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ABSTRACT 

Bodhe, Shraddha G. M.S.E.C.E., Purdue University, August 2014.  A lightweight N-cover 

algorithm for diagnostic fail data minimization.  Major Professor:  Irith Pomeranz. 

 

The increasing design complexity of modern ICs has made it extremely difficult and 

expensive to test them comprehensively. As the transistor count and density of circuits 

increase, a large volume of fail data is collected by the tester for a single failing IC. The 

diagnosis procedure analyzes this fail data to give valuable information about the possible 

defects that may have caused the circuit to fail. However, without any feedback from the 

diagnosis procedure, the tester may often collect fail data which is potentially not useful for 

identifying the defects in the failing circuit. This not only consumes tester memory but also 

increases tester data logging time and diagnosis run time. In this work, we present an 

algorithm to minimize the amount of fail data used for high quality diagnosis of the failing 

ICs. The developed algorithm analyzes outputs at which the tests failed and determines 

which failing tests can be eliminated from the fail data without compromising diagnosis 

accuracy. The proposed algorithm is used as a preprocessing step between the tester data logs 

and the diagnosis procedure. The performance of the algorithm was evaluated using fail data 

from industry manufactured ICs. Experiments demonstrate that on average, 43% of fail data 

was eliminated by our algorithm while maintaining an average diagnosis accuracy of 93%. 

With this reduction in fail data, the diagnosis speed was also increased by 46%.   
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1. INTRODUCTION 

1.1. Overview 

The design and manufacture of an Integrated Circuit (IC) is a very involved and 

complicated process. Silicon in the form of a single-crystal wafer is the building block of IC 

fabrication. Typically, integrated circuits are produced in large batches on a single wafer. 

After manufacture the resultant wafer is cut into pieces, each containing a copy of the desired 

integrated circuit. Each of these pieces is called a die [1]. 

Due to the fabrication process variations and the translation of design to an actual chip on 

silicon, the manufactured dies may have defects. These defects are unintended differences 

between the implemented hardware and the intended design. Once an IC is manufactured, it 

has to go through a series of post-production tests to verify its functionality. This is called 

manufacturing testing [2]. It involves using binary patterns, also called as test vectors, which 

are applied at the inputs of the circuit. A collection of such test vectors is called test set. The 

response of the circuit to these test vectors is compared with the expected response. The 

circuit is said to pass if the responses match else the circuit fails. Figure 1.1 shows the basic 

principle involved in testing. 

 

 Figure 1.1 Principle of testing 
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Outputs 

 VLSI testing is performed by automatic test equipments (ATEs). Modern ATEs are 

extremely powerful computers that are operated by test programs written in a high level 

language. For those chips that fail during testing, the location and cause of the failure needs 

to be determined so that remedial actions can be taken to improve the number of good chips 

being manufactured.  Once a circuit fails, the ATE, referred to as tester, collects the failure 

responses of the circuit. A failure response comprises of a failing test and the corresponding 

list of outputs of the circuit where the test response was not as expected. A full failure 

response reports not only which tests failed but also at which outputs (flip-flops and primary 

outputs) the failures were observed.  As with test vectors, circuit outputs are usually indexed 

to help with easy identification.  Figures 1.2 and 1.3 give a simple example of bitmapped and 

indexed failure responses respectively.  Each failing test number in the indexed failure 

response has a corresponding list of failing outputs.  In the bitmapped failure response, a 

second dimension has been added for failing outputs.  

 

  

 
Tests 

  

 

1 2 3 4 5 

1 1 0 0 1 0 

2 0 0 1 0 0 

3 0 1 1 0 1 

4 1 0 1 0 0 

5 0 0 0 0 1 

 

Figure 1.2 Bitmapped failure response 

              Outputs 

      1:  1, 4 

      2:  3 

     Tests 3:  2, 3, 5 

      4:  1, 3 

      5:  5 

 

Figure 1.3 Indexed failure response 
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 The tester records the actual responses measured at circuit outputs, and any differences 

between the observed responses and the expected responses are stored in the tester data log. 

In this thesis we assume that the tester data log records the indexed failure response for the 

failing chip. The set of all the failure responses for a failing circuit is called the fail-data of 

the circuit.  

Diagnosis is the process of identification of the actual defects in the circuit. It attempts to 

derive from fail data the location inside the chip where the problem most likely started. In 

order to identify the systematic defects, a large volume of failed chips need to be diagnosed. 

This process of diagnosing a large number of failing dies or chips is called large volume 

diagnosis. The diagnosis procedure analyzes the fail data of the failing chips one at a time 

and gives a set of circuit elements, called fault candidates, which are identified as potential 

causes of failure for that particular chip. These candidates are further analyzed to identify 

and fix the problem.  

 The continual increase in the design complexity along with the technology scaling has 

enabled the designers to utilize a high level of integration in modern ICs. However, this has 

also made the use of complicated methodologies imperative for testing these chips. Every 

component in a circuit has a given set of test vectors needed to test it. As more and more 

components are placed on the chip, the number of test vectors required to test the chip 

proportionally increases. Execution of this large number of test vectors and collecting their 

corresponding failure responses increases the time required to test the chip substantially. 

Also, the tester memory size limits the amount of fail data that can be collected by the tester. 

One of the most challenging problems in the semiconductor industry today is dealing with 

the large amount of test data that is transferred between the tester and the chip [3] and the 

resultant increase in the test cost.  An estimate of test cost on an ATE is given in [4] and the 

cost model in [5] gives an explanation of the cost metrics. Although the specific issues 

involved are different for test and diagnosis, both have to deal with large amounts of test 

data. The issues in diagnosis procedure are described next. 

 Following Moore’s Law, the modern IC technology keeps shrinking and allows a single 

die to integrate millions of transistors. Because of this ever increasing design density, a large 
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volume of fail data is collected by the tester for a single die. The diagnosis procedure 

analyzes this fail data to provide valuable information about the type of defects and the 

possible defect locations that may be causing the chip to fail.  The inspection of the large 

volume diagnosis results may also help point out any systematic issues in the fabrication 

process. Utilizing the diagnosis information, the yield can be improved by modifying the 

design rules for the chip or tuning the fabrication parameters. Therefore, improvement in the 

production quality of a circuit depends on effective diagnosis of the failures. However, with 

the increase in the amount of fail data, the tester data logging time and the time required for 

diagnosing a single failing die has increased. In addition it has also resulted in higher 

memory consumption by the diagnosis procedure. This adversely affects the diagnosis 

throughput which is defined as the number of failing dies diagnosed within a time frame 

using given computational resources.  

1.2. Diagnostic fail data analysis 

  The main motive for improving quality is economics. Ensuring high quality of 

integrated circuits is important for increasing the production yield and the reliability of the 

manufactured chips. With better production quality, the yield increases giving more good 

dies per the same wafer cost. A high quality product provides customer satisfaction and 

profitability of the business. Providing high quality diagnosis of failures is therefore essential 

for improving production, reducing time-to-market and increasing profits. 

 We analyzed a large amount of industry fail data and observed that without any 

feedback from the diagnosis procedure the tester collects data that is potentially not useful 

for diagnosis, consuming data logging time, tester memory and diagnosis time. Figure 1.4 

shows the relationship between the number of failing test vectors identified by the tester and 

the minimum number of failing test vectors actually required by the diagnosis procedure to 

give the same fault candidates. The wafers A, B, C and D have 43, 84, 104 and 30 dies 

respectively. We see that without any loss of diagnosis accuracy (defined in section 3.4), on 

average about 36% of the original fail data is enough to diagnose the failures. Thus, it is 

reasonable to conclude that even though a large volume of fail data is being collected by the 

tester, only a small fraction of it actually contributes to the identification of the defects by the 
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diagnosis. This small subset of fail data when used for diagnosis would increase its speed 

and enable effective memory usage without impacting diagnosis quality. It would also point 

to ways to reduce the tester time that was spent in the collection of unnecessary fail data. 

 

 

Figure 1.4 Comparison of the number of failing test vectors that are collected by the 

tester and the number of failing test vectors that are enough for an accurate diagnosis 

 The run time and the memory requirements of the diagnosis procedure are also 

dependent on the amount of fail data for that chip. The reason for this is that as the number 

of failing vectors in the fail data increases, the time required to simulate those failing vectors 

by the diagnosis procedure becomes high. So we can reasonably assume that if the amount of 

fail data used by diagnosis for correct defect identification is reduced, then the diagnosis 

would be faster. Thus, the focus of our research is to improve the performance of diagnosis 

by eliminating some part of the fail data collected from the tester such that the runtime of the 

diagnosis procedure are reduced without compromising the diagnosis quality. We call this 

approach diagnostic fail data minimization. 
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 This thesis proposes an N-cover algorithm which is used as a preprocessing step for the 

diagnosis procedure. Figure 1.5 gives an overview of the implementation of the algorithm. 

The tester data log contains information about the failing test vectors and their corresponding 

failure responses. The algorithm processes the tester data log and gives the minimized fail 

data as an output. This minimized fail data is then used by the diagnosis procedure to 

generate a list of fault candidates. The N-cover algorithm ensures that the minimized fail data 

is such that high quality diagnosis of the failures is obtained. The proposed algorithm is 

designed to be independent of the chip design specifications, testing mechanism and the 

diagnosis procedure. Thus, it can be easily used for fail data minimization of different chip 

designs using various types of diagnosis tools.   

 

 

 

 

 

      

      Tester data log          Preprocessing step           Diagnosis tool        Fault candidates 

 

Figure 1.5 N-cover algorithm as a preprocessing step between the tester data logs and the 

diagnosis procedure 

1.3. Organization 

 This section gives an overview of the organization of this document. In the next chapter 

we discuss some related works done in the field of test data reduction and fail data reduction 

for improving the throughput of manufacturing testing. In Chapter 3 we define the fail data 

minimization problem with respect to high performance diagnosis of the failing chips. We 

describe the motivation behind our approach to solve this minimization problem and 

introduce some related concepts. We also define the evaluation metrics used in this work to 

gauge the performance of our algorithm. Chapter 4 focuses on the development and 

N-cover 

algorithm 
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implementation of the N-cover algorithm. It describes each step of the algorithm in detail 

and provides an illustrative example for better understanding. The performance analysis of 

the N-cover algorithm is provided in Chapter 5. We describe in detail the results obtained 

when the N-cover algorithm was used for the fail data minimization for industry fabricated 

chips. Chapter 6 concludes this thesis by presenting conclusions from this research and 

discusses areas of further work.  
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2. LITERATURE REVIEW 

In recent times, management and analysis of large volume of data for test and diagnosis has 

become a major contributor to the test cost of an IC. Past approaches for improving 

throughput using reduction of data can be broadly classified in two categories, namely, data 

reduction for test and fail data reduction for diagnosis. The test data reduction techniques 

focus on reducing the test application time and tester storage requirements for a chip. Some 

test data reduction techniques enhance diagnosis performance while others deteriorate it. The 

diagnosis based approaches aim at minimizing the amount of fail data required to diagnose a 

single failing die without impacting the diagnosis quality. The diagnostic fail data 

minimization may or may not help in reducing the tester data collection time. Thus, these 

two categories are not mutually exclusive. The work done in this thesis belongs to the second 

category as our aim is to reduce the amount of fail data required for accurate diagnosis of 

failing ICs to improve diagnosis speed and performance. 

2.1.  Test data reduction 

 Researchers have explored various techniques for test data reduction in the past. Test 

stimulus compression [6-16] has been at the forefront of solutions to reduce test costs 

through reduction in tester storage and test application time. The idea of test stimulus 

compression is to compress the amount of input test data that is stored on the tester. It 

reduces the amount of tester memory required and also the test time because less data has to 

be transferred between the tester and the chip. Test stimulus data is inherently highly 

compressible because of the presence of don’t cares (unspecified values) in the test vectors 

that can be filled with any value without impacting fault coverage. As a result, lossless 

compression techniques can be used to significantly reduce the test stimulus data that must 

be stored on the tester. The test stimulus compression makes use of various encoding 
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techniques to compress data for test volume reduction. State-of-the-art techniques for data 

compression such as Mentor Graphics EDT [6], Synopsys DFTMAX Ultra [7] and other 

vendor tools use structural information for fault simulation, scan chain synthesis and test 

generation with compression. Other techniques for test stimulus compression like dictionary 

coding [8, 9], and Huffman coding [10] have also been studied in the literature.  

 Another important approach for test data reduction is compaction. In the context of test 

generation, the test set compaction [17-26] approach works on the notion that if smaller 

number of test vectors is applied to test the IC, the execution time of the tester and the 

amount of data generated will be less. Static compaction [22-24] attempts to combine and 

remove certain vectors after the test set has been generated whereas the dynamic compaction 

[25, 26] is integrated in the test generation procedure itself. Compaction can also be 

performed at the outputs of the circuit when test vectors are applied to it during test. The 

purpose is to reduce the amount of test response that needs to be transferred back to the 

tester. While the test stimulus compression is lossless, test response compaction is lossy. 

Test response compaction converts long output responses into short signatures. Because the 

compaction is lossy, some of the fault coverage can be lost due to aliasing when a faulty 

output response signature is identical to the fault-free output response signature. This would 

adversely affect the diagnosis performance. Three types of test response compactors are 

proposed in the literature [25]: time compactors [26], space compactors [27], and finite 

memory compactors [25]. Time compactors are sequential circuits that combine the current 

test response with previous test responses to generate signatures for fault detection [26]. 

Time compaction is usually performed by finite state machines such as linear feedback shift 

registers (LFSRs) and multiple input shift registers (MISRs). Space compactors [27] are 

combinational circuits which accommodate unspecified values (X). They combine the 

outputs of the chip under test to reduce the data volume and the number of output pins to as 

few as one pin. Finite memory compactors use feed forward sequential circuits and can also 

accommodate Xs in the test responses [25].  
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2.2.  Diagnostic fail data reduction 

 The analysis of large volume of production fail data is necessary to identify the 

systematic defects in the dies. Diagnosis procedure helps to locate the root cause of failures 

which can then be analyzed and fixed. Previous research in the field of fail data volume 

minimization for diagnosis has shown that it is possible to reduce the fail data significantly 

without severe loss of diagnosis accuracy. The work done in [28] showed that fail data 

collected by the tester can be reduced by about 30% while maintaining diagnosis accuracy 

greater than 90%. Their work uses various statistical learning methods to predict the minimal 

amount of fail data that is sufficient to obtain a good quality diagnosis. The prediction model 

is learned from a history of fail data collected for a set of failing ICs. The learned model is 

then used in production to predict the termination point of fail data collection for ICs 

resulting in the reduction of tester data logging time. In this work, the use of statistical 

learning makes it imperative for the algorithm to spend a significant amount of time learning 

and developing the prediction model. Even with the use of these complex learning 

techniques, a size reduction of more than 30% leads to a significant decrease in diagnosis 

accuracy.  

 It is remarkable that throwing away almost a third of the fail data generally retains the 

original data’s ability to diagnose failures. This retention of failure detection ability can also 

be observed by the use of some other technique for reduction. In another research presented 

in [29], they propose an incremental strategy for reducing the cost and efforts for diagnosis 

by implementing a step-by-step selection of the tests to be executed from the set of available 

tests. Their selection criterion is based on a metric derived from the maximization of 

diagnostic information. They use probabilistic reasoning engines to stop the test execution 

when additional test outcomes would not provide further useful information for identifying 

the faulty candidate. Thus, with less number of tests being executed, the amount of fail data 

collected by the tester is reduced. This approach achieves the reduction in number of tests 

executed ranging from 32% to 88%. The entry point of their algorithm utilizes the model of 

the circuit under test which gives a summary of the relationship between the components of 

the circuit, the tests to be executed and the fail data from the tester. As a result, this approach 



 

 

11 

is heavily dependent on the fault model abstraction, diagnostic information and system 

specifications.  

 Despite these encouraging results for fail data minimization, there is clearly more room 

for improvement. The goal of our work is to explore methods to reduce the fail data further 

without sacrificing diagnosis accuracy or resolution.  
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3. FAIL DATA MINIMIZATION 

One of the major challenges in the semiconductor industry today is to establish a correlation 

between the fail data collected by the tester to the underlying defects in the chips. The 

diagnosis procedure plays a major role in the analysis of large volume of fail data in order to 

locate the actual defects in the chip. 

3.1. Challenges posed by large volume of fail data  

 The large fail data volume causes major concerns for achieving high performance testing 

and diagnosis. In order to test high density complex ICs, the tester needs more number of test 

vectors. The application of large number of test vectors results in the generation of huge 

amount of fail data and an increased test application time. To facilitate better analysis, 

additional fail information beyond a simple pass/fail is collected into a fail log. The fail log 

typically contains information about when (tester cycle), where (at what output), and how 

(logic value) the test failed. The increase in the generation of fail data volume is proportional 

to the time required by the tester to collect it in the fail logs. High test execution and data 

logging time causes a considerable increase in the overall tester run time, which in turn 

increases the test cost.  

 Also, the collection of large volume of fail data for diagnosis is limited by tester buffer 

sizes. The storage of fail data of a typical modern IC with millions of gates will require up to 

hundreds of giga-bytes of memory. If the tester buffers are inadequate for the storage of fail 

data, the test execution may either get terminated without collecting enough information for 

diagnosis or the tester will wait for the buffers to free up so that it can resume the data 

collection.  
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 Furthermore, the time required to diagnose the failures of a single die keeps increasing 

with the increase in the amount of fail data. More the fail data volume, higher is the number 

of test vectors that need to be simulated. Consequently, more failure responses are generated 

and analyzed by the diagnosis procedure. Typically the diagnosis procedure can be made 

more efficient by processing multiple dies together. However, the physical memory does not 

increase as fast the amount of fail data generated creating a bottleneck. In spite of using 

multiple processors, the numbers of diagnosis programs that can run parallel are limited. 

Thus, the diagnosis throughput and performance suffers because of large volume of fail data. 

3.2.  Fail data minimization problem defined 

 With the increasing demand for high performance volume diagnosis, it has become 

essential to improve its throughput. The diagnosis procedure should be able to process a 

large number of failing chips within a short period time using reasonable computational 

resources and without deteriorating the diagnosis accuracy. Various techniques have been 

proposed to improve the performance of the diagnosis procedure, such as fault dictionaries 

[30-32], machine learning [33], pattern sampling [34], design partitioning [35] and GPU-

based simulation [36]. The purpose of this work is to improve diagnosis performance by 

minimizing the amount of fail data that it needs to analyze to identify the defects in the chip. 

This would enable the diagnosis of large number of failing chips in a short time frame. 

 Diagnostic fail data minimization is an optimization problem with the following goal: to 

find a minimum cardinality subset of the fail data which when used for diagnosis of the 

failing chip will not have any negative impact on the diagnosis accuracy or resolution. In 

general, the diagnostic fail-data minimization problem has two aspects:  

 

1. Minimize the amount the fail data required to diagnose the failures of a chip 

2. Maintain the quality of diagnosis after the fail data is reduced.  

 The minimization algorithm when applied dynamically while the tester is collecting the 

fail data, results in the reduction of tester data logging time. However, if the minimization is 

performed after all the fail data has been collected in the tester data logs then it will only help 
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improve diagnosis speed and not tester time. The formal definition of the diagnostic fail data 

minimization problem is as follows: 

Given: A set of failing test vectors T = {t1, t2, t3… tn} such that each vector ti in T produces a 

fail response ri. Using T for diagnosis gives the fault candidate list CANDgolden. 

Find:  A minimal subset of failing test vectors Tred ⊆ T, comprising of test vectors m0, m1, 

m2… ms such that each mi has a fail response pi. The fault candidate list CANDnew 

generated by the diagnosis procedure using Tred is such that  CANDnew = CANDgolden. 

   Each of the fail responses ri, pi constitutes a list of outputs that failed after the 

application of the test vectors ti , mi  respectively. For example if t0 has a fail response r0 = 

{o1, o2, o3}, it means that the test t0 failed at outputs o1, o2 and o3. 

 Part of the process of minimization is to identify the fail data that is potentially not 

useful for the diagnosis of failures. In other words we need to identify the failing tests that 

are redundant. Redundancy can be identified by considering the failing tests to be covering 

the failing outputs. In the previous example we can say that the test t0 covers the outputs o1, 

o2 and o3. As we are discussing the concept of covering of a set of elements, it is important to 

discuss the set cover problem [37]. The mathematical definition of set cover problem is as 

follows:  

 Given a set of elements {1, 2, 3…, m} (called the universe) and a set S of n sets whose 

union equals the universe, the set cover problem is to identify the smallest subset of S whose 

union equals the universe. For example, consider the universe U = {1, 2, 3, 4, 5} and the set 

of sets S = {{1, 2, 3}, {2, 4}, {3, 4}, {4, 5}}. Clearly the union of S is U. However, we can 

cover all of the elements with the following, smaller number of sets: {{1, 2, 3}, {4, 5}}. 

 The set-cover problem is proved to be NP-complete [38]. Researchers in the area of 

computing have proposed varied exact and heuristic approaches to get a near optimum 

solution of the set-cover problem. Some complex approximation algorithms have been 

studied in [39, 40]. For most of the approaches, improvements come with a significant 

increase in computation cost. The greedy approximation algorithm [37] picks the set S that 
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covers the greatest number of remaining elements that are uncovered at each stage in 

polynomial time complexity.  

3.3.  Motivation behind our approach 

 A crucial part of the diagnostic fail data minimization problem is ensuring that the 

quality of diagnosis does not deteriorate with the use of reduced fail data. This implies that 

when covering fail responses, we need to exercise some constraints for maintaining 

diagnosis accuracy and resolution. Using the basic concepts of the greedy set covering 

discussed above, we developed a sophisticated fail data minimization algorithm which 

strives to achieve failure response coverage, maintain the quality of the diagnosis and also 

provide substantial fail data volume reduction. We will now discuss the rationale behind our 

approach for solving this problem. 

 In this work, we analyzed the fail data collected by the tester and tried to find the subset 

of fail data that maintained the diagnosis quality. For this purpose, it is important to evaluate 

each failing test according to its ability to identify the actual defect locations in the chip. For 

example, suppose a test t1 produces failures at the outputs {p, q, r} and a test t2 at outputs {q, 

r}. A traditional cover would include t1 in the reduced test set as it covers all the failures in 

the universe and drop t2. However, for diagnosis purpose it may be important to include t2 as 

it gives the information that the outputs q and r are more susceptible to failure than p.  

Dropping t2 from the test set would result in the diagnosis procedure losing out on an 

opportunity to give a more accurate list of fault candidates. As our aim is to have no loss in 

the accuracy of diagnosis, we need to identify diagnostically relevant information and 

include it in the reduced fail data set. From the above example we see that the test t2 gives us 

the knowledge that some outputs are more likely to fail than others. As this information may 

be important for diagnosis, we may need to include t2 in the reduced fail data.  

 Intuitively, if a certain output is observed to fail repeatedly, then it has high probability 

of being related to the actual defect in the chip. This information being diagnostically 

important, the minimization of fail data should incorporate some means of multiple coverage 

of the same failing output as against the concept of single cover. We refer to this multiple 
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coverage as N-cover, N being a variable greater than or equal to 1. The method to determine 

a good N value for a given failing output is discussed in detail in Chapter 4. 

3.4.  Evaluation metrics 

 Recent research done in the field of fail data minimization point to the conclusion that 

the fail data can be reduced significantly using various reduction techniques [28, 29]. The 

logical question that follows is how well this minimized data performs with respect to the 

original raw fail data when evaluated on the basis of metrics other than the fail data size. For 

a comparative study, we need to define a few evaluation metrics. 

 As the purpose of collection of fail data is to diagnose the failures of the ICs, one 

measure of performance can be the quality of the diagnosis results. With the removal of 

failing tests and failure information, the reduced data set may be weaker than the full-

response fail data in identifying the possible defect locations. 

 Diagnosis accuracy is the measure used in this work to measure the diagnosis quality of 

the reduced fail data. We first use the original fail data from the tester for diagnosis to obtain 

a reference list of fault candidates. We call them golden candidates. This is followed by 

using the minimized fail data for diagnosis to get a new fault candidate list, called new 

candidates. Higher the intersection of these lists, higher is the diagnosis accuracy. However, 

if the set of new candidates misses some of the candidates from the golden candidates, then 

the diagnosis accuracy is reduced. A comparison of these two candidate lists is used to 

mathematically formulate the definition of diagnosis accuracy as follows: 

Diagnosis accuracy =  
                                      

                   
      

 Because of the reduction in the amount of information available to the diagnosis 

procedure, there is a possibility that the number of new candidates is more than the number 

of golden candidates. This happens when the analysis of fail data has many potential 

candidates and the diagnosis procedure does not have further information to narrow them 

down. This reduces the resolution of the diagnosis results and decreases its effectiveness. We 
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need another measure to keep track of this loss in resolution. Thus, we define the percent 

decrease in diagnosis resolution as: 

Decrease in diagnosis resolution = 
                                  

                   
      

  

 Besides diagnosis accuracy and the reduction in diagnosis resolution we need another 

metric to quantify how much fail data we have reduced. This will give us an idea of the 

percentage of data eliminated from the original fail data set. For a given wafer, after the fail 

data minimization is performed, the fail-data size reduction is calculated as: 

 

Fail-data size reduction = (    
                                      

                                       
        

 

 In addition to these metrics, we need another term to evaluate the increase in the speed 

of diagnosis because of the reduction in fail data that the minimization achieves. The 

increase in diagnosis speed is defined as: 

 

 Increase in diagnosis speed = (    
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4. THE N-COVER ALGORITHM 

In the last chapter we discussed the motivation behind our approach for dealing with the fail 

data minimization problem. We also described the concepts involved in the development of 

N-cover. In this chapter we will delve deeper into the implementation of the N-cover 

algorithm for fail data minimization. 

 When we talk about reduction of fail data, a reasonable question is how to decide which 

data to throw out. To determine if one test is better than the other in identifying defects, we 

need some quality measure. Consider a sample fail data collected by the tester for a failing 

die. Suppose a test t1 produces failures at 10 out of 15 observable outputs of the given die. 

Another test t2 is found to fail at 8 outputs for the same die. We may assume that the test t1 is 

“superior” to test t2 in terms of output coverage as it produces more failing outputs. Of 

course the determination of the superiority of one test over the other in this manner is highly 

dependent on the set of failing dies used, the number of failing tests being compared and the 

type of defects actually present in the die. That being said, the concept of output coverage 

will give us a measure to compare between the effectiveness of two tests with respect to the 

number of failing outputs being covered by them. 

4.1. The value of N 

 In this work we propose that the fail data minimization algorithm should include tests 

that provide N-cover with respect to all the observed failing outputs. . If an output fails more 

often, it should be covered by more number of tests in the fail data, implying higher value of 

N. Similarly, if an output fails less often, it should have a lower value of N. Once each output 

‘o’ is covered No times, the remaining tests can be eliminated.  

 In order to determine how often an output fails we use the term output failure frequency 

which is defined as the number of tests that are observed to fail at a particular output once 

the tester has completed fail data collection. As the failure frequency of an output tells us 
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how susceptible it is to failure, we need to establish a relationship between the frequency and 

the corresponding N value for that output. For this purpose, we conducted extensive 

experiments with real fail data from industry fabricated chips. We analyzed the fail data of 

various wafers and by trial and error determined a suitable value of N for a given output 

failure frequency. The values of N were fixed such that once all the outputs are covered N 

times, the elimination of remaining tests would not adversely affect diagnosis accuracy. In 

addition we ensured that the N values are flexible, in the sense that N is large enough to 

accommodate fail data trends of different chip designs but also small enough to provide 

substantial fail data reduction. This evaluation led to the development of a monotonically 

increasing relationship between the output failure frequencies and the values of N as shown 

in the Figure 4.1.   

 

Figure 4.1 Monotonically increasing relationship between the output failure frequencies 

and the absolute N values 
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 For example, if the fail data of a die consists of 100 failing tests and 40 of them were 

observed to fail at output a and 90 were observed to fail at output b then the output failure 

frequencies of a and b are 40% and 90% respectively. Looking at the graph in Figure 4.1, we 

see that for output a, out of 40 failing tests only 12 are enough for the diagnosis procedure to 

correctly diagnose the failures in the die. Similarly for output b only 18 failing tests out of 90 

suffice for high quality diagnosis.  

 In other words, for output a the goal coverage is only 30% (12 out of 40) of the original 

coverage and for output b the goal coverage is 20% (18 out of 90). Another interesting 

observation is that as the frequencies increase, more fail data can be eliminated while 

maintaining the frequency vs. N relationship between all the outputs. So if output b has 

higher failure frequency than output a, then the absolute value of N for b would be equal to 

or higher than the N value for a but at the same time the percent of goal coverage required 

for b would be less than or equal to that required for output a. When represented 

mathematically: 

If                 

Then           and 
    

       
 

    

       
 

Such that              and              

 The monotonically decreasing relationship between failure frequency and its required 

goal coverage (N/freq) can also be represented as shown in Figure 4.2. So if the output a has 

frequency 40% then from Figure 4.2, N should be 30% of frequency that is, 0.3*40 = 12. 

Similarly, if b has frequency 90% then from Figure 4.2, its N value is found to be 20% of 90, 

that is, 18. Once we have the complete fail data collected by the tester, we can obtain the 

failure frequencies of all the outputs and determine the corresponding values of N by 

referring to the Figures 4.1 or 4.2. The N-cover algorithm will then cover each of the failing 

outputs N times and the remaining tests will be eliminated. In the next section we will 

discuss the implementation details of the N-cover algorithm.  
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Figure 4.2 Monotonically decreasing relationship between output failure frequencies and 

the percentage of required goal coverage 

4.2. Implementation of the N-cover algorithm 

 In our approach, a test will be selected for inclusion in the reduced fail data only if it 

helps in providing N-cover for the failing outputs. The key to the N-cover algorithm is the 

relationship between the output failure frequencies and the values of N as described in the 

previous section. Our approach for fail data minimization using N-cover algorithm is 

presented in the pseudocode in Figure 4.3. 

 We start with the original fail data from the tester as an input. This raw fail data consists 

of a set of failing test vectors T = {t0, t1… tn}, each test vector covering some outputs from 

the set of failing outputs Z = {z0, z1… zm}. After the termination of the algorithm we will 

obtain Tred as an output which is the subset of failing test vectors from T that can be used for 
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diagnosis without compromising its quality. The main steps of our approach for fail data 

minimization are as follows: 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Pseudocode for the N-cover algorithm for diagnostic fail data minimization 

Step 1: Start running the minimization algorithm  

 We first allow the fail data minimization algorithm to run by providing the required 

inputs. The algorithm initializes Tred to be empty and analyzes the raw fail data to obtain the 

failure frequencies of all the outputs as described in section 4.1. Currently the algorithm uses 

complete fail data collected by the tester to extract the output failure frequencies. 

input:    

  A set of failing tests T 

  Each test in T covers some outputs from the set of failing outputs Z 

output:   

   Tred  : A subset of failing tests from T  

 

algorithm FailDataMinimization 

begin 

Step 1:  Tred  = {} 

   Analyze T to obtain failure frequencies of all outputs 

Step 2:  Determine N for all outputs using frequency versus N relationship 

Step 3:  Compute covdiff  for all outputs 

Step 4:  max_out = output with max covdiff 

   nextTest = greedily select a test that covers the output max_out 

   Tred  = Tred  U {nextTest} 

   T = T – {nextTest} 

Step 5:  Repeat steps 3 and 4 till covdiff  ≤ 0 for all outputs 

Step 6:  return Tred 

 

end FailDataMinimization  
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Step 2: Determine N values for all outputs 

 Once we have obtained the failure frequencies of all outputs, we can use the graphs 

shown in figures 4.1 and 4.2 to obtain the corresponding N values for each output. These N 

values provide us with the information about the minimum coverage requirement for each of 

the failing output. 

Step 3: Find the coverage difference for all outputs 

 The term coverage difference (covdiff) represents the difference between the goal 

coverage and the current actual coverage provided by the tests in Tred for every failing output. 

In the first iteration of the algorithm, Tred is empty and so in this case the covdiff will be equal 

to the goal coverage. This term tells us about how many more tests are required to provide 

the required coverage for a failing output at a given point of time during the algorithm 

application. 

Step 4: Select the next test to be included depending on maximum covdiff 

 After computing the covdiff values for all the failing outputs, the algorithm finds the 

output max_out which has the maximum value of covdiff. This is the output which requires 

maximum coverage at that stage of the algorithm. The selection of next test depends on the 

greedy set covering concept discussed in section 3.2. Once we have obtained max_out, the 

algorithm looks for the tests that failed at that output. Out of these tests, the algorithm selects 

the test that has the maximum number of failing outputs as compared to other tests that failed 

at max_out. This is called greedy covering of the failing output. 

Step 5: Continue iterations till covdiff ≤ 0 for all outputs 

 After adding a test to Tred, the algorithm recomputes the values of covdiff. It again finds 

max_out and greedily selects tests from Tred to cover it. This procedure continues till the 

covdiff values for all outputs become less than or equal to zero. covdiff equal to zero implies 

that the current coverage provided by the tests in Tred is equal to the goal coverage for that 

particular output. A negative covdiff means that the actual coverage for that output was more 
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than the goal coverage. In this case, even though more than required coverage was obtained, 

it actually adds to the diagnosis quality. 

Step 6: Return Tred and terminate the fail data minimization procedure 

 Once the covdiff  requirements are met for all the failing outputs, no more tests need to be 

added to Tred and the fail data minimization procedure is terminated. The set of failing 

vectors Tred gives the final reduced test set that can be used for diagnosis. 

4.3. An illustrative example 

 In this section we will work through a small but meaningful example that describes each 

step of the N-cover algorithm for diagnostic fail data minimization in. A sample fail data is 

provided as shown in Table 4.1. For each test in the table, all the outputs at which it is 

observed to fail are marked with ‘X’ in their respective columns. Using this information, we 

will describe how the N-cover algorithm will compute the reduced set of failing tests. 

 According to the pseudocode described in Figure 4.3, the first step of the algorithm is to 

initialize Tred to be empty and to extract the failure frequencies of all the outputs from the fail 

data. For this example, the failure frequencies of all outputs are shown in the ‘Frequencies’ 

row of Table 4.2. The second step is to determine the N values for every failing output by 

referring to the frequency versus N relationship described in section 4.1. Let us assume that 

for this particular example, the N values obtained from the frequencies are as shown in the 

‘Required N’ row of Table 4.2.  

 The next step involves finding the covdiff values for all outputs. As mentioned before, in 

the first iteration, the covdiff values are the same as goal coverage. So the covdiff values are as 

shown in the fourth row of Table 4.3. Next the algorithm finds the output with maximum 

covdiff. At this stage that output is z1 with covdiff value of 4 (highlighted in orange). So the 

algorithm needs to greedily select a test to cover z1. 
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Table 4.1 Sample fail data collected from the tester 

 

    Failing outputs 

      

 

 

 

 

Failing tests 

 

 

 

 

 

 

Table 4.2 Output failure frequencies and their corresponding N values for the sample fail 

data of Table 4.1 

 

  

  Looking at the original fail data, we see that out of all the tests that fail at output 

z1, the test t4 has the maximum number of failing outputs. Thus, the algorithm chooses t4 

highlighted in orange) and includes it in Tred. After addition of t4, the algorithm 

recomputes the values of covdiff with respect to the outputs z0, z1, z4, z5, z6, z7 and z8 

covered by t4. For example, as shown in the fifth row of Table 4.3, the covdiff for z0 will go 

from 1 to 0, for z1 will change from 4 to 3 and so on.   

z0 z1 z2 z3 z4 z5 z6 z7 z8 z9

t0 X X X

t1 X X X X X X

t2 X X

t3 X

t4 X X X X X X X

t5 X X

t6 X X X

t7 X

t8 X X X X

t9 X

Outputs z0 z1 z2 z3 z4 z5 z6 z7 z8 z9

Frequencies 1 8 1 1 4 4 6 2 2 1

Required N 1 4 1 1 3 3 3 2 2 1
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Table 4.3 Updated values of covdiff after inclusion of every test in Tred 

 

 

 

 

 

 

 

 

 

Table 4.4 Tests selected by the N-cover algorithm to be included in the reduced test set 

Tred are highlighted 

 

 

 

 

 

 

 

 

 

 

 

 

  

Outputs z0 z1 z2 z3 z4 z5 z6 z7 z8 z9

Frequencies 1 8 1 1 4 4 6 2 2 1

Required N 1 4 1 1 3 3 3 2 2 1

T red  = { } 1 4 1 1 3 3 3 2 2 1

T red  = {t 4 } 0 3 1 1 2 2 2 1 1 1

cov diff T red  = {t 4 , t 1 } 0 2 1 1 1 1 1 0 0 1

T red  = {t 4 , t 1, t 8 } 0 1 1 1 0 0 0 0 0 1

T red  = {t 4 , t 1 , t 8 , t 0 } 0 0 0 0 0 0 0 0 0 1

T red  = {t 4 , t 1 , t 8 , t 0 , t 3 } 0 0 0 0 0 0 0 0 0 0

z0 z1 z2 z3 z4 z5 z6 z7 z8 z9

t0 X X X

t1 X X X X X X

t2 X X

t3 X

t4 X X X X X X X

t5 X X

t6 X X X

t7 X

t8 X X X X

t9 X
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The algorithm again finds the output with maximum covdiff, that is, z1 (blue). Accordingly, 

the next test selected is t1 (blue) which covers z1 greedily. The covdiff is recalculated to the 

values shown in the sixth row of Table 4.3. Again, the output z1 is found to have maximum 

covdiff of 2 (green). So the algorithm greedily selects test t8 (green) and includes it in Tred. The 

covdiff values are calculated again as shown in seventh row of Table 4.3. This time four 

outputs have the same covdiff value. Such ties are broken arbitrarily. Let us assume that the 

algorithm chooses output z2 (pink) and as a result the next test selected is t0 (pink) as it is the 

only test that covers z0. After updating the covdiff values as shown in the eighth row of Table 

4.3, we observe that only output z9 (grey) is remaining. And so, the algorithm selects test t3 

(grey) as it covers the output z9. Once the covdiff values are updated the algorithm finds that 

all the covdiff values are zero and terminates the minimization procedure. Finally, the reduced 

test set is Tred = {t0, t1, t3, t4, t8}. The tests t2, t5, t6, t7 and t9 are dropped as they do not 

contribute to the N-cover of the failing outputs.  

 Our approach described above removed failing tests only when N-cover requirements 

for all the failing outputs are satisfied. It is interesting to see how the fail data minimization 

proceeds in case of the traditional greedy set cover algorithm. Following the greedy set cover 

algorithm defined in section 3.2, it will first select test t4 as it covers maximum number of 

failing outputs. Next it will select the test t0 as it is the only test covering outputs z2 and z3. 

Now only output z9 needs to be covered and so the algorithm selects test t0. At this stage all 

the outputs have been covered at least once and so the procedure terminates. The reduced test 

set obtained by traditional greedy cover would be Ttrad = {t0, t3, t4}. So, Ttrad is two tests 

smaller that the Tred computed by our approach. However, Ttrad has very limited failure 

information and would lead to inaccurate diagnosis results. This experiment showed a drastic 

increase in the diagnosis accuracy when our approach was used to compute the reduced fail 

data set as compared to the traditional greedy set covering. Thus, even though our approach 

achieves slightly less fail data size reduction, it is more likely to retain information about the 

tests and their corresponding failures that are more important for accurate diagnosis. 
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 In this chapter we discussed in detail the steps involved in the implementation of N-

cover algorithm. In the next chapter we will discuss the performance of N-cover algorithm 

when it is used for minimization of fail data from industry fabricated chips. 
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5. PERFORMANCE ANALYSIS 

In this chapter, the correlation between the failures of a chip observed by the tester, the 

amount of fail data reduced by the N-cover algorithm and the diagnosis performance 

obtained by using this reduced fail data are explored and studied. We will analyze and 

discuss the performance of the N-cover algorithm on the basis of the evaluation metrics 

defined in Chapter 3. 

5.1. Data Set 

 The N-cover algorithm was used for the fail data minimization of fabricated chips from 

the Intel Corporation. Fail data and diagnosis results for 624 instances of the same chip were 

used for the performance analysis of our approach. We tried to incorporate a wide variety of 

fail data by using chips manufactured on 11 wafers from four different Intel fabrication labs.  

5.2. Experimental results 

 For diagnosis purpose we used the industrial POIROT tool [41]. The N-cover algorithm 

was implemented as a separate module written in Python [42]. For every failing die in a 

wafer, we obtained its fail data in the form of indexed failure responses as explained in 

Figure 1.3. First we used this raw fail data for diagnosis and obtained the golden candidates. 

Next we used the N-cover algorithm as a preprocessing step between the fail data of the die 

and the diagnosis procedure. The N-cover algorithm analyzed the raw data and performed 

fail data minimization as described in the previous chapter. Once the minimization is 

complete, the reduced fail data was used by the diagnosis tool to obtain the new candidates. 

These new candidates were compared with the golden candidates using the evaluation 

metrics described in section 3.4. Table 5.1 gives the detailed results of the experiment. 
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Table 5.1 Evaluation metric values for 11 wafers from different fabrication labs. The last row gives the average values of diagnosis 

runtime before and after fail data reduction, diagnosis accuracy, decrease in resolution and the fail data size reduction over all the 

failing dies in a wafer 

Fab Wafer No. of golden new new ∩ Diag. run Diag. run Diag. Decrease in Total data

name no failed cand cand golden time using time using accuracy diag. resolution vol reduction

dies (golden) (new) (int) Before After orig fail red fail int/ |new-golden| 1- (After/

data (sec) data (sec) golden /golden Before)

A 1 51 1072 1077 1034 91175 52839 19393 9202 96% 0% 42%

2 49 510 521 480 78694 51908 16121 7733 94% 2% 34%

3 57 1787 1685 1679 125739 72175 14967 11334 94% 6% 43%

B 4 67 1699 1581 1573 104882 48712 44856 21984 93% 7% 54%

5 54 226 224 198 80090 42398 12042 6801 88% 1% 47%

6 70 756 628 617 217772 100895 37285 11932 82% 17% 54%

7 43 1153 1152 1149 25315 17314 12213 7750 100% 0% 32%

C 8 84 1377 1361 1334 120038 76489 15544 9596 97% 1% 36%

9 50 642 518 516 49376 23843 6053 2681 80% 19% 52%

D 10 30 299 299 289 45943 22503 12510 6397 97% 0% 51%

11 69 1559 1536 1535 97882 72516 21168 19838 98% 1% 26%

212152 115248

19287 10478 93% 5% 43%

Mff size (bytes)

Total

Average  

3
0
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 We used fail data of dies from 11 wafers manufactured in four different fabrication labs 

at Intel as shown in Table 5.1. So the performance analysis for our algorithm takes into 

account the process variations that may arise while fabricating instances of the same chip in 

different manufacturing environments. Table 5.1 gives details about which manufacturing 

lab a failing wafer was fabricated in and the number of failing dies in that wafer. The fail 

data for each die in a wafer was processed separately to obtain the golden and new 

candidates. It is important to note that the data in Table 5.1 gives cumulative values for all 

the failing dies in a wafer. 

5.2.1. Diagnosis Accuracy 

 Table 5.1 gives the number of golden candidates and the number of new candidates 

generated by the diagnosis tool. We analyzed these two sets of fault candidates and their 

comparison showed how many fault candidates were common in both the lists. If candidates 

are dropped by the new candidate list then the diagnosis accuracy reduces. For example, for 

the Wafer 1 from Fab A, 1034 candidates were common in the golden and the new candidate 

lists. As 1072 golden candidates were generated by diagnosis, the accuracy is calculated as: 

Diagnosis accuracy for Wafer 1 from Fab A =  
                          

                   
      

        = 
    

    
      

                  = 96 % 

 From the information about diagnosis accuracy in Table 5.1 we observe that higher the 

intersection of golden and new candidates for a wafer, higher is the diagnosis accuracy. The 

average diagnosis accuracy for 624 failing dies over 11 wafers was found to be 93%. 

5.2.2. Decrease in diagnosis resolution 

 The reduction in the diagnosis resolution is caused by extra candidates being generated 

or candidates being dropped by the reduced fail data. For example, for Wafer 4 from Fab B, 

1699 golden and 1581 new candidates were generated by the diagnosis procedure. So the 
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number of extra candidates is (1699 – 1581) = 118 and the decrease in resolution is 

calculated as: 

Decrease in diagnosis resolution for Wafer 4 from Fab B = 
                      

                   
      

                = 
   

    
       

                = 7 % 

 Thus, more the difference between the number of new candidates and golden candidates, 

higher is the deterioration in diagnosis resolution. The average decrease in the diagnosis 

resolution for 624 failing dies was calculated to be 5%. 

5.2.3. Fail data size reduction 

 A crucial part of the fail data minimization problem is to have substantial fail data 

reduction while maintaining diagnosis accuracy. In order to evaluate the amount of fail data 

volume reduced, we observed the size of fail logs before and after the N-cover processing as 

shown in Table 5.1. For example, for Wafer 9 from Fab C, the fail data reduction is:  

Fail-data size reduction = (    
                                      

                                       
        

          = (    
     

     
        

          = 51% 

 Analysis of the results in Table 5.1 shows that in general, if more fail data is eliminated 

from the original fail data, the diagnosis accuracy suffers. The reason for this is that with 

higher fail data size reduction, the diagnosis procedure may not have enough information to 

identify all the fault candidates for the failing dies.  On average, for 11 wafers the fail data 

reduction was 43% while maintaining the average diagnosis accuracy of 93%. 

5.2.4. Increase in diagnosis speed 

 The reduction in the amount of fail data needed to identify the defects in the failing dies 

helps in speeding up the diagnosis procedure. We analyzed the run time of the diagnosis 
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procedure for both original fail data and the reduced fail data. From Table 5.1 we can see that 

the average diagnosis run time for analyzing 11 wafers using original fail data was 19287 

seconds and using reduced fail data was 10478 seconds. Thus, the average increase in the 

diagnosis speed for 11 wafers was calculated as follows: 

Average increase in diagnosis speed 

                            = (    
                                                                 

                                                                 
        

                            = (    
     

     
      0 

                            = 46 % 

 When we analyzed the results in Table 5.1 with respect to increase in diagnosis speed, 

we observed that in general, as the fail data size decreases, the diagnosis procedure becomes 

faster. This is intuitive because if the amount of fail data provided to the diagnosis procedure 

reduces, the number of test vectors that need to be simulated and analyzed also decreases. 

The diagnosis procedure will have a shorter run time and thus, will lead to an increase in its 

speed. The average increase in the diagnosis speed over 11 wafers was found to be 46%. 

 Figure 5.1 gives a summary of the diagnosis accuracy and the fail data size reduction 

results of Table 5.1. The diagnosis accuracy is maintained between 80% and 100% and the 

fail data size reduction is as high as 54%.  

 Figure 5.2 gives a summary of the diagnosis run time in seconds when original fail data 

was used and when reduced fail data was used. We observed that for all 11 wafers the run 

time for diagnosis decreased when reduced fail data was used. Thus, the fail data 

minimization made the diagnosis procedure faster. The increase in the diagnosis speed 

ranged from 6% to 68%.  

 This chapter described in detail the experiment that used N-cover algorithm as a 

preprocessing step for fail data minimization for industry manufactured chips. On average, 

fail data size was reduced by 43% while maintaining an average diagnosis accuracy of 93%. 

With this reduced fail data, the diagnosis speed was increased by 46%.  
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Figure 5.1 Summary of diagnosis accuracy and fail data size reduction results for 624 

failing dies over 11 wafers 

 

  

Figure 5.2 Summary of diagnosis run time using original fail data and reduced fail data 

for 624 failing dies over 11 wafers 
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6. FUTURE WORK AND CONCLUSION 

6.1. Future work 

 Our ultimate goal is to eliminate the unnecessary fail data while it is being collected by 

the tester. We intend to modify the N-cover algorithm such that in addition to improving 

diagnosis performance, it will also help reduce tester data logging time and its storage 

requirement. Currently, we are performing the fail data minimization after the tester finishes 

collecting the fail data. As the reduction of fail data is performed offline, the tester time is 

not affected.  

 As discussed in Chapter 4, the N-cover values for the outputs are calculated on the basis 

of their failure frequencies. These frequencies are extracted after the tester has finished fail 

data collection. The future work will emphasize on dynamically determining the values of N 

while the tester is collecting the fail data. For that purpose the algorithm should be able to 

analyze the trends in the output failure frequencies and determine N on the fly. At the same 

time, the N values need to be maintained small enough to provide substantial fail data 

reduction but large enough to be flexible for different chip designs.  

 Once the modified N-cover algorithm is applied on the tester, it should dynamically 

throw out data both before and after collecting it in the tester buffer. In other words, the 

algorithm should remove earlier failing test which is already stored in the buffer if a later test 

has a better N coverage. Also, it should avoid adding tests with faulty outputs that are 

already covered N times. 

 Most importantly, the modified N-cover algorithm should have some notion of 

“termination conditions”. This set of conditions would tell the tester to stop collecting fail 

data once enough information is available for diagnosis of the failing chip. Specifically, 
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when a chip is tested, for each new failing test, the algorithm will determine if sufficient data 

is collected for performing high quality diagnosis using the termination conditions. This will 

help in reducing the tester collection time in addition to improving diagnosis speed. In this 

way, the modified N-cover algorithm will ensure that for the same test cost more number of 

failing chips can be tested and diagnosed without compromising diagnosis accuracy.  

6.2. Conclusion 

 In this thesis, a lightweight N-cover algorithm has been proposed to approach the 

problem of fail data minimization, with a particular focus on maintaining high quality 

diagnosis of the failing chip. We presented the challenges associated with the large volume 

of fail data collected by the tester for modern ICs. We formally defined the fail data 

minimization problem and discussed the motivation behind our approach. Various metrics 

were also proposed to evaluate the performance of our algorithm.  

 We then introduced the concept of N-cover and described how it can be used to 

minimize the amount of fail data required for diagnosis. We presented a new approach to fail 

data minimization that attempts to greedily select failing tests with the goal of providing N-

cover for all failing outputs without severely impacting diagnosis performance. The tests that 

do not contribute to the N-cover were eliminated. We also described an illustrative example 

to explain the nuances of the algorithm implementation.  

 Finally we investigated the performance of the N-cover algorithm when it was used for 

fail data minimization of wafers manufactured in Intel fabrication labs. Experimental results 

showed that our algorithm has a strong tendency to maintain high quality diagnosis while 

providing substantial fail data reduction. The N-cover algorithm is independent of diagnostic 

information and structural specifications and thus, it can be easily applied for fail data 

minimization of different chip designs using any diagnosis tool. 

 

 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

LIST OF REFERENCES 



 

 

37 

LIST OF REFERENCES 

[1] L. Xiu, “VLSI Circuit Design Methodology Demystified: A Conceptual Taxonomy”, 

Wiley-IEEE Press, 2008.  

[2] M. L. Bushnell and V. D. Agrawal, “Essentials of Electronic Testing for Digital, 

Memory, and Mixed-Signal VLSI Circuits.” Springer,2000. 

[3] R. Chandramouli and S. Pateras, “Testing systems on a chip,” IEEE Spectrum, pp. 42–

47, Nov. 1996 

[4] J. Bedsole, R. Raina, A. Crouch and M. S. Abadir, “Very Low  Cost Testers: 

Opportunities and Challenges,” IEEE Design and Test of Computers, vol. 18, no. 5, pp. 60-

69, 2001. 

[5] O. Sinanoglu, E. J. Marinissen, A. Sehgal, J. Fitzgerald and J. Rearick, “Test Data 

Volume Comparison: Monolithic vs. Modular SoC Testing,” IEEE Design & Test of 

Computers, vol. 26, no. 3, pp. 25-37, 2009. 

[6]  J. Rajski et al., “Embedded Deterministic Test”,  IEEE Trans. Computer-Aided Design, 

vol. 23, no 5, May 2004, pp 776-792. 

[7] C. Hay, R. Kapur, “DFTMAX Ultra: New technology to address key test challenges”, 

Synopsys (White Paper), Sept. 2013.  

[8] L.Li and K.Chakrabarty, "Test data compression using dictionaries with fixed-length 

indices", Pmc. VTS, 2003.  



 

 

38 

[9] L.Li, K.Chakrsbarty and N.A.Touba, "Test data compression using dictionaries with 

selective entries and fixed-length indices", ACM hns. on Design Automation of Electmnic 

Systems, pp. 470-490, 2003 

[10] P.Gonciari, B.Al-Hashimi and N.Nicolici, "Improving compression ratio, area overhead, 

and test application time for system-on-a-chip test data compression/decompression", Proc. 

DATE, pp. 604-611, 2002. 

[11] B. Koenemann, “LFSR-coded test patterns for scan designs,” in Proc. Eur. Test Conf., 

1991, pp. 237–242.  

[12] C.V. Krishna and N. A. Touba, “Reducing test data volume using LFSR reseeding with 

seed compression,” in Proc. ITC, 2002, pp. 321–330.  

[13] A Chandra and K. Chakrabarty, “Frequency-directed run-length codes with application 

to system-on-a-chip test data compression,” in Proc. VLSI Test Symp., 2001, pp. 42–47.  

[14] A. Jas, J. Ghosh-Dastidar and N. A. Touba, “Scan Vector Compression/Decompression 

Using Statistical Coding,” Proc. VLSI Test Symposium, pp. 114-120, 1999. 

[15] I. Bayraktaroglu and A. Orailoglu, “Test Volume and Application Time Reduction 

Through Scan Chain Concealment,” Proc. Design Automation Conference, pp.151-155, June 

2001. 

[16] G. Mrugalski, N. Mukherjee, J. Rajski, D. Czysz, and J. Tyszer,, “Compression based 

on deterministic vector clustering of incompatible test cubes”, In Proc. IEEE. International 

Test Conference (ITC), Nov. 2009. 

[17] P. Goel and B. C. Rosales, “PODEM-X: An automatic test generation system for VLSI 

logic structures,” in Proc. 18th Design Automation Conf., pp. 260-268, 1981.  

[18] I. Pomeranz, L. Reddy, and S.M. Reddy,“Compactest: A method to generate compact 

test sets for combinational circuits”, in Proc.of the Int. Test Conf, pp. 194-203, October 1991 



 

 

39 

[19] I. Hamzaoglu, J. H. Patel, “Test set compaction algorithms for combinational circuits”, 

in Proc. Int. Conf. Computer-Aided Design, Nov. 1998, pp. 283-289 

[20] M. Abramovici et al., Digital Systems Testing and Testable Design.Rockville, MD: 

Computer Science, 1990.  

[21] R. K. Roy, T. M. Niermann, J. H. Patel, J. A. Abraham and R. A. Saleh, "Compaction of 

ATPG-Generated Test Sequences for Sequential Circuits", in Proc. Intl. Conf. on Computer-

Aided Design, Nov. 1988, pp. 382-385. 

[22] I. Pomeranz, S.M. Reddy, “On Static Compaction of Test Sequences for Synchronous 

Sequential Circuits,” Proc. ACM Design Automation Conf, 1996.  

[23] P. Goel and B. C. Rosales, “Test generation and dynamic compaction of tests,” Digest 

of Papers 1979 Int. Test Conf., pp. 189-192, Oct. 1979.  

[24] I. Pomeranz, S.M. Reddy, “Dynamic Test Compaction for Synchronous Sequential 

Circuits using Static Compaction Techniques,” Proc. IEEE Fault Tolerant Computing Symp., 

1996, pp. 53-61 

[25] J. Rajski, J. Tyszer, C. Wang, W.-T. Cheng and S.M. Reddy, “Finite memory Test 

Response Compactors for Embedded Test Applications”, IEEE TCAD, April 2005, pp. 622-

634. 

[26] P. Wohl, J. A. Waicukauski and T. W. Williams, “Design of Compactors for Signature-

Analyzers in Built-in Self-test,” in Proc. ITC, 2001, pp 54-63 

[27] K. Saluja and M. Karpovsky “Testing Computer Hardware Through Data Compression 

in Space and Time”, Proc. ITC 1983, pp. 83-88. 

[28] H. Wang, O. Poku, X. Yu, S Liu, “Test-data volume optimization for diagnosis,” Proc. 

Design Automation Conference, 2012, pp. 567-572 



 

 

40 

[29] C. Bolchini, E. Quintarelli, F. Salice, P. Garza, “A Data Mining Approach to 

Incremental Adaptive Functional Diagnosis”, IEEE Int. Symp. on Defect and Fault 

Tolerance in VLSI and Nanotechnology Systems, pp. 13-18, 2013. 

[30] B. Chess and T. Larrabee, "Creating Small Fault Dictionaries", IEEE Transactions on 

Computer-Aided Design of Integrated Circuits, Vol. 18, No.3, 346 – 356, 1999.  

[31] I. Pomeranz and S. M. Reddy, "On the Generation of Small Dictionaries for Fault 

Location", In Proceedings of International Conference on Computer-Aided Design, pp. 272-

279, 1992.  

[32]  C. Liu, W.-T. Cheng, H. Tang, S.M. Reddy, W. Zou, and M. Sharma, “Hyperactive 

Faults Dictionary to Increase Diagnosis Throughput,” In Proceedings of Asian Test 

Symposium, pp.173, 2008 

[33] S. Wang and W. Wei, “Machine Learning-based Volume Diagnosis,” In Proceedings of 

Design, Automation & Test in Europe Conference & Exhibition, pp.902, 2009 

[34] A. Leininger, P. Muhmenthaler, W.-T. Cheng, N. Tamarapalli, W. Yang, and H. Tsai, 

“Compression Mode Diagnosis Enables High Volume Monitoring Diagnosis Flow,” In 

Proceedings of International Test Conference, pp.7.3, 2005 

[35] X. Fan, H. Tang, S. M. Reddy, W. Cheng, B. Benware, “On Using Design Partitioning 

To Reduce Diagnosis Memory Footprint”, Asian Test Symposium, 2011, pp. 219-225. 

[36] H. Li, D. Xu, Y. Han, K.-T. Cheng, and X. Li, “nGFSIM: A GPU-based Fault Simulator 

For 1-to-n Detection And Its Appications”, In Proceedings of International Test Conference, 

pp.1, 2010 

[37] T. Cormen, C. Leiserson, R. Rivest, C Stein, “Introduction to algorithms”, Third 

Edition, The MIT Press, 2009. 

[38] M. Garey, D. Johnson, “Computers and Intractability: A Guide to the Theory of NP-

Completeness”, W. H. Freeman, First Edition, 1979 



 

 

41 

[39] J. Beasely and P. C. Chu, “A genetic algorithm for the set covering problem”, European 

Journal of Operation Research, 1994, pp. 392-404. 

[40] S. Ceria, P. Nobili, A. Sassano, "A Lagrangian based heuristic for large scale Set-

Covering problems". Mathematical Programming Ser B, Vol. 81 n.2 (1998) 215-228. 

[41] S. Venkataraman, S. B. Drummonds, “POIROT: a logic fault diagnosis tool and its 

applications”, Proc. Int. Test Conf, pp. 253-262, 2000. 

[42] M. Lutz, “Learning Python”, O'Reilly Media; Fifth Edition, 2013. 

 

 


	Purdue University
	Purdue e-Pubs
	Summer 2014

	A Lightweight N-Cover Algorithm For Diagnostic Fail Data Minimization
	Shraddha Ghanshyam Bodhe
	Recommended Citation



