
Purdue University
Purdue e-Pubs

Open Access Theses Theses and Dissertations

Summer 2014

A Lightweight N-Cover Algorithm For Diagnostic
Fail Data Minimization
Shraddha Ghanshyam Bodhe
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses

Part of the Electrical and Computer Engineering Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Bodhe, Shraddha Ghanshyam, "A Lightweight N-Cover Algorithm For Diagnostic Fail Data Minimization" (2014). Open Access Theses.
405.
https://docs.lib.purdue.edu/open_access_theses/405

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/77951906?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F405&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F405&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F405&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F405&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F405&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses/405?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F405&utm_medium=PDF&utm_campaign=PDFCoverPages

Graduate School ETD Form 9
(Revised 12/07)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

 Chair

To the best of my knowledge and as understood by the student in the Research Integrity and
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.

Approved by Major Professor(s): ____________________________________

Approved by:
 Head of the Graduate Program Date

 Shraddha Bodhe

A Lightweight N-cover Algorithm for Diagnostic Fail Data Minimization

Master of Science in Electrical and Computer Engineering

IRITH POMERANZ

ANAND RAGHUNATHAN

VIJAY RAGHUNATHAN

IRITH POMERANZ

 M. R. Melloch 07-24-2014

A LIGHTWEIGHT N-COVER ALGORITHM FOR DIAGNOSTIC FAIL DATA

MINIMIZATION

A Thesis

Submitted to the Faculty

of

Purdue University

by

Shraddha Bodhe

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Electrical and Computer Engineering

August 2014

Purdue University

West Lafayette, Indiana

 ii

ACKNOWLEDGMENTS

First of all, I would like to thank my research advisor, Prof. Irith Pomeranz, for providing me

with the opportunity to work with her. She has been a source of inspiration and motivation

throughout this research. I am deeply grateful to her for her patience, encouragement and

support. The work done in this thesis would not have been possible without her guidance in

my research, presentation and writing.

 I would like to thank Prof. Anand Raghunathan for mentoring me throughout my

Masters degree. I also owe a debt of gratitude to Prof. Vijay Raghunathan for his guidance

and for serving on my thesis committee.

 I would also like to thank Dr. Srikanth Venkataraman, Dr. Enamul Amyeen and other

members of the diagnosis team at Intel for their support and feedback. Working with them

has been a great learning experience. This research work has been sponsored by the

Semiconductor Research Corporation (SRC). I am very grateful for their financial support.

 I am also greatly thankful to my friends Vinayak Gokhale, Atreyee Ghosh-Pathe and

Saurabh Wyawahare for always being there to encourage me. Finally, I would like to express

my deepest gratitude to my parents for their love and support. They are my pillars of strength

and have always inspired me to follow my dreams.

iii

TABLE OF CONTENTS

 Page

LIST OF TABLES .. iiv

LIST OF FIGURES .. v

ABSTRACT ... vi

1. INTRODUCTION .. 1

1.1. Overview .. 1

1.2. Diagnostic fail data analysis ... 4

1.3. Organization ... 6

2. LITERATURE REVIEW ... 8

2.1. Test data reduction.. 8

2.2. Diagnostic fail data reduction ... 10

3. FAIL DATA MINIMIZATION .. 12

3.1. Challenges posed by large volume of fail data ... 12

3.2. Fail data minimization problem defined ... 13

3.3. Motivation behind our approach .. 15

3.4. Evaluation metrics .. 16

4. THE N-COVER ALGORITHM ... 18

4.1. The value of N .. 18

4.2. Implementation of the N-cover algorithm .. 21

4.3. An illustrative example ... 24

5. PERFORMANCE ANALYSIS .. 29

5.1. Data set ... 29

5.2. Experimental results ... 29

5.2.1. Diagnosis accuracy ... 31

5.2.2. Decrease in diagnosis resolution .. 31

5.2.3. Fail data size reduction ... 32

5.2.4. Increase in diagnosis speed .. 32

6. FUTURE WORK AND CONCLUSION ... 35

6.1. Future work .. 35

6.2. Conclusion .. 36

LIST OF REFERENCES .. 37

iv

LIST OF TABLES

Table Page

4.1 Sample fail data collected from the tester ... 25

4.2 Output failure frequencies and their corresponding values for the sample fail data

of Table 4.1 .. 25

4.3 Updated values of covdiff after inclusion of every test in Tred 26

4.4 Tests selected by the N-cover algorithm to be included in the reduced test set Tred

 are highlighted .. 26

5.1 Evaluation metric values for 11 wafers from different fabrication labs. The last

 row gives the average values of diagnosis runtime before and after fail data

 reduction, diagnosis accuracy, decrease in resolution and the fail data size

 reduction over all the failing dies in a wafer.. 30

v

LIST OF FIGURES

Figure Page

1.1 Principle of Testing ... 1

1.2 Bitmapped failure response ... 2

1.3 Indexed failure response ... 2

1.4 Comparison of the number of failing test vectors that are collected by the tester

 and the number of failing test vectors that are enough for an accurate diagnosis 5

1.5 N-cover algorithm as a preprocessing step between the tester data logs and the

 diagnosis procedure ... 6

4.1 Monotonically increasing relationship between the output failure frequencies

 and the absolute N values ... 19

4.2 Monotonically decreasing relationship between output failure frequencies and

 the percentage of required goal coverage ... 21

4.3 Pseudocode for the N-cover algorithm for diagnostic fail data minimization 22

5.1 Summary of diagnosis accuracy and fail data size reduction results for 624

 failing dies over 11 wafers .. 34

5.2 Summary of diagnosis run time using original fail data and reduced fail data for

 624 failing dies over 11 wafers ... 34

vi

ABSTRACT

Bodhe, Shraddha G. M.S.E.C.E., Purdue University, August 2014. A lightweight N-cover

algorithm for diagnostic fail data minimization. Major Professor: Irith Pomeranz.

The increasing design complexity of modern ICs has made it extremely difficult and

expensive to test them comprehensively. As the transistor count and density of circuits

increase, a large volume of fail data is collected by the tester for a single failing IC. The

diagnosis procedure analyzes this fail data to give valuable information about the possible

defects that may have caused the circuit to fail. However, without any feedback from the

diagnosis procedure, the tester may often collect fail data which is potentially not useful for

identifying the defects in the failing circuit. This not only consumes tester memory but also

increases tester data logging time and diagnosis run time. In this work, we present an

algorithm to minimize the amount of fail data used for high quality diagnosis of the failing

ICs. The developed algorithm analyzes outputs at which the tests failed and determines

which failing tests can be eliminated from the fail data without compromising diagnosis

accuracy. The proposed algorithm is used as a preprocessing step between the tester data logs

and the diagnosis procedure. The performance of the algorithm was evaluated using fail data

from industry manufactured ICs. Experiments demonstrate that on average, 43% of fail data

was eliminated by our algorithm while maintaining an average diagnosis accuracy of 93%.

With this reduction in fail data, the diagnosis speed was also increased by 46%.

1

1. INTRODUCTION

1.1. Overview

The design and manufacture of an Integrated Circuit (IC) is a very involved and

complicated process. Silicon in the form of a single-crystal wafer is the building block of IC

fabrication. Typically, integrated circuits are produced in large batches on a single wafer.

After manufacture the resultant wafer is cut into pieces, each containing a copy of the desired

integrated circuit. Each of these pieces is called a die [1].

Due to the fabrication process variations and the translation of design to an actual chip on

silicon, the manufactured dies may have defects. These defects are unintended differences

between the implemented hardware and the intended design. Once an IC is manufactured, it

has to go through a series of post-production tests to verify its functionality. This is called

manufacturing testing [2]. It involves using binary patterns, also called as test vectors, which

are applied at the inputs of the circuit. A collection of such test vectors is called test set. The

response of the circuit to these test vectors is compared with the expected response. The

circuit is said to pass if the responses match else the circuit fails. Figure 1.1 shows the basic

principle involved in testing.

 Figure 1.1 Principle of testing

2

Outputs

 VLSI testing is performed by automatic test equipments (ATEs). Modern ATEs are

extremely powerful computers that are operated by test programs written in a high level

language. For those chips that fail during testing, the location and cause of the failure needs

to be determined so that remedial actions can be taken to improve the number of good chips

being manufactured. Once a circuit fails, the ATE, referred to as tester, collects the failure

responses of the circuit. A failure response comprises of a failing test and the corresponding

list of outputs of the circuit where the test response was not as expected. A full failure

response reports not only which tests failed but also at which outputs (flip-flops and primary

outputs) the failures were observed. As with test vectors, circuit outputs are usually indexed

to help with easy identification. Figures 1.2 and 1.3 give a simple example of bitmapped and

indexed failure responses respectively. Each failing test number in the indexed failure

response has a corresponding list of failing outputs. In the bitmapped failure response, a

second dimension has been added for failing outputs.

Tests

1 2 3 4 5

1 1 0 0 1 0

2 0 0 1 0 0

3 0 1 1 0 1

4 1 0 1 0 0

5 0 0 0 0 1

Figure 1.2 Bitmapped failure response

 Outputs

 1: 1, 4

 2: 3

 Tests 3: 2, 3, 5

 4: 1, 3

 5: 5

Figure 1.3 Indexed failure response

3

 The tester records the actual responses measured at circuit outputs, and any differences

between the observed responses and the expected responses are stored in the tester data log.

In this thesis we assume that the tester data log records the indexed failure response for the

failing chip. The set of all the failure responses for a failing circuit is called the fail-data of

the circuit.

Diagnosis is the process of identification of the actual defects in the circuit. It attempts to

derive from fail data the location inside the chip where the problem most likely started. In

order to identify the systematic defects, a large volume of failed chips need to be diagnosed.

This process of diagnosing a large number of failing dies or chips is called large volume

diagnosis. The diagnosis procedure analyzes the fail data of the failing chips one at a time

and gives a set of circuit elements, called fault candidates, which are identified as potential

causes of failure for that particular chip. These candidates are further analyzed to identify

and fix the problem.

 The continual increase in the design complexity along with the technology scaling has

enabled the designers to utilize a high level of integration in modern ICs. However, this has

also made the use of complicated methodologies imperative for testing these chips. Every

component in a circuit has a given set of test vectors needed to test it. As more and more

components are placed on the chip, the number of test vectors required to test the chip

proportionally increases. Execution of this large number of test vectors and collecting their

corresponding failure responses increases the time required to test the chip substantially.

Also, the tester memory size limits the amount of fail data that can be collected by the tester.

One of the most challenging problems in the semiconductor industry today is dealing with

the large amount of test data that is transferred between the tester and the chip [3] and the

resultant increase in the test cost. An estimate of test cost on an ATE is given in [4] and the

cost model in [5] gives an explanation of the cost metrics. Although the specific issues

involved are different for test and diagnosis, both have to deal with large amounts of test

data. The issues in diagnosis procedure are described next.

 Following Moore’s Law, the modern IC technology keeps shrinking and allows a single

die to integrate millions of transistors. Because of this ever increasing design density, a large

4

volume of fail data is collected by the tester for a single die. The diagnosis procedure

analyzes this fail data to provide valuable information about the type of defects and the

possible defect locations that may be causing the chip to fail. The inspection of the large

volume diagnosis results may also help point out any systematic issues in the fabrication

process. Utilizing the diagnosis information, the yield can be improved by modifying the

design rules for the chip or tuning the fabrication parameters. Therefore, improvement in the

production quality of a circuit depends on effective diagnosis of the failures. However, with

the increase in the amount of fail data, the tester data logging time and the time required for

diagnosing a single failing die has increased. In addition it has also resulted in higher

memory consumption by the diagnosis procedure. This adversely affects the diagnosis

throughput which is defined as the number of failing dies diagnosed within a time frame

using given computational resources.

1.2. Diagnostic fail data analysis

 The main motive for improving quality is economics. Ensuring high quality of

integrated circuits is important for increasing the production yield and the reliability of the

manufactured chips. With better production quality, the yield increases giving more good

dies per the same wafer cost. A high quality product provides customer satisfaction and

profitability of the business. Providing high quality diagnosis of failures is therefore essential

for improving production, reducing time-to-market and increasing profits.

 We analyzed a large amount of industry fail data and observed that without any

feedback from the diagnosis procedure the tester collects data that is potentially not useful

for diagnosis, consuming data logging time, tester memory and diagnosis time. Figure 1.4

shows the relationship between the number of failing test vectors identified by the tester and

the minimum number of failing test vectors actually required by the diagnosis procedure to

give the same fault candidates. The wafers A, B, C and D have 43, 84, 104 and 30 dies

respectively. We see that without any loss of diagnosis accuracy (defined in section 3.4), on

average about 36% of the original fail data is enough to diagnose the failures. Thus, it is

reasonable to conclude that even though a large volume of fail data is being collected by the

tester, only a small fraction of it actually contributes to the identification of the defects by the

5

diagnosis. This small subset of fail data when used for diagnosis would increase its speed

and enable effective memory usage without impacting diagnosis quality. It would also point

to ways to reduce the tester time that was spent in the collection of unnecessary fail data.

Figure 1.4 Comparison of the number of failing test vectors that are collected by the

tester and the number of failing test vectors that are enough for an accurate diagnosis

 The run time and the memory requirements of the diagnosis procedure are also

dependent on the amount of fail data for that chip. The reason for this is that as the number

of failing vectors in the fail data increases, the time required to simulate those failing vectors

by the diagnosis procedure becomes high. So we can reasonably assume that if the amount of

fail data used by diagnosis for correct defect identification is reduced, then the diagnosis

would be faster. Thus, the focus of our research is to improve the performance of diagnosis

by eliminating some part of the fail data collected from the tester such that the runtime of the

diagnosis procedure are reduced without compromising the diagnosis quality. We call this

approach diagnostic fail data minimization.

0

500

1000

1500

2000

2500

3000

3500

Wafer A Wafer B Wafer C Wafer D

Number of test vectors in
original fail data

Number of test vectors
enough for accurate
diagnosis

6

 This thesis proposes an N-cover algorithm which is used as a preprocessing step for the

diagnosis procedure. Figure 1.5 gives an overview of the implementation of the algorithm.

The tester data log contains information about the failing test vectors and their corresponding

failure responses. The algorithm processes the tester data log and gives the minimized fail

data as an output. This minimized fail data is then used by the diagnosis procedure to

generate a list of fault candidates. The N-cover algorithm ensures that the minimized fail data

is such that high quality diagnosis of the failures is obtained. The proposed algorithm is

designed to be independent of the chip design specifications, testing mechanism and the

diagnosis procedure. Thus, it can be easily used for fail data minimization of different chip

designs using various types of diagnosis tools.

 Tester data log Preprocessing step Diagnosis tool Fault candidates

Figure 1.5 N-cover algorithm as a preprocessing step between the tester data logs and the

diagnosis procedure

1.3. Organization

 This section gives an overview of the organization of this document. In the next chapter

we discuss some related works done in the field of test data reduction and fail data reduction

for improving the throughput of manufacturing testing. In Chapter 3 we define the fail data

minimization problem with respect to high performance diagnosis of the failing chips. We

describe the motivation behind our approach to solve this minimization problem and

introduce some related concepts. We also define the evaluation metrics used in this work to

gauge the performance of our algorithm. Chapter 4 focuses on the development and

N-cover

algorithm

Test1 : response1

Test2 : response2

…..

Testn : responsen

 Diagnosis

Fault1

Fault2

…

Faultm

7

implementation of the N-cover algorithm. It describes each step of the algorithm in detail

and provides an illustrative example for better understanding. The performance analysis of

the N-cover algorithm is provided in Chapter 5. We describe in detail the results obtained

when the N-cover algorithm was used for the fail data minimization for industry fabricated

chips. Chapter 6 concludes this thesis by presenting conclusions from this research and

discusses areas of further work.

8

2. LITERATURE REVIEW

In recent times, management and analysis of large volume of data for test and diagnosis has

become a major contributor to the test cost of an IC. Past approaches for improving

throughput using reduction of data can be broadly classified in two categories, namely, data

reduction for test and fail data reduction for diagnosis. The test data reduction techniques

focus on reducing the test application time and tester storage requirements for a chip. Some

test data reduction techniques enhance diagnosis performance while others deteriorate it. The

diagnosis based approaches aim at minimizing the amount of fail data required to diagnose a

single failing die without impacting the diagnosis quality. The diagnostic fail data

minimization may or may not help in reducing the tester data collection time. Thus, these

two categories are not mutually exclusive. The work done in this thesis belongs to the second

category as our aim is to reduce the amount of fail data required for accurate diagnosis of

failing ICs to improve diagnosis speed and performance.

2.1. Test data reduction

 Researchers have explored various techniques for test data reduction in the past. Test

stimulus compression [6-16] has been at the forefront of solutions to reduce test costs

through reduction in tester storage and test application time. The idea of test stimulus

compression is to compress the amount of input test data that is stored on the tester. It

reduces the amount of tester memory required and also the test time because less data has to

be transferred between the tester and the chip. Test stimulus data is inherently highly

compressible because of the presence of don’t cares (unspecified values) in the test vectors

that can be filled with any value without impacting fault coverage. As a result, lossless

compression techniques can be used to significantly reduce the test stimulus data that must

be stored on the tester. The test stimulus compression makes use of various encoding

9

techniques to compress data for test volume reduction. State-of-the-art techniques for data

compression such as Mentor Graphics EDT [6], Synopsys DFTMAX Ultra [7] and other

vendor tools use structural information for fault simulation, scan chain synthesis and test

generation with compression. Other techniques for test stimulus compression like dictionary

coding [8, 9], and Huffman coding [10] have also been studied in the literature.

 Another important approach for test data reduction is compaction. In the context of test

generation, the test set compaction [17-26] approach works on the notion that if smaller

number of test vectors is applied to test the IC, the execution time of the tester and the

amount of data generated will be less. Static compaction [22-24] attempts to combine and

remove certain vectors after the test set has been generated whereas the dynamic compaction

[25, 26] is integrated in the test generation procedure itself. Compaction can also be

performed at the outputs of the circuit when test vectors are applied to it during test. The

purpose is to reduce the amount of test response that needs to be transferred back to the

tester. While the test stimulus compression is lossless, test response compaction is lossy.

Test response compaction converts long output responses into short signatures. Because the

compaction is lossy, some of the fault coverage can be lost due to aliasing when a faulty

output response signature is identical to the fault-free output response signature. This would

adversely affect the diagnosis performance. Three types of test response compactors are

proposed in the literature [25]: time compactors [26], space compactors [27], and finite

memory compactors [25]. Time compactors are sequential circuits that combine the current

test response with previous test responses to generate signatures for fault detection [26].

Time compaction is usually performed by finite state machines such as linear feedback shift

registers (LFSRs) and multiple input shift registers (MISRs). Space compactors [27] are

combinational circuits which accommodate unspecified values (X). They combine the

outputs of the chip under test to reduce the data volume and the number of output pins to as

few as one pin. Finite memory compactors use feed forward sequential circuits and can also

accommodate Xs in the test responses [25].

10

2.2. Diagnostic fail data reduction

 The analysis of large volume of production fail data is necessary to identify the

systematic defects in the dies. Diagnosis procedure helps to locate the root cause of failures

which can then be analyzed and fixed. Previous research in the field of fail data volume

minimization for diagnosis has shown that it is possible to reduce the fail data significantly

without severe loss of diagnosis accuracy. The work done in [28] showed that fail data

collected by the tester can be reduced by about 30% while maintaining diagnosis accuracy

greater than 90%. Their work uses various statistical learning methods to predict the minimal

amount of fail data that is sufficient to obtain a good quality diagnosis. The prediction model

is learned from a history of fail data collected for a set of failing ICs. The learned model is

then used in production to predict the termination point of fail data collection for ICs

resulting in the reduction of tester data logging time. In this work, the use of statistical

learning makes it imperative for the algorithm to spend a significant amount of time learning

and developing the prediction model. Even with the use of these complex learning

techniques, a size reduction of more than 30% leads to a significant decrease in diagnosis

accuracy.

 It is remarkable that throwing away almost a third of the fail data generally retains the

original data’s ability to diagnose failures. This retention of failure detection ability can also

be observed by the use of some other technique for reduction. In another research presented

in [29], they propose an incremental strategy for reducing the cost and efforts for diagnosis

by implementing a step-by-step selection of the tests to be executed from the set of available

tests. Their selection criterion is based on a metric derived from the maximization of

diagnostic information. They use probabilistic reasoning engines to stop the test execution

when additional test outcomes would not provide further useful information for identifying

the faulty candidate. Thus, with less number of tests being executed, the amount of fail data

collected by the tester is reduced. This approach achieves the reduction in number of tests

executed ranging from 32% to 88%. The entry point of their algorithm utilizes the model of

the circuit under test which gives a summary of the relationship between the components of

the circuit, the tests to be executed and the fail data from the tester. As a result, this approach

11

is heavily dependent on the fault model abstraction, diagnostic information and system

specifications.

 Despite these encouraging results for fail data minimization, there is clearly more room

for improvement. The goal of our work is to explore methods to reduce the fail data further

without sacrificing diagnosis accuracy or resolution.

12

3. FAIL DATA MINIMIZATION

One of the major challenges in the semiconductor industry today is to establish a correlation

between the fail data collected by the tester to the underlying defects in the chips. The

diagnosis procedure plays a major role in the analysis of large volume of fail data in order to

locate the actual defects in the chip.

3.1. Challenges posed by large volume of fail data

 The large fail data volume causes major concerns for achieving high performance testing

and diagnosis. In order to test high density complex ICs, the tester needs more number of test

vectors. The application of large number of test vectors results in the generation of huge

amount of fail data and an increased test application time. To facilitate better analysis,

additional fail information beyond a simple pass/fail is collected into a fail log. The fail log

typically contains information about when (tester cycle), where (at what output), and how

(logic value) the test failed. The increase in the generation of fail data volume is proportional

to the time required by the tester to collect it in the fail logs. High test execution and data

logging time causes a considerable increase in the overall tester run time, which in turn

increases the test cost.

 Also, the collection of large volume of fail data for diagnosis is limited by tester buffer

sizes. The storage of fail data of a typical modern IC with millions of gates will require up to

hundreds of giga-bytes of memory. If the tester buffers are inadequate for the storage of fail

data, the test execution may either get terminated without collecting enough information for

diagnosis or the tester will wait for the buffers to free up so that it can resume the data

collection.

13

 Furthermore, the time required to diagnose the failures of a single die keeps increasing

with the increase in the amount of fail data. More the fail data volume, higher is the number

of test vectors that need to be simulated. Consequently, more failure responses are generated

and analyzed by the diagnosis procedure. Typically the diagnosis procedure can be made

more efficient by processing multiple dies together. However, the physical memory does not

increase as fast the amount of fail data generated creating a bottleneck. In spite of using

multiple processors, the numbers of diagnosis programs that can run parallel are limited.

Thus, the diagnosis throughput and performance suffers because of large volume of fail data.

3.2. Fail data minimization problem defined

 With the increasing demand for high performance volume diagnosis, it has become

essential to improve its throughput. The diagnosis procedure should be able to process a

large number of failing chips within a short period time using reasonable computational

resources and without deteriorating the diagnosis accuracy. Various techniques have been

proposed to improve the performance of the diagnosis procedure, such as fault dictionaries

[30-32], machine learning [33], pattern sampling [34], design partitioning [35] and GPU-

based simulation [36]. The purpose of this work is to improve diagnosis performance by

minimizing the amount of fail data that it needs to analyze to identify the defects in the chip.

This would enable the diagnosis of large number of failing chips in a short time frame.

 Diagnostic fail data minimization is an optimization problem with the following goal: to

find a minimum cardinality subset of the fail data which when used for diagnosis of the

failing chip will not have any negative impact on the diagnosis accuracy or resolution. In

general, the diagnostic fail-data minimization problem has two aspects:

1. Minimize the amount the fail data required to diagnose the failures of a chip

2. Maintain the quality of diagnosis after the fail data is reduced.

 The minimization algorithm when applied dynamically while the tester is collecting the

fail data, results in the reduction of tester data logging time. However, if the minimization is

performed after all the fail data has been collected in the tester data logs then it will only help

14

improve diagnosis speed and not tester time. The formal definition of the diagnostic fail data

minimization problem is as follows:

Given: A set of failing test vectors T = {t1, t2, t3… tn} such that each vector ti in T produces a

fail response ri. Using T for diagnosis gives the fault candidate list CANDgolden.

Find: A minimal subset of failing test vectors Tred ⊆ T, comprising of test vectors m0, m1,

m2… ms such that each mi has a fail response pi. The fault candidate list CANDnew

generated by the diagnosis procedure using Tred is such that CANDnew = CANDgolden.

 Each of the fail responses ri, pi constitutes a list of outputs that failed after the

application of the test vectors ti , mi respectively. For example if t0 has a fail response r0 =

{o1, o2, o3}, it means that the test t0 failed at outputs o1, o2 and o3.

 Part of the process of minimization is to identify the fail data that is potentially not

useful for the diagnosis of failures. In other words we need to identify the failing tests that

are redundant. Redundancy can be identified by considering the failing tests to be covering

the failing outputs. In the previous example we can say that the test t0 covers the outputs o1,

o2 and o3. As we are discussing the concept of covering of a set of elements, it is important to

discuss the set cover problem [37]. The mathematical definition of set cover problem is as

follows:

 Given a set of elements {1, 2, 3…, m} (called the universe) and a set S of n sets whose

union equals the universe, the set cover problem is to identify the smallest subset of S whose

union equals the universe. For example, consider the universe U = {1, 2, 3, 4, 5} and the set

of sets S = {{1, 2, 3}, {2, 4}, {3, 4}, {4, 5}}. Clearly the union of S is U. However, we can

cover all of the elements with the following, smaller number of sets: {{1, 2, 3}, {4, 5}}.

 The set-cover problem is proved to be NP-complete [38]. Researchers in the area of

computing have proposed varied exact and heuristic approaches to get a near optimum

solution of the set-cover problem. Some complex approximation algorithms have been

studied in [39, 40]. For most of the approaches, improvements come with a significant

increase in computation cost. The greedy approximation algorithm [37] picks the set S that

15

covers the greatest number of remaining elements that are uncovered at each stage in

polynomial time complexity.

3.3. Motivation behind our approach

 A crucial part of the diagnostic fail data minimization problem is ensuring that the

quality of diagnosis does not deteriorate with the use of reduced fail data. This implies that

when covering fail responses, we need to exercise some constraints for maintaining

diagnosis accuracy and resolution. Using the basic concepts of the greedy set covering

discussed above, we developed a sophisticated fail data minimization algorithm which

strives to achieve failure response coverage, maintain the quality of the diagnosis and also

provide substantial fail data volume reduction. We will now discuss the rationale behind our

approach for solving this problem.

 In this work, we analyzed the fail data collected by the tester and tried to find the subset

of fail data that maintained the diagnosis quality. For this purpose, it is important to evaluate

each failing test according to its ability to identify the actual defect locations in the chip. For

example, suppose a test t1 produces failures at the outputs {p, q, r} and a test t2 at outputs {q,

r}. A traditional cover would include t1 in the reduced test set as it covers all the failures in

the universe and drop t2. However, for diagnosis purpose it may be important to include t2 as

it gives the information that the outputs q and r are more susceptible to failure than p.

Dropping t2 from the test set would result in the diagnosis procedure losing out on an

opportunity to give a more accurate list of fault candidates. As our aim is to have no loss in

the accuracy of diagnosis, we need to identify diagnostically relevant information and

include it in the reduced fail data set. From the above example we see that the test t2 gives us

the knowledge that some outputs are more likely to fail than others. As this information may

be important for diagnosis, we may need to include t2 in the reduced fail data.

 Intuitively, if a certain output is observed to fail repeatedly, then it has high probability

of being related to the actual defect in the chip. This information being diagnostically

important, the minimization of fail data should incorporate some means of multiple coverage

of the same failing output as against the concept of single cover. We refer to this multiple

16

coverage as N-cover, N being a variable greater than or equal to 1. The method to determine

a good N value for a given failing output is discussed in detail in Chapter 4.

3.4. Evaluation metrics

 Recent research done in the field of fail data minimization point to the conclusion that

the fail data can be reduced significantly using various reduction techniques [28, 29]. The

logical question that follows is how well this minimized data performs with respect to the

original raw fail data when evaluated on the basis of metrics other than the fail data size. For

a comparative study, we need to define a few evaluation metrics.

 As the purpose of collection of fail data is to diagnose the failures of the ICs, one

measure of performance can be the quality of the diagnosis results. With the removal of

failing tests and failure information, the reduced data set may be weaker than the full-

response fail data in identifying the possible defect locations.

 Diagnosis accuracy is the measure used in this work to measure the diagnosis quality of

the reduced fail data. We first use the original fail data from the tester for diagnosis to obtain

a reference list of fault candidates. We call them golden candidates. This is followed by

using the minimized fail data for diagnosis to get a new fault candidate list, called new

candidates. Higher the intersection of these lists, higher is the diagnosis accuracy. However,

if the set of new candidates misses some of the candidates from the golden candidates, then

the diagnosis accuracy is reduced. A comparison of these two candidate lists is used to

mathematically formulate the definition of diagnosis accuracy as follows:

Diagnosis accuracy =

 Because of the reduction in the amount of information available to the diagnosis

procedure, there is a possibility that the number of new candidates is more than the number

of golden candidates. This happens when the analysis of fail data has many potential

candidates and the diagnosis procedure does not have further information to narrow them

down. This reduces the resolution of the diagnosis results and decreases its effectiveness. We

17

need another measure to keep track of this loss in resolution. Thus, we define the percent

decrease in diagnosis resolution as:

Decrease in diagnosis resolution =

 Besides diagnosis accuracy and the reduction in diagnosis resolution we need another

metric to quantify how much fail data we have reduced. This will give us an idea of the

percentage of data eliminated from the original fail data set. For a given wafer, after the fail

data minimization is performed, the fail-data size reduction is calculated as:

Fail-data size reduction = (

 In addition to these metrics, we need another term to evaluate the increase in the speed

of diagnosis because of the reduction in fail data that the minimization achieves. The

increase in diagnosis speed is defined as:

 Increase in diagnosis speed = (

18

4. THE N-COVER ALGORITHM

In the last chapter we discussed the motivation behind our approach for dealing with the fail

data minimization problem. We also described the concepts involved in the development of

N-cover. In this chapter we will delve deeper into the implementation of the N-cover

algorithm for fail data minimization.

 When we talk about reduction of fail data, a reasonable question is how to decide which

data to throw out. To determine if one test is better than the other in identifying defects, we

need some quality measure. Consider a sample fail data collected by the tester for a failing

die. Suppose a test t1 produces failures at 10 out of 15 observable outputs of the given die.

Another test t2 is found to fail at 8 outputs for the same die. We may assume that the test t1 is

“superior” to test t2 in terms of output coverage as it produces more failing outputs. Of

course the determination of the superiority of one test over the other in this manner is highly

dependent on the set of failing dies used, the number of failing tests being compared and the

type of defects actually present in the die. That being said, the concept of output coverage

will give us a measure to compare between the effectiveness of two tests with respect to the

number of failing outputs being covered by them.

4.1. The value of N

 In this work we propose that the fail data minimization algorithm should include tests

that provide N-cover with respect to all the observed failing outputs. . If an output fails more

often, it should be covered by more number of tests in the fail data, implying higher value of

N. Similarly, if an output fails less often, it should have a lower value of N. Once each output

‘o’ is covered No times, the remaining tests can be eliminated.

 In order to determine how often an output fails we use the term output failure frequency

which is defined as the number of tests that are observed to fail at a particular output once

the tester has completed fail data collection. As the failure frequency of an output tells us

19

how susceptible it is to failure, we need to establish a relationship between the frequency and

the corresponding N value for that output. For this purpose, we conducted extensive

experiments with real fail data from industry fabricated chips. We analyzed the fail data of

various wafers and by trial and error determined a suitable value of N for a given output

failure frequency. The values of N were fixed such that once all the outputs are covered N

times, the elimination of remaining tests would not adversely affect diagnosis accuracy. In

addition we ensured that the N values are flexible, in the sense that N is large enough to

accommodate fail data trends of different chip designs but also small enough to provide

substantial fail data reduction. This evaluation led to the development of a monotonically

increasing relationship between the output failure frequencies and the values of N as shown

in the Figure 4.1.

Figure 4.1 Monotonically increasing relationship between the output failure frequencies

and the absolute N values

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60 70 80 90 100

Output failure frequency (%)

N

20

 For example, if the fail data of a die consists of 100 failing tests and 40 of them were

observed to fail at output a and 90 were observed to fail at output b then the output failure

frequencies of a and b are 40% and 90% respectively. Looking at the graph in Figure 4.1, we

see that for output a, out of 40 failing tests only 12 are enough for the diagnosis procedure to

correctly diagnose the failures in the die. Similarly for output b only 18 failing tests out of 90

suffice for high quality diagnosis.

 In other words, for output a the goal coverage is only 30% (12 out of 40) of the original

coverage and for output b the goal coverage is 20% (18 out of 90). Another interesting

observation is that as the frequencies increase, more fail data can be eliminated while

maintaining the frequency vs. N relationship between all the outputs. So if output b has

higher failure frequency than output a, then the absolute value of N for b would be equal to

or higher than the N value for a but at the same time the percent of goal coverage required

for b would be less than or equal to that required for output a. When represented

mathematically:

If

Then and

Such that and

 The monotonically decreasing relationship between failure frequency and its required

goal coverage (N/freq) can also be represented as shown in Figure 4.2. So if the output a has

frequency 40% then from Figure 4.2, N should be 30% of frequency that is, 0.3*40 = 12.

Similarly, if b has frequency 90% then from Figure 4.2, its N value is found to be 20% of 90,

that is, 18. Once we have the complete fail data collected by the tester, we can obtain the

failure frequencies of all the outputs and determine the corresponding values of N by

referring to the Figures 4.1 or 4.2. The N-cover algorithm will then cover each of the failing

outputs N times and the remaining tests will be eliminated. In the next section we will

discuss the implementation details of the N-cover algorithm.

21

Figure 4.2 Monotonically decreasing relationship between output failure frequencies and

the percentage of required goal coverage

4.2. Implementation of the N-cover algorithm

 In our approach, a test will be selected for inclusion in the reduced fail data only if it

helps in providing N-cover for the failing outputs. The key to the N-cover algorithm is the

relationship between the output failure frequencies and the values of N as described in the

previous section. Our approach for fail data minimization using N-cover algorithm is

presented in the pseudocode in Figure 4.3.

 We start with the original fail data from the tester as an input. This raw fail data consists

of a set of failing test vectors T = {t0, t1… tn}, each test vector covering some outputs from

the set of failing outputs Z = {z0, z1… zm}. After the termination of the algorithm we will

obtain Tred as an output which is the subset of failing test vectors from T that can be used for

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Output failure frequency (%)

N / freq

(%)

22

diagnosis without compromising its quality. The main steps of our approach for fail data

minimization are as follows:

Figure 4.3 Pseudocode for the N-cover algorithm for diagnostic fail data minimization

Step 1: Start running the minimization algorithm

 We first allow the fail data minimization algorithm to run by providing the required

inputs. The algorithm initializes Tred to be empty and analyzes the raw fail data to obtain the

failure frequencies of all the outputs as described in section 4.1. Currently the algorithm uses

complete fail data collected by the tester to extract the output failure frequencies.

input:

 A set of failing tests T

 Each test in T covers some outputs from the set of failing outputs Z

output:

 Tred : A subset of failing tests from T

algorithm FailDataMinimization

begin

Step 1: Tred = {}

 Analyze T to obtain failure frequencies of all outputs

Step 2: Determine N for all outputs using frequency versus N relationship

Step 3: Compute covdiff for all outputs

Step 4: max_out = output with max covdiff

 nextTest = greedily select a test that covers the output max_out

 Tred = Tred U {nextTest}

 T = T – {nextTest}

Step 5: Repeat steps 3 and 4 till covdiff ≤ 0 for all outputs

Step 6: return Tred

end FailDataMinimization

23

Step 2: Determine N values for all outputs

 Once we have obtained the failure frequencies of all outputs, we can use the graphs

shown in figures 4.1 and 4.2 to obtain the corresponding N values for each output. These N

values provide us with the information about the minimum coverage requirement for each of

the failing output.

Step 3: Find the coverage difference for all outputs

 The term coverage difference (covdiff) represents the difference between the goal

coverage and the current actual coverage provided by the tests in Tred for every failing output.

In the first iteration of the algorithm, Tred is empty and so in this case the covdiff will be equal

to the goal coverage. This term tells us about how many more tests are required to provide

the required coverage for a failing output at a given point of time during the algorithm

application.

Step 4: Select the next test to be included depending on maximum covdiff

 After computing the covdiff values for all the failing outputs, the algorithm finds the

output max_out which has the maximum value of covdiff. This is the output which requires

maximum coverage at that stage of the algorithm. The selection of next test depends on the

greedy set covering concept discussed in section 3.2. Once we have obtained max_out, the

algorithm looks for the tests that failed at that output. Out of these tests, the algorithm selects

the test that has the maximum number of failing outputs as compared to other tests that failed

at max_out. This is called greedy covering of the failing output.

Step 5: Continue iterations till covdiff ≤ 0 for all outputs

 After adding a test to Tred, the algorithm recomputes the values of covdiff. It again finds

max_out and greedily selects tests from Tred to cover it. This procedure continues till the

covdiff values for all outputs become less than or equal to zero. covdiff equal to zero implies

that the current coverage provided by the tests in Tred is equal to the goal coverage for that

particular output. A negative covdiff means that the actual coverage for that output was more

24

than the goal coverage. In this case, even though more than required coverage was obtained,

it actually adds to the diagnosis quality.

Step 6: Return Tred and terminate the fail data minimization procedure

 Once the covdiff requirements are met for all the failing outputs, no more tests need to be

added to Tred and the fail data minimization procedure is terminated. The set of failing

vectors Tred gives the final reduced test set that can be used for diagnosis.

4.3. An illustrative example

 In this section we will work through a small but meaningful example that describes each

step of the N-cover algorithm for diagnostic fail data minimization in. A sample fail data is

provided as shown in Table 4.1. For each test in the table, all the outputs at which it is

observed to fail are marked with ‘X’ in their respective columns. Using this information, we

will describe how the N-cover algorithm will compute the reduced set of failing tests.

 According to the pseudocode described in Figure 4.3, the first step of the algorithm is to

initialize Tred to be empty and to extract the failure frequencies of all the outputs from the fail

data. For this example, the failure frequencies of all outputs are shown in the ‘Frequencies’

row of Table 4.2. The second step is to determine the N values for every failing output by

referring to the frequency versus N relationship described in section 4.1. Let us assume that

for this particular example, the N values obtained from the frequencies are as shown in the

‘Required N’ row of Table 4.2.

 The next step involves finding the covdiff values for all outputs. As mentioned before, in

the first iteration, the covdiff values are the same as goal coverage. So the covdiff values are as

shown in the fourth row of Table 4.3. Next the algorithm finds the output with maximum

covdiff. At this stage that output is z1 with covdiff value of 4 (highlighted in orange). So the

algorithm needs to greedily select a test to cover z1.

25

Table 4.1 Sample fail data collected from the tester

 Failing outputs

Failing tests

Table 4.2 Output failure frequencies and their corresponding N values for the sample fail

data of Table 4.1

 Looking at the original fail data, we see that out of all the tests that fail at output

z1, the test t4 has the maximum number of failing outputs. Thus, the algorithm chooses t4

highlighted in orange) and includes it in Tred. After addition of t4, the algorithm

recomputes the values of covdiff with respect to the outputs z0, z1, z4, z5, z6, z7 and z8

covered by t4. For example, as shown in the fifth row of Table 4.3, the covdiff for z0 will go

from 1 to 0, for z1 will change from 4 to 3 and so on.

z0 z1 z2 z3 z4 z5 z6 z7 z8 z9

t0 X X X

t1 X X X X X X

t2 X X

t3 X

t4 X X X X X X X

t5 X X

t6 X X X

t7 X

t8 X X X X

t9 X

Outputs z0 z1 z2 z3 z4 z5 z6 z7 z8 z9

Frequencies 1 8 1 1 4 4 6 2 2 1

Required N 1 4 1 1 3 3 3 2 2 1

26

Table 4.3 Updated values of covdiff after inclusion of every test in Tred

Table 4.4 Tests selected by the N-cover algorithm to be included in the reduced test set

Tred are highlighted

Outputs z0 z1 z2 z3 z4 z5 z6 z7 z8 z9

Frequencies 1 8 1 1 4 4 6 2 2 1

Required N 1 4 1 1 3 3 3 2 2 1

T red = { } 1 4 1 1 3 3 3 2 2 1

T red = {t 4 } 0 3 1 1 2 2 2 1 1 1

cov diff T red = {t 4 , t 1 } 0 2 1 1 1 1 1 0 0 1

T red = {t 4 , t 1, t 8 } 0 1 1 1 0 0 0 0 0 1

T red = {t 4 , t 1 , t 8 , t 0 } 0 0 0 0 0 0 0 0 0 1

T red = {t 4 , t 1 , t 8 , t 0 , t 3 } 0 0 0 0 0 0 0 0 0 0

z0 z1 z2 z3 z4 z5 z6 z7 z8 z9

t0 X X X

t1 X X X X X X

t2 X X

t3 X

t4 X X X X X X X

t5 X X

t6 X X X

t7 X

t8 X X X X

t9 X

27

The algorithm again finds the output with maximum covdiff, that is, z1 (blue). Accordingly,

the next test selected is t1 (blue) which covers z1 greedily. The covdiff is recalculated to the

values shown in the sixth row of Table 4.3. Again, the output z1 is found to have maximum

covdiff of 2 (green). So the algorithm greedily selects test t8 (green) and includes it in Tred. The

covdiff values are calculated again as shown in seventh row of Table 4.3. This time four

outputs have the same covdiff value. Such ties are broken arbitrarily. Let us assume that the

algorithm chooses output z2 (pink) and as a result the next test selected is t0 (pink) as it is the

only test that covers z0. After updating the covdiff values as shown in the eighth row of Table

4.3, we observe that only output z9 (grey) is remaining. And so, the algorithm selects test t3

(grey) as it covers the output z9. Once the covdiff values are updated the algorithm finds that

all the covdiff values are zero and terminates the minimization procedure. Finally, the reduced

test set is Tred = {t0, t1, t3, t4, t8}. The tests t2, t5, t6, t7 and t9 are dropped as they do not

contribute to the N-cover of the failing outputs.

 Our approach described above removed failing tests only when N-cover requirements

for all the failing outputs are satisfied. It is interesting to see how the fail data minimization

proceeds in case of the traditional greedy set cover algorithm. Following the greedy set cover

algorithm defined in section 3.2, it will first select test t4 as it covers maximum number of

failing outputs. Next it will select the test t0 as it is the only test covering outputs z2 and z3.

Now only output z9 needs to be covered and so the algorithm selects test t0. At this stage all

the outputs have been covered at least once and so the procedure terminates. The reduced test

set obtained by traditional greedy cover would be Ttrad = {t0, t3, t4}. So, Ttrad is two tests

smaller that the Tred computed by our approach. However, Ttrad has very limited failure

information and would lead to inaccurate diagnosis results. This experiment showed a drastic

increase in the diagnosis accuracy when our approach was used to compute the reduced fail

data set as compared to the traditional greedy set covering. Thus, even though our approach

achieves slightly less fail data size reduction, it is more likely to retain information about the

tests and their corresponding failures that are more important for accurate diagnosis.

28

 In this chapter we discussed in detail the steps involved in the implementation of N-

cover algorithm. In the next chapter we will discuss the performance of N-cover algorithm

when it is used for minimization of fail data from industry fabricated chips.

29

5. PERFORMANCE ANALYSIS

In this chapter, the correlation between the failures of a chip observed by the tester, the

amount of fail data reduced by the N-cover algorithm and the diagnosis performance

obtained by using this reduced fail data are explored and studied. We will analyze and

discuss the performance of the N-cover algorithm on the basis of the evaluation metrics

defined in Chapter 3.

5.1. Data Set

 The N-cover algorithm was used for the fail data minimization of fabricated chips from

the Intel Corporation. Fail data and diagnosis results for 624 instances of the same chip were

used for the performance analysis of our approach. We tried to incorporate a wide variety of

fail data by using chips manufactured on 11 wafers from four different Intel fabrication labs.

5.2. Experimental results

 For diagnosis purpose we used the industrial POIROT tool [41]. The N-cover algorithm

was implemented as a separate module written in Python [42]. For every failing die in a

wafer, we obtained its fail data in the form of indexed failure responses as explained in

Figure 1.3. First we used this raw fail data for diagnosis and obtained the golden candidates.

Next we used the N-cover algorithm as a preprocessing step between the fail data of the die

and the diagnosis procedure. The N-cover algorithm analyzed the raw data and performed

fail data minimization as described in the previous chapter. Once the minimization is

complete, the reduced fail data was used by the diagnosis tool to obtain the new candidates.

These new candidates were compared with the golden candidates using the evaluation

metrics described in section 3.4. Table 5.1 gives the detailed results of the experiment.

30

Table 5.1 Evaluation metric values for 11 wafers from different fabrication labs. The last row gives the average values of diagnosis

runtime before and after fail data reduction, diagnosis accuracy, decrease in resolution and the fail data size reduction over all the

failing dies in a wafer

Fab Wafer No. of golden new new ∩ Diag. run Diag. run Diag. Decrease in Total data

name no failed cand cand golden time using time using accuracy diag. resolution vol reduction

dies (golden) (new) (int) Before After orig fail red fail int/ |new-golden| 1- (After/

data (sec) data (sec) golden /golden Before)

A 1 51 1072 1077 1034 91175 52839 19393 9202 96% 0% 42%

2 49 510 521 480 78694 51908 16121 7733 94% 2% 34%

3 57 1787 1685 1679 125739 72175 14967 11334 94% 6% 43%

B 4 67 1699 1581 1573 104882 48712 44856 21984 93% 7% 54%

5 54 226 224 198 80090 42398 12042 6801 88% 1% 47%

6 70 756 628 617 217772 100895 37285 11932 82% 17% 54%

7 43 1153 1152 1149 25315 17314 12213 7750 100% 0% 32%

C 8 84 1377 1361 1334 120038 76489 15544 9596 97% 1% 36%

9 50 642 518 516 49376 23843 6053 2681 80% 19% 52%

D 10 30 299 299 289 45943 22503 12510 6397 97% 0% 51%

11 69 1559 1536 1535 97882 72516 21168 19838 98% 1% 26%

212152 115248

19287 10478 93% 5% 43%

Mff size (bytes)

Total

Average

3
0

31

 We used fail data of dies from 11 wafers manufactured in four different fabrication labs

at Intel as shown in Table 5.1. So the performance analysis for our algorithm takes into

account the process variations that may arise while fabricating instances of the same chip in

different manufacturing environments. Table 5.1 gives details about which manufacturing

lab a failing wafer was fabricated in and the number of failing dies in that wafer. The fail

data for each die in a wafer was processed separately to obtain the golden and new

candidates. It is important to note that the data in Table 5.1 gives cumulative values for all

the failing dies in a wafer.

5.2.1. Diagnosis Accuracy

 Table 5.1 gives the number of golden candidates and the number of new candidates

generated by the diagnosis tool. We analyzed these two sets of fault candidates and their

comparison showed how many fault candidates were common in both the lists. If candidates

are dropped by the new candidate list then the diagnosis accuracy reduces. For example, for

the Wafer 1 from Fab A, 1034 candidates were common in the golden and the new candidate

lists. As 1072 golden candidates were generated by diagnosis, the accuracy is calculated as:

Diagnosis accuracy for Wafer 1 from Fab A =

 =

 = 96 %

 From the information about diagnosis accuracy in Table 5.1 we observe that higher the

intersection of golden and new candidates for a wafer, higher is the diagnosis accuracy. The

average diagnosis accuracy for 624 failing dies over 11 wafers was found to be 93%.

5.2.2. Decrease in diagnosis resolution

 The reduction in the diagnosis resolution is caused by extra candidates being generated

or candidates being dropped by the reduced fail data. For example, for Wafer 4 from Fab B,

1699 golden and 1581 new candidates were generated by the diagnosis procedure. So the

32

number of extra candidates is (1699 – 1581) = 118 and the decrease in resolution is

calculated as:

Decrease in diagnosis resolution for Wafer 4 from Fab B =

 =

 = 7 %

 Thus, more the difference between the number of new candidates and golden candidates,

higher is the deterioration in diagnosis resolution. The average decrease in the diagnosis

resolution for 624 failing dies was calculated to be 5%.

5.2.3. Fail data size reduction

 A crucial part of the fail data minimization problem is to have substantial fail data

reduction while maintaining diagnosis accuracy. In order to evaluate the amount of fail data

volume reduced, we observed the size of fail logs before and after the N-cover processing as

shown in Table 5.1. For example, for Wafer 9 from Fab C, the fail data reduction is:

Fail-data size reduction = (

 = (

 = 51%

 Analysis of the results in Table 5.1 shows that in general, if more fail data is eliminated

from the original fail data, the diagnosis accuracy suffers. The reason for this is that with

higher fail data size reduction, the diagnosis procedure may not have enough information to

identify all the fault candidates for the failing dies. On average, for 11 wafers the fail data

reduction was 43% while maintaining the average diagnosis accuracy of 93%.

5.2.4. Increase in diagnosis speed

 The reduction in the amount of fail data needed to identify the defects in the failing dies

helps in speeding up the diagnosis procedure. We analyzed the run time of the diagnosis

33

procedure for both original fail data and the reduced fail data. From Table 5.1 we can see that

the average diagnosis run time for analyzing 11 wafers using original fail data was 19287

seconds and using reduced fail data was 10478 seconds. Thus, the average increase in the

diagnosis speed for 11 wafers was calculated as follows:

Average increase in diagnosis speed

 = (

 = (

 0

 = 46 %

 When we analyzed the results in Table 5.1 with respect to increase in diagnosis speed,

we observed that in general, as the fail data size decreases, the diagnosis procedure becomes

faster. This is intuitive because if the amount of fail data provided to the diagnosis procedure

reduces, the number of test vectors that need to be simulated and analyzed also decreases.

The diagnosis procedure will have a shorter run time and thus, will lead to an increase in its

speed. The average increase in the diagnosis speed over 11 wafers was found to be 46%.

 Figure 5.1 gives a summary of the diagnosis accuracy and the fail data size reduction

results of Table 5.1. The diagnosis accuracy is maintained between 80% and 100% and the

fail data size reduction is as high as 54%.

 Figure 5.2 gives a summary of the diagnosis run time in seconds when original fail data

was used and when reduced fail data was used. We observed that for all 11 wafers the run

time for diagnosis decreased when reduced fail data was used. Thus, the fail data

minimization made the diagnosis procedure faster. The increase in the diagnosis speed

ranged from 6% to 68%.

 This chapter described in detail the experiment that used N-cover algorithm as a

preprocessing step for fail data minimization for industry manufactured chips. On average,

fail data size was reduced by 43% while maintaining an average diagnosis accuracy of 93%.

With this reduced fail data, the diagnosis speed was increased by 46%.

34

Figure 5.1 Summary of diagnosis accuracy and fail data size reduction results for 624

failing dies over 11 wafers

Figure 5.2 Summary of diagnosis run time using original fail data and reduced fail data

for 624 failing dies over 11 wafers

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11

Accuracy

Fail data reduction

0

10000

20000

30000

40000

50000

1 2 3 4 5 6 7 8 9 10 11

Diag run time in
seconds using orig
fail data

Diag run time in
seconds using
reduced fail data

35

6. FUTURE WORK AND CONCLUSION

6.1. Future work

 Our ultimate goal is to eliminate the unnecessary fail data while it is being collected by

the tester. We intend to modify the N-cover algorithm such that in addition to improving

diagnosis performance, it will also help reduce tester data logging time and its storage

requirement. Currently, we are performing the fail data minimization after the tester finishes

collecting the fail data. As the reduction of fail data is performed offline, the tester time is

not affected.

 As discussed in Chapter 4, the N-cover values for the outputs are calculated on the basis

of their failure frequencies. These frequencies are extracted after the tester has finished fail

data collection. The future work will emphasize on dynamically determining the values of N

while the tester is collecting the fail data. For that purpose the algorithm should be able to

analyze the trends in the output failure frequencies and determine N on the fly. At the same

time, the N values need to be maintained small enough to provide substantial fail data

reduction but large enough to be flexible for different chip designs.

 Once the modified N-cover algorithm is applied on the tester, it should dynamically

throw out data both before and after collecting it in the tester buffer. In other words, the

algorithm should remove earlier failing test which is already stored in the buffer if a later test

has a better N coverage. Also, it should avoid adding tests with faulty outputs that are

already covered N times.

 Most importantly, the modified N-cover algorithm should have some notion of

“termination conditions”. This set of conditions would tell the tester to stop collecting fail

data once enough information is available for diagnosis of the failing chip. Specifically,

36

when a chip is tested, for each new failing test, the algorithm will determine if sufficient data

is collected for performing high quality diagnosis using the termination conditions. This will

help in reducing the tester collection time in addition to improving diagnosis speed. In this

way, the modified N-cover algorithm will ensure that for the same test cost more number of

failing chips can be tested and diagnosed without compromising diagnosis accuracy.

6.2. Conclusion

 In this thesis, a lightweight N-cover algorithm has been proposed to approach the

problem of fail data minimization, with a particular focus on maintaining high quality

diagnosis of the failing chip. We presented the challenges associated with the large volume

of fail data collected by the tester for modern ICs. We formally defined the fail data

minimization problem and discussed the motivation behind our approach. Various metrics

were also proposed to evaluate the performance of our algorithm.

 We then introduced the concept of N-cover and described how it can be used to

minimize the amount of fail data required for diagnosis. We presented a new approach to fail

data minimization that attempts to greedily select failing tests with the goal of providing N-

cover for all failing outputs without severely impacting diagnosis performance. The tests that

do not contribute to the N-cover were eliminated. We also described an illustrative example

to explain the nuances of the algorithm implementation.

 Finally we investigated the performance of the N-cover algorithm when it was used for

fail data minimization of wafers manufactured in Intel fabrication labs. Experimental results

showed that our algorithm has a strong tendency to maintain high quality diagnosis while

providing substantial fail data reduction. The N-cover algorithm is independent of diagnostic

information and structural specifications and thus, it can be easily applied for fail data

minimization of different chip designs using any diagnosis tool.

LIST OF REFERENCES

37

LIST OF REFERENCES

[1] L. Xiu, “VLSI Circuit Design Methodology Demystified: A Conceptual Taxonomy”,

Wiley-IEEE Press, 2008.

[2] M. L. Bushnell and V. D. Agrawal, “Essentials of Electronic Testing for Digital,

Memory, and Mixed-Signal VLSI Circuits.” Springer,2000.

[3] R. Chandramouli and S. Pateras, “Testing systems on a chip,” IEEE Spectrum, pp. 42–

47, Nov. 1996

[4] J. Bedsole, R. Raina, A. Crouch and M. S. Abadir, “Very Low Cost Testers:

Opportunities and Challenges,” IEEE Design and Test of Computers, vol. 18, no. 5, pp. 60-

69, 2001.

[5] O. Sinanoglu, E. J. Marinissen, A. Sehgal, J. Fitzgerald and J. Rearick, “Test Data

Volume Comparison: Monolithic vs. Modular SoC Testing,” IEEE Design & Test of

Computers, vol. 26, no. 3, pp. 25-37, 2009.

[6] J. Rajski et al., “Embedded Deterministic Test”, IEEE Trans. Computer-Aided Design,

vol. 23, no 5, May 2004, pp 776-792.

[7] C. Hay, R. Kapur, “DFTMAX Ultra: New technology to address key test challenges”,

Synopsys (White Paper), Sept. 2013.

[8] L.Li and K.Chakrabarty, "Test data compression using dictionaries with fixed-length

indices", Pmc. VTS, 2003.

38

[9] L.Li, K.Chakrsbarty and N.A.Touba, "Test data compression using dictionaries with

selective entries and fixed-length indices", ACM hns. on Design Automation of Electmnic

Systems, pp. 470-490, 2003

[10] P.Gonciari, B.Al-Hashimi and N.Nicolici, "Improving compression ratio, area overhead,

and test application time for system-on-a-chip test data compression/decompression", Proc.

DATE, pp. 604-611, 2002.

[11] B. Koenemann, “LFSR-coded test patterns for scan designs,” in Proc. Eur. Test Conf.,

1991, pp. 237–242.

[12] C.V. Krishna and N. A. Touba, “Reducing test data volume using LFSR reseeding with

seed compression,” in Proc. ITC, 2002, pp. 321–330.

[13] A Chandra and K. Chakrabarty, “Frequency-directed run-length codes with application

to system-on-a-chip test data compression,” in Proc. VLSI Test Symp., 2001, pp. 42–47.

[14] A. Jas, J. Ghosh-Dastidar and N. A. Touba, “Scan Vector Compression/Decompression

Using Statistical Coding,” Proc. VLSI Test Symposium, pp. 114-120, 1999.

[15] I. Bayraktaroglu and A. Orailoglu, “Test Volume and Application Time Reduction

Through Scan Chain Concealment,” Proc. Design Automation Conference, pp.151-155, June

2001.

[16] G. Mrugalski, N. Mukherjee, J. Rajski, D. Czysz, and J. Tyszer,, “Compression based

on deterministic vector clustering of incompatible test cubes”, In Proc. IEEE. International

Test Conference (ITC), Nov. 2009.

[17] P. Goel and B. C. Rosales, “PODEM-X: An automatic test generation system for VLSI

logic structures,” in Proc. 18th Design Automation Conf., pp. 260-268, 1981.

[18] I. Pomeranz, L. Reddy, and S.M. Reddy,“Compactest: A method to generate compact

test sets for combinational circuits”, in Proc.of the Int. Test Conf, pp. 194-203, October 1991

39

[19] I. Hamzaoglu, J. H. Patel, “Test set compaction algorithms for combinational circuits”,

in Proc. Int. Conf. Computer-Aided Design, Nov. 1998, pp. 283-289

[20] M. Abramovici et al., Digital Systems Testing and Testable Design.Rockville, MD:

Computer Science, 1990.

[21] R. K. Roy, T. M. Niermann, J. H. Patel, J. A. Abraham and R. A. Saleh, "Compaction of

ATPG-Generated Test Sequences for Sequential Circuits", in Proc. Intl. Conf. on Computer-

Aided Design, Nov. 1988, pp. 382-385.

[22] I. Pomeranz, S.M. Reddy, “On Static Compaction of Test Sequences for Synchronous

Sequential Circuits,” Proc. ACM Design Automation Conf, 1996.

[23] P. Goel and B. C. Rosales, “Test generation and dynamic compaction of tests,” Digest

of Papers 1979 Int. Test Conf., pp. 189-192, Oct. 1979.

[24] I. Pomeranz, S.M. Reddy, “Dynamic Test Compaction for Synchronous Sequential

Circuits using Static Compaction Techniques,” Proc. IEEE Fault Tolerant Computing Symp.,

1996, pp. 53-61

[25] J. Rajski, J. Tyszer, C. Wang, W.-T. Cheng and S.M. Reddy, “Finite memory Test

Response Compactors for Embedded Test Applications”, IEEE TCAD, April 2005, pp. 622-

634.

[26] P. Wohl, J. A. Waicukauski and T. W. Williams, “Design of Compactors for Signature-

Analyzers in Built-in Self-test,” in Proc. ITC, 2001, pp 54-63

[27] K. Saluja and M. Karpovsky “Testing Computer Hardware Through Data Compression

in Space and Time”, Proc. ITC 1983, pp. 83-88.

[28] H. Wang, O. Poku, X. Yu, S Liu, “Test-data volume optimization for diagnosis,” Proc.

Design Automation Conference, 2012, pp. 567-572

40

[29] C. Bolchini, E. Quintarelli, F. Salice, P. Garza, “A Data Mining Approach to

Incremental Adaptive Functional Diagnosis”, IEEE Int. Symp. on Defect and Fault

Tolerance in VLSI and Nanotechnology Systems, pp. 13-18, 2013.

[30] B. Chess and T. Larrabee, "Creating Small Fault Dictionaries", IEEE Transactions on

Computer-Aided Design of Integrated Circuits, Vol. 18, No.3, 346 – 356, 1999.

[31] I. Pomeranz and S. M. Reddy, "On the Generation of Small Dictionaries for Fault

Location", In Proceedings of International Conference on Computer-Aided Design, pp. 272-

279, 1992.

[32] C. Liu, W.-T. Cheng, H. Tang, S.M. Reddy, W. Zou, and M. Sharma, “Hyperactive

Faults Dictionary to Increase Diagnosis Throughput,” In Proceedings of Asian Test

Symposium, pp.173, 2008

[33] S. Wang and W. Wei, “Machine Learning-based Volume Diagnosis,” In Proceedings of

Design, Automation & Test in Europe Conference & Exhibition, pp.902, 2009

[34] A. Leininger, P. Muhmenthaler, W.-T. Cheng, N. Tamarapalli, W. Yang, and H. Tsai,

“Compression Mode Diagnosis Enables High Volume Monitoring Diagnosis Flow,” In

Proceedings of International Test Conference, pp.7.3, 2005

[35] X. Fan, H. Tang, S. M. Reddy, W. Cheng, B. Benware, “On Using Design Partitioning

To Reduce Diagnosis Memory Footprint”, Asian Test Symposium, 2011, pp. 219-225.

[36] H. Li, D. Xu, Y. Han, K.-T. Cheng, and X. Li, “nGFSIM: A GPU-based Fault Simulator

For 1-to-n Detection And Its Appications”, In Proceedings of International Test Conference,

pp.1, 2010

[37] T. Cormen, C. Leiserson, R. Rivest, C Stein, “Introduction to algorithms”, Third

Edition, The MIT Press, 2009.

[38] M. Garey, D. Johnson, “Computers and Intractability: A Guide to the Theory of NP-

Completeness”, W. H. Freeman, First Edition, 1979

41

[39] J. Beasely and P. C. Chu, “A genetic algorithm for the set covering problem”, European

Journal of Operation Research, 1994, pp. 392-404.

[40] S. Ceria, P. Nobili, A. Sassano, "A Lagrangian based heuristic for large scale Set-

Covering problems". Mathematical Programming Ser B, Vol. 81 n.2 (1998) 215-228.

[41] S. Venkataraman, S. B. Drummonds, “POIROT: a logic fault diagnosis tool and its

applications”, Proc. Int. Test Conf, pp. 253-262, 2000.

[42] M. Lutz, “Learning Python”, O'Reilly Media; Fifth Edition, 2013.

	Purdue University
	Purdue e-Pubs
	Summer 2014

	A Lightweight N-Cover Algorithm For Diagnostic Fail Data Minimization
	Shraddha Ghanshyam Bodhe
	Recommended Citation

