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ABSTRACT 
Paper presents buckling analysis of thin-walled laminated composite box beam type structures. The nonlinear 
displacement field of thin-walled cross-section is adopted in order to insure the geometric potential of 
semitangential type for both the internal torsion and bending moments. The cross-section mid-line contour is 
assumed to remain not deformed in its own plane and the shear strains of middle surface are neglected. The 
laminates are modeled on the basis of classical lamination theory.  Analysis is performed in an eigenvalue 
manner and it attempts to determine the critical loads as well as corresponding buckling modes in a direct 
manner without calculating the deformations. The model is validated on a few test examples comparing the 
results with those reported in the literature. 
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1. INTRODUCTION 
Thin-walled composite beam structures are 
widespread in lot of engineering areas spatially 
because of their high strength-to-weight ratio. 
However  due to their slenderness and specific 
mechanical behaviour such structures are very 
susceptive to instability and buckling failure.  

Thinn-walled beam theory was firstly developed by 
(Vlasov, 1961)[ and then further accomplished by 
(Gjelsvik, 1981) while the theoretical background for 
closed section laminated profiles are given by (Song  
& Librescu, 1993; Kollar & Pluzsik, 2002; Cortinez & 
Piovan, 2006; and Vo & Lee, 2007). This paper is 
partially  based on the some of these previouslly 
established theories. 

Numerical model adopted in this paper is based on 
assumptions of large displacements and small 
strains, the Euler-Bernoulli-Navier beam bending 
theory and the Vlasov torsion theory. The members 
of thin-walled beam are considered as prismatic and 
straight. The model further assume the static and 
conservative external loads. The Clasical lamination 
theory (CLT) is implemented in the model. The 
stability problem is approached  in an eigenvalue 
manner. 

 

2. BASICS 
2.1. Displacement field 
In this paper, two sets of coordinate systems, which 
are mutually interrelated, are used. The first 
coordinate system is Cartesian coordinate system 
(z, x, y), for which z-axis coincides with the beam 
axis passing through the centroid O of each cross-
section, while the x- and y-axes are the principal 
inertial axes of the cross-section taken along the 
width and height of the beam. The second 
coordinate system is  contour coordinate (z, n, s) as 
shown in Fig. 1, wherein coordinate z coincident with 
beam z-axis, the coordinate s is measured along the 
tangent of the middle surface in a counter-clockwise 
direction, while n is the coordinate perpendicular to 
s. Incremental displacement measures of a cross-
section are defined as: 
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where w0, u0 and v0 are rigid body displacements in 
z, x and y directions; φz, φx and φy are the rigid-body 
rotations about the z-, x- and y-axis while θ is the 
warping parameter. The displanement field is 
defined as:  
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Where  ,w u  and v  are standard linear displacement 
field components while ,w u  and v are second order 
components due to the large rotations (Turkalj et.al., 
2011; and Lanc at. al., 2014). I contour coordinate 
system (z, n, s), Figure 1., the mid-line contour are

, ,w u v , while out of mid-line displacements are 
defined as: 
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Figure 1 Contour coordinate system 

Abeam to contour relation is defined as: 
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2.2. Strains 
The strain tensor consist of three parts: 
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with the non-zero components: 
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where zsγ  is defined as: 
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In equation above  t is tehe wall thickness while Fs

s
bhtF

h b
=

+

 is 

St.Venant shear flow, for constant wall thickness 

defined as: 
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2.3. Internal forces  
The constitutive equation for one lamina is: 
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where *
iiQ are so called reduced stiffnesses 

according to (Vo & Lee, 2007).  Integrating over the 
cross-sectional area, the internal beam forces follow 
as: 
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2.4. Finite element 
Figure 2. presents the two-noded spatial finite 
element with 7 DOF per node. The nodal 
displacement and the nodal force vectors are: 
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Figure 2 Box-beam finite element 

Applying the virthual work principle on beam finite 
element folows: 

E Gδ δ δ+ =U U W , (15) 
where EδU and GδU  are the potential energy and 
geometric potential:  
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while δW  is the virthual work of external forces: 

( )Te e
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In expressions above e
Ek  and e

Gk  are elastic and 

geometric stiffnes matrices while ef  is the nodal 
force vector. 
 

3. EXAMPLE  
Simply supported beam is axially loaded at cross 
section centroid by force F. The length oft he beam 
is L = 8 m and the box cross-section has dimensions 
b = 200 mm, h = 100 mm, t = 10 mm, Figure 3. 
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Figure 3 Box beam cross-section 

All beam flanges are four layer laminates with 
stacking sequence [±φ]s. Material parameters are:: 
E1= 250.0 GPa, E2= 10.0 GPa, G12= 6.0 GPa and 
ν12

2 3
2F FL b t E=

=0.25. Non-dimensional critical buckling load, 
, for flexural buckling modes in x and y 

directions with respect to fibre orientation angle φ 
are ploted on Figure 4. together with the results of 
Vo and Lee [12] for comparison. 

 

 
Figure 4 Non-dimensional buckling loads vs fiber orientation 
angle 

 

4. CONCLUSION 
Paper presents finite element buckling analysis of 
thin walled box section laminated beams. Developed 
computer code has been verified comparing with the 
results available in literature. Very good result 
coincidence is achieved. A further extension of 
algorithm is planned to include open section beam 
profiles. 
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