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ABSTRACT

Bashir, Muhammad M.S.E.C.E, Purdue University, August 2014. Optical Position
Sensing in Free Space Optical Communication. Major Professor: Mark R. Bell.

In this thesis the performance of three estimators (center of gravity, template

matching and maximum likelihood (MLE)) to estimate the center of the beam on a

photoemissive receiver array in a Free Space Optics (FSO) system is compared in terms

of mean square error. Simulations have been conducted in Matlab by generating a

two dimensional nonhomogeneous Poisson process and mean square error is computed

for three estimators. The cases of continuous and discrete arrays are also considered

for various levels of signal-to-noise ratio. Simulations have shown that the MLE gives

the least mean squared error and especially performs significantly better than other

estimators under poor SNR conditions.
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1. INTRODUCTION

1.1 Free Space Optics

Free Space Optics (FSO) is a communication technology that involves transmission

of light (both infrared and visible) through free space or terrestrial atmosphere in

order to transmit data in the form of point-to-point or point-to-multi-point links.

Thus call it the “wireless” or “fiberless” analog of a typical Fiber Optics system

with all its advantages of higher bandwidth and none of the drawbacks of difficult

installation/maintenance. The chief advantage of FSO system lies in its ability to

transfer high volumes of data on an increasingly large bandwidth which is almost

impossible to achieve on conventional radio frequency networks.

The primary application of FSO, in the framework of this thesis, is in the realm of

Deep Space Communications. This involves interacting with a satellite from earth

once its launched in a space mission. Then the only means of malfunction diagnosis

and its solution is possible through a communication network since a large number of

such missions never return to earth. Without a reliable communication network it

would be hard to launch a successful space mission.

Another equally important advantage is the ease of installation/deployment of an

FSO system in very short periods of time e.g. in case of extension or continuation

of a fiber optic link across a stretch of river or harsh terrain where it might not be

feasible to lay cables etc. Similarly this advantage is of primary importance in disaster

recovery situations where time delays are not acceptable to set up communication

links for relief administering infrastructure.

Further the deployment of FSO system is cheaper as opposed to fiber driven

technologies as no additional expenses are incurred to acquire fiber optic cables,

their laborious laying and installation. Other advantages of FSO communication
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are security from intruders, immunity from electromagnetic interference by nearby

networks, virtual non-existence of frequency allocation and planning issues, smaller

power consumption by FSO based terminals and relatively smaller dimensions of the

same.

Last but not the least it is the solution to last mile problem (insufficient bandwidth

for end user arising from lack of higher bandwidth access networks) which has plagued

many consumers with low data speeds. With the deployment of FSO the concept of

fiber-to-home has been realized. In a typical scenario scientists are promising FSO

deployments up to two to three miles in length in near future with data rates of

the order of hundreds of gigabits per second or higher using Wavelength Division

Multiplexing (WDM).

1.1.1 Applications

The applications of FSO systems are manifold. They have been chiefly deployed

by military and are finding niche applications in services and commercial sectors

as well. Depending on the needs of the users and dedicated application scenarios

they can be deployed on fixed or mobile platforms, can be used for interstellar

communications, ship to ship or ship to ground communications, ground to spacecraft,

spacecraft to spacecraft and high altitude platforms (HAP), and between elements of

satellite constellations. In addition to stand-alone usage of FSO for communication

for communication between airborne terminals, satellites and terrestrial links, it is

used as a complementary communication technology to aid and reinforce existing

RF or microwave based networks. The typical scenario could be back-haul traffic or

conventional networks where FSO could find diverse applications for high speed data

transfer. Thus it is very likely that these hybrid FSO-RF and FSO-microwave networks

would gain popularity in an age where users demand more and more bandwidth for

advanced multimedia applications. Last but not the least FSO systems are a very
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important factor in NASA’s deep space communication. A good description of FSO

applications is given in [1].

1.2 Thesis Motivation

FSO systems require some kind of optical beam tracking/sensing mechanism whereby

the position of the beam center can be tracked in real time. These systems transmit

highly directional and narrow beams of light for data communication. A typical

transmitter transmits one ore more light beams of diameter 5-8 cm which flares out to

1-5 m within a distance of 1 kilometer. Moreover the problem to receive this narrow

beam becomes more challenging due to the receiver’s limited Field of View (FOV). It

is not uncommon for an optical transmitter-receiver system to lose alignment for the

following reasons:

1. Relative motion between the transmitter and receiver as in satellite communica-

tions.

2. Atmospheric effects e.g. turbulence might cause the beam to wander away

temporarily.

3. Mechanical vibrations.

4. Thermal expansion and wind sways (building sways where the transmitter or

receivers are mounted also referred to “base motion”).

In addition the angular motion (azimuth and elevation) causes more degradation in

optical communication than linear motion between transmitter and receiver. Base

motion can be further subdivided into the following three categories:

1. Low Frequency: This type of relative motion between transmitter and receiver

has periods from minutes to months and is caused by diurnal or seasonal

temperature variations. The greater the height of the building or rooftop the

more pronounced would be the effect.
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2. Moderate Frequency: This type is caused by wind and again is more pro-

nounced in tall buildings. Its periods lasts within seconds.

3. High Frequency: This type of motion has period less than a second and

is caused by the mechanical vibrations from large machines installed in the

building.

In this thesis the performance of three estimators in accurately tracking the beam

position is formulated. Incident beam of light is assumed to have a Gaussian shape

and the photo emissions on detector array are assumed to follow a non-homogeneous

Poisson process with a Gaussian intensity function. These estimators are:

1. Center of Gravity or Centroid: Arithmetic average of the position of pho-

tons.

2. Template Matching: Convolution of Intensity function with Dirac Delta

functions present at position of the photons and finding the maximum of the

resulting function gives the template matching estimate.

3. Maximum Likelihood: Computing the maximum of log likelihood function

given the position of photons gives maximum likelihood estimate.

The criterion to judge the performance of these estimators is the mean square

error. The above mentioned list is formed in order of complexity of these estimators:

centroid has the least computational complexity followed by template matching and

the maximum likelihood is the most computationally intensive. As shown in later

chapters the results of the simulation indicate that the maximum likelihood estimate

has the smallest mean square error of all the three estimators.

In the next chapter the simulation of non-homogeneous Poisson process modeling

the intensity function of the beam and photo emissions on detector array is discussed.
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2. GENERATION OF TWO DIMENSIONAL

NONHOMOGENEOUS POISSON PROCESS

2.1 Introduction

The following two factors are noted about a two dimensional non-homogeneous

Poisson Process with rate function λ(x, y) > 0 on C ⊂ R2

(a) If {(Xi, Yi)} are events corresponding to the 2-D process, then the abscissa

Xi correspond to a 1-D non-homogeneous Poisson Process with rate function

λx(x) =
∫
C(x)

λ(x, y) dy, where C(x) = {y : (x, y) ∈ C}

(b) If (x, y) denotes the location of an event from the 2-D process, the conditional

random variable Y |X = x has the probability density function λ(x, y)/λx(x).

Thus the algorithm for generating points for a 2-D non-homogeneous Poisson

Process is as follows:

(a) Initialize i = 0.

(b) Generate xi according to the 1-D non-homogeneous Poisson Process with rate

function λx(x).

(c) Generate yi according to probability density function λ(xi, yi)/λx(xi).

(d) Deliver (xi, yi).

(e) Set i = i+ 1 and go to step 2.

To carry out step (b), we generate a 1-D non-homogeneous Poisson Process with

rate λx(x) as follows in the following section.
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2.2 Generation of Non-homogeneous Poisson Process with rate λx(x)

(a) Initialize x = a, n = 0, λ = max
x∈[a,b]

λx(x);

(b) Set x = x− ln (Uni(0, 1))/λ, if x > b stop;

(c) If Uni(0, 1) ≤ λx(x)/λ, set n = n+ 1, Sn = x;

(d) Go to step (b)

Output n is the number of events in (a, b) and event times are S1, . . . , Sn.

In our case

λ(x, y) = I0e
−(x−α)2−(y−β)2

2ρ2 , (2.1)

λx(x) =

∫
C(x)

λ(x, y) dy

=

∫ b

a

I0e
−(x−α)2

2ρ2 e
−(y−β)2

2ρ2 dy

= I0e
−(x−α)2

2ρ2

∫ b

a

I0e
−(y−β)2

2ρ2 dy, (2.2)

and

fy(y) =
λ(xi, yi)

λx(xi)

=
I0e

−(x−α)2

2ρ2 e
−(y−β)2

2ρ2

I0e
−(x−α)2

2ρ2
∫ b

a
I0e

−(y−β)2
2ρ2 dy

=
e
− (y−β)2

2ρ2∫ b

a
e
− (y−β)2

2ρ2 dy

= Me
− (y−β)2

2ρ2 , (2.3)

where M =

(∫ b

a
e
− (y−β)2

2ρ2 dy

)−1
.

So we first generate Poisson points with intensity function λx(x) in x-direction and

then sample the same number of points from fy(y) independent of λx(x) along the

y-direction.
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2.2.1 Generation of sample points from fy(x)

Lets assume that we want to simulate a value W from a given density function fy(y)

which satisfies the following conditions:

1. fy(x) > 0 only for x in the interval a ≤ x ≤ b.

2. fy(x) ≤M for some M .

We use Rejection Method for simulation as follows:

(a) Generate a Uniform random variable on [a, b]; call it X.

(b) Independently generate a Uniform value on [0,M ]; call it Y .

(c)

 Accept the point (X, Y ) if Y ≤ fy(x); the simulated value then is W = X, or,

Reject the point (X, Y ) if Y > fy(X)

(d) Repeat the first three steps again until the required number of points are

obtained.

The above procedure to generate points from an arbitrary distribution will work

correctly as explained below:

Probabilistic background

1. The density of X is 1/(b− a) for a ≤ x ≤ b.

2. The density of Y is 1/M for 0 ≤ y ≤M .

3. The joint density of X and Y is f(x, y) = 1/M(b− a) · 1[a,b](x) · 1[0,M ](y).
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4. Note that

P (c ≤ W ≤ d) = P (c ≤ X ≤ d|Y ≤ fy(x))

=
P (c ≤ X ≤ d, Y ≤ fy(x))

P (Y ≤ fy(x))

=

∫ d

c

∫ fy(x)

0
1

M(b−a) dy dx∫ b

a

∫ fy(x)

0
1

M(b−a) dy dx

=

∫ d

c

∫ fy(x)

0
dy dx∫ b

a

∫ fy(x)

0
dy dx

=

∫ d

c
fy(x) dx∫ b

a
fy(x) dx

=

∫ d

c

fy(x) dx. (2.4)

Hence this shows that sample W is generated from the probability density function

fy(x).

2.3 Alternative way to generate nonhomogeneous Poisson Process

For generating a non-homogeneous Poisson process in a bounded region C, a simple

algorithm is based on the intuitive idea that the position (X, Y ) of an event given that

the event has occurred is distributed according to the following probability density

function

f(x, y) =
λ(x, y)∫∫

C

λ(x, y) dx dy
, (x, y) ∈ C. (2.5)

It is also noted that the number of Poisson events in C are distributed with mean∫∫
C

λ(x, y) dx dy and thus the following conceptually simpler algorithm results as

follows for simulation of the process.

1. Generate n ∼ Poisson (
∫∫
C

λ(x, y) dx dy).

2. If n = 0, then exit. Otherwise independently generate n events (xi, yi), i =

1, . . . , n in C according to density function f(x, y) given in (2.5).
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3. Deliver (xi, yi), i = 1, . . . , n.

2.3.1 Derivation of f(x, y)

We know that for a Gaussian beam

λ(x, y) = I0 exp

{
−(x− α)2 − (y − β)2

2ρ2

}
. (2.6)

Substituting this value of λ in (2.6), we get

f(x, y) =
λ(x, y)∫ b

a

∫ b

a
λ(x, y) dx dy

=
λ(x, y)

λ0
, (2.7)

where the region of interest C is bounded by values a and b in each direction of 2-D

plane and λ0 =
∫ b

a

∫ b

a
λ(x, y) dx dy.

Substituting the value of λ0 in (2.7) gives

f(x, y) =
I0e

−(x−α)2

2ρ2 e
−(y−β)2

2ρ2

λ0
· 1[a,b](x) · 1[a,b](y)

=

√
I0e

−(x−α)2

2ρ2

√
I0
∫ b

a
e

−(x−α)2
2ρ2 dx

· 1[a,b](x)

√
I0e

−(y−β)2

2ρ2

√
I0
∫ b

a
e

−(y−β)2
2ρ2 dy

· 1[a,b](y)

= fx(x) · fy(y), (2.8)

where

fx(x) =

√
I0e

−(x−α)2

2ρ2

√
I0
∫ b

a
e

−(x−α)2
2ρ2 dx

· 1[a,b](x)

and

fy(y) =

√
I0e

−(y−β)2

2ρ2

√
I0
∫ b

a
e

−(y−β)2
2ρ2 dy

· 1[a,b](y).

To simulate this process we simply generate n points, each from the density

functions fx(x) and fy(y) independently of each other according to the procedure laid

out in section 2.2.1.
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3. IMPLEMENTATION OF CENTROID, TEMPLATE

MATCHING AND MAXIMUM LIKELIHOOD

ESTIMATION METHODS

3.1 Introduction

As discussed earlier an optical communication system has a requirement for active

tracking of the beam position in order to ensure that the receiver looks as directly

as possible at the transmitter. This mechanism requires some kind of a sensor that

could detect or estimate the position of the beam arriving at the receiver photocell

array. The sensor output then is used as a feedback signal to control the positions of

telescopes and mirrors of the receiver so that the receiver-transmitter alignment is

maintained even thought the transmitter might be in relative motion to the receiver.

A simple device to sense the light beam position could be a photo detector having a

photo emissive surface that has a number of built in cells (or cell array).

Photo electron emissions are monitored in different cells of the cell array during a

time interval [0, T ) and that information is used to sense the position of the incoming

beam. It is assumed that the intensity of the light beam has a two dimensional

circularly symmetric Gaussian shape, given by the following equation:

I(a, b : α, β) = I0 exp

(
− 1

2ρ2
[(a− α)2 + (b− β)2]

)
(3.1)

where α and β are beam position parameters(coordinates of the center of the beam)

which are unknown and desired. I0 is the peak of the intensity function and ρ is

beam width parameter, and these values are known. It is thus assumed that photo-

emissions on the surface of cell array are modeled by a non-homogeneous Poisson

process governed by intensity function given in (3.1).
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In this chapter the implementation of Center of Gravity, Template Matching and

Maximum Likelihood estimation methods for estimating the optical beam’s position

would be discussed.

3.2 Center of Gravity

The Center of Gravity estimate of the beam position is given by

(α̂, β̂) =

 1

N(T )

N(T )∑
i=1

ai,
1

N(T )

N(T )∑
i=1

bi

 (3.2)

where N(T ) is the number of photo-emissions occurring in [0, T ) and (ai, bi) for

i = 1, . . . , N(T ) are their positions. Thus the estimated position is just the arithmetic

average of the positions of observed photo-events (or the centroid if each point is

assumed to possess unit mass).

3.3 Template Matching

The Template Matching estimate of the beam position is given by the following

mathematical expression:

T (α, β) =

N(T )∑
i=1

I(ai, bi : α, β) (3.3)

where I(ai, bi : α, β) is the intensity function given in equation (3.1), (ai, bii) are the

observed data points and N(T ) is the data count in time interval [0, T ). The Template

Matching estimate is given by those values of α and β that maximize equation (3.3).

In other words this method comprises finding the convolution of the intensity function

with impulse functions present at the location of data points over the region of interest

in 2-D plane and computing that value of α and β that maximizes the convolution

sum.
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3.4 Maximum Likelihood Estimation

The log likelihood function for beam position estimate is derived in [2]. The final

expression is as follows:

L(α, β) =

∫ 1

−1

∫ 1

−1
I(a, b : α, β) da db+

N(T )∑
i=1

ln I(ai, bi : α, β). (3.4)

Here N(T ), I(a, b : α, β), and (ai, bi) are defined as before for Template Matching

estimate. The Maximum Likelihood estimate of the beam position is given by α and

β that maximize equation (3.4).

3.5 Computing the maximum of template matching and maximum like-

lihood methods

One can use various methods to find the maximum of a function over a given

bounded region. One can resort to iterative maximization procedures, for example,

Newton-Raphson method, the scoring approach or expectation maximization algorithm.

The advantage these methods offer are less computation complexity, however, it may

be that these methods converge to a local maximum instead of a global maximum.

There is a good chance that these methods would reach the global maximum if the

initial guess is close to the true maximum.

If computational complexity is not an issue then the ‘safest’ method is to use grid

search algorithms. One class of such algorithms is the Genetic Algorithms which

converge to the global maximum within a finite number of iterations, especially for

two dimensional grid searches. These algorithms are discussed in the next chapter.
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4. GENETIC ALGORITHMS

4.1 Introduction

A Genetic Algorithm is a randomized, derivative free, population-based search

technique that has its roots in principles of genetics used to find the global maximum

of a function over the region of interest. One important distinction between a genetic

algorithm and other search techniques is that the genetic algorithm searches for the

maximum from a set of points rather than a single point at each iteration. Only a brief

explanation of genetic algorithms is discussed in this chapter. For details, interested

readers should refer to [3].

4.2 Basic Description

Suppose we wish to solve the following optimization problem

maximize f(x)

subject to x ∈ Ω

The underlying idea of genetic algorithms is as follows: We begin with an initial set

of points denoted by P (0) which we call initial population. Objective function is then

evaluated on this initial population, and, based on this evaluation, a new generation of

points P (1) is created. The creation of P (1) involves certain operations which we call

crossover and mutation. The new populations (or generations) are generated until a

stopping criterion is achieved.
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4.3 Real-Number Genetic Algorithms

We have used Real-number genetic algorithm to find the global maximum of the

objective function which operates directly on points (also called chromosomes) in

feasible set Ω (2-D array in our case). Each point has a value associated it with called

fitness, which is the value of the objective function at that point.

The next stage entails initializing the first population P (0). This is normally

done by random selection of points from Ω. After the initial population is formed

the operations of crossover and mutation are applied. During each iteration k of the

process the fitness f(x(k)) of each point x(k) is evaluated. After the fitness of entire

population P (k) is evaluated we form new population P (k + 1).

4.4 Selection and Evolution

In the first stage of forming P (k + 1) we apply selection, where we form a set M(k)

with same number of elements (population size N) as P (k). Set M(k) is called the

mating pool, and is formed from P (k) using a random procedure as follows: Each

point x(k) in M(k) is equal to x(k) in P (k) with probability

f(x(k))
F (k)

,

where

F (k) =
∑
f(x

(k)
i )

and the sum is taken over whole of P (k). In other words, the greater the fitness of a

chromosome, the larger the probability of it making it to the mating pool.

The second stage is called evolution (it involves both crossover and mutation). In

evolution, crossover is operated upon points in mating pool according to a crossover

probability to create offspring chromosomes from parents. For crossover we have

used random convex combination of the parents to produce offspring because Ω is a

convex set and the resulting offspring is also within Ω. That offspring then can replace
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one of the parents. For mutation we replace, with mutation probability, the chosen

chromosome with a random convex combination of the chromosome with a random

point in feasible set. For further details about crossover and mutation, the reader is

again referred to chapter 8 of [3].

After applying crossover and mutation operations we obtain the new population

P (k + 1).

4.5 Summary of Genetic Algorithm, Elitism and stopping criterion

1. Set k := 0. Generate an initial population P (0) at random.

2. Evaluate P (k).

3. If the stopping criterion is satisfied, then stop.

4. Choose M(k) from P (k).

5. Apply Crossover and Mutation on M(k) to obtain P (k + 1).

6. Set k := k + 1 and go to step 2.

4.5.1 Elitism

Also in genetic algorithm we keep track of the ‘best’ two chromosomes: the chro-

mosomes having the highest fitness and second highest fitness. These two best

chromosomes are then passed onto the next population of chromosomes, a practice

known as elitism. Intuitively also it makes sense to never lose the chromosomes with

best fitness at any stage of the algorithm if a global maximum is desired.

4.5.2 Stopping criterion

A reasonable stopping criterion could be to stop the algorithm after a preset number

of iterations is achieved. Another criterion could be to stop after the difference in
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the fitness of the ‘elitist’ chromosomes stays within some specified small limit from

iteration to iteration.
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5. SIMULATION

5.1 Introduction

In this chapter the details of simulation for computing mean square error (MSE)

for each of the three estimators, Center of Gravity, Template Matching and Maximum

Likelihood are discussed.

5.2 Details of Simulation

Matlab has been used to carry out the simulation of two dimensional Optical Position

Sensing process. Non-homogeneous Poisson is generated on Matlab as discussed in

detail in chapter 2. The values of α and β are generated according to the following

two rules:

1. Non random parameters: An arbitrary value of the center of the beam is

chosen (α, β) to generate a non-homogeneous Poisson process, and that value is

kept constant for the given number of iterations.

2. Random parameters: A random value for center of beam is chosen from a

two dimensional Gaussian distribution with mean zero and given variance for

every iteration of the simulation.

The number of iterations is selected to be 200. For each iteration a non-homogeneous

Poisson process is generated with given values of I0, width parameter ρ and center of

beam (α, β) on an array of size two-by-two, and the squared error is calculated for

each of the three estimators. At the end of 200 iterations the mean is computed for

all three squared errors.
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5.3 Factors affecting Position Sensing

As previously stated the optical beam (signal) from the transmitter generates

photons on the photoemissive array (the receiver) to communicate data in an FSO

system. The beam centers position sensing problem involves using the observations

(points or photon positions generated using non-homogeneous Poisson process) to

estimate the center in order to track the position of the beam. This position sensing

problem gets more complicated due to the following two additional factors.

(a) Noise process: Background radiation and dark current

(b) Quantization of photoemissive array

We discuss these two factors briefly as follows:

5.3.1 Noise event process

Noise causes significant degradation in the overall performance for each of the

three estimators we discussed. Sources giving rise to noise photons in the array are

background radiation and dark current. Background radiation comprises light from

sky, sun, stars and other light sources that pass through the optical system; as a result

of which randomly dispersed photo-emissions occur within the array. Field stops can

be used in the receiver to minimize the effect of background radiation but the diffuse

light still causes photo-conversions with a Poisson intensity function which is modeled

as uniform or constant throughout the dimensions of detector array.

Dark current is the zero input response of receiver. Even in the absence of signal

there would still be photo-emissions in the detector array due to thermal effect. These

photons are modeled as being generated by an independent Poisson intensity function

which is again assumed to be uniform like the background radiation. Therefore the

resultant noise process is modeled as one Poisson process with uniform intensity

function λn in which the two noise factors are lumped together.
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5.3.2 Quantization of detector array

We know that the square detector consists of cells of array which convert light

energy into electrical energy. Normally the arrays used are either 4-by-4 (16 cells )

or 8-by-8 (64 cells), and the position of a given photon is given by the position of

the photocell in which it occurs. Thus the positions of photons are not exact but are

rounded to center of the given cell. This quantization effect adds degradation to the

position sensing performance as the original positions of the photons are not used as

observations in the parameter estimation. If we let the limit of cells or partitions go

to infinity the resulting array would become continuous which would give the exact

value of photon positions. The performance of a continuous versus the quantized array

would be analyzed. Intuitively the higher the number of partitions, the better would

be the performance of estimators.

5.4 Log-likelihood function

5.4.1 Unknown or non random parameter

The log likelihood equation for the unknown parameter is given as

L(α, β) =

∫ 1

−1

∫ 1

−1
I(a, b : α, β) da db+

N(T )∑
i=1

ln (I(ai, bi : α, β)). (5.1)

The value that maximizes (5.1) is the maximum likelihood estimate of the beam

center.

It can be easily verified that when the width parameter ρ and range of possible

position becomes smaller relative to the dimensions of the array, the maximum

likelihood estimate converges to the center of gravity estimate as given by [2] since

the first term in (5.1) would become constant relative to α and β and hence can be

ignored. Taking the derivative of second term with respect to α and β and setting

that equal to zero yields
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(α̂ML, β̂ML) =

 1

N(T )

N(T )∑
i=1

ai,
1

N(T )

N(T )∑
i=1

bi

 , (5.2)

which is the center of gravity estimate.

5.4.2 Random parameter

The a priori distribution of the parameter x =
[
α β

]T
is assumed to be circularly

symmetric two dimensional Gaussian distribution given as follows:

p(x) =
1

2πσ2
exp (xTC−1x), (5.3)

where

C =

σ2 0

0 σ2

 ,
and σ2 is the variance of distribution.

The log-likelihood equation for random parameter case is

l(α, β) =

∫ 1

−1

∫ 1

−1
I(a, b : α, β) da db+

N(T )∑
i=1

ln (I(ai, bi : α, β)) + ln p(α, β). (5.4)

The values of (α, β) that maximize (5.4) is the maximum a posteriori (MAP)

estimate of the beam’s center. According to [4] (5.4) can be reduced to the following

estimate for the case of zero noise in the system λn = 0

x̂ =

N(T )∑
i=1

ri

N(T ) + (ρ/σ)2
, (5.5)

where ri = (ai, bi). (5.5) reduces to center of gravity estimate when (ρ/σ)→ 0.
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5.5 Simulation details

In this section general details regarding simulation would be laid out. The whole

simulation can be broken down into two major steps:

1. Simulation of two dimensional non-homogeneous Poisson process: Photo-

emissions for both the signal and noise are modeled as being generated by

independent non-homogeneous Poisson processes. For signal photons equation

(3.1) is used as the intensity function and for noise emissions a constant value

of λn is used. The values of α, β, peak intensity I0 and width parameter ρ are

given.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 5.1. A realization of 2-D non-homogeneous Poisson process with
parameters I0 = 130, ρ = 0.2, (α, β) = (0.4, 0.4).
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Fig. 5.2. Log likelihood function for the realization of Poisson process
showing in figure 5.1.

Fig. 5.3. Contour plot for the Log likelihood of Poisson process shown in
figure 5.2.

Figures 5.1, 5.2, and 5.3 shows a typical realization of the non-homogeneous

Poisson process for a given set of parameter values and its corresponding log

likelihood function.
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2. Estimators: Equations (3.2), (3.3) and (3.4) are implemented for center of

gravity, template matching and maximum likelihood estimates by using the

photon positions on 2-D surface generated in step 1. Then the square error for

each of the three estimators is calculated.

3. Iteration: The number of iterations are 200. After the end of two hundredth

iteration mean of square error is computed.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 5.4. Realization of Poisson process with dark current photoemissions.
I0 = 130, ρ = 0.2, (α, β) = (0.4, 0.4), λn = 30 .
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Fig. 5.5. Log likelihood of Poisson process showing in figure 5.4.

Fig. 5.6. Contour plot for the Log likelihood of Poisson process showing in
figure 5.5.

4. Noise: We increase the noise parameter λn by a fixed value and repeat steps

1, 2 and 3 again until we have data for the whole range of λn. Figures 5.4, 5.5

and 5.6 depict a typical realization of signal and noise photons generated by the

Poisson process along with the log likelihood function.
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5. Plots: Plot the mean squared error versus λn.

5.5.1 Parameter values for simulation

Throughout the simulation the values of ρ and σ are chosen small enough relative

to array dimensions to avoid any “edge effects”. Edge effects occur when the beam

of light impinging on the array is too wide and a portion of the beam “falls off” the

edge of the array. In that case it is not possible to evaluate the performance of the

estimators as edge effects result in adding bias to the estimator values. Throughout

the simulation the value of ρ is kept within the range [0.05, 0.2] and σ within [0.1, 0.3].

5.5.1.1 Values of α, β

To generate step 1 of simulation we consider both cases of parameter estimation:

random as well as nonrandom parameters. To consider the random parameter first

we choose the values of (α, β) from a two dimensional Gaussian distribution for each

iteration. For nonrandom or unknown parameter case we assign arbitrary values to

both α and β and keep those values same for every run of 200 iterations.

5.5.1.2 Values of I0, ρ and λn

Values of peak intensity I0 is chosen within the range of 100 and 2000 and beam

width parameter ρ between 0.05 to 0.2 depending upon what value of signal power is

desired. Simulations are done for different values of I0 and ρ to assess the performance

of estimators for those parameter values. In this simulation λn is varied from 0.5

to 30.5 in steps of 5. For typical FSO systems its not uncommon to see on average

about four to six signal photons and a similar number of noise photons (distributed

uniformly over the array). That scenario is also simulated by using I0 equal to 100

and ρ to 0.1 which gives about six signal photons on average for every iteration. Since
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the size of array is 2-by-2, using noise parameter λn in the range [0.5, 3] gives the

number of average noise photons in the range [2, 12].

5.5.1.3 Quantization

The simulation would be done for 4-by-4, 8-by-8 and 16-by-16 quantized array

and the performance of the estimators would then be compared to that obtained for

continuous array.

5.5.1.4 Genetic Algorithm

The genetic algorithm is used to search the peak of functions in the range [−1, 1] for

both x and y axes (dimensions of detector array) for template matching and maximum

likelihood estimators. The number of chromosomes is set to 30 and iterations at 100.

Mutation rate is set equal to 0.01 and Crossover rate at 0.75. It has been proved in [5]

that Genetic Algorithm will converge if Elitism (passing on chromosomes with the

best fitness value to next generation) is employed.
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6. RESULTS OF SIMULATION

In this chapter the performance comparison in terms of mean squared error for

each of the three estimators (Center of Gravity, Template Matching and Maximum

Likelihood) is carried out based on the results of the simulation, the details of which

are laid out in the last chapter.

6.1 Continuous array

6.1.1 Unknown deterministic parameter
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Fig. 6.1. Mean Square Error for I0 = 130, ρ = 0.2, (α, β) = (0.4, 0.4),
continuous array.
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Figure 6.1 shows the results of simulation for random parameter case. The value of

I0 and beam spread ρ are set equal to 130 and 0.2 respectively. α and β are set equal

to an arbitrary (0.4, 0.4) and the noise parameter λn is varied from 0.5 to 30.5 in steps

of 5. In the rest of the simulations the signal power is kept constant, noise is gradually

added and the behavior of the estimators observed during a varying signal-to-noise

scenario.

It can be seen that under high signal-to-noise ratio the performance of the three

estimators are identical but as noise power increases the error performance of center

of gravity estimate goes down considerably. This is because as the noise power is

increased the center of gravity of all the photons would begin to shift from (0.4, 0.4) to

the center of array (0, 0) since the noise parameter distributes noise photons uniformly

on the array. The other two estimators perform reasonably well even under high noise

conditions. However the maximum likelihood estimate gives the best performance.

0 5 10 15 20 25 30 35
0.03

0.04

0.05

0.06

0.07

0.08

0.09

λ
n

M
e
a
n
 S

q
u
a
re

 E
rr

o
r

 

 

COG

Template Matching

MLE

Fig. 6.2. Mean Square Error for I0 = 130, ρ = 0.2, (α, β) = (0, 0),
continuous array.
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Figure 6.2 shows the simulation results for the case (α = 0, β = 0). It must be

noted that since we use a continuous array and ρ is sufficiently small as compared to

array dimensions the edge effects are minimal and thus all estimators are assumed to

be unbiased. Therefore we expect all the estimators to behave the same no matter

what the position of beam center is. However under high noise conditions the center

of gravity would always shift to the center of array and there would be bias in its

performance. That phenomenon can actually be seen in this figure as we see the error

performance for center of gravity estimate improves as noise power is increased since

the center of the beam is (0, 0) to begin with.

6.1.2 Random parameter
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Fig. 6.3. Mean Square Error I0 = 130, ρ = 0.2, σ = 0.2, continuous array.
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Fig. 6.4. Mean Square Error I0 = 130, ρ = 0.2, σ = 0.3, continuous array.

For random parameter case the values of I0 and ρ are set the same as before

but now the center of beam is chosen at random from a two dimensional Gaussian

distribution with mean zero and variance σ2 = 0.2 for every iteration. Figures 6.3, 6.4

and shows the performance of the three estimators for random parameter case for σ2

equal to 0.2 and 0.3 respectively. Maximum likelihood estimate gives best results.
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Fig. 6.5. Mean Square Error I0 = 2000, ρ = 0.05, σ = 0.2, continuous
array.

In figure 6.5 the simulation is repeated for I0 = 2000 and ρ = 0.05 with value of σ

set at 0.2.
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6.2 Quantized array

6.2.1 Unknown deterministic parameter
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Fig. 6.6. Mean Square Error I0 = 300, ρ = 0.2, (α, β) = (0.4, 0.4), 4× 4
array.

Figure 6.6 shows the results for I0 = 300, ρ = 0.2, (α = 0.4, β = 0.4) for a

4-by-4 (16 cells) quantized array. Here the difference in the performance of maximum

likelihood and template matching estimates is much pronounced, with the maximum

likelihood estimate giving a much better performance. Mean square error for maximum

likelihood does not degrade as fast as the other two estimators as the noise rate is

increased. Error is relatively large for Template Matching estimator even at high SNR.
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6.2.2 Random parameter
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Fig. 6.7. Mean Square Error I0 = 130, ρ = 0.2, σ = 0.3, 4× 4 array.

Figure 6.7 shows results for I0 = 130 and ρ = 0.2. α and β are chosen randomly

from N (0, σ2I), where σ = 0.3.

6.3 Low signal power, low noise power regime

For a typical FSO system used in deep space communications, it is not unusual

to operate in a regime where the signal photon count is around 4 or 5 and average

number of noise photons is 10 for the whole array. To achieve these number we selected

I0 = 10, ρ = 0.1, and (α, β) = (0.4, 0.4). For this typical scenario the mean squared

error performance for the three estimators was evaluated for each of the 4× 4, 8× 8,

16× 16 and continuous arrays.
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Fig. 6.8. Mean Square Error I0 = 100, ρ = 0.1, (α, β) = (0.4, 0.4),
continuous array.
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Fig. 6.9. Mean Square Error I0 = 100, ρ = 0.1, (α, β) = (0.4, 0.4), 4× 4
array.

Figure 6.8 shows the mean square error for the three estimators for continuous

array. Contrast this with figure 6.9 which shows the error performance curves for

4 × 4 array. Since now the photons (both data and noise) are now reported to the

center of the cell, the true data observations are lost and we now have access only to

approximate version of real data. This would probably induce bias in the performance

of the estimated values. As a result we can see that the template matching estimate

does better than each of the other estimators.
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Fig. 6.10. Mean Square Error I0 = 100, ρ = 0.1, (α, β) = (0.4, 0.4), 8× 8
array.
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Fig. 6.11. Mean Square Error I0 = 100, ρ = 0.1, (α, β) = (0.4, 0.4), 16× 16
array.

We expect the things to improve as the quantization levels become smaller and

smaller and the performance converging to the continuous array case. 8 × 8, and

16× 16 cases are shown in figures above, and we can see the transition happening to

the continuous case of figure 6.8.
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7. CONCLUSION

In this chapter the final conclusions drawn from the results of the simulation are

laid out.

7.1 Continuous array

For the continuous array we can see that the maximum likelihood estimator gives

the least means squared error and the best performance especially when SNR was low.

The performance of center of gravity estimator degrades noticeably during poor SNR

conditions and has the largest mean squared error whereas all the three estimators

give relatively comparable performance when SNR is high.

7.1.1 Unknown deterministic parameter

For the unknown parameter case the results show the superiority of maximum

likelihood estimator whereas the performance of template matching estimator also

gives a relatively reasonable performance. As we can see in figure 6.1 that the

mean square error for maximum likelihood case is below 0.05 for 12.13 dB and the

degradation is very little: the error is 0.07 for λn = 30 which in terms on SNR is -5.72

dB. However for center of gravity the error starts at around 0.05 and goes up to 0.45

for SNR -5.72 dB.

For the case when α and β are both zero, figure 6.2 indicates that maximum

likelihood estimate error is 0.03 for 12.13 dB and goes up to 0.036 as SNR approaches

-6 dB. However the center of gravity begins to give less error as it would ultimately
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converge to the center of beam as noise power increases due to uniform noise (the

center of gravity of uniform noise is the center of array).

7.1.2 Random parameter

For random parameter case the maximum likelihood estimator again gives least

mean squared error. There was so significant improvement over the performance for

unknown parameter case. Here the center of gravity error is smaller for high noise

case (e.g. it is 0.21 for -5.72 dB of SNR). This is due to the fact that the values of

α and β are chosen from N (0, 0.22I) and therefore most of parameter values would

be close to zero and we know the center of gravity estimate gives smaller error when

parameter values are closer to the center of array to begin with.

7.2 Quantized Array

7.2.1 Unknown deterministic parameter

It can be readily seen from figures pertaining to quantized arrays that the maximum

likelihood estimator has the minimum variance as in the continuous case.For SNR -5

dB the mean square error for MLE is 0.11 as against 0.45 for center of gravity for same

value of SNR. At 15 dB the MLE’s error is 0.0589 versus center of gravity’s 0.0714.

7.2.2 Random parameter

The prior information about the parameter gives us advantage in terms of additional

information about the parameter and we exploit that while calculating the error. That

shows up as an extra term in equation (5.4) which is the natural logarithm of the

parameter’s density function and its effect is to improve the performance of maximum

likelihood estimate, especially for the low photon rate. For the 4×4 case the maximum

likelihood error begins around 0.059 for 12.13 dB and moves up to 0.14 for -6 dB ( for

center of gravity the error is 0.075 and 0.43 respectively for the same SNR values).
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7.3 Performance analysis of center of gravity, template matching and

MLE in poor SNR conditions

As discussed earlier, dark current noise along with quantization, are the two major

phenomenon affecting the beam center estimation. In this section we take a look at

how this uniform noise affects the three estimators.

Since the noise is uniform in nature, we expect the center of gravity to converge

to the center of the array under high noise scenario. Therefore the center of gravity

estimate would gradually deviate from the true parameter values towards the center

of array as the noise power increases.

The degradation in case of template matching and maximum likelihood estimates

happen because of the occurrence of several peaks in the maximum likelihood or

template matching functions due to noise photons. As described in [6] when noise is

low there is only one unique maximum and it is relatively stable from one realization

to the next. However in presence of noise photons the peak may shift to a region

where there might be a cluster of noise photons or regions of high density of dark

current emissions. These ‘noise’ peaks are larger than the ‘true signal’ peak value

and would cause estimation errors, and ultimately larger variance. These significantly

large errors in estimate are known as outliers. Even though we know that maximum

likelihood estimate achieves the Cramer Rao Lower Bound asymptotically, low or

poor SNR affects the performance of ML estimate and prevents it from attaining the

bound even for a large number of data records.
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Fig. 7.1. Log-likelihood function for parameter values I0 = 100, ρ =
0.1, (α, β) = (0.5, 0.5), λn = 50 .

Fig. 7.2. Contour plot of log-likelihood function for parameter values
I0 = 100, ρ = 0.1, (α, β) = (0.5, 0.5), λn = 50 .

Figures 7.1 and 7.2 show the log likelihood and contour plots for the case of SNR

-15dB. It can be clearly seen that noise has caused one extra peak to occur in the

vicinity of (0.5, 0.5) and the maximization of the log likelihood might yield a poor
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estimate in the presence of large “noise” peaks. To remedy we must use a sufficiently

large peak for the beam for the same signal power. For this purpose we set I0 equal

to 2000 and ρ at 0.0225 to keep the signal power the same as in previous case. Below

are the results for those beam parameters.

Fig. 7.3. Log-likelihood function for parameter values I0 = 2000, ρ =
0.0225, (α, β) = (0.5, 0.5), λn = 50 .

Fig. 7.4. Contour plot of log-likelihood function for parameter values
I0 = 2000, ρ = 0.0225, (α, β) = (0.5, 0.5), λn = 50 .
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Thus as can be seen in 7.3 and 7.4, making the peak of the signal intensity function

“larger” for the same SNR it can be seen that there is one distinct maximum at location

(0.5, 0.5) and the maximum likelihood function would yield better result in this case.
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