyzed below, only warnings from the years 1988-2012 were used in this analysis. Note 

that beginning 1 January 2002, the practice of issuing warnings over geographical 

polygons was adopted by the NWS. This means that warnings may apply to portions of a 

county rather than the entire county, although the polygons often span entire counties 

(Gourley et al. 2013).  GIS was used to extract only those FFWs issued 24 hrs prior to 

and following the official international best track archive for climate stewardship 

(IBTRACS) of all TC events during the analysis period.  As described in detail in 

Appendix A, GIS was then used to create county-level accumulations of all the TC-

associated FFWs, from which FFW frequency maps were derived.  

FFR data for the period 1988-2012 were extracted from the NCDC archive.  In 

accordance with the NWS reporting procedures, each FFR concerns a storm that 

threatened life and property, and specifically identifies the occurrence of moving water 

with a depth greater than 6 inch, the amount of water presumed to affect moving vehicles, 

or of standing water with a depth greater than 3 feet (NWS 2007).  Flash floods reported 

prior to 2007 were recorded at a county level, and thereafter, at point-specific locations.  

As done with the FFWs, GIS was used to create county-level accumulations of all the 
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TC-associated FFRs, from which FFR frequency map were derived (see also Appendix 

A).  Only those FFRs during the 24 hrs prior to and following the passage of a tropical 

cyclone (as determined from the IBTRACS) were included in the analysis.   

For consistency with the TCT analysis in Chapter 3, and implicitly to account for 

uncertainties in the report and warning data, a diffusion kernel smoother was applied (see 

Appendix A) to the accumulated county-level FFWs and FFRs (Silverman 1986; Brooks 

et al. 2003; Trapp and Brooks 2012).  The resulting frequency maps are assessed in 

Section 4.2.   

4.1.2 TC Rainfall Data and Analysis 

To provide a quantitative, rainfall-based complement to the FFRs and FFWs, tropical 

cyclone rainfall was also analyzed, using data provided by David Roth from the 

NOAA/Weather Prediction Center (WPC). These data (see 

http://www.wpc.ncep.noaa.gov/tropical/rain/tcrainfall.html) are a compilation of rainfall 

totals collected by rain gauges at various locations and managed by NCDC. In 2004, 

“Katz” files were incorporated into the data set, which include NWS Cooperative 

Observer Program (COOP) and United States Geological Survey (USGS) rainfall reports 

(these are real time data from the NOAA/Climate Prediction Center rainfall collective).  

The WPC associates the rainfall data with a TC beginning with the formation of TC low 

pressure and continues until the TC low dissipates. In the instance that a tropical 

disturbance forgoes the formation of the low, the date of the TC rainfall event is 

extended. This is also done if there is a mesoscale convective vortex associated with a 

dissipating tropical system.   
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The analysis here includes rainfall associated with the 85 TC cases making U.S. 

landfall between 1988 and 2012. The rainfall totals were interpolated onto a 119° 

longitude x 29° latitude grid with 0.49° grid spacing, using iterative correction with radii 

of 0.3, 0.2, and 0.1 degree latitudes.  The domain is centered about the continental U. S. 

and spans 24° to 53° latitude and -125° to -66° longitude.  Using GIS, gridpoint values of 

the interpolated rainfall were then joined to the closest county center.  If more than one 

rainfall total is near a county, then the sum total is assigned to that county.    

4.2 Results and Discussion 

4.2.1 TCFFW and TCFFR Analysis 

To test the validity of using FFW as a proxy, a simple verification is conducted between 

warnings and reports over a 6-yr period 2006-2011. The FF report data comes from the 

flooded locations and simulated hydrographs (FLASH) project maintained by the NOAA 

National Severe Storms Laboratory. A total of 16 tropical systems occurred within this 

time frame, with 8 reaching hurricane intensity. 

 
Figure 4.1 (a) All NWS flash flood warnings issued, and (b) All NWS flash floods 

reported, between 2006 and 2011 by NWS county warning area, regardless of flash flood 
source (e.g. thunderstorm, TC, etc). 

 
It was found that 90% of the FFWs were considered false alarms.  Of the 

remaining 10%, 90% of the FFWs were actually verified (a report was recorded in an 
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area in which a warning was issued), and 10% were classified as missed events (a report 

was recorded in an area in which a warning was not issued). The percentage of TCFFRs 

(Fig. 4.1a) to TCFFWs (Fig. 4.1b) in this period is 10%, compared to the overall total of 

FF reports to warnings regardless of source being 2.1%, and all events excluding TCT FF 

reports and warnings is 1.96%.  Looking at the overall total of FFWs, regardless of cause, 

issued between 1996 and 2011, FFWs are mostly distributed in the southern states of 

Southwest Texas, Louisiana, and Mississippi. What is interesting is that there are more 

FFWs issued in the inland NWS county warning areas as compared to the coastal 

warning areas. 

 To further compare TC flash flood reports to warnings, and thus to complement 

the verification conducted above, the full TCFFR and TCFFW datasets are analyzed.  

Each normalized by their respective maximum values to facilitate this comparison.  

In general, it is noted that large quantities of warnings and reports are located 

inland. Unexpectedly, large portions of Florida along the coast received few TCFFWs 

and TCFFRs for the period. There is also an area in central Georgia that received little to 

no FFWs and FFRs. This hole is also reflected in rain gauge data (Villarini 2011) and 

tropical cyclone tornado data. More insight into the demographics and geography of the 

location is needed for further assessment.  

When comparing the TCFFW and TCFFR analyses (Fig. 4.2a and b), there is 

much agreement in the location of the flash flood events, however the magnitudes vary. 

One particular area of interest is the high concentration of TCFFW in Louisiana, 

Southern Mississippi and Southern Alabama. The TCFFR data however do not show a 

high number of reports in Louisiana compared to the TCFFW data. Another area of 
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interest is the magnitude of TCFFR verses TCFFW in the coastal Mid-Atlantic region, 

where more reports are shown than actual warnings, signifying under reporting in the 

area. This can cause this region to be highly vulnerable if the residents are not warned in 

time to take the necessary safety precautions. Future studies should assess the fatalities in 

this region in particular. 

 
Figure 4.2 Mean, normalized, annual frequency of (a) TC related flash floods reported, 
and (b) TC related flash floods warnings issued. Both maps show high concentrations in 
the same general areas with higher concentrations seen in the flash flood warnings 
overall. 
 

Despite the geographical similarities in the TCFFR and TCFFW analyses, the 

magnitude differences revealed in the verification statistics as well as in the un-

normalized analyses lead to the conclusion that the TCFFRs are more suitable for use in 

the subsequent TC inland hazard maps and risk index.  

As shown in Fig. 4.3, the highest concentration of tropical cyclone induced flash 

flood reports are seen in the mid-Atlantic and Appalachian Highland regions, along with 

the most southern tip of where Alabama and Mississippi meet. These areas have an 

average of 32 FFRs over the 16 yr period or about two reports per season. One can glean 

that these areas are highly susceptible to TC flash flooding. Although the aforementioned 

regions contained the highest number of reports, a significant number of reports are also 
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located well inland with as many as 10 reports reaching as far as Tennessee on the 

southern end and New England on the northern tip of United States. 

 

Figure 4.3 Smoothed mean frequency of TCFFRs based on data from the period 1988-
2012. 

 

4.2.2 TCR Analysis 

Looking at the rainfall distribution from the 85 TC cases that occurred during the period 

1988-2012, as expected, more rain occurred in the states bordering the Atlantic Basin 

(Fig. 4.4). Counties directly on the Gulf Coast, mid Atlantic and Florida Peninsula 

recorded the largest rainfall. Rain totals gradually decrease with distance from the coast. 

However, there are still relatively large amounts of TC rainfall well inland, on the county 

level.  This supports the emphasis here on inland risk to TCs. 
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Figure 4.4 Tropical cyclone rainfall over the period 1988-2012.  
 

4.3 Summary 

In summary, tropical cyclones pose dangers to both inland and coastal communities. In 

particular inland flooding is a topic of discussion that still needs to be addressed to reduce 

loss of life during hurricane events. With most hurricane decision making tools focusing 

on coastal areas, this study sheds light on the potential risk of inland communities to flash 

flooding. To reiterate some of the key findings, there is relatively high potential risk in 

counties well inland from coastal areas, as evidenced by the concentration of flash 

flooding in the New England and Gulf Coast regions 
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CHAPTER 5. DEVELOPING THE HURRICANE DISASTER RISK INDEX FOR 
TROPICAL CYCLONE TORNADOES AND FLASH FLOOD HAZARDS 

In this chapter, the inland hazard risk index is formally developed, representing a 

culmination of the hazard (e.g. TCT and TCFF) analyses in Chapters 3-4, and the 

identification and quantification of the exposed and vulnerable populations in Chapter 2.  

5.1 Methodology 

From Chapter 1, risk is defined as a combination of exposure, vulnerability, and hazard 

(see Eq. 1.1). Accordingly, the inland-hazards hurricane disaster risk index (HDRI) is 

expressed as  

   IHDRI = Exposure × SocVul × Hazard ,  (5.1) 

where Exposure is the exposed population, SocVul is the measurement of the 

vulnerability of the overall population.(see Ch. 2), and Hazard is the sum of the TCT and 

TCFF probabilities (see Ch. 3 and 4, respectively).  Each of these three contributions is 

normalized, and then combined using GIS. 

5.2 Results 

The highly exposed population and hazard likelihood contributes to the highest risk areas 

in the mid-Atlantic region (Figs. 5.1-5.3).  Areas of moderate risk are seen in the 

Southeast, where the hazards probability peaks.  One exception is in central Georgia, 

which is represented as relatively low risk despite the significant social vulnerability in 

the region, there still exists a risk “hole” in Georgia. This is due to the low contributions 
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(and similar holes) from the TCT and TCFF hazards, and the relatively low exposed 

population. In the Midwest, the risk is also low, but because of low hazard and social 

vulnerability contribution, and despite of a high value of exposure. The exceptions in this 

region exist in counties with large urban areas, and inherently large populations (e.g. 

Chicago, Illinois). 

 

Figure 5.1 Geographical distribution of the Inland Hazard Hurricane Disaster Risk Index 
normalized by the maximum risk value of 0.201. This normalization is unique to this 

figure. “High Risk” corresponds to index values of .010-1.00, “Moderate Risk” 
to .002-.004, and “Low Risk” to 0.00-.001. 
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Figure 5.2 As in Fig. 5.1, except for the contribution of the TCT and TCFF hurricane 
hazards. 
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Figure 5.3 As in Fig. 5.1, except for the contribution of the exposed population. 
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Figure 5.4 As in Fig. 5.1, except for the contribution of social vulnerability. 
 

5.2.1 Sensitivity Tests 

Note that in Eq. 5.1, all variables are intentionally weighted equally.  However, a risk 

manager’s preference (e.g., based on her/his protocols) might be that one variable should 

be weighted more than others when assessing risk. For example, the exposed population 

may not be of significant importance to this risk manager, who might make decisions 

simply based on the impact of the hazard; the same argument could be made for decisions 

driven mostly by vulnerable populations.  Thus, the following section is devoted to tests 

of the sensitivity of risk to weights on exposure and social vulnerability. 
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5.2.1.1 Exposure 

Five sensitivity tests were conducted for exposure, the first being one in which all 

counties within the domain are given a uniform value of Exposure of one (Eq. 5.2). The 

next three tests reduce the weight of Exposure to 10%, 25% and 50%, respectively (see 

Eq. 5.3-5.5). Test five (Eq. 5.6) increases the contribution of Exposure by 1.5.  

Geographically, creating a uniformly exposed population brings out similar 

features seen with the Hazard component of the map (see Fig. 5.4). This shows, not 

surprisingly, that the contribution of the exposed population has a major impact on the 

magnitude of risk. Furthermore, decreasing the contribution of the exposed population 

(Eq. 5.2-5.4) reduces the magnitude of risk but not necessarily the features that one 

would see in Fig. 5.1 (see Fig 5.5-5.6). Increasing the contribution of risk (Eq. 5.6) also 

showed little change in geographic distribution of risk. 

 

        HDRI = SocVul × Hazard ,                                         (5.2) 

        HDRI = (0.1 × Exposure) × SocVul × Hazard ,      (5.3) 

         HDRI = (0.25 × Exposure) × SocVul × Hazard ,     (5.4) 

        HDRI = (0.5 × Exposure) × SocVul × Hazard ,      (5.5) 

          HDRI = (1.5 × Exposure) × SocVul × Hazard ,      (5.6) 

  



51 

 

Figure 5.5 As in Fig 5.1, except for the contribution of a uniformly exposed population 
normalized by the maximum value of 0.464481. 
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Figure 5.6 As in Fig 5.1, except for the contribution of 50% of the exposed population 
normalized by the maximum value of 0.100369. 
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Figure 5.7 As in Fig 5.1, except for the contribution of 10% of the exposed population 
normalized by the maximum value of 0.020074. 

 

Results in Table 5.1 show that the uniform exposure increases the risk in all the 

domain-wide statistics, doubling the maximum risk and increasing the mean risk by a 

factor 50. Reducing Exposure decreases the risk, however the main changes are seen in 

the mean risk when reducing this variable by 50%. Increasing the variable by 1.5 

increased the max risk by 25% but produced little change in the mean risk. 
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Table 5.1 . Sensitivity tests for the exposure variable showing the maximum, minimum, 
mean and change in risk (‘Change;’ mean risk - “Main” mean risk). Main variable 

represents the control case (Eq. 5.1). 

5.2.1.2 Social Vulnerability Tests 

Only two sensitivity tests were conducted for the SocVul parameter: increasing the 

variable to an equal contribution to the other two variables, and creating uniform 

vulnerability for all counties:  

        HDRI = Exposure × (1.961 × SocVul) × Hazard ,         (5.7) 

                    HDRI = Exposure ×  Hazard ,            (5.8) 

The former test (Eq. 5.7) is conducted to scale up the maximum value of social 

vulnerability.  Owing to the way in which this variable is computed (see Chapter 2), the 

spatial maximum is only 0.52, and thus a factor of 1.96 scales this maximum to 1.0. The 

latter test (Eq. 5.8) forces the vulnerability to be equal amongst all counties.  Although 

realistically this is not true (see Chapter 2), some decision makers may not take this 

aspect into account when considering risk.   
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As shown in Table 5.2, increasing SocVul by 1.96 nearly doubled the maximum, 

mean and minimum risk, while creating a uniform SocVul more than doubled the 

maximum risk (57%), tripled the minimum risk, and quadrupled the mean risk. 

Geographically, the double and uniform social vulnerability slightly increased the 

magnitude of the risk across the U.S. (Figs. 5.8 and 5.9). 

 

Figure 5.8 As in Fig 5.1, except for the contribution of 196% of social vulnerability. 
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Figure 5.9 As in Fig 5.1, except for the uniform social vulnerability contribution. 
 

Comparing the uniform Exposure and SocVul sensitivity tests, the effect of 

having a uniformly exposed population is greater than that of a uniformly vulnerable 

population. These findings suggest the importance of considering the exposed in risk 

analysis and the potential impacts the hazard will have on these communities. It does not 

suggest that social vulnerability is not important in such considerations. 
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Table 5.2 As in Table 5.1, except for the social vulnerability variable 
 

Work is ongoing to investigate the different weights on the index variables.  

Additional work is aimed at testing different methods to normalize the index variables, 

each of which has disparate geographical distributions.  These include “standardization” 

(which involve use of the mean and standard deviation of the variable distribution), and 

removal of outliers and therefore the use of a lower percentile value in the scaling. 

5.3 Summary 

An index was developed to help draw attention to the risk of inland communities to 

hurricane disaster. The combination of high probability of hazard occurrence and a large 

exposed population contributes the most to the high risk seen in the Mid-Atlantic. Other 

areas with high risk are shown in the southeast, where there is high social vulnerability, 

high hazard likelihood and moderate population exposure. Sensitivity tests were 

conducted on the Exposure and SocVul parameters, in which these variables were 

weighted differently.  Creating a uniformly exposed population produced the most 
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change in risk, suggesting the importance this variable could have in the decision making 

process. Risk information from this chapter will be used in Chapter 6 in the agent-based 

model simulations. 
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CHAPTER 6. AGENT BASED MODELING OF TROPICAL CYCLONE HAZARD 
AND EVACUATION 

The goal of this chapter is to demonstrate how an agent-based model can be used to 

simulate county-level changes in the probability of a TCT relative to a translating TC.  

Separate simulations are also performed of idealized county-level evacuations relative to 

the same translating TC.   When combined, the two simulations are used to assess the 

time sensitive nature of evacuations ahead of an approaching TC. 

6.1 AnyLogic Model 

AnyLogic (AnyLogic North America, LLC 2014) is a commercial modeling system with 

the functionality of three different dynamic simulation platforms that can be used 

independently or in combination: “Systems Dynamic” modeling allows one to assess how 

a system behaves and its structure. The entities are modeled in quantities, however the 

individual properties of the entities are not included. “Discrete Event” modeling has the 

capabilities to approximate continuous real world processes with user-defined non-

continuous processes. Finally, “Agent Based” modeling is a system of functions that 

allows user specific information to interact simultaneously in an environment. These 

modeling methods have been used to dynamically simulate the complexities of various 

economic, social, and physical systems, and hence have broad applicability. 



60 

 Agent based modeling is the chosen modeling method here as it allows simulation 

of the effect of an agent, or active entity, on its environment.  The agent is a TC that 

moves inland along a specified track.  The environment consists of five counties. 

6.2 Data and Methods 

Using the TCT hazard analysis (see Chapter 3) as guidance, five cities/counties (see Fig. 

6.1) have been chosen to represent the environment of the TC:  Orange Beach/Baldwin, 

which is near the coast; Hattiesburg/Forrest and Meridian/Lauderdale, which are located 

inland and to the west of Baldwin County; and Montgomery/Montgomery and 

Birmingham/Jefferson, which are located inland and to the east of Baldwin County.  As 

discussed below, Baldwin County also serves as the “evacuation” county.  The modeling 

domain stretches 2124 km eastward across the southeastern United States.  Five south-

north TC tracks are specified, including a “main” track that flows directly through 

Baldwin County, and four additional tracks that are equally spaced on each side of the 

main track (Fig. 6.1).   The simulated TC is constrained to move south-to-north at three 

different speeds, slow (8.05 km/hr), medium (16.09 km/hr), and fast (24.14 km/hr) 
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                                    Track 3                 Track 2 

 
 

Figure 6.1 Agent-based modeling domain, showing the five different tracks of the TC 
(the agent), and the five counties (the environment). 

 

TCT probability (TCTProb) is calculated on a hourly time step using the following 

equation, as the agent moves along one of the defined tracks: 

TCTProb = StatP × DistP × QuadP .   (6.1) 

Here, StatP is the background or “static” probability of a TCT, as defined by the TCT 

hazard analysis: 

Baldwin County         = 0.147 

Forrest County           = 0.123 

Lauderdale County    = 0.115 

Montgomery County = 0.152 

Jefferson County       = 0.062 

Main Track1 Track 4 

Forrest 
Baldwin  

Lauderdale  
Jefferson  

Montgomery  
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DistP and QuadP are the “dynamic” probabilities of a TCT based on the distance d of the 

county (center) from the TC center, and on the county location relative to the TC 

quadrant, respectively.   

Following Fig 7. of Edwards (2012), it is assumed that the probability of a TCT 

increases from a value of 0.25 at the TC center to 1.0 at 300 km, and then decreases 

thereafter.  Specifically, 

DistP = d/400 + 0.25, for d  300 km, 

DistP = (700-d)/400, for 300 < d  700 km, 

DistP = 0, for d  > 700 km. 

The quadrant-relative TCT probabilities also follow Fig 7. of Edwards (2012).  Letting X 

and Y be the coordinates of the county, and X0 and Y0 be the coordinates of the TC 

center, then 

 QuadP = 1.0, for X - X0 > 0, Y - Y0 > 0 (county is in Quadrant I),   

 QuadP = 0.5, for X - X0 < 0, Y - Y0 > 0 (county is in Quadrant II), 

 QuadP = 0.25, for X - X0 < 0, Y - Y0 < 0 (county is in Quadrant III), 

 QuadP = 0.75, for X - X0 > 0, Y - Y0 < 0 (county is in Quadrant IV). 

6.3 Results 

6.3.1 Change of TCTProb with Varied Speeds 

The TCTProb maximum, minimum, mean, and change (MeanTCTProb-StaticTCTProb) 

is computed for each county and TC speed (fast, medium, and slow) over the Main Track 

(Tables 6.1-6.3).  The expectation is that the faster the TC moves, the less time the county 

is subjected to the hazard.  This is reflected somewhat in the mean TCTProb, particularly 
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in Montgomery County, which accordingly also exhibited the greatest TCTProb 

variability or change during the simulations.   One preliminary conclusion that can be 

extracted from these experiments is that the “dynamic” tornado hazard associated with a 

translating TC will become even more complicated with a nonlinear (i.e., curved) TC 

track. 
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County 
Static 

TCTProb 
Max 

TCTProb 
Min 

TCTProb 
Mean 

TCTProb 
Change of 
TCTProb 

Jefferson 0.062 0.06 0 0.029 -0.033 
Montgomery 0.152 0.149 0 0.064 -0.088 

Forrest 0.123 0.049 0 0.023 -0.1 
Lauderdale 0.115 0.057 0 0.023 -0.092 

Baldwin 0.147 0.049 0 0.022 -0.125 
Table 6.1 Tropical Cyclone Tornado Probability at slow speed (8.05 km/hr). 

 

 

 

 

6.3.2 Change of TCTProb with Varied Tracks 

The TCTprob maximum, minimum, mean, and change (StaticTCTProb-MeanTCTProb) 

are also computed for each county and track, for a fixed TC speed; the medium speed is 

chosen but represents the basic effects of track change on the TCTProb. One observation 

of interest is the identical probability changes on Tracks 2 and 3 whose locations are 

directly to the east and west, respectively, of the Main Track (see Fig. 6.1). Observed 

changes from Track 1, located on the far west of the Main Track, are slightly lower than 

Track 4, however the maximum TCTprob from Track 1 is much higher. This is also true 

County 
Static 

TCTProb 
Max 

TCTProb 
Min 

TCTProb 
Mean 

TCTProb 
Change of 
TCTProb 

Jefferson 0.062 0.059 0 0.028 -0.034 
Montgomery 0.152 0.129 0 0.063 -0.089 
Forrest 0.123 0.048 0 0.023 -0.1 
Lauderdale 0.115 0.056 0 0.023 -0.092 
Baldwin 0.147 0.047 0 0.022 -0.125 

Table 6.2 Tropical Cyclone Tornado Probability at medium speed (16.09 km/hr).  

County 
Static 

TCTProb 
Max 

TCTProb 
Min 

TCTProb 
Mean 

TCTProb 
Change of 
TCTProb 

Jefferson 0.062 0.055 0 0.028 -0.034 
Montgomery 0.152 0.126 0 0.061 -0.091 
Forrest 0.123 0.047 0 0.022 -0.101 
Lauderdale 0.115 0.057 0 0.023 -0.092 
Baldwin 0.147 0.046 0 0.022 -0.125 

Table 6.3 Tropical Cyclone Tornado Probability at fast speed (24.14 km/hr).  
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for Track 3 compared to Track 2. These findings illustrate how distance and quadrant 

combine to modify the dynamic hazard. 

County 
Static 

TCTProb 
Max 

TCTProb 
Min 

TCTProb 
Mean 

TCTProb Change of TCTProb 
Jefferson 0.062 0.06 0 0.044 -0.018 
Montgomery 0.152 0.147 0 0.112 -0.04 
Forrest 0.123 0.123 0 0.067 -0.056 
Lauderdale 0.115 0.109 0 0.069 -0.046 
Baldwin 0.147 0.144 0 0.101 -0.046 

Table 6.4 Tropical cyclone tornado probability on Track 1 
 

County 
Static 

TCTProb 
Max 

TCTProb 
Min 

TCTProb 
Mean 

TCTProb Change of TCTProb 
Jefferson 0.062 0.029 0 0.015 -0.026 
Montgomery 0.152 0.075 0 0.032 -0.065 
Forrest 0.123 0.058 0 0.033 -0.076 
Lauderdale 0.115 0.055 0 0.031 -0.064 
Baldwin 0.147 0.05 0 0.026 -0.075 

Table 6.5 Tropical cyclone tornado probability on Track 2 
 

County 
Static 

TCTProb 
Max 

TCTProb 
Min 

TCTProb 
Mean 

TCTProb 
Change of 
TCTProb 

Jefferson 0.062 0.059 0 0.036 -0.026 
Montgomery 0.152 0.15 0 0.087 -0.065 
Forrest 0.123 0.093 0 0.047 -0.076 
Lauderdale 0.115 0.112 0 0.051 -0.064 
Baldwin 0.147 0.11 0 0.072 -0.075 

Table 6.6 Tropical cyclone tornado probability on Track 3 
 

 

  

County 
Static 

TCTProb 
Max 

TCTProb 
Min 

TCTProb 
Mean 

TCTProb 
Change of 
TCTProb 

Jefferson 0.062 0.031 0 0.019 -0.043 
Montgomery 0.152 0.076 0 0.044 -0.108 
Forrest 0.123 0.06 0 0.042 -0.081 
Lauderdale 0.115 0.056 0 0.039 -0.076 
Baldwin 0.147 0.073 0 0.039 -0.108 

Table 6.7 Tropical cyclone tornado probability on Track 4 
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6.3.3 Example Vulnerability Case 

The final set of experiments is used to show how vulnerability, and inherently risk 

changes during evacuations.  During each simulation, each county is assumed to start 

with some risk, but thereafter experiences an increase in risk depending on the magnitude 

of the hazard (TCT) probability, exposed population and social vulnerability of that 

population: 

DRisk = StaticRisk + (TCTProb × Exposure × SocVul)                (6.2) 

where StaticRisk for each county is:  

Baldwin County = 0.051 

Forrest County   = 0.030 

Lauderdale County = 0.029 

Montgomery County= 0.075 

Jefferson County = 0.157 

TCTProb is the same as in section II, SocVul for each county is: 

Baldwin County = 0.405 

Forrest County   = 0.697 

Lauderdale County = 0.555 

Montgomery County= 0.546 

Jefferson County = 0.465 
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and Exposure is the exposed population in these counties: 

Baldwin County = 0.008 

Forrest County   = 0.008 

Lauderdale County = 0.555 

Montgomery County= 0.023 

Jefferson County = 0.068 

For simplicity, the variables of Baldwin County are equally distributed between 

the four destination counties as the TC moves northward (e.g. SocVul for Forrest county 

is 0.697 + (0.405/4) and Exposure is 0.008 + (0.008/4)). This suggests that the evacuees 

and associated vulnerability and exposure from Baldwin County are split equally between 

the destination counties. Disaster risk for each county varied according to the table below 

showing the maximum, minimum, mean, and the change of risk (Static Risk-Mean Risk). 

Only the main track at medium speed is presented. 

County Static Risk Max Risk Min Risk Mean Risk Change of Risk 
Jefferson 0.01 0.12 0 0.011 0.001 

Montgomery 0.009 0.11 0 0.01 0.001 
Forrest 0.002 0.002 0 0.002 0 

Lauderdale 0.002 0.023 0 0.01 0.008 
Baldwin 0.004 0 0 0 -0.004 

Table 6.8 Disaster risk 
 

Results in Table 6.9 show that disaster risk increased as the TC propagated on its 

south-north track. Furthermore, the change in risk is contingent on the magnitude of the 

exposed population in combination with the hazard and social vulnerability. On the other 

hand, Baldwin County has a risk of 0, if there is no exposed population, then there is no 

risk, despite having a potential for TCTs (Table 6.7). 



68 

6.4 Summary 

AnyLogic agent-based modeling was used to simulate evacuation behavior and the 

changes in risk and associated hazards during an idealized hurricane event. Information 

gleaned from this example case will hopefully educate decision makers on the complex 

interactions between inland hazards such as TCTs and evacuations.  
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CHAPTER 7. SUMMARY, DISCUSSION, AND FUTURE WORK 

7.1 Summary 

The purpose of this research was to assess the disaster risk associated with tropical 

cyclones in the Atlantic Basin. This was done by assessing the three components 

associated with risk: vulnerability, hazard and exposure. “Vulnerability” refers to social 

and demographic characteristics influencing a person’s ability to mitigate and or recover 

from disaster. “Hazard” refers to the hazards associated with the tropical storm (e.g. 

wind, surge, flooding etc.), this research focuses explicitly on tropical cyclone tornadoes, 

and flash flooding, and implicitly on wind. Lastly, “Exposure” is the exposed population 

within the domain defined by the wind hazard 

A social vulnerability index was developed in this study that includes both inland 

and coastal vulnerabilities to hurricanes making landfall in the Atlantic Basin. A major 

finding is that the most vulnerable communities are found inland, providing evidence that 

inland communities should be considered during planning in hurricane disaster 

prevention. It is shown that the most vulnerable counties were located in portions of west 

Texas, New Mexico, Arkansas and the Carolinas. The least vulnerable region was in the 

Washington D.C. area.  

The hazard component to the risk index consisted of tornadoes and flash flooding.  

On average, TCTs are on the lower end of intensity using the EF scale (EF0-EF2). The 
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right front quadrant of the TC and the outer rainbands are favored locations for 

TCT production, but they are still difficult to forecast. Using data from the TCTOR 

database, an updated hazard map of TCTs was developed for the purpose of incorporating 

into a hurricane disaster risk index. After smoothing the data using a diffusion kernel, 

high TCT probability is shown in the Mid Atlantic Coastal States, Florida, southern 

Alabama, and central Mississippi.  

Inland flooding is a topic of discussion that still needs to be addressed to reduce 

loss of life during hurricane events. With most hurricane decision making tools focusing 

on coastal areas, this study sheds light on the vulnerability of inland communities to flash 

flooding. Flash flooding is a major contributor to inland fatalities, causing 80% of total 

tropical cyclone related flood fatalities. To analyze this hazard, flash flood reports were 

extracted from NCDC between 1995 and 2012. After acquiring the data, a smoothed 

frequency map of the annual flash flood occurrence was developed. A key finding is the 

relatively high probability in counties well inland from coastal areas, as evidenced by the 

concentration of flash flooding in inland New England and gulf coast regions.  

The risk map was developed using the product of the hazard, exposure and 

vulnerability. The combination of high probability of hazard occurrence and a large 

exposed population contributes the most to the high risk seen in the Mid-Atlantic. Other 

areas with high risk are shown in the southeast, where there is high social vulnerability, 

high hazard likelihood and moderate population exposure. Counties with large 

populations show high vulnerability in unlikely hurricane risk areas such as Cook 

County, near Chicago, IL. Sensitivity tests were conducted on the Exposure and SocVul 

parameters to test the effects of weighting the variables, showing the impacts to the 
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resulting risk map. Ultimately creating a uniformly exposed population produced the 

most change in risk, suggesting the importance this variable could have in the decision 

making process. 

A potential means of testing how the risk index might be applied, and of 

evaluating the time-dependency of hurricane risk, was provided by agent-based 

modeling.  In particular, AnyLogic agent-based modeling software was used to simulate 

evacuation behavior and the changes in risk and associated hazards during an idealized 

hurricane event. Information gleaned from this example case will hopefully educate 

decision makers on the complex interactions between inland hazards such as TCTs and 

evacuations.   

7.2 Discussion and Conclusions 

To truly reduce the lethality of hurricanes, a thorough assessment of the communities that 

will be impacted is necessary. Emergency managers use various tools to aid them in 

determining when and where to allocate funding and resources to prevent hurricane 

disaster. The risk index developed in this study presents additional important information 

on all counties within the hazard prone regions, not just coastal communities. In addition 

to the inclusion of the vulnerability of inland communities, a new approach using the 

tropical cyclone tornado and flash flood hazard maps gives a new perspective to 

assessing hurricane disaster risk. This is partly because storm surge and wind are 

considered the biggest threats causing mass evacuations. Now decision makers can have 

a more complete hazard analysis to assess the threats and make even more appropriate 

evacuation decisions. The use of agent based modeling, as demonstrated in Chapter 6, 

shows potential in aiding large scale evacuations, which is unrealistic to accomplish 
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otherwise in full scale exercises. Although this tool is still in development, it is hoped 

that information gleaned from this research will aid in future hurricane evacuation 

preparations. 

7.3 Future Work 

There are several opportunities to expand on this research, which include addressing the 

data limitations described in Chapter 4. Initial testing (not presented here) showed that 

different combinations of factors strongly influenced the overall vulnerability of a county. 

Therefore conducting comprehensive sensitivity tests would allow for a better 

understanding of detailed factors that increase social vulnerability. It is also important to 

get a further break down of the indicators to pinpoint specific needs to specific 

demographics. Conducting more surveys to get a better analysis of emergency 

preparation for each county is necessary due to the limited information provided which 

was on the state level instead of county level. Finally a more integrated approach that will 

expand beyond the “top-down” approach would give more comprehensive vulnerability 

assessments and help communities prepare for disaster. 

Another key addition to this research would be a statistical assessment to see the 

change in TCT activity over the years, especially during seasons producing unusually 

high TCT events. Also, a comparison of TCT frequencies to overall tornado events may 

be effective. For instance, during relatively high tornado event seasons, what are the 

implications for TCT events? Would one expect higher TCT events when there are fewer 

tornado events during the severe weather season?  

 To continue the flood hazard work, an assessment of stream flooding, storm surge 

and flood mortality would be beneficial in acquiring a complete knowledge of the 
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tropical cyclone flood hazard. It would also be interesting to look for indicators on how 

this flooding will change in the future. Information from this portion of the research can 

be incorporated into an application tool such as HURREVAC, and be updated based on 

the projected rainfall during hurricane events. Finally, a physical assessment of rainfall 

and storm type (e.g. major, minor hurricane, tropical storm), and their percentage to the 

total contribution to the total annual rainfall would be valuable. In addition, the role of 

precursor conditions, such as drought, on flash flooding may be important to account for 

in hurricane risk assessments. 

 In continuing development of the hurricane disaster risk index, future research 

will include wind distribution and storm surge. These hazards are essential in obtaining a 

full assessment of the risk potential of landfalling Atlantic Basin Hurricanes. It is also 

beneficial to consider using weights on the various components to ensure that one factor 

is not driving down the risk to minute values. For example, sensitivity tests were 

conducted on the “Exposure” variable as this variable was so small due to normalizing 

with the maximum value. Because of the range of small values, many counties with high 

hazard likelihood and high social vulnerability are shown to have low risk. 

 Ultimately it would be beneficial to expand the agent based model to include all 

counties within the hazard domain. This will allow the user to assess various real time 

scenarios and make planning decisions based on real time forecasts and the dynamic 

variability in the dynamic variables. 
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APPENDIX 

FFW Climatology 

A python script was written to loop through the following process for all 85 cases using 

GIS: 

1. Add tracks data and make XY event layer. 

2. Convert the points to a line using “Points to Line tool.” 

3. Create a buffer around the TC tracks layer using the buffer tool setting the 

distance of the buffer to 500km. 

4. Add individual flash flood warning shape files. 

5. Use the select tool, “new selection,” to filter flash flood warnings  

6. Use the “select from current selection” and filter warnings occurring within 

the buffer 

7. Using “select from current selection” again filter the warnings occurring only 

within the continental U.S.  

8. Store the filtered flash flood warnings in a designated geodatabase using the 

TC name as a unique file identifier 

 

After looping this process for all cases, the “Merge” tool was used to merge the newly 

created files from step 8, to create one file to conduct the analysis. After the files are
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 merged, the new shapefile is joined to counties based off a spatial location, where the 

polygon will be given the attributes of the line intersecting it. A count field is included in 

the table consisting of the number of flash flood warnings intersecting the county field.  

 

FFR Climatology 

Flash Flood reports are also analyzed in GIS with the same criteria as the FFW analysis:  

1. Export individual files to a .dbf format 

2. Join to county using FIPS attribute 

3. Using the select by location tool, select features from counties that intersect 

the associated TC buffer 

4. Create a new layer from the selected features 

5. Copy features from (5) and store with TCYRReports 

6. Using Merge Tool, merge the TCYRReports 

 

Smoothing the FFW and FFR Data 

The smoother is applied as follows: 

1. Select Diffusion Kernel in the Geographical Analyst tool 

-input dataset and associated z field 

-No barriers 

2. Use the Export to Raster tool 

-Input geostatistical layer from (1) 

-Change cell size 0.01330948 

3. Use the Zonal Statistics as Table tool  
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-input counties for zone features 

-input FIPS as zone field 

4. Join zone table to counties using FIPS attribute 

Geospatial Analysis of TCT Data 

For reference, the smoother was applied within ArcGIS as follows: 

1. Select Diffusion Kernel in the Geographical Analyst tool 

-input TCT dataset and associated z field 

-No barriers 

2. Use the Export to Raster tool 

-Input geostatistical layer from (1) 

-Change cell size 0.01330948 

3. Use the Zonal Statistics as Table tool  

-input counties for zone features 

-input FIPS as zone field 

4. Join zone table to counties using FIPS attribute 
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