8th International Conference on Physical and Numerical Simulation of Materials Processing (ICPNS)

14–17 October 2016

Seattle, Washington | Hosted by Purdue University

PLENARY SESSION, SALON D

Co-Chairs: Prof. Josip Brnic, University of Rijeka Prof. Yun hae Kim, Korea Maritime and Ocean University Prof. Jianjun Li, Huazhong University of Science and Technology

SATURDAY, OCTOBER 15, 2016

Metallic glue in ambient environments—Synergy of numerical simulations, analytical formulation, and experiments

Hanchen Huang, Northeastern University

ABSTRACT

Soldering or welding can be a way of gluing solids with metals, but it requires high temperature. In microelectronics applications, the high temperature also means large thermal budget.

This talk presents a metallic glue technology that works in ambient environments – at room temperature, in air, and under finger-tip pressure. Numerical simulations are a key in the innovation of the metallic glue technology. Through a synergy of numerical simulations, analytical formulations, and experiments, a theoretical framework of nanorod growth has emerged. Through the guidance of theories, experimental realization of the smallest and well-separated nanorods has become reality. With the controlled growth of such nanorods, metallic glue becomes feasible in ambient. This technology has attracted close to 200 news reports (http://www.mie.neu.edu/people/huang-hanchen/newsreports) in the first few months of 2016 and is being evaluated for adoption in more than a dozen companies; see www.MesoGlue.com for further more information.