8th International Conference on Physical and Numerical Simulation of Materials Processing (ICPNS)

14-17 October 2016

Seattle, Washington | Hosted by Purdue University

SESSION 6: LIGHT ALLOYS, MARITIME HALL

Co-Chairs: Jong Ning Aoh, National Chung Cheng University; Zuyan Liu, Harbin Institute of Technology

SUNDAY, OCTOBER 16, 2016

Effects of sintering parameters on the microstructure and tensile properties of *in situ* (Ti₅Si₃ + TiBw)/Ti6Al4V composites with two-scale network architecture

Y. Jiao, L. J. Huang, L. Geng, Harbin Institute of Technology

ABSTRACT

Titanium matrix composites reinforced with Ti_5Si_3 particles and TiB whiskers have been synthesized successfully using the reaction hot pressing. In this paper, we investigated the influence of sintering temperatures (1200 and 1300°C), and holding time (range of 1–2 h) on the microstructure and mechanical properties of $(Ti_5Si_3+TiBw)/$ Ti6Al4V composites. The results clearly indicate that as compared to the sintering time, the sintering temperature plays a more dominant role in controlling the microstructure and mechanical properties of the composites. The volume fraction of Ti_5Si_3 precipitations in β -Ti increases significantly with an increase in temperature and time. The $(Ti_5Si_3+TiBw)/Ti6Al4V$ composites with two-scale network architecture fabricated at 1300°C for 1.5 h exhibit excellent tensile properties.

KEYWORDS: titanium matrix composites, two-scale microstructure, sintering parameters, tensile property, reaction hot pressing