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ABSTRACT 

 
 
 

Strong, Rebecca A. M.S., Purdue University, December 2014.  The effects of heat stress 
on immunity in laying hens and dairy cattle. Major Professors: Drs. Heng-wei Cheng and 
Susan Eicher. 
 
 
 With the increase in global climate change and the population growth driving the 

high demand for additional food production, heat stress (HS) is a major concern in the 

livestock industry across all species. Animals experience HS when exposed to high 

environmental temperatures outside their thermal neutral zone. The level of the effects 

can vary due to the length and intensity of HS to which the animal is exposed to. In 

experiment one, laying hens with access to cooled perches during HS had a lower 

heterophil to lymphocyte ratio compared to the control hens after 4 h of acute heat stress, 

indicating cooled perches as a method to alleviate the effects of HS on laying hen 

immunity. In the second experiment, HS on dams during late gestation had detrimental 

effects on biomarkers of the calf's innate immunity, including an increase in neutrophils, 

lower plasma proteins, and greater toll-like receptor 4 in calves born to HS dams. In 

conclusion, HS greatly impacts many different species and poses a wide threat on the 

health and wellbeing of animals due to the global climate changes and increased demands 

on the livestock industry. Thermally cooled perches, as a method to improve hen 

immunity during HS, has allowed additional knowledge for creating a long-term strategy 

 



x 

to alleviate HS in laying hens. The changes found in neonatal immunity after exposure to 

late gestational prenatal HS has potentially opened other avenues of research to better 

understand the effects of prenatal HS on the offspring of livestock. 
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LITERATURE REVIEW 
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Definition of Heat Stress 

 Heat stress (HS) occurs after an exposure to high ambient temperatures beyond 

the thermal neutral zone (TNZ) for a given species. Both acute, a brief intense HS 

episode, and pro-longed exposure to high temperatures, or chronic HS, can cause 

adverse effects on the animal’s well-being. The TNZ refers to the range of 

temperatures at which the animal does not have to actively regulate their biological 

system to maintain body temperature. The TNZ is a physiological range with limited 

variability of biological function (Scholander et al., 1950). Individual animals can 

exhibit a wide range of reactions to HS, showing from little effect on their health to 

experiencing mortality. Thus, a better method to finding the effects of HS on an 

animal is by determining its biological optimum temperature (Nichelmann, 1983). 

However, even with the determined optimal temperature per species, different 

biological functions and activities play a role for different individuals. For example, 

the optimum temperature for hen egg production is estimated to be between 19°C and 

22°C, but between 18°C and 30°C for meat producing birds (Charles, 2002). Farm 

animals have various zones of thermal comfort predominantly dependent on the 

species of animal and their physiological status (internal factors) and relative 

humidity, velocity of ambient air, and the degree of solar radiation (external factors) 

also contribute to their TNZ (NRC, 1981). By including these additional factors, a 

more useful index can be created in determining the optimal temperature and 

potential for HS (Thom, 1959; Hahn et al., 2009).  

 As guidelines, the theory of Livestock and Poultry Heat Stress indices (LPHSI, 

1990) was developed in order to determine the magnitude of HS of an animal. 
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Various indexes derived from meteorological measurements have been developed and 

recently reviewed by Hahn et al. (2009). The most common one is the temperature-

humidity index (THI) (Thom, 1959). The following formula for THI takes into 

account the ambient temperature and the humidity to estimate the magnitude of HS: 

 THI = db°F-{(0.55-0.55RH) (db°F-58)}  

 In the formula, db is defined as the dry bulb temperature in °F and RH is the 

relative humidity (RH%/100). The obtained values are used to establish the severity 

of HS: <82 indicate an absence of HS; 82-84 indicates moderate HS, 84-86 indicates 

severe HS and >86 indicates extreme severe HS (LPHSI, 1990). 

   THI, however, does not account for important climatic variables such as air 

movement or solar radiation. In addition, THI does not include management or 

animal factors, such as the effect of shade or the genotype and phenotypic 

differences.  Several other formulas have been developed for determining the HS 

potential to account for the additional factors. Tao and Xin (2003), for example, made 

improvements on the THI by creating the temperature-humidity-velocity index 

(THVI), which includes wind speed to determine the HS level in poultry. Wind speed 

has been shown to be favorable to birds exposed to HS conditions (Ruzal et al., 

2011). Therefore, the following formula of THVI may be advantageous to improving 

the method in determining the severity of HS.  

 THVI = (0.85 x DBT + 0.15 x WBT) x V−0.058 

In the formula, DBT is defined as the dry bulb temperature in °C, WBT is the wet 

bulb temperature in °C, and V represents the air velocity. Similarly to THI, the 

obtained numerical values are used to establish the negative effects of HS: ≤70 being 

 

http://www.sciencedirect.com/science/article/pii/S0022030209703157%23bib19


4 
 

normal, 70-75 indicates alert, 76-81 being in danger, and ≥ 82 indicating emergency 

(Tao and Xin, 2003). Additional indices have incorporated the previously stated 

variables to overcome the limitations of different THI (Mader et al., 2006; Gaughan 

et al., 2008). For example, Mader et al. (2010) developed a comprehensive climate 

index applicable under a wide range of environmental conditions by providing an 

adjustment to ambient temperature, relative humidity, wind speed, and radiation. 

However, to simplify those methods, Dikmen and Hansen (2009) indicated that dry 

bulb temperature is a good predictor as THI of rectal temperatures of lactating 

Holsteins in a subtropical environment. 

 

Impact of Heat Stress on Poultry and Livestock 

 The earth’s climate has warmed in the last century with current climate models 

indicating a 0.28°C increase per decade for the next two decades and predicted the 

increase in global average surface temperature by 2100 to be between 1.88°C and 

4.08°C (IPCC, 2007). Therefore, the increasing concern on the thermal comfort of 

agricultural animals is not only justifiable for countries in tropical areas, but also for 

nations with high ambient temperatures (Nardone et al., 2010). Additionally, it has 

been estimated that more than 50% of the total world meat and 60% of milk 

originates from tropical and subtropical areas (FAO statistics, 2010). Given the 

increase in climatic temperature and the demand for great production in livestock and 

poultry, there is a growing concern for welfare of farm animals. In 1995, for example, 

the summer heat wave in the mid-central U.S. caused a $28 million loss in the cattle 

industry by animal death and reduced performance (Hahn, 1999). In 2006, a major 

 

http://www.sciencedirect.com/science/article/pii/S0022030213000246%23bib0115
http://www.sciencedirect.com/science/article/pii/S0022030213000246%23bib0090
http://www.sciencedirect.com/science/article/pii/S0022030213000246%23bib0090
http://www.sciencedirect.com/science/article/pii/S0022030213000246%23bib0120
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heat wave moving across the U.S. resulted in the death of 25,000 cattle and 700,000 

birds in California (Nienaber and Hahn, 2007). Heat stress is a critical stressor, 

especially in regions with hot climates and farms unable to control the ambient 

temperature (Kadim et al., 2008). Possible interventions need to be further 

investigated to avoid or reduce HS associated mortality reducing farm animal 

production.  

 Regardless of species, economic losses are experienced by both the poultry and 

livestock industries, due to animals being raised in locations and seasons where 

efficient temperature conditions could be outside their TNZ. Heat stress caused an 

estimated total $2.4 billion annual loss to the U.S. livestock production industry in the 

absence of heat abatement. From this total, $128 to $165 million occurred in the 

poultry industry and $897 to $1500 million occurred in the dairy industry. Under 

optimum heat abatement, the annual economic loss was reduced to $1.7 billion over 

all farm animal production species. Optimum heat abatement reduced annual total 

economic losses from $98.1 to $61.4 million in laying hens and went from $1507 to 

$897 million per year in the dairy industry (St-Pierre et al., 2003). 

 Although the mechanisms by which HS consequences arise are continually under 

analysis, HS has been consistently found to hinder the production in livestock and 

poultry. In poultry, it includes a decrease in feed intake (Sohail et al., 2012; 

Quinteiro-Filho et al., 2012; Habibian et al., 2013), impaired growth performance 

(Attia et al., 2011; Ghazi et al., 2012; Imik et al., 2012), decrease in egg production 

(Mashaly et al., 2004; Star et al., 2009; Deng et al., 2012; Mack et al.,2013), impaired 

egg qualities (Lin et al., 2004b; Ajakaiye et al.,2011; Ebeid et al., 2012; Mack et 
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al.,2013), and an increase in mortality (Mashaly et al., 2004; Quinteiro-Filho et al., 

2010). In cattle, HS causes a decrease in feed intake and BW gain (do Amaral et al., 

2009).  Other effects in cattle due to HS include a reduction in milk production 

(Bohmanova et al., 2007; Boonkum et al., 2011) and an impaired reproductive 

performance (Thompson and Dahl, 2012). 

 

Poultry 

Physiological and Behavioral Responses  

 Birds are homeotherms, having the ability to maintain their body temperature 

within a narrow range. The optimum temperature for laying hen performance is likely 

to be between 19 and 22°C (Charles, 2002). Birds produce and dissipate heat to 

maintain a relatively constant body temperature. When the temperature and relative 

humidity exceed the comfort level, birds lose their ability to efficiently dissipate heat, 

which then leads to behavioral and physiological changes (Toyomizu et al., 2005; 

Gonzalez-Esquerra and Leeson, 2006). Birds become heat stressed without the 

balance between heat production and heat dissipation, or thermoregulation. An 

increase in air circulation, through ventilation, has been a proven factor in 

maintaining egg production in hens exposed to HS (Ruzal et al., 2011). 

Birds do not have sweat glands. Therefore, the primary methods of heat loss in 

birds include respiratory evaporative cooling, or panting and conductive heat transfer 

through their feet and wattles. When birds are challenged by HS, their body 

temperatures increase causing an increase in respiratory rate (Borges et al., 2004). 

Consequently, panting relies on water loss which may lead to dehydration (Belay and 

 

http://ps.fass.org/content/87/6/1031.full%23ref-8
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Teeter, 1993) or respiratory alkalosis (Yahav et al., 1995). Birds have air sacs as an 

additional mechanism to promote heat exchange between their body and the 

environment. Air sacs are useful during panting, as they promote air circulation on 

surfaces, increasing heat loss via evaporation along with gas exchanges (Fedde, 

1998). A recent study (Mack et al., 2013) showed that birds subjected to HS 

conditions spent more time with their wings elevated, drinking, panting, and resting, 

but spent less time feeding, moving, and walking. Sensible heat is used by birds to 

release heat, including radiation, convection, and conduction (Yahav et al., 2005). 

However, some methods of heat loss are challenging to the avian species due to their 

feather coverage trapping heat to prevent hypothermia. During HS, capillary blood 

flow is redistributed throughout the body to improve sensible heat loss (Wolfenson et 

al., 1981).  

 Mujahid et al. (2009) presented evidence that broiler chickens exposed to 

different durations of acute HS resulted in distinct time-dependent physiological 

responses. Increased mitochondrial reactive oxygen species (ROS) production and 

decreased avian uncoupling protein was confirmed in HS birds (Mujahid et al. 2009). 

The balance between ROS and antioxidant is disrupted in broilers exposed to HS 

(Wang et al., 2008), leading to oxidative stress during acute HS (Lin et al., 2006; 

Mujahid et al., 2006). Malondialdehyde is a biomarker used to measure oxidative 

stress in chickens by indirectly measuring the level of peroxidation due to ROS 

(Mujahid et al., 2009; Azad et al., 2010). In order to establish this balance during HS, 

the strategy for increasing antioxidant capability and activity in birds is common (Lin 

et al., 2006). 
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High environmental temperatures activate of the hypothalamic-pituitary-adrenal 

(HPA) axis. The stress-activated HPA axis was found to be responsible for the 

negative effects of HS on broiler performance and immune function (Quinteiro-Filho 

et al., 2012). The HPA axis regulates corticotrophin releasing hormone and 

adrenocorticotropic hormone are released from hypothalamic and pituitary cells 

(Bakshi and Kalin, 2000). In response to the physiological disruptions, more 

glucocorticoids are released. Glucocorticoids participate in the control of body 

homeostasis and stress response of various organisms (Lin et al., 2004a). In poultry, 

HS has been shown to cause elevated corticosterone concentrations (Garrig et al., 

2006; Star et al., 2008; Quinteiro-Filho et al., 2010). Changes in corticosterone levels 

also occur due to environmental stimuli (Korte et al., 2005). Increased corticosterone, 

as the final product of the HPA axis, causes numerous effects on behavior, metabolic 

pathways, and immune functions (Haller et al., 2000). Lara and Rostagno (2013) 

reviewed the literature and concluded further research is still needed to improve the 

knowledge of the basic mechanisms associated with the negative effects of HS in 

poultry.  

 

Production Responses 

 In recent studies, broilers subjected to chronic HS significantly reduced feed 

intake, and caused a lower BW and a higher feed conversion ratio (Niu et al., 2009b; 

Sohail et al., 2012). Similarly, broilers subjected to acute HS had a lower feed intake, 

BW gain, but a lower feed conversion (Quinteiro-Filho et al., 2010; Quinteiro-Filho 

et al., 2012). Habibian et al. (2013) also reported a significant reduction in BW and 

 

http://ps.fass.org/content/87/6/1031.full%23ref-14
http://ps.fass.org/content/87/6/1031.full%23ref-12
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feed intake in chronic HS broilers, however, the feed conversion ratio was increased. 

Naseem et al. (2005) also found an increase in feed conversion in broiler chickens 

exposed to HS. Taken together, HS (acute or chronic) impairs growth performance in 

broilers (Attia et al., 2011; Ghazi et al., 2012; Imik et al., 2012). In laying hens, 

similar to its effects on broilers, HS resulted in decreased BW, feed efficiency, egg 

production and egg quality (Mashaly et al., 2004; Deng et al., 2012). Lin et al. 

(2004b) further reported HS decreased production performance, as well as reduced 

eggshell thickness, and increased egg breakage. Additionally, a reduction of feed 

conversion, egg production, and egg weight were identified in laying hens subjected 

to HS (Star et al., 2009). Ebeid et al. (2012) reported HS caused 1% reduction in egg 

weight, egg shell thickness, eggshell weight, and eggshell percent. Ajakaiye et al. 

(2011) also showed a reduction in egg shell weight and thickness. Corroborating 

these results, Mack et al. (2013) observed decreased egg production, egg weight, and 

egg shell thickness in laying hens exposed to HS.  

 The egg production is dependent on gonadal steroids, such as progesterone, 

testosterone, and estradiol, which are all inhibited by HS (Rozenboim et al., 2007). 

The cellular mechanism of how HS negatively affects the bioactivity of gonadotropin 

is less understood. Most likely, it is due to multiple factors affecting animals’ 

physiological homeostasis under HS, such as a reduction in feed intake (Ajakaiye et 

al., 2011) and an increase in oxidative stress (Lin et al., 2006). The correlation 

between decreased feed intake and increased mortality could also be responsible for 

the reduced egg production (Ortiz et al., 2006). An increase in mortality to laying 

hens (Mashaly et al., 2004) and broilers (Quinteiro-Filho et al., 2010) were reported 
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after heat exposure. Warriss et al. (2005) demonstrated a seasonal impact with a peak 

mortality occurring in the summer months.  

Chickens’ reaction to HS is affected by multiple factors. The reported variability 

of the effects of HS on chicken health may be explained by the examined birds, such 

as health and production status, and or genetic background. The variation may also be 

due to the variety of intensity and duration of HS applied to the chickens. Stocking 

density is also a major factor affecting chicken productivity and physiological 

homeostasis, as well (Estevez, 2007).  

 

Immunocompetence  

Decreased immune function can result in the chickens’ inability to respond to 

inflammation and or infection appropriately. Gram-negative bacteria is a common 

pathogen found in the current poultry housing systems (Zucker et al., 2000), leading 

to welfare concern, especially under HS. Heat-stressed hens had higher mortality after 

being exposed to a vaccination of Escherichia coli than hens in controlled 

environmental temperatures (Compean et al., 2011). It has been concluded that high 

environmental temperatures affect the immune response in chickens (Naseem et al., 

2005) by altering specific immunological biomarkers such as a greater H/L ratio, 

(Felver-Gant et al., 2012). Heat stress has been shown to limit immunocompetence 

through decreasing antibody production in hens (Mashaly et al., 2004) and broilers 

(Niu et al., 200b; Habibian et al., 2013). Broilers subjected to HS also had lower 

levels of total circulating antibodies (Bartlett and Smith, 2003).  
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 Invading pathogens are controlled by either the innate, adaptive or both immune 

responses. Adaptive immunity is mediated by B, T or both lymphocytes and often not 

rapid enough to destroy the invaded microorganism since its response involves cell 

proliferation, gene activation, and protein synthesis. Depending on prior exposure, a 

more rapid response (immediate response) to defend against the pathogen can be 

provided by the innate immune system, which recognizes pathogens by germ-line-

encoded pattern recognition receptors. However, as Regnier et al. (1980) suggested 

that heat-induced immunosuppression may depend on the breed of the bird. The 

effects on immune responses may also depend on the length and intensity of the heat 

exposure (Henken et al., 1982; Kelley, 1983). 

The recognition of pathogen-associated molecular patterns, which refer to the 

constituents found on the pathogen that are not normally found in the host, is mainly 

due to the family of toll-like receptors (TLR) located primarily on the cell surface of 

macrophages (Werling and Jungi, 2002). Following this innate response, TLR initiate 

the adaptive immune response by activating antigen-presenting cells through inducing 

the production of cytokines. TLR-4, for example, detects lipopolysaccharide (LPS) 

from gram-negative bacteria and is thus important in the activation of the innate 

immune system. Sahin et al. (2010) also found an increase in both serum tumor 

necrosis factor α (TNF- α) and interleukin (IL)-6 in heat-stressed quails. Deng et al. 

(2012) demonstrated that levels of serum TNF- α, IL-1, and corticosterone in hens 

were elevated during HS, but there was no change in IL-6. 

 Heat shock proteins (HSPs) are classified as either constitutive, which are always 

present, or inducible, which are only observed after heat stess. The most prevalent 

 

http://en.wikipedia.org/wiki/Lipopolysaccharide
http://en.wikipedia.org/wiki/Gram-negative
http://en.wikipedia.org/wiki/Bacteria
http://en.wikipedia.org/wiki/Innate_immune_system
http://en.wikipedia.org/wiki/Innate_immune_system
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inducible HSP is HSP70 and is known to be an important indicator of the 

thermotolerance response in birds (Yahav et al., 1997; Mazzi et al., 2003). The 

expression of HSP70 in response to stress serves to protect against the initial insult 

and produces a state of resistance to later stress (Kregel, 2002). Following HS, an 

increase in the circulating HSP70 levels were reported in chickens (Cahaner et al., 

2008; Soleimani et al., 2011; Gu et al., 2012).  

 There are several types of immune cells in birds. Heterophils, the avian 

neutrophil, are granulated leukocytes formed in the bone marrow. They are 

phagocytic cells essential in performing the innate immunity by defending the 

organism against bacteria, viruses, or foreign particles. Lymphocytes are non-

granulated leukocytes formed in lymphoid tissues, such as the thymus and the bursa 

of Fabricus in birds. They play an important physiological role in adaptive immunity, 

specifically for the production of antibodies. The heterophil/lymphocyte (H/L) ratio 

has been used as a stress indicator in birds, demonstrating its changes through the 

interaction with circulating levels of corticosterone (Gross and Siegel, 1983; 

Puvadolpirod and Thaxton, 2000). The changes of the H/L ratio (Gross and Siegel, 

1983) caused by a decrease in the number of circulating lymphocytes (Aengwanich, 

2008), an increase in the number of heterophils (Mogenet and Youbicier-Simo, 1998; 

Borges et al., 2004) or both. Recent studies have demonstrated that HS can alter 

levels of circulating cells resulting in an increase in the H/L ratio (Prieto and Campo, 

2010; Soleimani et al., 2011; Felver-Gant et al., 2012; Habibian et al., 2013).   

 With a restricted lymphatic system, hens rely on the spleen as an important 

immune organ and the primary source of antigen-presentation (Jeurissen, 1993). 

 

http://ps.fass.org/content/90/7/1435.long%23ref-10
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Additionally, the spleen also helps the bird in blood filtration and storage of multiple 

cell-types involved with the hen’s immune system. Cheng et al. (2004) found that 

hens with greater spleen weight have higher ability to produce a normal immune 

response. Spleen weight decreased after exposure to high temperatures in laying hens 

(Felver-Gant et al., 2012; Ghazi et al., 2012) and broiler chickens (Bartlett and Smith, 

2003; Niu et al., 2009b; Quinteiro-Filho et al., 2010). A reduction in liver weight was 

also observed in chickens subjected to HS conditions (Bartlett and Smith, 2003; 

Felver-Gant et al., 2012). The liver is another important organ in regulating immunity 

due to its abundance of innate cells responsible for defending foreign antigens (Holz 

et al., 2008). An increase in corticosterone has been shown to negatively affect 

lymphoid organ proliferation and function (Post et al., 2003; Shini et al., 2008). 

 

Supplementation  

 Numerous nutritional supplements have been implemented in poultry diets to 

alleviate HS. Daghir (2009) reviewed the literature on nutritional strategies to reduce 

HS in broilers and concluded that nutritional manipulation can be useful in reducing 

negative effects of high ambient temperatures.  However, a reduction in feed intake 

challenges the concentration of nutrients required to maintain health and productivity 

in poultry subjected to HS. Therefore, supplementing drinking water may be a more 

suitable method for poultry during high ambient temperatures. For heat-stressed 

broilers, supplementation of vitamins, such as A, D, E, and B complex, through 

drinking water have been reported to be beneficial for the performance and immune 

function in broilers (Ferket and Qureshi, 1992). The thermotolerance of chickens 
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exposed to severe HS could also be improved by supplementing drinking water with 

potassium chloride (Ahmad et al., 2008). Additionally, an improvement in the 

average feed consumption, egg production, egg weight, and egg shell thickness were 

observed with supplementation of vitamin C in drinking water in laying hens (Khan 

and Sardar, 2005).  

 The immune response of broilers under HS conditions could be improved by 

dietary vitamin E (Niu et al., 2009a), by decreasing the H/L ratio, i.e., increases in 

lymphocytes number (Habibian et al., 2013), improving activity of macrophages 

(Konjufca et al., 2004) and increasing antibody production and function (Singh et al., 

2006). Likewise, vitamin A (Lin et al., 2002), selenium (Niu et al., 2009a; Habibian 

et al., 2013) and chromium supplementation (Bahrami et al., 2009) have been linked 

to improving the immune response in broilers subjected to HS. Organic chromium 

may also have some positive effects on serum glucose in broilers under high ambient 

temperatures (Moeini  et al., 2011). Mahmoudnia and Madani (2012) reviewed the 

literature and concluded that dietary supplementation of betaine on broilers in warm 

weather has certain benefits on performance traits, such as BW gain and feed 

conversion ratio at early stages of growth.  Betaine also improves respiration rate and 

humoral immune competence in slow-growing chicks exposed to HS (Attia et al., 

2009). Betaine is further suggested to improve immunity and reduce mortality in 

broilers (Khattak et al., 2012). Different levels of dietary zinc have been investigated 

and suggested to be an important component of the poultry diet during HS, as well 

(Sahin et al., 2009). 
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 Khan et al. (2012) reviewed the literature and determined that supplemental 

vitamin C can improve immune response and numerous production parameters. 

Under HS, vitamin C has been shown to enhance immune function in birds (Attia et 

al., 2009). In addition to immune function, vitamin C has also been shown to improve 

egg production in laying hens subjected to high temperatures (Sahin and Kucuk, 

2003). Ajakaiye (2011) showed that vitamins E and C improve egg qualities in laying 

hens under HS. However, it was concluded that supplementing vitamin E to the diet 

during HS does not have any positive effect on the metabolism in laying hens 

(Yardibi et al., 2009) and did not improve growth performance of broilers (Niu et al., 

2009b). In addition, the probiotic, Bacillus licheniformis, may also be useful for 

improving the adverse effects of heat on egg production and gut health in laying hens 

(Deng et al., 2012). 

 

Genetic Selection  

  Alterations in management practices can improve the coping mechanism of 

laying hens to HS conditions, but these adjustments may be temporary and limited by 

costs. Genetic manipulation of breeders based on thermotolerance may be an 

alternative approach to improving egg production and survivability under HS 

conditions long-term. Genetic variations in response to HS have been observed 

between hens (Franco-Jimenez et al., 2007; Star et al., 2008; Soleimani et al., 2011) 

and broilers (Cahaner et al., 2008; Tirawattanawanich et al., 2011) among different 

breeds suggesting habitable differences in tolerance to HS.  
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 The Hyline W-98 laying hens responded better to HS conditions with regard to 

egg production and egg quality measures than Hyline Brown or Hyline W-36 hens 

(Franco-Jimenez et al., 2007). It was reported that during recovery from HS, egg 

production in W-98 line returned to baseline faster than the other strains (Franco-

Jimenez et al., 2007). During HS, Hyline W-98 hens had a lesser reduction in feed 

intake than Hyline W-36 and Hyline Brown laying hens, as well. In addition, the 

lowest mortality was observed in the Hyline W-98 hens, leading to the conclusion 

that this strain has mechanisms that improve its thermotolerance over Hyline W-36 

and Brown hens (Franco-Jimenez et al., 2007). Star et al. (2008) reported that the 

White leghorn WB line (low survival rate and low natural humoral immune 

competence) was more sensitive to HS than the White leghorn WA (high survival rate 

and low natural humoral immune competence), WF (high survival rate and high 

natural humoral immune competence), and Rhode Island Red B1 (low survival rate 

and high natural humoral immune competence) lines. Lastly, Soleimani et al. (2011) 

observed that red jungle fowl, the non-selected strain of chicken, showed lower H/L 

ratio, higher plasma corticosterone concentrations, and higher HSP70 expression than 

commercial broilers after heat exposure. It was concluded that instead of improving 

coping mechanisms, the domestication and selective breeding are leading to 

individuals that are more susceptible to stress. 

 Two strains of White Leghorn hens: group-selected hens for high productivity and 

survivability, a kind gentler bird (KGB) line, and commercial hens individually 

selected for high egg production (DXL) have been widely studied when observing 

physiological homeostasis (Cheng and Muir, 2007) and immunological variables 

 



17 
 

(Fahey and Cheng, 2008). Production values significantly varied between the two 

lines under acute heat exposure, with the KGB line having lower mortality rates as 

well as greater egg production during HS (Hester et al., 1996). Felver-Gant et al. 

(2012) reported hen liver weight decreased with less of a response in the KGB line 

after heat exposure. Additionally, KGB hens had higher HSP70 concentrations 

following HS. Moreover, DXL hens showed an elevated H/L ratio under HS 

compared with their controls, whereas KGB hens showed a much lesser response. 

 In fast growing broilers under HS, feather coverage negatively affects 

thermoregulation because it hinders the dissipation of excessive internal heat (Yahav 

et al., 1998; Deeb and Cahaner, 1999). Therefore, it has thought to be advantageous 

to introduce genes such as the naked-neck gene or the featherless gene to alleviate 

HS. Cahaner et al. (2008) further investigated this hypothesis and reported feather 

coverage was found to significantly affect the thermoregulatory capacity of the 

broilers exposed to high environmental temperatures. In this study, broilers without 

feathers (featherless) and those with reduced feather coverage (naked-neck) were able 

to minimize the increase in body temperature. However, the naked-neck birds showed 

only a slight advantage over fully feathered birds indicating a reduction in feather 

coverage provided limited tolerance to HS. Additionally, featherless birds had greater 

breast meat yields than naked-neck and fully feathered commercial birds under hot 

conditions (Cahaner et al., 2008). 

 Furthermore, the effects of high-meat-yielding commercial broilers (B line), low-

meat-yielding Thai indigenous (T line) chickens, and a Thai indigenous crossbred line 

selected as a candidate meat-type chickens to survive in the tropical environment (C 
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line) were evaluated on immune function and their capacity to tolerate the tropical 

climate (Tirawattanawanich et al., 2011). The H/L ratios, expressed in B-line chicks, 

were found to increase significantly than those present in the C- and T-line chicks in 

the summer season. In addition, the innate and humoral immunities of B-line chicks 

were significantly lower than T- and C-line chicks, especially during the summer 

season (Tirawattanawanich et al., 2011). 

 

Thermal Regulated Perches 

 Effective and economical techniques to minimize production losses that result 

from HS are important in the poultry industry. Broiler breeder hens (Muiruri et al., 

1991) and broiler chickens (Reilly et al., 1991) had improved bird performance with 

access to cooled perches during high temperatures (Muiruri and Harrison, 1991; 

Reilly et al., 1991). In contrast, Estevez et al. (2002) did not find a significant 

difference in mean BW of broilers with access to cool perches. However, broiler 

chickens in a more recent study (Zhao et al., 2012) reported an increase in BW with a 

greater use of cool perches during the summer. Broilers with cooled roost access had 

greater live weight, breast meat weight and roost usage, lower mortality, and lower 

feed-to-gain ratios than ambient roost and floor birds (Okelo et al., 2003). 

Additionally, cooled perch access impacted broilers subjected to HS by decreasing 

panting frequency and reducing rectal temperatures (Zhao et al., 2012). Cooled perch 

availability increased BW gain and feed conversion efficiency of broilers in high 

ambient temperatures regardless of stocking density (Zhao et al., 2013). Zhao et al. 

(2013) also reported birds’ use of cool perches increased with age, decreased with 
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high stocking densities, and changed behavioral patterns. Fewer studies have looked 

at the effect of cooled perches on well-being in laying hens exposed to HS although 

Reilly and Harrison (1984) found that conductive heat transfer from the feet of laying 

hens to a thermally controlled perch helped relieve HS. In laying hens, perch 

temperature strongly influenced the bird's resting postures. Birds with access to cold 

perches had a higher percent of resting with their heads tucked backwards allowing 

for more coverage of un-feathered areas (Pickel et al., 2011). Zone cooling, as 

opposed to whole-house cooling, during hot weather may be effective in relieving the 

negative effects of HS in chickens. 

 

Cattle 

Physiological and Behavioral Responses  

 The TNZ for dairy cows is between 5°C and 25°C (Roenfeldt, 1998). At ambient 

temperatures above 26°C, a cow reaches a point where she can no longer cool 

adequately and eventually enters heat stress. The body temperature of dairy cattle 

shows great susceptibility to high temperatures (Akari et al., 1984) as increasing 

rectal temperatures when THI is greater than 80 (Lemerle and Goddard 1986). The 

respiratory rate of cattle begins to increase when THI is 73 and more abruptly when 

THI is greater than 80 (Lemerle and Goddard 1986). Behavioral and physiological 

responses are initiated in order to reduce heat production and increase heat loss to 

maintain body temperature within normal ranges. There are two main mechanisms 

used by dairy cows to increase the amount of heat loss from the skin when HS causes 

an increase in internal heat production. The first is dilatation of the blood vessels in 
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the dermis so that more blood flows towards the skin's surface and heat can be lost to 

the environment. The second is by sweat production from the sweat glands. Cattle can 

tolerate higher temperatures at lower relative humidity than poultry, by dissipating 

excessive heat more effectively by sweating, whereas poultry do not have sweat 

glands. Homeostatic mechanisms are the initial responses and include increased 

sweating and respiration rates (McLean, 1963), as well as reduced heart rate and feed 

intake (Horowitz, 2002). Cows exposed to HS have higher rectal temperatures and 

elevated respiration rates compared with cooled cows (Ominski et al., 2002; do 

Amaral et al., 2011). Dairy cattle also spend less time lying when exposed to hot 

temperatures (Overton et al., 2002; Legrand et al., 2011). Additionally, cows would 

choose to stand in the shade instead of lying during warm conditions even when they 

have been deprived of lying for the previous 12 h (Schütz et al., 2008). Tucker et al. 

(2008) found that time spent standing increased by 10% when heat load increased by 

15%, suggesting that cows spend more time standing to increase heat loss by 

increasing the surface amount of skin exposed to air flow or wind. 

Cows under HS have an increase in insulin concentrations and glucose clearance 

(Wheelock et al., 2010). Prenatal stress has been shown to alter the HPA response to 

stress in calves (Lay et al., 1996). Upon activation of the HPA axis by HS, 

corticotrophin releasing hormone is produced and secreted, which then stimulates the 

endocrine cells in the anterior pituitary to synthesize and secret adrenocorticotropic 

hormone (ACTH) into the systemic circulation (Marketon and Glaser, 2008). 

Pituitary ACTH travels through the blood to the adrenal cortex, where it induces cells 

to secrete glucocorticoids (Fulford and Harbuz, 2005). Glucocorticoids have been 
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shown to suppress the synthesis and release of cytokines, such as IL-6 and TNF-α 

(Richards et al., 2001). A previous study showed that activation of the sympathetic 

nervous system also suppresses the function of dendritic cells and monocytes by 

inhibiting the production of pro-inflammatory cytokines such as IL-1, IL-6, and TNF 

(Benschop et al., 1994). The continued activity on the HPA axis may be related to the 

effects of prenatal stress on behavior and learning responses resulting in inhibited 

behavioral and anxiety (Braastad, 1998). 

 

Production Responses 

 The negative effects of HS in dairy cattle are well documented (West, 2003; 

Berman, 2005). HS reduces milk production, reproductive performance, and profit 

(St-Pierre et al., 2003; Bohmanova et al., 2007; Boonkum et al., 2011). HS 

dramatically decreased milk production during lactation (Collier et al., 2006). In the 

U.S, there was an annual loss of $5 to $6 billion attributed to HS in dairy cows (Ray 

et al., 1992). In dairy cattle, HS consistently results in reduced dry matter intake 

(DMI) (Adin et al., 2009). As a result of the reduced energy intake, cows under HS 

have lower BW gain in late gestation compared to those cows with heat abatement 

(do Amaral et al., 2009). In mid lactation, heat-stressed cows experience negative 

energy balance and use glucose as the main source of energy for milk synthesis 

(Wheelock et al., 2010). In contrast, heat-stressed cows under late gestation stay in 

positive energy balance (Kim et al., 2010) and do not have the same observed 

metabolic responses as cows under HS during mid-lactation (Tao et al., 2012b).  
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During HS, the body temperature of a cow increases and feed intake decreases 

thereby decreasing milk production (Coppock and West, 1986). Due to their high 

metabolic rate associated with milk production, modern high-producing dairy cows 

are more vulnerable to HS (Bianca, 1965). Compared to lactating cows, dry cows 

generate less metabolic heat (West, 2003) and have a higher upper critical 

temperature (Hahn, 1999). However, the effects of HS on the performance of cows 

during late gestation can be carried over to the next lactation (do Amaral et al., 2009). 

Cooling cows during the dry period increased milk production in the subsequent 

lactation (Adin et al., 2009). The milk yield response in the next lactation depends on 

the method and duration of cooling of the dry dairy cow, such as short-interval 

soaking in the middle of the day which only modestly increased milk production 

(Avendaῆo-Reyes et al., 2006), or a more extensive method, including shade, fans, 

and sprinklers, which caused a more significant increase in milk yield (do Amaral et 

al., 2011). It is possible that the decrease in milk production in stressed cows could be 

due to a compromise in mammary growth induced by HS. Heat-stressed cows have 

decreases mammary cell proliferation relative to calving compared with cooled herd 

mates (Tao et al, 2011). Although the physiological mechanisms related to 

compromised gland development during the dry period under HS are not clear, it may 

be caused by hormone synthesis. Heat-stressed cows had greater concentrations of 

circulating prolactin relative to calving (do Amaral et. al., 2011), but a decrease in 

prolactin receptor gene expression in the liver (do Amaral et. al., 2010). Additionally, 

treatments did not affect circulating insulin, but cooled cows had decreased glucose 

and lower insulin concentrations in plasma postpartum compared with HS cows (Tao 
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et. al., 2012b). Thus, HS not only has effects on milk production, but also 

physiological parameters, as well.  

Greater incidences of mastitis occur in heat stressed cows compared to cows in a 

thermal neutral environment (Gaughan et al., 2009). They theorized that heat 

exposure could cause the development of pathogens responsible for mastitis and may 

have negative effects on the animals’ immune response. Hot environments also 

decrease the birth weights of calves (Collier et al., 1982). Another direct effect of HS 

includes thermal-related death during heat wave events. Overall, months with average 

daily temperatures greater than 24°C showed substantial increases in both calf and 

cow mortality with calf mortality being more sensitive to the thermal changes than 

cow mortality (Stull et al., 2008).  

 Hansen (2009) reviewed the literature and concluded HS had numerous 

detrimental effects on reproduction. Seasonal high ambient temperatures are 

associated with low reproductive performance in dairy and beef cows (Wolfenson, 

2009). On average, conception rate drops by 24% during summertime (Bernabucci et 

al., 2010). This decrease in fertility is caused by an impaired ovarian function, lower 

expression of estrus, damaged oocyte health, and inhibition of embryonic 

development (Wolfenson, 2009). Garcı´a-Ispierto et al. (2006) indicated that HS can 

increase early fetal loss with each additional unit of THI from days 21 to 30 of 

gestation. Depending on the intensity of heat exposure, conception rates can drop to 

10-20% in hotter months to 40-60% in cooler (Cavestany et. al., 1985). Oocyte 

competence for fertilization and subsequent development is reduced due to HS 

(Sartori et. al., 2002). HS can also alter follicular growth (Roth et al., 2000) and gene 
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expression (Argov et. al., 2005). Thompson and Dahl (2012) found that cows dried 

off in hot months had greater incidence of health disorders in early lactation and 

poorer reproductive performance compared with those dried in cool months. 

 

Maternal Heat Stress Affects Offspring 

Prenatal stress occurs when the offspring is affected by the stress of the dam 

before birth. Maternal HS during late gestation is a type of prenatal stress which 

affects the fetus and carryovers on to the offspring in postnatal life. There have been 

few studies in dairy cattle, but related research in other farm animals may be 

informative for dairy cattle. HS during late gestation decreases not only gestation 

length and birth weight of the offspring, but also placental weight (Bell et al., 1989). 

Lundborg et al. (2003) found associations between dam-related effects on heart girth 

at birth, morbidity, and growth rate in dairy calves, indicating the importance of 

health and nutritional status of the dam during late pregnancy. Tao and Dahl (2013) 

reviewed the literature and concluded maternal HS during late gestation compromises 

placental development and fetal growth of the offspring.  

Wolfenson et al. (2000) reviewed the literature and concluded that most 

components of the reproduction system have been found to be susceptible to HS. In 

dairy cattle, the fetus grows at the fastest rate and accumulates 60% of its birth weight 

during the last 2 months of gestation (Bauman and Currie, 1980). In later pregnancy, 

intrauterine hyperthermia is associated with intrauterine growth retardation (Dreiling 

et al., 1991). Fetal and placental weights and total content of protein were reduced in 

heat stressed ewes (Early et al., 1991). Although, maternal HS during late gestation in 
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cows resulted in a shorter gestation length and lower birth weight (do Amaral et al., 

2009; Chen et al., 2010), there was no effect on calf birth weight after a moderate 

decrease in energy intake in late gestation (Janovick and Drackley, 2010). 

During gestation, the fetus is exposed to the environment of its dam uterus; hence 

it is subjected to her thermoregulation, whereas its own thermoregulation is inhibited 

during this period. In sheep and goats, during late gestation, normally fetal body 

temperature is higher than maternal core body temperature (Faurie et al., 2001). In 

contrast, Laburn et al. (2002) found that body temperature was raised less in the fetus 

than in the mother during HS, indicating that the fetus is granted thermal protection 

when the mother animal experiences thermal stress. Therefore, fetal body temperature 

still increases dramatically under maternal HS, just not at the same rate as the dam.  

 Similar to other stressors, such as environmental stress, psychological stress, and 

social stress, HS compromises fetal development and postnatal immunity (Merlot et 

al., 2008). A greater cortisol concentration in heat-stressed sows is associated with 

their piglets having higher serum cortisol at birth (Machado-Neto et al., 1987). Tao et 

al. (2012a) investigated the effect of dam HS during the final stage of gestation on the 

growth of calves. Calves that were born to cows exposed to cooling had greater birth 

weight than calves from HS cows. Moreover, the sheep fetus had lower circulating 

glucose and insulin after maternal HS (Thorn et al., 2009) but higher levels of 

epinephrine and norepinephrine concentrations (Leos et al., 2010). Thus, concluding 

that maternal HS has many effects on the offspring's development. 
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Immunocompetence of Dam 

 It is well known that the survivability and proliferation of bacteria are favored in 

hot environments (Money et al., 2010). HS has been shown to have detrimental 

effects on the immune system of cattle making them more susceptible to disease 

(Lacetera et al., 2005, 2006; do Amaral et al., 2009). However, Urdaz et al. (2006) 

investigated the relationship between HS during late gestation and the presence of 

disease postpartum and found that cows under HS showed similar incidences of 

diseases as the cooled treatment. In contrast, a more recent study concluded cows 

dried off in hotter months had a higher incidence of mastitis and respiratory problems 

than those dried off in cool months (Dahl et al., 2012). Hence late-gestation HS 

influences the health and immune function of dairy cattle. 

The immune system includes the primary nonspecific innate immune response 

and the specific adaptive immune function. Innate immunity is triggered by 

recognition of the pathogen, for example, by a complex of TLR4 and cluster of 

differentiation (CD) 14 at the cell surface, which then signals the release of cytokines 

from macrophages (Gioannini and Weiss, 2007). Cytokines produced by activated 

macrophages in response to bacterial products include IL-1, IL-6 and TNF-α. IL-1 

and IL-6 activate lymphocytes and increase antibody production. TNF-α activates 

vascular endothelium and increases vascular permeability, which leads to increased 

effector cells immigrating to the site of infection. All three cytokines play critical 

roles in inducing the acute-phase response, which benefit effective host defense by 

activating phagocytic cells (Möller and Villiger, 2006). CD18 is another cell surface 

molecule playing a role in recognition, which binds adhesion molecules forming a 
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tight interaction needed for diapedesis (Lee and Corry, 2004). Following the arrival to 

the site of infection, neutrophils, along with macrophages, act as potent killers of 

invading microorganisms through phagocytosis and oxidative burst (Mayer, 2006). 

Therefore, innate immunity can be evaluated through the ability of neutrophils to 

phagocytize and destroy pathogens. Neutrophil phagocytosis and oxidative burst were 

greater in cows with heat abatement relative to calving compared with heat stressed 

cows, suggesting that heat abatement during the dry period improved the innate 

immune status (do Amaral et al., 2011). HS was shown to also impair the acquired 

immune function as measured by a reduced lymphocyte proliferation (Lacetera et al., 

2006). IgG secretion was improved with heat abatement in cows under HS (do 

Amaral et al., 2011). Cytokine gene expression has also been evaluated. Cows under 

HS had an increase in TNF-α gene expression during the transitional period (Tao et 

al., 2013). The increase in cytokines reflects an adaptive response before calving 

given the fact that inflammatory cytokines are related to the stress-induced acute-

phase response in cattle (Lomborg et al., 2008). However, when non-cooled cows 

exposed to HS encounter a pathogen, there may be a decrease in immunological 

responses (do Amaral et al., 2010).  

Moreover, the mechanism whereby HS affects the immune system may be 

mediated through changes in the prolactin signaling pathways. Prolactin signals 

modulate both the innate and adaptive immune function (Lopez-Meza et al., 2010). 

For example, the greater concentrations of prolactin in plasma of cows exposed to HS 

were associated with reduced lymphocyte proliferation compared with cooled cows 

caused by the binding of the prolactin to their receptors (do Amaral et al., 2010). In 
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addition to the HS effects on the dam's immune system, HS also has numerous effects 

on calf immunity.  

 

Immunocompetence of Calf 

 Cortese (2009) reviewed the literature on neonatal immunology and suggested the 

combination of passive and active immunity together provide the protection to the 

neonate. The fetus becomes immune competent while in utero to a variety of diseases 

(Casaro et al., 1971; Pare et al., 1998; Ellsworth et al., 2006). Lymphocytes develop 

and differentiate during gestation. In general, the shorter the gestation period, the less 

developed the immune system is at birth (Halliwell and Gorman, 1989).  Normally, 

the immune system is fully developed at birth in the neonate although it is still 

unprimed (Tizard, 1992) causing the calf to become susceptible to pathogens at birth. 

The fetus is protected primarily by the innate immune system, but its phagocytic 

activity is not fully developed until late in gestation (Barrington, 2001). Although the 

number of phagocytic cells is abundant in the neonate, there is a decrease in function 

in these cells, which can occur up to 4 months of age in the calf (Hawser et al., 1986). 

The calf will have all essential immune components at birth, but most of them are not 

functional until at least 2 to 4 weeks of age and some will continue to develop until 

puberty (Reber et al., 2006). In cattle, T cells do not reach peak levels until the animal 

is 8 months of age. This does not mean the calf cannot respond to antigens, but the 

response is weaker and slower. Total T cells account for 28 to 34% of total 

lymphocytes; 20% are helper T cells (CD4) and 10% are cytotoxic T cells (CD8) 

(Kampen et al., 2006). B cells in the fetus only make up 1% of total lymphocytes 
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compared to the 4% at one week after birth and to the 10% in mature calves (Kampen 

et al., 2006). This results in the lack of any endogenous antibody response until 2 to 4 

weeks of age making the ingestion of colostrum extremely important in providing an 

immunologic defense to the calf during the first 2 to 4 weeks of life (Chase et al., 

2008). 

There is no trans-placental transfer of antibodies in cattle causing calves to be 

born nearly agammaglobulinemic. Therefore, ingestion of colostrum to obtain 

immunoglobulins for protection against infectious diseases (Barrington, 2001) 

becomes a major role in the newborn calf’s defense mechanism. Colostrum is defined 

as the first secretions from the mammary gland present after birth. Adequate 

colostrum transfer has been recognized to have beneficial effects on the calf's immune 

response during early life (Furman-Fratczak et al., 2011). Constituents of colostrum 

include concentrated levels of antibodies and many immune cells. Although 

colostrum contains several types of immunoglobulins (IgG, IgA, and IgM), IgG 

constitutes approximately 85% of the immunoglobulins in colostrum (Butler, 1983). 

Neutrophils and macrophages have reduced phagocytic capacity in neonates, but this 

is increased after the ingestion of colostrum (Menge et al., 1998). It has been 

demonstrated that feeding colostrum containing maternal leukocytes to the neonatal 

calf accelerates the activation of lymphocytes in the calf (Reber et al., 2008) and 

enhances the development of antigen-presenting function (Reber et al., 2005). The 

cells are known to enhance defense mechanisms in the newborn through transfer of 

cell-mediated immunity, passive transfer of antibodies, local phagocytic activity in 

the digestive tract, and increased lymphocyte activity (Duhamel, 1993).  
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A calf’s gastrointestinal tract is designed to temporarily allow the absorption of 

large molecules, including immunoglobulins, during the first 48 h of life after intake 

of colostrum (Besser et al., 1985). The absorptive capacity begins to decrease after 6 

to 12 h of birth and ends by 48 h probably as a result of developmental processes 

occurring in the enterocytes (Sangild, 2003). Failure of passive transfer of immunity 

(FPTI) occurs when the calf fails to absorb an adequate quantity of immunoglobulin. 

FPTI has been linked with increased calf morbidity and mortality and a reduction in 

calf growth rate (Donovan et al., 1998). Rajaraman et al. (1997) demonstrated that 

there is a decrease in the immune response of neonatal calves up to d 3, reaching the 

lowest level. By d 5, their responses are back to the level of immune response seen at 

birth.  

Moreover, cytokines present in the colostrum are very important for the 

development of the calf immune system. A study with pigs demonstrated that 

cytokines from the colostrum are absorbed and can be detected in the blood of the 

piglet (Nguyen et al., 2007). Among cytokines present in bovine colostrum, IL-1β, 

IL-6, and TNF-α are associated with pro-inflammatory responses and may aid in the 

recruitment of neonatal lymphocytes into the gut, thereby promoting normal immune 

development (Chase et al., 2008).  

Neonatal corticosteroid levels must be high in order to increase colostrum 

absorption (Sangild, 2003). Therefore, situations such as cold stress, HS, dystocia, 

and premature birth that inhibit the release of cortisol by the neonate, also lead to 

inhibition of absorption of colostrum (Chase et al., 2008). Prenatal stressors also 

modify T- and B- cell function of the offspring (Merlot et al., 2008). Donovan et al. 
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(1986) observed lower plasma Ig concentrations in calves during summer months in 

Florida and higher mortality of those calves up to 6 months of age. In addition to 

compromising placental development and fetal growth of the offspring, maternal HS 

during late gestation has been shown to affect the immune function. Sows under HS 

during the last 2 wk of gestation had piglets with lower circulating IgG in colostrum 

compared to piglets from sows under a thermo neutral environment (Machado-Neto 

et al., 1987). Tao et al. (2012a) investigated the effect of dam HS during the final 

stage of gestation on the immune function of calves. Calves from HS cows had a 

lower serum IgG concentration compared to calves born to cooled cows during late 

gestation. Additionally, calves from uncooled cows had a lower proliferation rate 

indicating an impaired lymphocyte function after prenatal HS, but had no difference 

in anti-ovalbumin antibody production suggesting there was no influence on B-cell 

function (Tao et al., 2012a).  

 

Alleviating Negative Effects of Heat Stress 

 Beede and Collier (1986) identified three management strategies to minimize the 

negative effects of HS including physical modification of the environment, genetic 

development of heat-tolerant breeds, and nutritional management practices. Shade is 

effective in protecting cows from solar radiation, but does not alter the air 

temperature or relative humidity around the cows to maximize sensible routes of heat 

loss (West, 2003). Shade usage was increased in cows exposed to increasing ambient 

air temperatures and solar radiation (Kendall et al., 2006). Studies comparing shade 

with no shade demonstrated improved milk yield and reproduction, as well as reduced 
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respiration rate (Kendall et al., 2007) and rectal temperature in shaded dairy cows 

(Collier et al., 2006). Schütz et al. (2011) concluded dairy cattle prefer to use shade in 

summer despite sprinklers being more efficient in decreasing heat load and insect 

avoidance behavior. During summer months, shaded cows had lower respiration rates 

and core body temperature than cows without shade (Blackshaw and Blackshaw, 

1994). However, the benefit of shade on dairy cow performance depends on the breed 

(Collier et al., 1981) and coat color (Blackshaw and Blackshaw, 1994), and 

geographic location. Shade reduces heat load of cattle (Gaughan et al., 2010) and 

mortality in extreme weather conditions (Busby and Loy, 1996). In West Texas, feed 

intake and growth performance were significantly increased when shade was 

provided to feedlot cattle (Mitlohner et al., 2001).  

 Additionally, cooling systems using the principle of evaporation, combining water 

misting and forced ventilation through use of spray and fans, are used to alleviate heat 

load on dairy cows. The cooling system was shown to improve milk production and 

reproductive performance in cattle (Ryan et al., 1992). Dairy cattle allowed access to 

sprinklers had increased milk production (Turner et al., 1992), improved reproduction 

and improved conversion of feed to milk (Wolfenson, 2009). Cattle also utilize 

sprinkler systems to reduce body heat when they stand to eat. These systems have 

been shown to decrease milk yield loss, decrease mortality in postparturient cows, 

improve reproductive parameters, and improve appetite (Shultz and Morrison, 1987). 

Kendall et al. (2007) found that shade and sprinklers reduce respiration rate and body 

temperature in dairy cattle when THI was greater than 69.  
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In cattle, slick hair coats play an important role in heat tolerance (Olson et al., 

2003). Bos taurus-type cattle are less adapted to tropical and subtropical climates than 

B. indicus or Zebu-type cattle. Compared to Bos taurus cattle, Sharma et al. (1983) 

reported that Jerseys were more resistant to HS effects on milk production than 

Holsteins. In a more recent study, an interaction between breed and temperature 

effected respiration rates and panting scores (Brown-Brandl et al., 2006). Angus and 

MARC III breeds had the highest respiration rate and panting score, followed by 

Gelbvieh, then Charolais. These results were likely due to the hide color differences 

that affected the adsorption of solar radiation. The effects of HS that may be 

experienced during high ambient temperatures appear to be restored when night 

temperatures fall (Akari et al., 1987), thus suggesting short-term tolerance of HS for 

cows under commercial production conditions. 

West (2003) reviewed the nutritional strategies for managing dairy cows under 

HS and concluded nutritional strategies that support yield, metabolic, and physiologic 

disturbances induced by HS will help the cow maintain a normal metabolism leading 

to an enhanced performance. Additionally, as parturition approaches, diets with less 

roughage given 3 wk before calving may reduce the decline in DMI and lipid 

mobilization (Kanjanapruthipong et al., 2010). Moreover, supplementation of Niacin 

(vitamin B3) is known to increase peripheral vasodilation to increase sweat gland 

activity in dairy cattle (Di Constanzo et al., 1997). Zimbelman et al. (2013) followed 

with a recent study establishing lactating cows with Niacin reduced vaginal 

temperature, but had different effects on milk production depending on the period of 

study which may be due to a more severe HS in period 1 or a more advanced stage of 
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lactation in period 2. Supplemental saturated fatty acids improved milk yield and milk 

fat content and reduced peak rectal temperatures in mid-lactation heat-stressed dairy 

cows (Wang et. al., 2010). Friedman et al. (2012) concluded adding progesterone post 

insemination improved fertility of cooled dairy cows during the summer months, 

which suggest low progesterone concentration may be associated with reduced 

fertility during HS.  

 

Summary  

 Heat stress has detrimental effects on the immune system in both poultry and 

cattle. Thus, the research conducted herein strived to determine the effect of HS on 

the immune response in laying hens and dairy cattle. Through the first experiment, 

access to cooled perches were used to determine their efficiency in reducing the 

negative effects of both acute HS and high ambient temperatures on laying hens 

throughout the summer months. The second experiment studied the indirect HS from 

the dam and whether it affected the offspring's immune system.  Collectively, the 

experiments allowed an overall comparison of how HS affects the immune system in 

avian and ruminant species. 

 

 



35 
 

Literature Cited 
 
 
 
Adin, G., A. Gelman, R. Solomon, I. Flamenbaum, M. Nikbachat, E. Yosef, A. Zenou, A. 

Shamay, Y. Feuermann, S. J. Mabjeesh, and J. Miron. 2009. Effects of cooling 
dry cows under heat load conditions on mammary gland enzymatic activity, 
intake of food water, and performance during the dry period and after parturition. 
Livest. Sci.124:189-195. 

 
Aengwanich, W. 2008. Pathological changes and the effects of ascorbic acid on lesion 

scores of bursa of fabricius in broilers under chronic heat stress. Res. J. Vet. Sci. 
1:62-66. 

 
Ahmad, T., T. Khalid, T. Mushtaq, M. A. Mirza, A. Nadeem, M. E. Babar, and G. 

Ahmad. 2008. Effect of potassium chloride supplementation in drinking water on 
broiler performance under heat stress conditions. Poult. Sci. 87:1276-1280. 

 
Ajakaiye, J. J., A. Perez-Bello, and A. Mollineda-Trujillo. 2011. Impact of heat stress on 

egg quality in layer hens supplemented with l-ascorbic acid and dl-tocopherol 
acetate. Vet. Archiv. 81: 119-132. 

 
Akari, C. T., R. M. Nakamura, L. W. G. Kam, and N. Clarke. 1984. The effect of level of 

lactation diurnal temperature patterns of dairy cattle in hot environments. J. Dairy 
Sci. 67:1752-1760. 

 
Akari, C. T., R. M. Nakamura, and L. W. G. Kam. 1987. Diurnal temperature sensitivity 

of dairy cattle in a naturally cycling environment. J. Therm. Biol. 12:23-26. 
 
Argov N., U. Moallem, and D. Sklan. 2005. Summer heat stress alters the mRNA 

expression of selective-uptake and endocytotic receptors in bovine ovarian cells. 
Theriogenology 64:1475-1489. 

 
Attia, Y. A., R. A. Hassan, and E. M. Qota. 2009. Recovery from adverse effects of heat 

stress on slow-growing chicks in the tropics 1: Effect of ascorbic acid and 
different levels of betaine. Trop. Anim. Health Prod. 41:807-18.  

 
Attia, Y. A., R. A Hassan, A. E. Tag El-Din, and B. M. Abou-Shehema. 2011. Effect of 

ascorbic acid or increasing metabolizable energy level with or without 
supplementation of some essential amino acids on productive and physiological 
traits of slow-growing chicks exposed to chronic heat stress. J. Anim. Physiol. 
Anim. Nutr. 95:744-755.  

 
 
 

 



36 
 

Avendaño-Reyes, L., F. D. Alvarez-Valenzuela, A. Correa-Calderón, J. S. Saucedo-
Quintero, P. H. Robinson, and J. G. Fadel. 2006. Effect of cooling Holstein cows 
during the dry period on postpartum performance under heat stress conditions. 
Livest. Sci. 281: 2535-2547. 

 
Azad, K. M. A., M. Kikusato, A. M. Hoque, and M. Toyomizu. 2010. Effect of chronic 

heat stress on performance and oxidative damage in different strains of chickens. 
J. Poult. Sci. 47:333-337. 

 
Bahrami, A., M. M. Moeini, S. H. Ghazi, and M. R. Targhibi. 2009. The effect of 

different levels of organic and inorganic chromium supplementation on immune 
function of broiler chicken under heat-stress conditions. J. Appl. Poult. Res. 
21:209-215. 

 
Bakshi, V. P., and N. H. Kalin. 2000. Corticotropin-releasing hormone and animal 

models of anxiety: Gene–environment interactions. Biol. Psych. 48:1175-1198. 
 
Barrington, G. M. 2001. Bovine neonatal immunology. Vet. Clin. North Am. Food Anim. 

Pract. 17:463-476.  
 
Bartlett, J. R., and M. O. Smith. 2003. Effects of different levels of zinc on the 

performance and immunocompetence of broilers under heat stress. Poult. Sci. 
82:1580-1588. 

 
Bauman, D. E., W. B. Currie. 1980. Partitioning of nutrients during pregnancy and 

lactation: A review of mechanisms involving homeostasis and homeorhesis J. 
Dairy Sci. 63:1514-1529. 

 
Beede, D. K., and R. J. Collier. 1986. Potential nutritional strategies for intensively 

managed cattle during thermal stress. J. Anim. Sci. 62:543-554. 
 
Belay, T., and R. G. Teeter. 1993. Broiler water balance and thermobalance during 

thermoneutral and high ambient temperature exposure. Poult. Sci. 72:116-124. 
 
Bell, A. W., B. W. McBride, R. Slepetis. R. J. Early, and W. B. Currie. 1989. Chronic 

heat stress and prenatal development in sheep: I. Conceptus growth and maternal 
plasma hormones and metabolites. J. Anim. Sci. 67:3289. 

 
Bernabucci, U., N. Lacetera, L. H. Baumgard, R. P. Rhoads, B. Ronchi, and A. Nardone. 

2010. Metabolic and hormonal acclimation to heat stress in domesticated 
ruminants. Anim. 4:1167-1183. 

 
Besser, T. E., A. E. Garmedia, T. C. McGuire, and C. C. Gay. 1985. Effect of colostral 

immunoglobulin G1 and immunoglobulin M concentrations on immunoglobulin 
absorption in calves. J. Dairy Sci. 68:2033-2037.  

 



37 
 

Bianca, W. 1965. Reviews of the progress of dairy science. Section A. Physiology. Cattle 
in a hot environment. J. Dairy Res. 32:291-345. 

 
Blackshaw, J. K., and A. W. Blackshaw. 1994. Heat stress in cattle and the effect of 

shade on production and behaviour: a review. Aust. J. Exp. Agric. 34:285-295. 
 
Bohmanova, J., I. Misztal, and J. B. Cole. 2007. Temperature-humidity indices as 

indicators of milk production losses due to heat stress. J. Dairy Sci. 90:1947-1956. 
 
Boonkum, W., I. Misztal, M. Duangjinda, V. Pattarajinda, S. Tumwasorn, and J. Sanpote. 

2011. Genetic effects of heat stress on milk yield of Thai Holstein crossbreds. J. 
Dairy Sci. 94:487-492. 

 
Borges, S. A., A. V. Fischer da Silva, A. Majorka, D. M. Hooge, and K. R. Cummings. 

2004. Physiological responses of broiler chickens to heat stress and dietary 
electrolyte balance (sodium plus potassium minus chloride, milliequivalents per 
kilogram). Poult. Sci. 83:1551-1558. 

 
Braastad, B. O. 1998. Effects of prenatal stress on behaviour of offspring of laboratory 

and farmed mammals. App. Anim. Beh. Sci. 61:159-180. 
 
Brown-Brandl, T. M., R. A. Eigenberg, and J. A. Nienaber. 2006. Heat stress risk factors 

of feedlot heifers. Livestock Sci. 105:57-68. 
 
Busby, D., and D. Loy. 1996. Heat stress in feedlot cattle: Producer Survey Results. Beef 

Research Report. A.S. Leaflet R1348. Ames, IA, Iowa State University. 
 
Butler, J. E. 1983. Bovine immunoglobulins: An augmented review. Vet. Immunol. 

Immunopathol. 4:43-152. 
 
Cahaner, A., J. A. Ajuh, M. Siegmund-Schultze, Y. Azoulay, S. Druyan, and A. V. 

Zarate. 2008. Effects of the genetically reduced feather coverage in naked neck 
and featherless broilers on their performance under hot conditions. Poult. Sci. 
87:2517-2527. 

 
Casaro, A. P. E., J. W. Kendrick, and P. C. Kennedy. 1971. Response of the bovine fetus 

to bovine viral diarrhea-mucosal disease virus. Am. J. Vet. Res. 32:1543-1562. 
 
Cavestany, D., A. B. Wishy, and R. H. Foole. 1985. Effect of season and high 

environmental temperature on fertility of Holstein cattle. J. Dairy Sci. 68:1471-
1478. 

 
Charles, D. R. 2002. Responses to the thermal environment. Charles and Walker (eds) 

Poult. Environment Problems, a guide to solutions. Nottingham Univ. Press, UK, 
1-16. 

 



38 
 

Chase, C. C. L., D. J. Hurley, and A. J. Reber. 2008. Neonatal immune development in 
the calf and its impact on vaccine response. Vet. Clin. Food Anim. 24:87-104.  

 
Chen, X., A. L. Fahy, A. S. Green, M. J. Anderson, R. P. Rhoads, and S. W. Limesand. 

2010. β2-Adrenergic receptor desensitization in perirenal adipose tissue in fetuses 
and lambs with placental insufficiency-induced intrauterine growth restriction. J. 
Physiol. 588:3539-3549. 

 
Cheng, H. W., R. Freire, and E. A. Pajor. 2004. Endotoxin stress responses in chickens 

from different genetic sickness, behavioral, and physical responses. Poult. Sci. 
83:707-715. 

 
Cheng, H. W., and W. M. Muir. 2007. Mechanisms of aggression and production in 

chickens: Genetic variations in the functions of serotonin, catecholamine, and 
corticosterone. Worlds Poult. Sci. J. 63:233-254. 

 
Collier, R. J., R. M. Eley, A. K. Sharma, R. J. Pereira, and D. E. Buffington. 1981. Shade 

management in subtropical environment for milk yield and composition in 
Holstein and Jersey Cows. J. Dairy Sci. 64: 844-849. 

 
Collier, R. J., S. G. Doelger, H. H. Head, W. W. Thatcher, and C. J. Wilcox. 1982. 

Effects of heat stress during pregnancy on maternal hormone concentrations, calf 
birth weight and postpartum milk yield of Holstein cows. J. Anim. Sci. 54: 309-
319. 

 
Collier, R. J., G. E. Dahl, and M. J. VanBaale. 2006. Major advances associated with 

environmental effects on dairy cattle. J. Dairy Sci. 89:1244-1253. 
 
Compean ,G. L., M. Itza Ortiz, J. P. Ramon Ugalde, J. R. Sangines Garcia, B. Ortiz de la 

Rosa, R. Zamora-Bustillos, A. Reyes Ramirezand, and H. Magana-Sevilla . 2011. 
Escherichia coli vaccine and laying hens mortality after a heat stress challenge in 
tropical climate. J. Anim. Vet. Advs. 10:96-99. 

 
Coppock, C. E., and J. W. West. 1986. Nutritional adjustments to reduce heat stress in 

lactating cows. Proc. Georgia Nutr. Conf. 19-26. 
 
Cortese, V. S. 2009. Neonatal Immunology. Vet. Clin. Food Anim. 25:221-227. 
 
Daghir, N. J. 2009. Nutritional strategies to reduce heat stress in broilers and broiler 

breeders. Lohmann Information 44:6-15. 
 
Dahl, G. E., S. Tao, and I. M. Thompson. 2012. Lactation Biology Symposium: Effects 

of photoperiod on mammary gland development and lactation. J. Anim. Sci. 
90:755-760. 

 

 



39 
 

Deeb, N., and A. Cahaner. 1999. The effects of naked neck genotypes, ambient 
temperature, and feeding status and their interactions on body temperature and 
performance of broilers. Poult. Sci. 78:1341-1346. 

 
Deng, W., X. F. Dong, J. M. Tong, and Q. Zhang. 2012. The probiotic Bacillus 

licheniformis ameliorates heat stress-induced impairment of egg production, gut 
morphology, and intestinal mucosal immunity in laying hens. Poult. Sci. 91:575-
582. 

 
Dikmen, S., and P. J. Hansen. 2009. Is the temperature-humidity index the best indicator 

of heat stress in lactating dairy cows in a subtropical environment? J. Dairy Sci. 
92:109-116. 

 
Di Constanzo, A., J. N. Spain, and D. E. Spiers. 1997. Supplementation of nicotinic acid 

for lactating Holstein cows under heat stress conditions. J. Dairy Sci. 80:1200-
1206. 

 
do Amaral, B. C., E. E. Connor, S. Tao, M. J. Hayen, J. W. Bubolz, and G. E. Dahl. 2009. 

Heat stress abatement during the dry period: Does cooling improve transition into 
lactation? J. Dairy Sci. 92:5988-5999. 

 
do Amaral, B. C., E. E. Connor, S. Tao, M. J. Hayen, J. W. Bubolz, and G. E. Dahl. 2010. 

Heat stress abatement during the dry period influences prolactin signaling in 
lymphocytes. Domest. Anim. Endocrinol. 38:38-45. 

 
do Amaral, B. C., E. E. Connor, S. Tao, M. J. Hayen, J. W. Bubolz, and G. E. Dahl. 2011. 

Heat stress abatement during the dry period influences metabolic gene expression 
and improves immune status in the transition period of dairy cows. J. Dairy Sci. 
94:86-96.  

 
Donovan, G. A., L. Badinga, R. J. Collier, C. J. Wilcox, and R. K. Braun. 1986. Factors 

influencing passive transfer in dairy calves. J. Dairy Sci. 69:754-759.  
 
Donovan, G. A., I. R. Dohoo, D. M. Montgomery, and F. L. Bennett. 1998. Associations 

between passive immunity and morbidity and mortality in dairy heifers in Florida, 
USA. Prev. Vet. Med. 34:31-46. 

 
Dreiling C. E., F. S. Carman, and D. E. Brown. 1991. Maternal endocrine and fetal 

metabolic responses to heat stress. J. Dairy Sci. 74:312-327. 
 
Duhamel, G. E. 1993. Characterization of bovine mammary lymphocytes and their 

effects on neonatal calf immunity. UMI Dissertation Services, Ann Arbor (MI). 
 

 



40 
 

Early, R. J., B. W. McBride, I. Vatnick, and A. W. Bell. 1991. Chronic heat stress and 
prenatal development in sheep: II. Placental cellularity and metabolism. J. Anim. 
Sci. 69:3610-3616. 

 
Ebeid, T. A., T. Suzuki, and T. Sugiyama. 2012. High temperature influences eggshell 

quality and calbindin-D28k localization of eggshell gland and all intestinal 
segments of laying hens. Poult. Sci. 91:2282-2287.  

 
Ellsworth, M. A., K. K. Fairbanks, and S. Behan. 2006. Fetal protection following 

exposure to calves persistently infected with bovine viral diarrhea virus type 2 
sixteen months after primary vaccination of the dams. Vet. Ther. 7:295-304. 

 
Estevez, I., N. Tablante, R. L. Pettit-Riley, and L. Carr. 2002. Use of cool perches by 

broiler chickens. Poult. Sci. 81:62-69. 
 
Estevez, I. 2007. Density allowances for broilers: Where to set the limits? Poult. Sci. 

86:1265-1272. 
 
Fahey, A. G., and H. W. Cheng. 2008. Group size and density effects on physical indices 

and cell-mediated immunity in two genetic lines of white leghorn layers. Poult. 
Sci. 87:2500-2504. 

 
Faurie, A. S., D. Mitchell, and H. P. Laburn. 2001. Feto-maternal relationships in goats 

during heat and cold exposure. Exp. Physiol. 86:199-204. 
 
Fedde, M. R. 1998. Relationship of structure and function of the avian respiratory system 

to disease susceptibility. Poult Sci. 77:1130-1138. 
 
Felver-Gant, J. N., L. A. Mack, R. L. Dennis, S. D. Eicher, and H. W. Cheng. 2012. 

Genetic variations alter physiological responses following heat stress in 2 strains 
of laying hens. Poult. Sci. 91:1542-1551. 

 
Ferket, P. R., and M. A. Qureshi. 1992. Performance and immunity of heat-stressed 

broilers fed vitamin and electrolyte supplemented drinking water. Poult. Sci. 
71:88-97. 

 
Franco-Jimenez, D. J., S. E. Scheideler, R. J. Kittok, T. M. Brown- Brandl, L. R. 

Robeson, H. Taira, and M. M. Beck. 2007. Differential effects of heat stress in 
three strains of laying hens. J. Appl. Poult. Res. 16:628-634. 

 
Friedman, E., Z. Roth, H. Voet, Y. Lavon, and D. Wolfenson. 2012. Progesterone 

supplementation postinsemination improves fertility of cooled dairy cows during 
the summer. J. Dairy Sci. 95:3092-3099. 

 

 



41 
 

Fulford, A. J., and M. S. Harbuz. 2005. An introduction to the HPA. In: Steckler T, Kalin 
NH, Reul JM (Eds.), Handbook of Stress and the Brain. Elsevier, Amsterdam, the 
Netherlands, pp. 43-66. 

 
Furman-Fratczak, K., A. Rzasa, and T. Stefaniak. 2011. The influence of colostral 

immunoglobulin concentration in heifer calves’ serum on their health and growth. 
J. Dairy Sci. 94:5536-5543. 

 
Garcı´a-Ispierto, I., F. Lo´pez-Gatius, P. Santolaria, J. L. Ya´niz, C. Nogareda, M. 

Lo´pez-Be´jar, and F. De Rensis. 2006. Relationship between heat stress during 
the peri-implantation period and early fetal loss in dairy cattle. Theriogenology 
65:799-807.  

 
Garriga, C., R. R. Hunter, C. Amat, J. M. Planas, M. A. Mitchell, and M. Moreto. 2006. 

Heat stress increases apical glucose transport in the chicken jejunum. Am. J. 
Physiol. Reg. Integ. Comp. Physiol. 290:R195-R201. 

 
Gaughan, J. B., T. L. Mader, S. M. Holt, and A. Lisle. 2008. A new heat load index for 

feedlot cattle. J. Anim. Sci. 86:226-234. 
 
Gaughan J. B., S. M. Holt, and R. H. Pritchard. 2009. Assessment of housing systems for 

feedlot cattle during summer. Prof. Anim. Sci. 25:633-639. 
 
Gaughan J. B., S. Bonner, I. Loxton, T. L. Mader, A. Lisle, and R. Lawrence. 2010. 

Effect of shade on body temperature and performance of feedlot steers. J. Anim. 
Sci. 88:4056-4067. 

 
Ghazi, S. H., M. Habibian, M. M. Moeini, and A. R. Abdolmohammadi.  2012. Effects of 

different levels of organic and inorganic chromium on growth performance and 
immunocompetence of broilers under heat stress. Biol. Trace Elem. Res. 146:309-
317. 

 
Gioannini, T. L., and J. P. Weiss. 2007. Regulation of interactions of Gram-negative 

bacterial endotoxins with mammalian cells. Immunol. Res. 39:249-260. 
 
Gonzalez-Esquerra, R., and S. Leeson. 2006. Physiological and metabolic responses of 

broilers to heat stress – implications for protein and acid nutrition. Worlds Poult. 
Sci. J. 62:282-295. 

 
Gross, W. B., and H. S. Siegel. 1983. Evaluation of the heterophil/ lymphocyte ratio as a 

measure of stress in chickens. Avian Dis. 27:972-978. 
 
Gu, X. H., Y. Hao, and X. L. Wang. 2012. Overexpression of heat shock protein 70 and 

its relationship to intestine under acute heat stress in broilers: 2. Intestinal 
oxidative stress. Poult. Sci. 91:790-799.  

 



42 
 

Habibian M., S. Ghazi, M. M. Moeini, and A. Abdolmohammadi. 2013. Effects of 
dietary selenium and vitamin E on immune response and biological blood 
parameters of broilers reared under thermoneutral or heat stress conditions. Int. J. 
Biometeorol. 10:1007. 

 
Hahn, G. L. 1999. Dynamic responses of cattle to thermal heat loads. J. Anim. Sci. 77:10-

20. 
 
Hahn G., J. B. Gaughan, T. L. Mader, and R. A. Eigenberg. 2009. Thermal indices and 

their applications for livestock environments. In livestock energetics and thermal 
environmental management (ed. JA DeShazer), pp. 113–130. Amer. Society of 
Agri. and Biol. Engineers. 

 
Haller, J., S. Millar, J. van de Schraaf, R. E. de Kloet, and M. R. Kruk. 2000. The active 

phase-related increase in corticosterone and aggression are linked. J. 
Neuroendocrinol. 12:431-436. 

 
Halliwell, R. E. W., and N. T. Gorman. 1989. Neonatal immunology. In: Veterinary 

clinical immunology WB. Saunders Co., Philadelphia. 193-205. 
 
Hansen, P. J. 2009. Effects of heat stress on mammalian reproduction. Phil. Trans. R. 

Soc. B. 364: 3341-3350. 
 
Hawser, M. A., M. D. Knob, and J. A. Wroth. 1986. Variation of neutrophil function with 

age in calves. Am. J. Vet. Res. 47:152-153. 
 
Henken, A. M., A. M. J. Groote Schaarsberg, and M. G. B. Nieuwland. 1982. The effect 

of environmental temperature on immune response and metabolism of the young 
chicken. 3. Effect of environmental temperature on the humoral immune response 
following injection of sheep red blood cells.Poult. Sci. 62:51-58. 

 
Hester, P. Y., W. M. Muir, J. V. Craig, and J. L. Albright. 1996. Group selection for 

adaption to multi-hen cages: Production traits during heat and cold exposures. 
Poult. Sci. 75:1308-1314. 

 
Holz, L. E., G. W. McCaughan, V. Benseler, P. Bertolino, and F. G. Bowen. March 2008. 

Liver Tolerance and the Manipulation of Immune Outcomes. Inflammatory 
Allergy Drug Targets. 7:6-18. 

 
Horowitz, M. 2002. From molecular and cellular to integrative heat defense during 

exposure to chronic heat. Comp. Biochem. and Physiol. Part A 131:475-483. 
 
Imik, H., H. Ozlu, R. Gumus, M. A. Atasever, S. Urgar, and M. Atasever. 2012. Effects 

of ascorbic acid and alpha-lipoic acid on performance and meat quality of broilers 
subjected to heat stress. Br. Poult. Sci. 53:800-808.  

 



43 
 

Intergovernmental Panel on Climate Change (IPCC: AR4), 2007. The Intergovernmental 
Panel on Climate Change 4th Assessment Report. 
http://www.ipcc.ch/publications_and_data/publications _and_data_reports.htm#2. 

 
Janovick, N. A., and J. K. Drackley. 2010. Prepartum dietary management of energy 

intake affects postpartum intake and lactation performance by primiparous and 
multiparous Holstein cows. J. Dairy Sci. 93:3086-3102. 

 
Jeurissen, S. H. M. 1993. The role of various compartments in the chicken spleen during 

an antigen-speific humoral response. Immun. 80:29-33. 
 
Kadim, I. T., B. H. A. Al-Qamshui, O. Mahgoub, W. Al- Marzooqi, and E. H. Johnson. 

2008. Effect of seasonal temperatures and ascorbic acid supplementation on 
performance of broiler chickens maintained in closed and open-sided houses. Int. 
J. Poult. Sci. 7:655-660. 

 
Kampen, A. H., I. Olsen, T. Tollersrud, A. K. Storset, and A. Lund. 2006. Lymphocyte 

subpopulations and neutrophil function in calves during the first 6 months of life. 
Vet. Immunol. Immunopathol. 113:53-63. 

 
Kanjanapruthipong, J., N. Homwong, and N. Buatong. 2010. Effects of prepartum 

roughage neutral detergent fiber levels on periparturient dry matter intake, 
metabolism, and lactation in heat-stressed dairy cows. J. Dairy Sci. 93:2589-2597. 

 
Kelley, K. W. 1983. Immunobiology of domestic animal as affected by hot and cold 

weather. Trans. Am. Soc. Agric. Eng. 26:834-840. 
 
Kendall, P. E., P. P. Nielsen, J. R. Webster, G. A. Verkerk, R. P. Littlejohn, and L. R. 

Matthews. 2006. The effects of providing shade to lactating dairy cows in a 
temperate climate. Livest. Sci. 103:148-157. 

 
Kendall, P. E., G. A. Verkerk, J. R. Webster, and C. B. Tucker. 2007. Sprinklers and 

shade cool cows and reduce insect-avoidance behavior in pasture-based dairy 
systems. J. Dairy Sci. 90:3671-3680. 

 
Khan, R. U., S. Naz, Z. Nikousefat, M. Selvaggi, V. Laudadio, and V. Tufarelli. 2012. 

Effect of ascorbic acid in heat-stressed poultry. Worlds Poult. Sci. J. 68:477-490. 
 
Khan, S. H. and R. Sardar. 2005. Effect of vitamin C supplementation on the 

performance of desi, fayoumi and commerical white leghorn chicken exposed to 
heat stress. Pakistan Vet. J. 25:2005. 

 
Khattak, F. M., T. Acamovic, N. Sparks., T. N. Pasha, M. H. Joiya, Z. Hayat, and Z. Ali. 

2012. Comparative Efficacy of Different Supplements Used to Reduce Heat 
Stress in Broilers. Pakistan J. Zool. 44:31-41. 

 

http://www.ipcc.ch/publications_and_data/publications%20_and_data_reports.htm%232


44 
 

Kim, K. H. H., D. H. Kim, Y. K. Oh, S. S. Lee, H. J. Lee, D. W. Kim, Y. J. Seol, and N. 
Kimura. 2010. Productivity and energy partition of late lactation dairy cows 
during heat exposure. Anim. Sci. J. 81:58-62. 

 
Konjufca V. K., W. G. Bottje, T. K. Bersi, and G. F. Erf. 2004. Influence of dietary 

vitamin E on phagocytic functions of macrophages in broilers. Poult Sci. 83:1530-
4. 

 
Korte, S. M., J. M. Koolhaas, J. C. Wingfield, and B. S. McEwen. 2005. The Darwinian 

concept of stress: Benefits of allostasis and costs of allostatic load and the trade-
offs in health and disease. Neurosci. Biobehav. Rev. 29:3-38. 

 
Kregel, K. C. 2002. Heat shock proteins: Modifying factors in physiological stress 

responses and acquired thermotolerance. J. Appl. Physiol. 92:2177-2186. 
 
Laburn, H. P., A. Faurie, K. Goelst, and D. Mitchell. 2002. Effects on fetal and maternal 

body temperatures of exposure of pregnant ewes to heat, cold, and exercise. J. 
Appl. Physiol. 92:802-808. 

 
Lacetera, N., U. Bernabucci, D. Scalia, B. Ronchi, G. Kuzminsky, and A. Nardone. 2005. 

Lymphocyte functions in dairy cows in hot environment. Int. J. Biometeorol, 
50:105-110. 

 
Lacetera, N., U. Bernabucci, D. Scalia, L. Barisico, P. Morera, and A. Nardone. 2006. 

Heat stress elicits different responses in peripheral blood mononuclear cells from 
Brown Swiss and Holstein cows. J. Dairy Sci. 89:4606-4612. 

 
Lara, L. J., and Rostagno, M. H. 2013. Impact of Heat Stress on Poultry Production. 

Anim. 3:356-369.  
 
Lay, D. C. Jr, T. H. Friend, R. D. Randel, O. C. Jenkins, D. A. Neuendorff, G. M. Kapp, 

and D. M. Bushong. 1996. ACTH dose response and some physiological effects 
of transportation on pregnant Brahman cattle. J. Anim. Sci. 74:1806-1811. 

 
Lee, S. H., and D. B. Corry. 2004. Homing alone? CD18 in infectious and allergic 

disease. Trends. Mol. Med. 10:258-262. 
 
Legrand, A., K. E. Schütz, and C. B. Tucker. 2011. Using water to cool cattle: Behavioral 

and physiological changes associated with voluntary use of cow showers. J. Dairy 
Sci. 94: 3376-3386.  

 
Lemerle, C., and M. E. Goddard. 1986. Assessment of heat stress in dairy cattle in Papua 

New Guinea. Top. Anim. Health Prod. 18:232-242. 
 

 



45 
 

Leos, R. A., M. J. Anderson, X. Chen, J. Pugmire, K. A. Anderson, and S. W. Limesand. 
2010. Chronic exposure to elevated norepinephrine suppresses insulin secretion in 
fetal sheep with placental insufficiency and intrauterine growth restriction. Am. J. 
Physiol. Endocrinol. Metab. 298:E770-E778. 

 
Lin, H., L. F. Wang, J. L. Song, Y. M. Xie, and Q. M. Yang. 2002. Effect of Dietary 

Supplemental Levels of Vitamin A on the Egg Production and Immune Responses 
of Heat-Stressed Laying Hens. Poult. Sci. 81:458-465. 

 
Lin, H., E. Decuypere, and J. Buyse. 2004a. Oxidative stress induced by corticosterone 

administration in broiler chickens (Gallus gallus domesticus). 1. Chronic 
exposure. Comp. Biochem. Physiol. B. 139:737-744. 

 
Lin, H., K. Mertens, B. Kemps, T. Govaerts, B. De Ketelaere, J. De Baerdemaeker, E. 

Decuypere, and J. Buyse. 2004b. New approach of testing the effect of heat stress 
on eggshell quality: Mechanical and material properties of eggshell and 
membrane. Br. Poult. Sci. 45:476-482. 

 
Lin, H., E. Decuypere, and J. Buyse. 2006. Acute heat stress induces oxidative stress in 

broiler chickens. Comp. Biochem. Physiol. A. 144:11-17. 
 
Lomborg, S. R., L. R. Nielsen, P. M. H. Heegaard, and S. Jacobsen. 2008. Acute phase 

protein in cattle after exposure to complex stress. Vet. Res. Commun. 32:575-582. 
 
López-Meza, J. E., L. Lara-Zárate, and A. Ochoa-Zarzosa. 2010. Effects of prolactin on 

innate immunity of infectious disease. Open Neuroendocrinol. J. 3:175-179. 
 
LPHSI, 1990. Livestock and Poultry Heat Stress Indices Agriculture Engineering 

Technology Guide. Clemson University, Clemson, SC 29634, USA. 
 
Lundborg, G. K., P. A. Oltenacu, D. O. Maizon, E. C. Svensson, and P. G. A. Liberg. 

2003. Dam-related effects on heart girth at birth, morbidity and growth rate from 
birth to 90 days of age in Swedish dairy calves. Prev. Vet. Med. 60:175-190. 

 
Machado-Neto, R., C. N. Graves, and S. E Curtis. 1987. Immunoglobulins in piglets from 

sows heat-stressed prepartum. J. Anim. Sci. 65:445-455. 
 
Mack, L. A., J. N. Felver-Gant, R. L. Dennis, and H. W. Cheng. 2013. Genetic variation 

alters production and behavioral responses following heat stress in 2 strains of 
laying hens. Poult. Sci. 92:285-294. 

 
Mader, T. L., M. S. Davis, and T. Brown-Brandl. 2006. Environmental factors 

influencing heat stress in feedlot cattle. J. Anim. Sci. 84:712-719. 
 

 



46 
 

Mader, T. L., L. J. Johnson, and J. B. Gaughan. 2010. A comprehensive index for 
assessing environmental stress in animals. J. Anim. Sci. 88:2153-2165. 

 
Mahmoudnia, N., and Y. Madani. 2012. Effect of Betaine on performance and carcass 

composition of broiler chicken in warm weather - A review. Int. J. Ag. Sci. 2:675-
683. 

 
Marketon, J. I. W., and R. Glaser. 2008. Stress hormones and immune function. Cell. 

Immunol. 282:16-26. 
 
Mashaly, M. M., G. L. Hendricks, M. A. Kalama, A. E. Gehad, A. O. Abbas, and P. H 

Patterson. 2004. Effect of heat stress on production parameters and immune 
responses of commercial laying hens. Poult. Sci. 83:889-894. 

 
Mayer, G. 2006. Immunology - Chapter One: Innate (non-specific) Immunity. 

Microbiology and Immunology On-Line Textbook. USC School of Medicine. 
Retrieved 1 January 2007. 

 
Mazzi, C. M., J. A. Ferro, M. I. T. Ferro, V. J. M. Savino, A. A. D. Coelho, and M. 

Macari. 2003. Polymorphism analysis of the hsp70 stress gene in broiler chickens 
(Gallus gallus) of different breeds. Genet. Mol. Biol. 26:275-281. 

 
McLean, J. A. 1963. The partition of insensible losses of body weight and heat from 

cattle under various climatic conditions. J. Physiol. (Lond.) 167:427-434. 
 
Menge, C., B. Neufeld, W. Hirt, N. Schmeer, R. Bauerfeind, G. Baljer, and L. H. Wieler. 

1998. Compensation of preliminary blood phagocyte immaturity in the newborn 
calf. Vet. Immunol. Immunopathol. 62:309-321.  

 
Merlot, E., D. Couret, and W. Otten. 2008. Prenatal stress, fetal imprinting and immunity. 

Brain Behav. Immun. 22:42-51. 
 
Mitlohner, F., J. L. Morrow, J. W. Dailey, S. Wilson, M. Galyean, M. Miller, and J. 

McGlone. 2001. Shade and water misting effects on behavior, physiology, 
performance, and carcass traits of heat-stressed feedlot cattle. J. Anim. Sci. 
79:2327-2335. 

 
Moeini, M. M., A. Bahrami, S. Ghazi, and M. R. Targhibi. 2011. The effect of different 

levels of organic and inorganic chromium supplementation on production 
performance, carcass traits and some blood parameters of broiler chicken under 
heat stress condition. Biol. Trace Elem. Res. 144:715-724. 

 
 
 

 



47 
 

Mogenet, L. Y., and B. J. Youbicier-Simo. 1998. Determination of reliable biochemical 
parameters of heat stress, and application to the evaluation of medications: 
example of erythromycin E. Pages 538-541 in Proceedings of 10th European 
Poultry Conference, Jerusalem, Israel. 

 
Möller, B., and P. M. Villiger. 2006. Inhibition of IL-1, IL-6, and TNF-alpha in immune-

mediated inflammatory diseases. Springer Semin. Immunopathol. 27:391-408. 
 
Money, P., A. F. Kelley, S. W. Gould, J. Denholm-Price, E. J. Threlfall, and M. D. 

Fielder. 2010. Cattle, weather and water: mapping Escherichia coli 0157:H7 
infections in humans in England and Scotland. Environ. Microbiol. 12:2633-2644. 

 
Muiruri, H. K., and P. C. Harrison. 1991. Effect of roost temperature on performance of 

chickens in hot ambient environments. Poult. Sci. 70:2253-2258.  
 
Muiruri, H. K., P. C. Harrison, and H. W. Gonyou. 1991. The use of water-cooled roosts 

by hens for thermoregulation. Appl. Anim. Behav. Sci. 28:333-339. 
 
Mujahid, A., K. Sato, Y. Akiba, and M. Toyomizu. 2006. Acute heat stress stimulates 

mitochondrial superoxide production in broiler skeletal muscle, possibly via 
down-regulation of uncoupling protein content. Poult. Sci. 85:1259-1265. 

 
Mujahid A, Y. Akiba, and M. Toyomizu. 2009. Olive oil-supplemented diet alleviates 

acute heat stress-induced mitochondrial ROS production in chicken skeletal 
muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297:R690-R698. 

 
Nardone, A., B. Ronchi, N. Lacetera, M. S. Ranieri, and U. Bernabucci. 2010. Effects of 

climate changes on animal production and sustainability of livestock systems. 
Livestock Science 130:57-69. 

 
Naseem, S., M. Younus, B. Anwar, A. Ghafoor, A. Aslam, and S. Akhter. 2005. Effect of 

ascorbic acid and acetylsalicylic acid supplementation on performance of broiler 
chicks exposed to heat stress. Int. J. Poult. Sci. 4:900-904. 

 
Nguyen, T. V., L. Yuan, M. S. Azevedo, K. I. Jeong, A. M. Gonzalez, and L. J. Saif. 

2007. Transfer of maternal cytokines to suckling piglets: in vivo and in vitro 
models with implications for immunomodulation of neonatal immunity. Vet. 
Immunol. Immunopathol. 117:236-248.  

 
Nichelmann, M. 1983. Some characteristics of the biological optimum temperature. J. 

Thermal Biol. 8:69-71. 
 
Nienaber, J. A., and G. L, Hahn. 2007. Livestock production system management 

responses to thermal challenges. Int. J. of Biometeorology 52:149-157. 
 

 



48 
 

Niu Z. Y., F. Z. Liu, Q. L. Yan, and L. Li. 2009a. Effects of different levels of selenium 
on growth performance and immunocompetence of broilers under heat stress. Arc. 
Anim. Nutr. 63:56-65. 

 
Niu, Z. Y., F. Z, Liu, Q. L. Yan, and W. C. Li. 2009b. Effects of different levels of 

vitamin E on growth performance and immune responses of broilers under heat 
stress. Poult. Sci. 88:2101-2107. 

 
NRC, 1981. Effects of Environment on Nutrient Requirements of Domestic Animals. 

National Academic Press, Washington, D.C. p. 30. 
 
Okelo, P. O., L. E. Carr, P. C. Harrison, L. W. Douglass, V. E. Byrd, C. W. Wabeck, P. 

D. Schreuders, F. W. Wheaton, and N. G. Zimmermann. 2003. Effectiveness of a 
novel method to reduce heat stress in broilers: a cool roost system. Amer. Soc. of 
Ag. Engin. 46:1675-1683. 

 
Olson, T. A., C. Lucena, C. C. Chase, and A. C. Hammond. 2003. Evidence of a major 

gene influencing hair length and heat tolerance in Bos taurus cattle. J. Anim. Sci. 
81:80-90. 

 
Ominski, K. H., A. D. Kennedy, K. M. Wittenberg, and S. A. Moshtaghi-Nia. 2002. 

Physiological and production responses to feeding schedule in lactating dairy 
cows exposed to short-term, moderate heat stress. J. Dairy Sci. 85:730-737. 

 
Ortiz, M. F. I., C. L. Garcia, and A. F. J. Castro, 2006. Feed intake, cause and percentage 

of mortality in commercial poultry farms under the climatic conditions of the state 
of Yucatan, Mexico. Vet. Mex., 37:379-390. 

 
Overton, M. W., W. M. Sischo, G. D. Temple, and D. A. Moore. 2002. Using time-lapse 

video photography to assess dairy cattle lying behavior in a free-stall barn. J. 
Dairy Sci. 85:2407-2413. 

 
Pare, J., J. G. Fecteau, and M. Fortin. 1998. Seroepidemiologic study of Neospora 

caninum in dairy herds. J. Am. Vet. Med. Assoc. 213:1595-1597. 
 
Pickel, T., B. Scholz, and L. Schrader. 2011. Roosting behavior in laying hens on perches 

of different temperatures: Tradeoffs between thermoregulation, energy budget, 
vigilance and resting, Appl. Anim. Behav. Sci. 134:164-169. 

 
Post, J., J. M. Rebel, and A. A. ter Huurne. 2003. Physiological effects of elevated 

plasma corticosterone concentrations in broiler chickens. An alternative means by 
which to assess the physiological effects of stress. Poult. Sci. 82:1313-1318. 

 

 



49 
 

Prieto, M. T., and J. L Campo. 2010. Effect of heat and several additives related to stress 
levels on fluctuating asymmetry, heterophil: lymphocyte ratio, and tonic 
immobility duration in White Leghorn chicks. Poult. Sci. 89:2071-2077. 

 
Puvadolpirod, S., and J. P. Thaxton. 2000. Model of physiological stress in chickens 1. 

Response parameters. Poult. Sci. 79:363-369.  
 
Quinteiro-Filho, W. M., A. Ribeiro, V. Ferraz-de-Paula, M. L Pinheiro, M. Sakai, L. R. 

As, A. J. Ferreira, and J. Palermo-Neto. 2010. Heat stress impairs performance 
parameters, induces intestinal injury, and decreases macrophage activity in broiler 
chickens. Poult. Sci. 89:1905-1914. 

 
Quinteiro-Filho, W. M., A. V. Gomes, M. L. Pinheiro, A. Ribeiro, V. Ferraz-de-Paula, 

C.S. Astolfi-Ferreira, A. J. Ferreira, and J. Palermo-Neto. 2012. Heat stress 
impairs performance and induces intestinal inflammation in broiler chickens 
infected with Salmonella Enteritidis. Avian Pathol. 41:421-427. 

 
Rajaraman, V., B. J. Nonnecke, and R. L. Horst. 1997. Effects of replacement of native 

fat in colostrum and milk with coconut oil on fat-soluble vitamins in serum and 
immune function in calves. J. Dairy Sci. 80:2380-2390. 

 
Ray, D. E., T. J. Halbach, and D. V. Armstrong. 1992. Season and lactation number 

effects on milk-production and reproduction of dairy-cattle in Arizona. J. Dairy 
Sci. 75:2976-2983.  

 
Reber, A. J., A. R. Hippen, and D. J. Hurley. 2005. Effects of the ingestion of whole 

colostrum or cell-free colostrum on the capacity of leukocytes in newborn calves 
to stimulate or respond in one-way mixed leukocyte cultures. Am. J. Vet. Res. 
66:1854-1860.  

 
Reber, A. J., A. Lockwood, A. R. Hippen, and D. J. Hurley. 2006. Colostrum induced 

phenotypic and trafficking changes in maternal mononuclear cells in peripheral 
blood leukocyte model for study of leukocyte transfer to the neonatal calf. Vet. 
Immunol. Immunopathol. 109:139-150.  

 
Reber, A. J., D. C. Donovan, J. Gabbard, K. Galland, M. Aceves-Avila, K. A. Holbert, L. 

Marshall, and D. J. Hurley. 2008. Transfer of maternal colostral leukocytes 
promotes development of the neonatal immune system II. Effects on neonatal 
lymphocytes. Vet. Immunol. Immunopathol. 123:305-313. 

 
Regnier, J. A., K. W. Kelley, and C. T. Gaskins. 1980. Acute thermal stressors and 

synthesis of antibodies in chickens. Poult. Sci. 59:985-990.  
 

 



50 
 

Reilly, W. M., K. W. Koelkebeck, and P. C. Harrison. 1991. Performance evaluation of 
heat-stressed commercial broilers provided water-cooled floor perches. Poult. Sci. 
70:1699-1703.  

 
Richards, D. F., M. Fernandez, J. Caulfield, and C. M. Hawrylowicz. 2001. 

Glucocorticoids drive human CD8(+) T cell differentiation towards a phenotype 
with high IL-10 and reduced IL-4, IL-5 and IL-13 production. Eur. J. Immunol. 
30:2344-2354. 

 
Roenfeldt, S. 1998. You can’t afford to ignore heat stress. Dairy Manage. 35:6-12. 
 
Roth Z., R. Meidan, R. Braw-Tal, and D. Wolfenson. 2000. Immediate and delayed 

effects of heat stress on follicular development and its association with plasma 
FSH and inhibin concentration in cows. J. Reprod. Fertil. 120:83-90. 

 
Rozenboim, I., E. Tako, O. Gal-Garber, J. A. Proudman, and Z. Uni. 2007. The effect of 

heat stress on ovarian function of laying hens. Poult. Sci. 86:1760-1765. 
 
Ruzal, M., D. Shinder, I. Malka, and S. Yahav. 2011. Ventilation plays an important role 

in hens' egg production at high ambient temperature. Poult. Sci. 90:856-862. 
 
Ryan, D. P., M. P. Boland, E. Kopel, D. Armstrong, L. Munyakazi, R. A. Godke, and R. 

H. Ingraham. 1992. Evaluating two different evaporative cooling management 
systems for dairy cows in a hot, dry climate. J. Dairy Sci. 75:1052-1059. 

 
Sahin, K., and O. Kucuk. 2003. Zinc supplementation alleviates heat stress in laying 

Japanese quail. J. Nutr. 133:2808-2811. 
 
Sahin K., N. Sahin, O. Kucuk, A. Hayirli, and A. S. Prasad. 2009. Role of dietary zinc in 

heat-stressed poultry: a review. Poult. Sci. 88:2176-2183.  
 
Sahin, N., F. Akdemir, M. Tuzcu, A. Hayirli, M. O. Smith, and K. Sahin. 2010. Effects of 

supplemental chromium sources and levels on performance, lipid peroxidation 
and proinflammatory markers in heat-stressed quails Animal Feed Science and 
Technology. 159:143-149. 

 
Sangild, P. T. 2003. Uptake of colostral immunoglobulins by the compromised newborn 

farm animals. Acta Vet. Scand. Suppl. 98:105-122. 
 
Sartori R., R. Sartor-Bergfelt, S. A. Mertens, J. N. Guenther, J. J. Parrish, and M. C. 

Wiltbank. 2002. Fertilization and early embryonic development in heifers and 
lactating cows in summer and lactating and dry cows in winter. J. Dairy Sci. 
85:2803-2812.  

 

 



51 
 

Scholander, P. F., R. Hock, V. Walters, and L. Irving. 1950. Adaptation to cold in Arctic 
and tropical mammals and birds in relation to body temperature, insulation, and 
basal metabolic rate. Biol. Bull. 99:259-271. 

 
Schütz, K. E., N. R. Cox, and L. R. Matthews. 2008. How important is shade to dairy 

cattle? Choice between shade or lying following different levels of lying 
deprivation. Appl. Anim. Behav. Sci. 114:307-318. 

 
Schütz, K. E, A. R. Rogers, N. R. Cox, J. R. Webster, and C. B. Tucker. 2011. Dairy 

cattle prefer shade over sprinklers: Effects on behavior and physiology. J. Dairy 
Sci. 94:273-283. 

 
Sharma, A. K., L. A. Rodriguez, G. Mekonnen, C. J. Wilcox, K. C. Bachman, and R. J. 

Collier. 1983. Climatological and genetic effects on milk composition and yield. 
J. Dairy Sci. 66:119-126. 

 
Shini, S., P. Kaiser, A. Shini, and W. L. Bryden. 2008. Differential alterations in 

ultrastructural morphology of chicken heterophils and lymphocytes induced by 
corticosterone and lipopolysaccaride. Vet. Immunol. Immunopathol. 122:83-93. 

 
Shultz, T. A., and S. R. Morrison. 1987. Manger misting improves dairy cows’ appetite. 

Calif. Agric. 41:12-13. 
 
Singh H., S. Sodhi, and R. Kaur. 2006. Effects of dietary supplements of selenium, 

vitamin E or combinations of the two on antibody responses of broilers. Br. Poult. 
Sci. 47:714-719. 

 
Sohail, M. U., M. E Hume, J. A. Byrd, D. J. Nisbet, A. Ijaz, A. Sohail, M. Z. Shabbir, and 

H. Rehman. 2012. Effect of supplementation of prebiotic mannan-
oligosaccharides and probiotic mixture on growth performance of broilers 
subjected to chronic heat stress. Poult. Sci. 91:2235-2240. 

 
Soleimani, A. F., I. Zulkifli, A. R. Omar, and A. R. Raha. 2011. Physiological responses 

of 3 chicken breeds to acute heat stress. Poult. Sci. 90:1435-1440. 
 
Star, L., E. Decuypere, H. K. Parmentier, and B. Kemp. 2008. Effect of single or 

combined climatic and hygienic stress in four layer lines: 2. Endocrine and 
oxidative stress responses. Poult. Sci. 87:1031-1038. 

 
Star, L., H. R. Juul-Madsen, E. Decuypere, M. G. Nieuwland, G. de Vries Reilingh, H. 

van den Brand, B. Kemp, and H. K. Parmentier. 2009. Effect of early life thermal 
conditioning and immune challenge on thermotolerance and humoral immune 
competence in adult laying hens. Poult. Sci. 88:2253-2261.  

 

 



52 
 

St-Pierre, N. R., B. Cobanov, and G. Schnitkey. 2003. Economic losses from heat stress 
by US livestock industries. J. Dairy Sci. 86:E52-E77. 

 
Stull, C. L., L. L. McV. Messam, C. A. Collar, N. G. Peterson, A. R. Castillo, B. A. Reed, 

K. L. Andersen, and W. R. VerBoort. 2008. Precipitation and temperature effects 
on mortality and lactation parameters of dairy cattle in California. J. Dairy Sci. 
91:4579-4591. 

 
Tao, S., J. W. Bubolz, B. C. do Amaral, I. M. Thompson, M. J. Hayen, S. E. Johnson, and 

G. E. Dahl. 2011. Effect of heat stress during the dry period on mammary gland 
development J. Dairy Sci. 94:5976-5986. 

 
Tao, S., A. P. A. Monteiro, I. M. Thompson, M. J. Hayen, and G. E Dahl. 2012a. Effect 

of late-gestation maternal heat stress on growth and immune function of dairy 
calves. J. Dairy Sci. 95:7128-7136. 

 
Tao, S., I. M. Thompson, A. P. A. Monteiro, M. J. Hayen, L. J. Young, and G. E Dahl. 

2012b. Effect of cooling heat-stressed dairy cows during the dry period on insulin 
response. J. Dairy Sci. 95:5035-5046. 

 
Tao, S., and G. E. Dahl. 2013. Invited review: Heat stress effects during late gestation on 

dry cows and their calves. J. Dairy Sci. 96:4079-4093. 
 
Tao, X., and H. Xin. 2003. Acute synergistic effects of air temperature, humidity, and 

velocity on homeostasis of market–size broilers. Trans. ASAE 46:491-497. 
 
Thom, E. C. 1959. The discomfort index. Weatherwise 12:57-60. 
 
Thompson, I. M., and G. E. Dahl. Dry period seasonal effects on the subsequent lactation. 

2012. Prof. Anim. Sci. 28:628-631. 
 
Thorn, S. R., T. R. H. Regnault, L. D. Brown, P. J. Rozance, J. Keng, M. Roper, R. B. 

Wilkening, W.W. Hay Jr., and J.E. Friedman. 2009. Intrauterine growth 
restriction increases fetal hepatic gluconeogenic capacity and reduces messenger 
ribonucleic acid translation initiation and nutrient sensing in fetal liver and 
skeletal muscle. Endocrinology 150:3021-3030. 

 
Tirawattanawanich, C., S. Chantakru, W. Nimitsantiwong, and S. Tongyai. 2011. The 

effects of tropical environmental conditions on the stress and immune responses 
of commercial broilers, Thai indigenous chickens, and crossbred chickens. Appl. 
Poult. Res. 20:409-420. 

 
Tizard, I. 1992. Immunity in the fetus and newborn. In: Veterinary immunology, an 

introduction (4th edition) WB. Sanders Co., Philadelphia. 248-260. 
 

 



53 
 

Toyomizu, M., M., A. Tokuda Mujahid, and Y. Akiba. 2005. Progressive alteration to 
core temperature, respiration and blood acid-base balance in broiler chickens 
exposed to acute heat stress. J. Poult, Sci. 42:110-118. 

 
Tucker, C. B., A. R. Rogers, and K. E. Schütz. 2008. Effect of solar radiation on dairy 

cattle behaviour, use of shade and body temperature in a pasture-based system. 
Appl. Anim. Behav. Sci. 109:141-154. 

 
Turner, L. W., J. P. Chastain, R. W. Hemken, R. S. Gates, and W. L. Crist. 1992. 

Reducing heat stress in dairy cows through sprinkler and fan cooling. App. Eng. 
Agric. 8:251-256. 

 
Urdaz, J. H., M. W. Overton, D. A. Moore, and J. E. P. Santos. 2006. Technical note: 

Effects of adding shade and fans to a feedbunk sprinkler system for preparturient 
cows on health and performance. J. Dairy Sci. 89:2000-2006. 

 
Wang, L., X. L. Piao, S. W. Kim, X. S. Piao, Y. B. Shen, and H. S. Lee. 2008. Effects of 

Forsythia suspensa extract on growth performance, nutrient digestibility, and 
antioxidant activities in broiler chickens under high ambient temperature. Poult. 
Sci. 87:1287-1294.  

 
Wang, J. P., D. P. Bu, J. Q. Wang, X. K. Huo, T. J. Guo, H. Y. Wei, L. Y. Zhou, R. R. 

Rastani, L. H. Baumgard, and F. D. Li. 2010. Effect of saturated fatty acid 
supplementation on production and metabolism indices in heat-stressed mid-
lactation dairy cows. J. Dairy Sci. 93:4121-4127. 

 
Warriss, P. D., A. Pagazaurtundua, and S. N. Brown. 2005. Relationship between 

maximum daily temperature and mortality of broiler chickens during transport 
and lairage. Br. Poult. Sci. 46:647-651. 

 
Werling, D., and T. W. Jungi. 2002. Toll-like receptors linking innate and adaptive 

immune response. Vet. Immunol. Immunopathol. 91:1-12.  
 
West, J. W. 2003. Effects of heat-stress on production in dairy cattle. J. Dairy Sci. 

86:2131-2144.  
 
Wheelock, J. B., R. P. Rhoads, M. J. VanBaale, S. R. Sanders, and L. H. Baumgard. 

2010. Effects of heat stress on energetic metabolism in lactating Holstein cows. J. 
Dairy Sci: in press. 

 
Wolfenson, D., Y. F. Frei, N. Snapir, and A. Berman. 1981. Heat stress effects on 

capillary blood flow and its redistribution in the laying hen. Pflugers Arch. 
390:86-93. 

 

 



54 
 

Wolfenson, D., Z. Roth, and R. Meidan. 2000. Impaired reproduction in heat-stressed 
cattle: basic and applied aspects. Anim. Rep. Sci.  60-61:535-547. 

 
Wolfenson, D. 2009. Impact of Heat Stress on Production and Fertility of Dairy Cattle. 

Proceedings of the Tri-State Dairy Nutrition Conference, 5559. 
 
Yahav, S., S. Goldfeld, I. Plavnik, and S. Hurwitz, 1995. Physiological responses of 

chickens and turkeys to relative humidity during exposure to high ambient 
temperature. J. Therm. Biol. 20:245-253. 

 
Yahav, S., A. Straschnow, I. Plavnik, and S. Hurwitz, 1997. Blood system response of 

chickens to changes in environmental temperature. Poult. Sci. 76:627-633. 
 
Yahav, S., D. Lugar, A. Cahaner, M. Dotan, M. Ruzan, and S. Hurwitz. 1998. 

Thermoregulation in naked neck chickens subjected to different ambient 
temperatures. Br. Poult. Sci. 39:133-138. 

 
Yardibi, H., K. Oztabak, and G. Turkay. 2009. The Metabolic Effect of Vitamin E 

Supplementation to the Diets of Laying Hens under Heat Stress. J. Anim. Vet. 
Advs. 8:912-916.  

 
Zhao, J. P., H. C. Jiao, Y. B. Jiang, Z. G. Song, X. J. Wang, and H. Lin. 2012. Cool perch 

availability improves the performance and welfare status of broiler chickens in 
hot weather. Poult. Sci. 91:1775-1784. 

 
Zhao, J. P., H. C. Jiao, Y. B. Jiang, Z. G. Song, X. J. Wang, and H. Lin. 2013. Cool 

perches improve the growth performance and welfare status of broiler chickens 
reared at different stocking densities and high temperatures. Poult. Sci. 92:1962-
1971.  

 
Zimbelman, R. B., R. J. Collier, and T. R. Bilby. 2013. Effects of utilizing rumen 

protected niacin on core body temperature as well as milk production and 
composition in lactating dairy cows during heat stress. Anim. Feed Sci. and Tech. 
180:26-33. 

 
Zucker, B. A., S. Trojan, and W. Müller. 2000. Airborne gram-negative bacterial flora in 

animal houses. J. Vet. Med. B. 47:37-46.  

 



55 
 

 

 

 
 
 
 

CHAPTER II 
 
 
 

THE EFFECT OF COOLED PERCHES INSTALLED IN CAGES ON IMMUNE 
RESPONSE IN WHITE LEGHORN HENS DURING HEAT STRESS 

 



56 
 

Abstract 
 

 
 
 Heat stress (HS) is a common immune modulator across many species. The 

objective of this study was to determine if thermally cooled perches installed in 

conventional cages improve hen immunity during hot months of summer. White Leghorn 

chickens, 16 wk of age, were randomly assigned to 18 cages with 9 hens per cage. Cages 

were arranged as 3 banks with 3 tiers of cages per bank and 2 cages per tier. Each bank 

was assigned to 1 of the following treatments: 1) cooled perches (CP), 2) perches with 

ambient air (AP), and 3) cages without perches (NP). Hens were subjected to ambient 

temperatures throughout the experimental period from 16 to 32 wk of age with the 

exception of 4 h of an acute heating episode at 33.3ºC at 27 wk of age. The study was 

conducted from June through September in Indiana (18-33°C). The heterophil to 

lymphocyte (H/L) ratio, plasma concentrations of total IgY and the cytokines of 

interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF- α) were determined after the 

acute HS episode and at 32 wk of age. The mRNA expressions of these cytokines as well 

as toll-like receptor-4 (TLR-4) and inducible nitric oxide synthase (iNOS) were examined 

in the spleen of 32 wk-old hens. Cooled perches were not successful in improving any 

physiological indicator of stress perhaps because the HS was too mild or insufficient in 

length during 2013 summer. However, CP hens had a lower H/L ratio than AP or NP at 

27 wk of age (P < 0.01) and it was still lower compared to NP hens (P < 0.05) at 32 wk 

of age, but not to AP hens. The lowered H/L ratio of CP hens suggests that they were able 

to cope with acute HS more effectively than hens without cooled perches. 

Key words: cooled perch, heat stress, immunity, hen, White Leghorn   

 



57 
 

Introduction 

 During summer, heat stress (HS) is predictably one of the main environmental 

stressors adversely affecting laying hens. When adult chickens are subjected to ambient 

temperatures greater than 37.8ºC, more heat gain than heat loss occurs leading to an 

increase in core body temperature, and possibly death (Sahin et al., 2009; Felver-Gant, 

2012). In laying hens, HS reduces BW gain (Scott and Balnave, 1988), feed intake 

(Franco-Jimenez et al., 2007), egg production (Whitehead et al., 1998), and egg quality 

(Mahmoud et al., 1996). 

 It is well established that high environmental temperatures affect the immune 

function in chickens causing immunosuppression (Subba Rao et al., 1970; Thaxton and 

Siegel, 1972; Niu et al., 2009). The degree of heat-induced immunosuppression depends 

on the breed and strain of the chickens (Regnier et al, 1980) as well as the length and 

intensity of the heat exposure (Henken et al., 1982; Kelley, 1983). In chickens, HS limits 

immunocompetence by suppressing antibody production (Mashaly et al., 2004) and 

altering the populations of immune cells, leading to an increase in the heterophil to 

lymphocyte (H/L) ratio which is used as an indicator of stress (Thaxton et al., 1968; 

Gross and Siegel, 1983; McFarlane and Curtis, 1989; Soleimani et al., 2011). With 

chickens having only rudimentary lymph nodes, they rely heavily on the bursa of 

Fabricius and the spleen as major immune organs. The bursa of Fabricius plays a key role 

in the development of the antibody-producing B lymphocytes (Mustonen et al., 2010) and 

the spleen is an important site for immune responses to antigens (Jeurissen, 1993). Hens 

with greater spleen weight have higher immunocompetence (Cheng et al., 2004). In 

addition, SW decreased in laying hens (Felver-Gant, 2012; Ghazi et al., 2012) and 
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broilers (Niu et al., 2009; Quinteiro-Filho et al., 2010) after exposure to high 

temperatures. An additional indicator of stress besides lymphoid organ regression is the 

production of pro-inflammatory cytokines (Kang et al. 2011); as immune mediators 

involved in cell signaling they are synthesized by a variety of cells including B- and T-

cell lymphocytes. Cytokines play an important role in regulating host immunity by 

coordinating the humoral (B-cell) and cell mediated immune (T-cell) responses. 

Examples of cytokines include the interleukin (IL) family and tumor necrosis factor-

alpha (TNF-α) produced by several immune cells including CD4 T-helper cells. The IL-1 

cytokine stimulates B- and T-cell development and differentiation. The TNF-α is 

synthesized by monocytes and acts as a cytotoxin promoting apoptosis leading to tumor 

regression. In addition to cytokines, there are 10 toll-like receptors (TLR) identified in 

the chicken (Kannaki et al., 2010). One of them being TLR-4 found on the membranes of 

macrophages and dendritic cells, responsible for recognizing conserved sections of 

invading antigens triggering the activation of immune cells. In addition, a non-specific 

immune defense mechanism that hens may use during stressful conditions is nitric acid. 

Nitric oxide synthases consist of a family of enzymes responding for producing nitric 

oxide from L-arginine. Because of an unpaired electron, the nitric oxide produced by the 

inducible isoform of nitric oxide synthase (iNOS) acts as a free radical, attacking and 

destroying antigens such as viruses, bacteria, tumors, and parasites.  Nitric oxide also 

influences inflammatory responses.  There are many types of cells that synthesize iNOS 

in response to cytokines (Guzik et al, 2003; Li et al., 2009).    

 The majority of hens are currently housed in conventional cages in the United 

States; however, egg producers are updating their facilities with cages that can eventually 
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be enriched with a nest, perches, scratch pad, and/or nail trim area. Introducing perches 

stimulates a variety of motor patterns (Bizeray et al., 2002) causing an increase in bone 

strength in laying hens (Appleby and Hughes, 1990; Duncan et al., 1992; Hester, 2014). 

Allowing access to cooled perches during the summer may help alleviate HS for laying 

hens during times of increased environmental temperatures. Hens have a natural tendency 

to perch for resting and protection. More than 25% of the heat produced by chickens can 

be lost through their feet by modulating blood flow (Hillman and Scott, 1989). Increased 

conductive heat transfer from the feet to a thermally controlled perch helped to relieve 

HS in laying hens (Reilly and Harrison, 1988). Broiler breeder hens (Muiruri et al., 1991) 

and broiler chickens (Reilly et al., 1991) had improved bird performance with access to 

cooled perches during high temperatures (Muiruri and Harrison, 1991; Reilly et al., 

1991). Broilers subjected to HS with access to cooled perches exhibited less panting and 

had less change of core body temperatures and increased BW (Zhao et al., 2012). Cooled 

perch availability increased BW gain and feed efficiency of broilers in high ambient 

temperatures regardless of stocking density (Zhao et al., 2013). In laying hens, perch 

temperature strongly influenced the bird's resting postures. Birds with access to cold 

perches had a higher percent of resting with their heads tucked backwards allowing for 

more coverage of un-feathered areas; indicating these birds were not subjected to HS 

(Pickel et al., 2011).  

 Currently, there is no study on cooled perches that evaluate the physiological 

responses of laying hens when exposed to high ambient temperatures. Therefore, the aim 

of the present study was to determine if cooled perches inhibit heat stress-induced 

immunological suppression in caged laying hens. Our hypothesis was that chickens with 
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cooled perches during hot weather will exhibit improved well-being indicators of 

decreased H/L ratios, down-regulation of splenic cytokines, TLR-4, and iNOS; with 

greater spleen weights and plasma IgY concentrations as compared to hens without 

access to cooled perches. 

 

Materials and Methods 

Birds and Management 

In the current study, 172 Hy-Line W36 White Leghorn female chickens at 16 wk 

of age were transported to the Layer Research Unit at Purdue University's Poultry 

Research Farm. The 162 healthy hens from the 172 hens with similar BW were leg 

tagged, individually weighed, and randomly assigned to layer cages at 9 hens per cage. 

Feeder and floor space allotments from 16 wk of age to the end of the study at 32 wk of 

age were 8.4 cm and 439 cm2 per hen, respectively. Two nipple drinkers were assigned to 

each laying cage. Dropping boards were located between tiers of cages. The manure was 

scraped from the boards as needed.  

 A pre-lay diet with calculated values of 3,009 kcal ME/ kg, 20.0% CP, 1.0% Ca, 

and 0.45% non-phytate P was fed from 16 to 17 wk of age. At 17 wk of age, chickens 

consumed a layer diet with 2,890 kcal ME/kg, 18.3% CP, 4.2% Ca, and 0.30% non-

phytate P until the end of the study at 32 wk of age. Throughout the study, hens had free 

access to feed and water.  

At 16 wk of age, light hours were gradually increased, achieving a photoperiod of 

16L: 8D by 30 wk of age, where it remained until termination of the study. The protocol 

was approved by the Purdue University Animal Care and Use Committee. 
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Treatments 

 One of 3 banks of cages was assigned randomly to 1 of the following treatments:  

(1) thermally cooled perches (CP), (2) perches with ambient air (AP), and (3) 

conventional cages without perches (NP). Within a bank of cages, there were 3 tiers 

(decks) with 2 cages per tier for a total of 6 cages per bank.  For the bank of cages 

assigned the cooled perch treatment, each tier had its own pump to distribute chilled 

water (10ºC) through the round galvanized steel pipe, 3.38 cm outside diameter (the 

perch), that ran parallel to the feeder. Holes were cut in the cage walls to allow for the 

passage of the perch pipe that was arranged in a loop. One loop was used for each tier. 

This looped arrangement provided 2 perches per cage giving each hen 16.9 cm of perch 

space. The cage dimensions and perch placement within the laying cages were reported 

previously (Hester et al., 2013; Figure 2.1). Perch height was 8.9 cm from the cage floor 

so the hens could perch without their heads hitting the cage ceiling and eggs could roll 

underneath the perches to the collection area. The front perch closest to the feeder 

received chilled water pumped directly from a common vertical manifold which was 

constructed of 13 cm polyvinyl chloride pipe that was 1.70 m tall (Figure 2.2). The back 

perch was the return loop that sent the water back to the common manifold to be re-

chilled. A chiller was used to cool the water in the manifold; it had its own independent 

thermostat which kept the water at 10ºC. A separate 4th pump continuously circulated the 

deionized water between the water chiller and the manifold. A sensor for monitoring air 

temperature was installed to the controller of each tier to activate the circulation of 

chilled water through the perch loop when ambient temperature reached 25ºC or to stop 

circulation of water when the ambient temperature fell below 25ºC. The bank of cages 
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that was randomly assigned the air perches were also arranged in a loop system as 

described for the cooled perches, but no water was pumped through these perches. Air 

temperature and relative humidity within the room, the cage, the water temperature of 

supply and return lines of the cooled perches, and the air temperature of the air perches 

were recorded using a wireless monitoring system (Gates et al., 2014).  

Evaporative cooling pads were not used at any time during the study to allow hens 

exposed naturally to hot summer days. The study was conducted in 2013 from June 

through September in Indiana. Chickens were exposed to ambient temperature 

throughout the study with the exception of an acute heating episode where the ambient 

temperature was elevated to a mean of 33.3ºC for 4 h at 27 wk of age by providing 

auxiliary heat. The heating episode was initiated 9 h following the beginning of their 

daily photoperiod after most hens had laid their eggs for that day.  

 

Sampling 

Two hens without eggs in their uterus, as determined through palpation, were 

randomly taken from each cage for sampling at 27 wk of age. The order of sampling was 

1 hen per cage, beginning with CP, then AP, and finally NP treatment. The sampling 

process was repeated using the same order of treatments but using a different hen from 

each cage. The sample collection began at 2 h post initiation of the 4 h acute heating 

episode to ensure all samples were collected within the acute HS period. A 4 mL blood 

sample was collected from each bird via the brachial vein within 2 min of being handled. 

The blood was collected into K3 EDTA-coated test tubes. A leg ring was placed on the 

right shank before returning the hen to its cage.  
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At 32 wk, 2 hens per cage without a leg ring were randomly removed from their 

cage and sampled using the same sequence order as described for the blood collection at 

27 wk of age. Hens were sedated by injecting 30 mg of sodium pentobarbital/kg of BW 

into the brachial vein. A 5 mL blood sample was collected into EDTA-coated test tubes 

from each hen by cardiac puncture. The hen was immediately killed by cervical 

dislocation and its spleen was collected and weighed, then stored at -80°C until further 

analysis.   

All blood samples were stored on ice and transported to the laboratory to be 

centrifuged at 700 x g for 20 min at 4°C. The supernatant plasma was collected and 

stored at -80°C until analysis.  

 

Quantitative Analysis of Blood Parameters 

Immediately following blood collection, duplicate blood smears were made per 

hen by generating a thin layer of cells along the slide at both 27 wk and 32 wk of age. 

After drying overnight, the slides were stained with Wright’s staining. Through light 

microscopy, heterophils and lymphocytes were differentiated based on a previous 

counting method (Walberg, 2001). Briefly, 100 white blood cells per slide, total 200 cells 

per hen, were counted, then the H/L ratio was calculated (Cheng et al., 2001b).  

 

Enzyme-Linked Immuno-Sorbent Assay 

Cytokines of IL-1β, IL-6, and TNF-α were measured using a commercially 

available ELISA kits (Life Sciences Advanced Technologies Inc.; St Petersburg, FL, 

USA; IL-1β, Catalog No. CSB-E11230Ch; IL-6, Catalog No. CSB-E08549Ch; TNF-α, 
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Catalog No. CSB-E11231Ch). The sample wells for IL-1β were pre-coated with goat-

anti-rabbit antibody. 50 µL of the concentrated plasma sample was added to the 

corresponding well. Reactions were initiated by adding 50 µL HRP (horseradish 

peroxidase) and 50 µL of chicken IL-1β antibody to each well. After 60 min of 

incubation at 37ºC and followed 3 washes, 50 µL of substrate A and 50 µL of substrate B 

were added to each well. The reaction was stopped by adding 50 µL of stop solution 

(dilute sulfuric acid). Samples were analyzed in duplicate with absorbance readings of 

450 nm. Curves were standardized through comparison with 0.5 ml of Chicken IL-1β 

standard at concentrations of 0, 1, 4, 16, 50, and 200. IL-1β present in sample plasma was 

reported at pg/ml. 

A chicken antibody specific to IL-6 was pre-coated onto the sample wells.  100 

µL of diluted plasma samples (1:10,000) were added to the corresponding well. After 2 h 

of incubation at 37ºC, the liquid was removed and 100 µL of Biotin-antibody (1x) was 

added to each well. After an additional 1 h incubation at 37ºC, the plate was washed 3 

times and then 100 µL of HRP-avidin (1x) was added to each well. After 5 washes, 90 

µL of TMB Substrate was added to each well. The reaction was stopped by adding 50 µL 

of stop solution to each well after 15 min of incubation at 37ºC. Samples were analyzed 

in duplicate with absorbance readings of 450 nm. Curves were standardized through 

comparison with 250 µL of chicken IL-6 standard at concentrations of 0, 15.6, 31.2, 62.5, 

125, 250, 500, and 1000. IL-6 present in sample plasma was reported at mg/ml. 

The sample wells for TNF-α were pre-coated with chicken-specific TNF-α. 50 µL 

of the concentrated plasma sample was added to the corresponding well. Followed by the 

addition of 50 µL HRP (horseradish peroxidase) to each well, there was a 40 min 
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incubation period at 37ºC. After 5 washes with included wash buffer, 50 µL of TMB 

Substrate was added to each well. The reaction was stopped by adding 50 µL of stop 

solution to each well after another 20 min incubation period at 37ºC. Samples were 

analyzed in duplicate with absorbance readings of 450 nm. Curves were standardized 

through comparison with 100 µL of chicken TNF-α standard at concentrations of 0, 0.27, 

0.82, 2.47, 7.41, 22.2, 66.7, and 200. TNF-α present in sample plasma was reported at 

pg/ml. 

Immunoglobulin Y was measured using a commercially available ELISA kit. 

(Bethyl Laboratories, Inc.; Montgomery, TX, USA; IgG Catalog No. E33-104). Plasma 

samples were initially diluted to 1:100,000 with included sample buffer (1X dilution 

buffer B). Sample wells were pre-coated with anti-chicken IgY antibody. Reactions were 

initiated by adding 100 µL of chicken IgY detection antibody to each well. Followed by 

the additions of 100 µL SA-HRP (streptavidin-conjugated horseradish peroxidase) and 

100 µL TMB Substrate Solution (3,3’,5,5’-tetramethylbenzidine) between washes. The 

reaction was stopped by adding 100 µL of stop solution (dilute sulfuric acid). Samples 

were analyzed in duplicate with absorbance readings of 450 nm. Curves were 

standardized through comparison with 500 ng/ml of chicken IgY standard through a 

serial dilution. IgY present in sample plasma was reported at mg/ml. 

 

Gene Expression 

Interleukin (IL)-1β, IL-6, TNF-α, iNOS, and TLR-4 mRNA expression in the 

spleen were detected by real-time PCR using the primers and probes (Table 2.1) 

developed elsewhere (Applied Biosystems) as reported previously (Felver-Gant et al., 
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2012). Data of the interested genes were expressed as ∆Ct in relative abundance to the 

reference gene, glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The method in 

determining the mRNA expression was similar to that described by Felver-Gant et al. 

(2012) using the same kits, but slightly different reagent quantities.  In short, after RNA 

extraction, reverse transcription was conducted using 61.5 µL of master mix, made of 

2.5µL of Multi-Scribe reverse transcriptase, 22 µL of 25 mM MgCl, 5 µl random 

hexamers, 2µL RNase inhibitor, 20 µl dNTPs, and 10 µL of TaqMan reverse 

transcription buffer provided in the TaqMan Reverse Transcription Reagent Pack 

(Applied Biosystems, Foster City, CA). The 61.5 µL of master mix was then added to the 

quantified RNA sample and RNase-free water (Ambion Inc.) for a total of 100 µL. 

Reverse transcription and amplification was done using the Hybaid PCR Express thermo 

cycler (Midwest Scientific, St. Louis, MO) under the same cyclic conditions previously 

used by Felver-Gant et al. (2012). Stock primers and probes were diluted to 10 µM 

solutions. The conditions for PCR were a ratio of 1.625 µL of TaqMan probe, 2.25 µL of 

gene- specific TaqMan forward and reverse primers each, 12.5 µL of PCR Mastermix 

(Applied Biosystems), 3.875 µL RNase-free water (Ambion Inc.), and 2.5 µL of sample 

cDNA. Cycling conditions for real-time PCR were also consistent with Felver-Gant et al. 

(2012). Samples were measured in duplicates and standards in triplicates with a standard 

deviation of less than 2.0 and a coefficient of variation less than 2.0%.  

 

Statistical Analysis  

Data from the randomized design were subjected to an ANOVA (Steel et al., 

1997) using the MIXED model procedure of the SAS Institute (2008). The fixed effect 
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was perch type. The cage was the experimental unit (6 cages per treatment). Subsampling 

error terms included tiers within bank (3 tiers per bank per treatment) and hens within 

cages within tiers (2 hens per cage per tier per treatment). Pooling of error terms occurred 

when P > 0.25. The data were normally distributed and reported as least square means ± 

SEM. Significant treatment effects were subjected to the SLICE option (Winer, 1971). 

Significance was set at P < 0.05 for all statistical analysis. 

 

Results 

There was no significant difference in spleen weight among the hens regardless of 

treatments (P > 0.05, respectively; Table 2.2).  

The H/L ratio was lower in CP hens compared to both AP and NP hens at 27 wk 

of age following acute HS (P < 0.01, respectively; Figure 2.3), and the differences were 

continuously seen at 32 wk of age following fluctuating ambient temperatures (18-33°C; 

45%) but between CP hens and NP hens only (P < 0.05; Figure 2.3). The H/L ratio was 

not different between AP and NP hens following both acute HS at 27 or 32 wk of age (P 

> 0.05, respectively; Figure 2.3).  

Total IgY concentrations were not different among hens regardless of treatments 

after the acute HS episode at 27 wk of age (P > 0.05; Table 2.3); however following 

accumulated chronic HS at 32 wk of age, total IgY concentrations were significantly 

lower in both CP hens and AP hens compared to NP hens (P < 0.05, respectively; Table 

2.3).  

There were no differences in the plasma concentrations of IL-1β, IL-6, and TNF-α 

among treatments at 27 wk of age (P > 0.05; Table 2.3). In addition, there were no 
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treatment effects on IL-1β, IL-6, TNF-α, iNOS, and TLR-4 mRNA expression in spleen 

tissue among hens at 32 wk of age following accumulated HS (P > 0.05, respectively; 

Table 2.2).  

 

Discussion 

With the exception of the H/L ratio changes, giving access to thermally cooled 

perches during the 2013summer months had little effect on physiological parameters as 

indicated by spleen weight; plasma concentrations of IgY at 27 wk of age; plasma 

cytokines (IL-1ß, IL-6, and TNF-α) at both 27 wk and 32 wk of age); and the gene 

expressions of cytokines, TLR-4, and iNOS in the spleen at 32 wk of age. The mild 

summer of 2013 in West Lafayette, IN and the brevity of the acute heating episode (4 h) 

were most likely the reasons for little change in physiological parameters of hens at both 

27 and 32 wk of age. However, the acute heating episode at 27 wk of age did alter the 

behavior of the laying hens in a parallel study. Specifically, heat exposed hens in the 

current study with access to thermally cooled perches showed a delay in the onset of 

panting and wing spreading as compared to hens with access to air perches or hens with 

no perches. Furthermore, once panting and wing spreading was initiated in the hens with 

access to cooled perches, the proportion of hens panting was always lower during and 

immediately following the 4 h heating episode compared to the hens with access to the 

air perches as well as the hens without perches (Makagon et al., 2014). These behavioral 

changes during the heating episode where hens sought out the cooled perches causing 

less panting and wing spreading helped them cope with the stressful heating events as 

exemplified by reduced rectal temperature as compared to hens with no perch but not the 
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air perch (Liedtke et al., 2014). Moreover, with the behavioral changes, the current 

physiological results confirm previous findings that HS causes behavioral changes to 

occur earlier than physiological changes in chickens (Felver-Gant et al., 2012). It agrees, 

in general, that an animal response to a stressor (stimulation) is to initiate appropriate 

behavioral responses to avoid or minimize further damage or to adjust to the hot 

environment, then, as a disturbing factor persists, physiological and behavioral plasticity 

occurs (Young et al., 1989; Duckworth, 2007). 

Because chickens having only rudimentary lymph nodes, they rely heavily on the 

bursa of Fabricius and the spleen as major immune organs. The bursa of Fabricius plays a 

key role in the development of the antibody-producing B lymphocytes (Mustonen et al., 

2010) and the spleen is an important site for immune responses to antigens (Jeurissen, 

1993). The spleen plays an important role in antigen-presentation and storage of many 

immune cells. Therefore, immunosuppressed or chronically stressed birds classically 

have smaller lymphoid organs (Pope, 1991). Additionally, hens have been found to have 

higher immunocompetence with greater spleen weight (Cheng et al., 2004). As a result, 

spleen weight is a potential biomarker of an improved immune response during a chronic 

HS. Felver-Gant et al. (2012) reported HS reduced spleen weight in laying hens, 

coinciding with the previous findings of HS studies in broilers (Niu et al., 2009; 

Quinteiro-Filho et al., 2010). In the current study, spleen weight was not significantly 

different among birds in response to HS. The lack of results may be attributed to the low 

intensity of heat exposed during the summer of 2013, as reported previously that the 

outcome of HS effects in chickens is dependent on the exposed heat intensity and 

duration (Kelley, 1983). Temperatures beyond 30ºC are generally adequate enough to 
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provoke HS in poultry (Ensminger et al., 1990). However, in the current study, the lack 

of results indicate that the 4 h of acute HS at mean 33.3ºC and fluctuating ambient 

temperature throughout the 16 wk period, mean 24ºC, was not sufficient enough to see an 

effect on the spleen weight of hens.  

Regarding immune function, circulating catecholamines and corticosterone 

released by the adrenal glands that have undergone hypertrophy during stress bind to 

receptors of immune cells (Plaut, 1987), causing profound immunosuppression and 

lymphoid organ regression  (Pope, 1991; Brown-Borg et al., 1993; Hessing, 1995; 

Walrand et al., 2001; Wurtman, 2002). The numbers of B- and T- lymphocytes involved 

in antibody- and cell-mediated immunity, respectively, are reduced, and their functions 

are impaired under conditions of chronic stress (Siegel, 1995). As a result of 

glucocorticoid induced lymphopenia, an increase in the H/L ratio occurs in blood and is 

used as an indicator of stress (Gross and Siegel, 1983; Maxwell, 1993), a response that 

occurred in the current study with the acute heating episode. The H/L ratio is a 

dependable biomarker of HS in poultry (Thaxton et al., 1968); and it was increased in 

chickens after exposure to HS (Prieto and Campo, 2010; Soleimani et al., 2011; Felver-

Gant et al., 2012; Habibian et al., 2014). Given our understanding of the effect of HS on 

the H/L ratio, we expected that CP hens would have a lower H/L ratio, indicating a low 

and or delayed stress response. As expected, CP hens did have a lower H/L ratio than 

both NP and AP hens at 27 wk of age following acute HS, indicating the ability of cooled 

perches to improve hen immunity. The H/L ratio of hens at 32 wk of age suggest that 

perches per se may have alleviated long-term stress, especially for hens with access to  

thermally cooled perches because their H/L ratio was lower than hens without perches. 
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The H/L ratio response of hens with air perches was intermediate between hens with 

thermally cooled perches and hens without perches (Figure 2.3). Hens housed on a slat 

and littered floor with access to perches also had lower H/L ratios than hens without 

perches suggesting that perches helped reduce stress (Campo et al., 2005), but a similar 

effect was not reported for caged hens with and without perches (Barnett et al., 1997). 

Chronic HS inhibits antibody production to specific antigens in chickens 

(Mashaly et al., 2004). Immunoglobulins that have not been synthesized in response to 

antigenic challenge also decreased in response to HS (Al-Ghamdi, 2008). The short-term 

HS of the current study and the mild summer of 2013 were not severe enough to induce 

changes in IgY concentration at 27 wk of age perhaps due to an unsustained increase in 

the concentrations of corticosterone and catecholamines. The increase in IgY in NP hens 

at 32 wk of age is perplexing, especially since the increased H/L ratio of these hens 

without perches (Figure 2.3) would imply fewer B- cell lymphocytes available to produce 

less Ig. However, this could be attributed to IgY having a primary role for protecting the 

body against infection by binding to pathogens and activating further mechanisms to 

clear it from the body. Therefore, CP hens may have required less IgY, indicating access 

to cooled perches during HS caused less cell damage compared to the NP hens. 

Furthermore, similar to the present results, several negative correlations between IgY 

levels and physical or physiological well-being have been found including BW, feeding 

efficiency, egg production and survivability in birds (Siegal and Gross, 1980; Martin et 

al., 1989; Cheng et al., 2001b).  

In the current study, to further understand the effect of cooled perches used to 

alleviate HS through the hens’ immune system, cytokine plasma protein and mRNA 

 



72 
 

expression were observed at 27 wk following acute HS and at 32 wk of age following 

accumulated chronic HS. The interleukin 1 family consists of 11 cytokines that help 

regulate inflammatory and immune responses. In particular, IL-1α and -1β are well 

known for their pro-inflammatory effects. They also influence the thermoregulatory 

center of the hypothalamus causing core body temperature to increase leading to fever. In 

addition, IL-6 can cross the blood brain barrier and targets the hypothalamus to 

synthesize prostaglandins E2 leading to an increase in body temperature (Weber and 

Iacono, 1997). The TNF-α is another cytokine involved in inflammation that is capable of 

inducing fever (Dinarello et al., 1986). Laying hens subjected to 12 d of HS (34ºC) 

experienced an increase in serum levels of IL-1 and TNF-α (Deng et al., 2012), but the 

cooled perches of the current study were ineffective in lowering the levels of these 

cytokines during a heating episode (33.3ºC for 4 h) even though rectal temperature was 

lower in CP hens compared to hens without perches (Liedtke et al., 2014).  

Similar to plasma cytokines, the splenic expression of cytokines, TLR, and iNOS 

at 32 wk of age was unaffected in hens with access to cooled perches. Other studies with 

chickens have reported an up-regulation of some of these immune parameters perhaps 

because the stressors were more severe (Sahin et al., 2010; Deng et al., 2012; Xu et al., 

2014). Specifically, the expression of pro-inflammatory cytokines of IL-1β, IL-6, and IL-

18 in the spleen and blood lymphocytes increased in chickens subjected to a 

corticosterone-induced stress (Shini and Kaiser, 2009). The upregulation of TNF-α and 

iNOS in tissues of chickens could be indicators of stress as suggested by Kang et al. 

(2011) who reported that laying hens exposed to the stressors of overcrowding (high 

stocking density) in combination with feed restriction showed an increase in hepatic and 
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splenic lipopolysaccharide-induced TNF-α and hepatic but not splenic iNOS expression 

levels as compared to control hens. 

Even though we had hypothesized that hens given access to thermally cooled 

perches would demonstrate lower SW, prevent lymphoid regression, decrease cytokine 

production, and decrease the splenic expression of TLR and iNOS, the 4 h heating 

episode was not long enough nor was the summer of 2013 hot enough to induce much 

stress. Studies of human and mouse iNOS and the associated NO production have 

reported that these molecules are often active in concert with cytokines, to protect against 

viral infection (Li et al., 2009), however, their role in avian species is less defined. 

Moreover, iNOS has been shown to increase in laying hens exposed to stress (Kang et al., 

2011) and in chickens infected with influenza A virus subtype H5N1 (Burggraaff et al., 

2011). However, NO production, as a measure of iNOS function, was observed only after 

48 h following HS and recovered after 72 h post HS (Howard et al., 2010). Therefore, the 

lack of results in the current study could also be due to a delay in iNOS activity at 27 wk 

of age following a 4 h heat exposure or iNOS function returning to normal levels by 32 

wk of age.  

Moreover, the current findings correspond with the results reported by Felver-

Gant et al. (2012), indicating the lack of change observed in our study can be better 

understood by the biomechanics of HS. Laying hens during HS have a reduction in 

antibody production (Mashaly et al., 2004) and a diminished macrophage activity (Barlett 

and Smith, 2003). It has also been observed that pathogen recognizing molecules like 

TLR-4 show a higher response following a pathogen challenge such as Salmonella 

enteritidis (Eicher and Cheng; 2003; Malek et al., 2004).  Also, acute stress has been 
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reported to enhance immunity, whereas chronic stress has been shown to suppress 

immune function (Millán et al., 1996; Dhabhar and McEwen, 1997). However, the 

mechanisms by which these alterations occur have not been fully clarified. Therefore, 

with both a high response expected following the inflammatory pathway of these 

cytokines, as well as an inhibited response expected due to the effect HS has on the 

immune system, the current findings can be further explained. In addition, as previously 

reported, the stress response is dependent on the type of stress and the duration of stress 

in laying hens (Cheng et al., 2001a; Cheng, 2010). The lack of a physiological response 

due to the presence of cooled perches as result of too mild of a stressful event including 

the acute heating episode, is further corroborated by the fact that their egg production, 

shell quality, feed efficiency, foot health, and feather score (Cheng et al., 2014), bone 

mineralization and muscle deposition (Hester et al., 2014) were unaffected by the cooled 

perch treatment.  

 

Conclusion 

The reduced H/L ratio was the only immunological biomarker in hens that 

responded to the thermally cooled perches after exposure to an induced heating episode 

of 4 h. The results suggested that these hens were able to cope with acute HS more 

effectively than hens with air perches or without perches.  Current studies are in progress 

to evaluate the effectiveness of thermally cooled perches under higher ambient 

temperatures.    
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TABLE 2.1.  Primers and probes used for real-time PCR 

 

Gene Primers (5' -3') Application Efficiencies, % Product 
Length, 
bp 

Reference/ 
Accession 
no. 

IL-1β1 

 
 

(f2) TGCTGGTTTCCATCTCGTATGTAC 
(r3) CCCAGAGCGGCTATTCCA 
(p4) AGTACAACCCCTGCTGCCCCGC (VIC/MGB) 

95 80 NC_006096.3 

IL-64 
(f) CCCGCTTCTGACTGTGTTT 
(r) GCCGGTTTTGAAGTTAATCTTTT 
(p) TGTGTTTCGGAGTGCTTT (VIC/MGB) 

86 139 NC_006089.3 

TNF-α5 
(f) CCCCTACCCTGTCCCACAA 
(r) ACTGCGGAGGGTTCATTCC 
(p) CTGGCCTCAGACCAG (VIC/MGB) 

75 62 NC_006101.3 

iNOS6 
(f) GAGTGGTTTAAGGAGTTGGATCTGA 
(r) TCCAGACCTCCCACCTCAAG 
(p) CTCTGCCTGCTGTTGCCAACATGCT (VIC/MGB) 

103 80 NC_006106.3 

TLR47 
(f) TCTGAGACCCCCAAGTCCAA 
(r) CCTTAAGTTTTGCCAGAGGAGGTT 
(p) CCCACCACACCCACT (VIC/MGB) 

98 197 NC_006104.3 

 

1Interleukin 1β 
2Forward primer 
3Reverse primer  
4 Probe 
5Interleukin 6 
6Tumor necrosis factor α 
7Inducible nitric oxide synthase 

8Toll-like receptor 4 

 

http://www.ncbi.nlm.nih.gov/nucleotide/358485503?report=genbank&log$=nucltop&blast_rank=2&RID=61VM2DE5013
http://www.ncbi.nlm.nih.gov/nucleotide/358485510?report=genbank&log$=nucltop&blast_rank=1&RID=5N922GCB013
http://www.ncbi.nlm.nih.gov/nucleotide/358485498?report=genbank&log$=nucltop&blast_rank=1&RID=5N942C9C013
http://www.ncbi.nlm.nih.gov/nucleotide/358485493?report=genbank&log$=nucltop&blast_rank=1&RID=5N96KX3H015
http://www.ncbi.nlm.nih.gov/nucleotide/358485495?report=genbank&log$=nucltop&blast_rank=1&RID=5N9BTUCJ015
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TABLE 2.2.  Heat stress responses in mRNA expression and spleen weight1 

 

Treatment2 IL-1β IL-6 TNF-α iNOS TLR-2 SW, g 
Wk 32       
  Cool Perch 0.75 ± 0.11 0.79 ± 0.15 1.65 ± 0.57 1.33 ± 0.27 2.35 ± 0.56 1.24 ± 0.10 
  Air Perch 0.69 ± 0.11 0.60 ± 0.15 1.87 ± 0.57 1.30 ± 0.27 2.40 ± 0.56 1.28 ± 0.10 
  No Perch 0.68 ± 0.11 0.59 ± 0.15 2.10 ± 0.57 1.04 ± 0.27 2.04 ± 0.56 1.18 ± 0.10 
P-value       
  Treatment 0.8855 0.5942 0.4546 0.7100 0.8880 0.7584 
  CP*AP 0.6869 0.3932 0.5363 0.9516 0.9522 0.7656 
  CP*NP 0.6628 0.3732 0.2174 0.4626 0.7020 0.6643 
  AP*NP 0.9735 0.9695 0.5214 0.4994 0.6585 0.4671 
 

 1All means reported are least square means ± SE (n= 6 cages of 2 hens) in relative 

abundance to GAPDH created by mixed model analysis. 
  2CP = Cool Perch; AP = Air Perch; NP =No Perch. IL-1β = interleukin 1 beta; IL-6 = 

interleukin 6; TNF-α = tumor necrosis factor alpha. iNOS = inducible nitric oxide 

synthase; TLR-4 =  toll-like receptor 4; SW = spleen weight. 
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TABLE 2.3.  Heat stress responses in hen IgY, IL-1β, IL-6, and TNF-α at 27 wk 
following a 2-4 h heat stress and 32 wk of age in plasma1 

 

Treatment2 IgY, mg/mL IL-1β, pg/mL IL-6, mg/mL TNF-α, pg/mL 
Wk 27 
  Cool Perch 6.92 ± 0.86 1.19 ± 0.33 0.93 ± 0.15 144.48 ± 14.59 
  Air Perch 6.94 ± 0.86 0.92 ± 0.33 1.05 ± 0.15 143.40 ± 14.59 
  No Perch 7.25 ± 0.86 1.37 ± 0.33 1.03 ± 0.15 140.60 ± 14.59 
Wk 32     
  Cool Perch                     15.79 b ± 1.57 3.64 ± 0.73 1.31 ± 0.25 190.67 ± 4.53 
  Air Perch 14.67 b ± 1.57 3.70 ± 0.73 1.02 ± 0.25 194.20 ± 4.53 
  No Perch  19.35 a ± 1.57  3.85 ± 0.73 0.89 ± 0.25 188.75 ± 4.53 
P-value     
  Wk27 CP*AP 0.9755 0.5737 0.5798 0.9591 
  Wk27 CP*NP 0.6051 0.6961 0.6429 0.8535 
  Wk27 AP*NP 0.6264 0.3458 0.9273 0.8939 
  Wk32 CP*AP 0.3797 0.9546 0.4315 0.5893 
  Wk32 CP*NP 0.0122 0.8367 0.2565 0.7687 
  Wk32 AP*NP 0.0020 0.8813 0.7156 0.4081 
 

  1All means reported are least square means ± SE (n= 6 cages of 2 hens) created by 

mixed model analysis.  
  2CP = Cool Perch; AP = Air Perch; NP =No Perch. IgY = plasma immunoglobulin Y; 

IL-1β = interleukin 1 beta; IL-6 = interleukin 6; TNF-α = tumor necrosis factor alpha. 
ab Mean within a time differ (P < 0.05).
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FIGURE 2.1. 
 
 

 
 
 
 
 
Figure 2.1. The cage dimensions and perch placement. Two perches were installed in a 

layer cage, arranged parallel to each other. Perch height was 8.9 cm from the cage floor. 

The distance between the 2 perches was 15 cm and the distance between the front perch 

and the feed trough was 18 cm. There was a distance of 15 cm between the rear perch and 

the back of the cage.   
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FIGURE 2.2. 

 
 
 
 
Figure 2.2. A schematic diagram of the cooled perch cage system. The front perch closest 

to the feeder received chilled water pumped directly from a common vertical manifold. 

The back perch was the return loop that sent the water back to the common manifold to 

be re-chilled. A chiller was used to cool the water in the manifold; it had its own 

independent thermostat which kept the water at 10ºC. A separate 4th pump continuously 

circulated the deionized water between the water chiller and the manifold. A sensor for 

monitoring air temperature was installed to the controller of each tier to activate the 

circulation of chilled water through the perch loop when ambient temperature reached 

25ºC or to stop circulation of water when the ambient temperature fell below 25ºC.   
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FIGURE 2.3.  
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Heat stress responses in hen heterophil to lymphocyte ratio at 27 wk of age 

after 4 h of acute HS and at 32 wk of age. CP = Cool Perch; AP = Air Perch; NP =No 

Perch. Means reported as least square means ± SE (n= 6 cages of 2 hens) a,b Different 

letters indicate significant differences between treatments within each week of age (P < 

0.05). 
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CHAPTER III 
 
 
 

DAM HEAT STRESS EFFECTS ON CALF INNATE IMMUNITY  
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Abstract 
 
 
 

Heat stress (HS), as one of the environmental stressors affecting the dairy 

industry, compromises the cow's milk production, immune function, and reproductive 

system. However, few studies have looked at how prenatal HS affects the offspring. The 

objective of this study was to evaluate the effect of HS during late gestation on calf 

immunity. Calves were born to cows exposed to evaporative cooling (CT) or heat stress 

(HS; cyclic 23-35°C) 3 wk before calving. Both bull and heifer calves (CT, n=10; HS, 

n=10) were housed in similar environmental temperatures after birth. Both CT and HS 

calves received 3.78 L of pooled colostrum within 12 h after birth and were fed the same 

diet throughout the study. In addition to tumor necrosis factor alpha (TNF-α), interleukin 

1 beta (IL-1β), interleukin 1 receptor antagonist (IL-RA), and toll-like receptor 2 (TLR2), 

and 4 (TLR4) mRNA expression, the expression of CD14+, CD18+, Dec205+, and 

phagocytosis+ ROS + were determined in whole blood samples at d 0, 3, 7, 14, 21, and 28. 

The neutrophil to lymphocyte (N/L) ratio, differential cell counts, and the hematocrit 

(HCT) were also determined. During late gestation, the HS cows had greater respiration 

rates (RR) (P < 0.0001), rectal temperatures (RT) (P < 0.0001), and tended to spend more 

time standing compared to the CT cows (P = 0.09). The HS calves had less expression of 

TNF-α and TLR-2 and greater levels of IL-1β, IL-RA, TLR-4, as well as greater 

phagocytosis+ ROS+ compared to CT calves (P < 0.05, respectively). The HS calves also 

had a greater percentage of CD18+ compared to the CT calves (P < 0.05). Additionally, a 

greater percentage of NE and less lymphocytes were in the HS calves compared to the 
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CT calves (P < 0.05). The results indicate that biomarkers of calf immunity are affected 

by HS in the dam during late gestation. 

Key Words:  calf, heat stress, innate immunity  
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Introduction  

Heat stress (HS) is a major environmental concern in the dairy industry. In dairy 

cattle, HS occurs when ambient temperatures are above about 25°C (Armstrong, 1994). 

Heat stress causes greater rectal temperatures (RT) and elevated respiration rates (RR) 

(Ominski et al., 2002; do Amaral et. al., 2011). Dairy cattle also spend less time lying 

when exposed to hot temperatures (Overton et al., 2002; Legrand et al., 2011). In addition 

to behavioral responses, HS in dairy cattle reduces feed intake (Adin et al., 2009), milk 

production (Collier et al., 2006), and reproductive performance (Hansen, 2009). Heat 

exposure can also cause negative effects on the animals’ immune response resulting in a 

decrease in neutrophil phagocytosis and oxidative burst (do Amaral et al., 2011), reduced 

lymphocyte proliferation (Lacetera et al., 2006), lower IgG concentrations (do Amaral et 

al., 2011), and increased (Tao et al., 2012) or decreased (do Amaral et al., 2010) tumor 

necrosis factor alpha (TNF-α). The immune impairment due to HS can cause an increase 

in the susceptibility to many diseases (Lacetera et al., 2006; do Amaral et al., 2009; Dahl 

et al., 2012).  

Maternal HS during late gestation also inhibits the immune response of the 

offspring, by modifying T- and B- cell function (Merlot et al., 2008), decreasing IgG 

concentration in the calf (Donovan et al., 1986; Tao et al., 2012), and compromising the 

proliferation rate of mononuclear cells (Tao et al., 2012).  Moreover, sows under HS 

during the last 2 wk of gestation had piglets with lower circulating IgG compared to 

piglets from sows under a thermoneutral environment (Machado-Neto et al., 1987). The 

immune system in the neonate is fully developed at birth but it is unprimed (Tizard, 

1992). The fetus is protected primarily by the innate immune system, but its phagocytic 
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activity is not fully developed until late in gestation (Barrington, 2001). B cells in the 

fetus only make up 1% of total lymphocytes compared to the 4% at one week after birth 

and to the 10% in mature calves (Kampen et al., 2006). This results in the lack of any 

endogenous antibody response until 2 to 4 weeks of age making the ingestion of 

colostrum extremely important in providing an immunologic defense to the calf during 

the first 2 to 4 weeks of life (Chase et al., 2008). Adequate colostrum transfer has been 

recognized to have beneficial effects on the calf’s immune response earlier in life 

(Furman-Fratczak et al., 2011), by the uptake of cytokines (Nguyen et al., 2007; Chase et 

al., 2008) and the absorption of immunoglobulins during the first 48 h (Sangild, 2003).  

Currently, there is little data on the effects of maternal HS during late gestation on 

the immune function in dairy cattle. Therefore, the objective of the present study was to 

evaluate the effect of maternal HS during the late gestation period on the postnatal 

immune function of dairy calves.  

 

Materials and Methods 

Animals and Experimental Design  

 This study was conducted at the Purdue Animal Sciences Research and Education 

Dairy Unit from May to September 2014. The experimental protocol was approved by the 

Animal Care and Use Committee at Purdue University. Twenty multiparous Holstein 

cows were randomly assigned to 1 of 2 environmental treatments, control (CT) or heat 

stress (HS), approximately 3 wk before calving. All cows were managed in a metabolism 

barn with tie stalls. A single treatment was in the room at one time, using 3 replications 

per treatment.  Cows had an acclimation period of 7 d and were on treatment for the 
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following 7 d. The geothermal metabolism barn for the CT cows was supplemented with 

evaporative cooling equipment. For the HS cows, the temperature increased to 25ºC ± 6 

for 12 h each day and was reduced to 20ºC ± 4 for 12 h each night. Cows from both 

treatments were moved to box stalls under thermal neutral (22ºC ± 2) environmental 

conditions approximately one week before their expected calving date. Both bull and 

heifer calves were used in the current study (CT: bulls: 6, heifers: 4; HT: bulls: 4, heifers: 

6). Both CT (n=10) and HS (n=10) calves received 3.78 L of pooled colostrum within 12 

h after birth and were fed the same diet throughout the study. Calves from both 

treatments were removed from their dam immediately after birth and housed in individual 

hutches exposed to environmental temperatures. 

 

Measurements and Sample Collection 

 The respiration rates (RR), rectal temperatures (RT), and posture of cows in both 

treatments were monitored hourly for 12 h during 7 d of treatment. The RR were 

measured in breaths per one minute using a stopwatch. The posture of the cow, whether 

they were lying or standing at the moment before RR were counted, was calculated in 

percent observation. The average of 2 consecutive RR per cow was recorded hourly. The 

RT were measured using a digital thermometer hourly and disinfected between individual 

cows with 70% isopropyl. The room temperature (T) and humidity (H) were recorded 

hourly by taking the average of two readings and was also digitally recorded every 15 

min by a data logger (Onset HOBO, UX100-003; 10526645). Each hourly observation 

was conducted in the same recording sequence; T, H, RT, posture, RR. 
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 Calf jugular blood samples were collected at d 1, 3, 7, 14, 21, and 28 into both 8.5 

ml tubes containing 1.50 ml of ACD for Flow Cytometry and PCR and 8.5ml tubes 

containing 0.10 ml of EDTA (BD, Franklin Lakes, NJ) for hematology analysis. 

Immediately following blood collection, blood was stored on ice, transported to the 

laboratory and then placed in a water bath at 37°C for 30 min.  

 

Gene Expression 

Cytokines of tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), 

interleukin 1 receptor antagonist (IL-RA), and toll-like receptor 2 (TLR-2), and 4 (TLR-

4) mRNA expression in whole blood were detected by real-time PCR using primers and 

probes diluted to 10 µM solutions (Table 3.1) and developed with Primer Express 

(Applied Biosystems). The RNA was extracted per instructions using the QIAamp RNA 

Blood Mini Kit (Qiagen, Valencia, CA; Cat. No 52304). Extracted RNA was then 

quantified using the GeneQuant pro RNA/DNA calculator (Amersham Bio- sciences 

Corp., Piscataway, NJ). All surfaces used were treated with RNase Zap (Ambion Inc.) 

before reverse transcription. Conditions for reverse transcription were 61.5 µL of master 

mix, made of reagents included in the TaqMan Reverse Transcription Reagent Pack 

(Applied Biosystems, Foster City, CA), including 2.5µL of Multi-Scribe reverse 

transcriptase, 22 µL of 25 mM MgCl, 5 µl random hexamers, 2µL RNase inhibitor, 20 µl 

dNTPs, and 10 µL of TaqMan reverse transcription buffer (TaqMan reverse transcription 

reagents, Applied Bio- systems). Equal amount of sample RNA was added with RNase-

free water (Ambion Inc.) to make a total 35 µL, which was then added to 61.5 µL of 

master mix for a total of 100 µL. Reverse transcription was conducted in the Hybaid PCR 
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Express thermo cycler (Midwest Scientific, St. Louis, MO) and amplified using cycling 

conditions: 50°C for 2 min activation followed by 30 cycles of 95°C for 15 s, 60°C for 1 

min, and a final stage of 60°C for 5 min, with a holding temperature of 4°C. The 

conditions for PCR were a ratio of 3.5 µL of TaqMan probe, 4.5 µL of gene- specific 

TaqMan forward and reverse primers each, 25 µL of PCR Mastermix (Applied 

Biosystems), 7.75 µL RNase-free water (Ambion Inc.), and 5 µL of sample cDNA. 

Cycling conditions for real-time PCR consisted of an initial step at 50°C for 2 min 

followed by 40 cycles of 10 min at 95°C, 20 s at 95°C, and 1 min at 60°C. To ensure 

accuracy and consistency, all samples were measured in duplicates and standards in 

triplicates with a standard deviation of less than 2.0 and a coefficient of variation less 

than 2.0%. Data of the gene of interest is expressed as relative abundance to the stable 

(CV < 2%) reference gene 18S as ∆Ct.  

 

Immunological Cellular Markers and Cell Function  

 Cellular surface expression of CD14, CD18, and Dec205, and cell function 

phagocytosis+ ROS+ assays were measured using flow cytometry. For phagocytosis, 100 

µL of reconstituted opsonizing reagent was added to 100 µL of E. coli bio particle. The 

mixture was incubated for 1 h at 37°C in a water bath, washed with 1 ml of 1X Hank's 

Balanced Salt Solution (HBSS) using a low speed centrifugation (1500g for 15 min at 

4°C), and re-suspended in 100 µL of 1X HBSS. Meanwhile, 200 µL of Dimethyl 

sulfoxide (DMSO) was added to each Dichlorofluorescin diacetate (DCFDA) tube. Of 

this stock, 5.7 µL of DCFDA was added into 500 µL of whole blood for phagocytosis+ 

ROS+ and then incubated for 30 min at 37°C in a water bath. After incubation, 12 µL of 
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bio particle was added to the phagocytosis tube, and a total volume of 5 µL of labeled 

monoclonal mouse anti-human CD14 (Serotec; Raleigh, NC; Catalog No. MCA1568PE) 

and fluorescein isothiocyanate (FITC) labeled monoclonal mouse anti-human CD18 (BD, 

San Diego, CA; Catalog No. 555923) was added to the single CD14 and CD18 tube. 

Cluster of differentiation 14 is cross reactive with bovine. Additionally, 5 µL of 

fluorescein isothiocyanate (FITC) labeled monoclonal mouse anti-bovine Dec205 

(Serotec; Raleigh, NC; catalog no. MCA1651) was added to the Dec205 tube. The 

control for CD14, CD18, and Dec205 contained only 500 µL of cells only and the 

phagocytosis+ ROS+ control had cells plus 5.7 µL of DCFDA. All tubes were incubated 

for another 30 min at 37°C in water bath. After incubation, 900 µL of sterile cold water 

was added to each tube of blood. After 45 s in contact, 100 µL of 10 x HBSS was added. 

The tubes were centrifuged for 3 min at 1800g and supernatant was then discarded.  1 ml 

of 1X HBSS was added, centrifuged again for 3 min at 1800g, and then supernatant was 

discarded. Lastly, cell pellets were re-suspended in 350 µL of 2% paraformaldehyde and 

these samples were kept at 20°C until analysis. Expression of CD14, CD18, Dec205, and 

phagocytosis+ ROS+ were then investigated using a flow cytometer (Accuri C6; Accuri, 

Ann Arbor, MI). For each sample, a total population of 10,000 cells was analyzed. The 

percentage of cells that were positive and the average relative fluorescence intensity of 

cells expressing CD14 and CD18 or showing phagocytosis+ ROS+ above the control cells 

were calculated.  
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Hematology Data 

 White blood cell (WBC) counts (K/µL), the N/L ratio, the hematocrit percentage 

(HCT) and the percentage and cell counts of neutrophils (NE), lymphocytes (LY), 

monocytes (MO), eosinophils (EO), and basophils (BA) were measured using a 

hematology analyzer (GenesisTM; Oxford Science, Inc, Oxford, CT). Plasma protein (PP) 

concentrations (g/dL) were measured using a refractometer (A 300 CL Clinical; Japan).  

 

Statistical Analysis 

Cow and calf data were checked for normal distribution and transformed when 

necessary and analyzed as a randomized complete block design using the MIXED 

procedure of SAS 9.2 (SAS Inst. Inc., Cary, NC).  Flow data were transformed to log10 

prior to statistical analysis.  No transformations were necessary for cow or calf PCR and 

hematology data. The calf model included treatment, day, and treatment × day 

interaction. The cow model included treatment. Statistical inferences of significance were 

based on P < 0.05 and trends on P < 0.10.  

 

Results 

In the present study, HS cows had greater minimum, mean, and maximum RR and 

RT than the CT cows (P < 0.05, respectively; Table 3.2). The HS cows also tended to 

spend more time standing compared to the CT cows (P = 0.09; Table 3.2).  

The TNF-α and TLR-2 concentrations were less in the HS calves than the CT 

calves (P < 0.05, respectively; Table 3.3). The HS calves had greater IL-1β, IL-RA, and 

TLR-4 expression than the CT calves (P < 0.05; respectively; Table 3.3). As a day effect, 
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TNF-α decreased after d 0 while IL-1β, IL-RA, and TLR-4 concentrations decreased after 

d 7 (P < 0.05, respectively; Figure 3.1). Day had no effect on TLR-2 (P > 0.05; Table 

3.3). There was no treatment by day effect on TNF-α, IL-1β, IL-RA, TLR-2, or TR-4 (P 

< 0.05, respectively; Table 3.3). 

Considering all leukocytes without gating, the HS calves had greater percentages 

of CD18+ (P = 0.0438; Figure 3.2a) and phagocytosis+ ROS+ (P = 0.0382; Figure 3.5) 

compared to the CT calves. There were no differences in the percentages of CD14+ (P = 

0.25; Figure 3.3a) and Dec205+ (P = 0.26; Figure 3.4a), or the mean florescence of CD18 

(P = 0.14; Figure 3.2b), CD14 (P = 0.86; Figure 3.3b), or Dec205 (P = 0.18; Figure 3.4b) 

among treatments in all leukocytes. Additionally, without gating, the HS calves tended to 

have a greater percentage of phagocytosis+ ROS+ on d 3 and 21 (P = 0.08; Figure 3.7a), 

and tended to have a greater mean fluorescence of CD18 on leukocytes on d 7 compared 

to the CT calves (P = 0.08, Figure 3.7b).  

There were no differences among treatments in the percentage or mean 

fluorescence for CD18 (Figure 3.2), CD14 (Figure 3.3), Dec205 (Figure 3.4), or 

phagocytosis+ ROS+ (Figure 3.5) in lymphocytes (P > 0.05, respectively; Table 3.5). Day 

had no effect on the percent positive or mean fluorescence of CD18, CD14, Dec205, or 

phagocytosis+ ROS+ (P > 0.05, respectively; Table 3.5). However, the HS calves had a 

greater percentage of cells positive for phagocytosis+ ROS+ on d 0 and 21, but less 

percentage of cells positive for phagocytosis+ ROS+ on d 28 compared to the CT calves 

(P = 0.02; Figure 3.8a). The HS calves also tended to have a greater mean fluorescence of 

CD14 on lymphocytes on d 0 and 14 compared to the CT calves (P = 0.06; Figure 3.8b).   
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Heat stressed calves had a greater percentage and mean fluorescence of CD18 on 

monocytes compared to the CT calves (P < 0.05; Figure 3.2). There were no differences 

in the percentage of CD14+ (Figure 3.3), Dec205+ (Figure 3.4), or Phagocytosis+ ROS+ 

(Figure 3.5) in monocytes (P > 0.05; Table 3.5). However, Dec205 tended to have greater 

mean fluorescence on monocytes in HS calves (P = 0.07; Figure 3.4b). The CD18+ 

expression on monocytes increased after d 7 (P = 0.05, Figure 3.6a). There was also an 

increase in the expression of Dec205+ on monocytes after day 7 (P < 0.05; Figure 3.6c). 

The mean fluorescence of CD18 on monocytes was higher in HS calves on d 7 compared 

to the CT calves (P < 0.05, Figure 3.10). The expression of CD14+ was greater on 

monocytes in HS calves on d 3 and lower on d 28 compared to the CT calves (P = 0.03, 

Figure 3.9a).  

There were no treatment differences in the percentage of CD14+ (Figure 3.3), 

Dec205+ (Figure 3.4), or phagocytosis+ ROS+ (Figure 3.5) in polymorphonuclear (PMN) 

cells (P > 0.05; Table 3.5).  However, the percentage of cells positive for CD18 was 

greater in the HS calves on PMN cells (P = 0.05; Figure 3.2a). There was no day effect 

on the expression of CD14+, Dec205+, or Phagocytosis+ ROS+ in PMN cells (P > 0.05; 

respectively; Table 3.5). The HS calves had less mean fluorescence of CD18 on PMN 

cells compared to the CT calves (P < 0.05, Figure 3.10).  

The plasma protein concentration, the EO cell count, and the percentage of LY, 

MO were less in HS calves compared to CT calves (P < 0.05, respectively; Table 3.4). 

The percentage of NE was greater in the HS calves compared to the CT calves (P < 0.05; 

Table 3.4). There was no difference in WBC counts, the N/L ratio, the cell counts of NE, 

LY, MO, and BA or the percentage of EO and BA (P > 0.05, respectively; Table 3.4). 
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There was no difference among treatments in HCT (P > 0.05, Table 3.4). The PP 

concentration peaked at d 3 and decreased after d 7 (P < 0.05; Figure 3.11) and the WBC 

count peaked at d 0 and 7 (P = 0.0004; Figure 3.12). There was no day effect on 

differential cells counts, percentage of BA, or the HCT (P > 0.05, respectively; Table 

3.4); however the N/L ratio was greatest on d 7 (P = 0.03; Figure 3.13). The percent of 

NE was greatest at d 0 and 7 (P = 0.006; Figure 3.14) and the percent of LY was greatest 

on d 3 compared to d 0 and 7 and increased to another peak at d 28 (P = 0.01; Figure 

3.14). The percent of MO was greatest on d 3 and increased after d 7 (P = 0.01; Figure 

3.14), but the percent of EO increased after d 3 and decreased after d 21 (P = 0.07; Figure 

3.14). There was no treatment by day interaction for PP, N/L ratio, individual cell counts 

or the percentage of individual cells (P > 0.05, respectively; Table 3.4). The HS calves 

tended to have less total WBC at d 7 but a greater WBC count at d 28 compared to the 

CT calves (P = 0.08, Figure 3.12).  

 

Discussion 
 

Increasing RR and RT are two indicators of HS in dairy cattle (Ominski et al., 

2002; do Amaral et. al., 2011). Lower RR and RT in CT cows suggest that less heat load 

is carried compared to HS cows (Tao et al., 2012). Dairy cattle also spend less time lying 

when exposed to high temperatures (Overton et al., 2002; Legrand et al., 2011). Like 

previous studies, our study showed cows exposed to HS had greater minimum, mean, and 

maximum RR and RT than CT cows. The HS cows also tended to spend more time 

standing than the CT cows. The results suggest HS cows are attempting to compensate 

for the added heat load by increasing their surface area to dissipate excessive heat. The 
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changes in RR, RT, and posture indicate there may be other changes occurring in the HS 

cows that could compromise the offspring environment and in turn lead to compromised 

calf immunity.  Additionally as previously reported by Tao et al. (2012), the elevated RR 

and RT during the dry period of HS cows compared to CT cows provided evidence that 

the HS model in the present study was successful.  

As part of the recognition of Gram-positive bacteria, TLR2 plays a role in 

mediating the innate immune response by releasing cytokines. In the present study, the 

expression of TLR2 and TNF-α were both less in the HS calves compared to the CT 

calves. The lower TLR2 expression in the HS calves could be associated with the lower 

monocyte percentage and eosinophil count found in the HS calves in the present study. 

Supporting the current results, Couret et al. (2009) found that maternal stress during late 

gestation decreased TNF-α production in piglets. In cows, TNF-α concentration was also 

decreased after exposure to HS (do Amaral et al., 2010). Additionally, calves born to 

dams during a heat event had less TNF-α expression than calves born in a thermal neutral 

environment (Deng, 2011). Eicher et al. (2004) also found that calves treated with growth 

hormone and dexamethasone had lower TNF-α expression in blood leukocytes at 2 weeks 

of age. In corroborating the previous findings, we hypothesize the lower TNF-α 

concentration in the current study could be caused by an increase in circulating stress 

hormones in the calves exposed to maternal HS. Additionally, calves pre-exposed to HS 

during fetal development may have a higher threshold to postpartum HS, as discovered in 

chickens during the incubation period (Loyau, et al., 2014).  

 A complex on the cell surface made up of TLR4 and CD14 recognize the 

lipopolysaccharide (LPS) of Gram-negative bacteria and activate macrophages to secrete 
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inflammatory cytokines (Gioannini and Weiss, 2007) and establishes the first line of 

defense against injury or disease (Uematsu and Akira, 2007). In the present study, the 

TLR4 mRNA level was higher in HS calves on d 0 and 7 and the expression of CD14 

was also higher on monocytes in the HS calves, but on d 3. However, the expression of 

TLR-4 in human blood monocytes was decreased after strenuous exercise in the heat 

(34˚C) from an increase in circulating cortisol (Lancaster et al., 2005). Du et al. (2010) 

also reported that a reduction in TLR-4 causes major stress hormones to reduce the 

macrophage response in rats. Pearce et al. (2013) reported HS causes a decrease in 

intestinal integrity and an increase in endotoxin permeability. The increase in LPS gut 

permeability could explain the up-regulation in TLR-4 expression in calves exposed to 

prenatal HS in the current study. Another cell surface molecule, CD18, an adhesion 

molecule responsible for the recruitment of leukocytes to the site of infection had higher 

expression in the total leukocyte population, and more specifically on monocytes and 

PMN cells. Additionally, the up-regulation of CD18 expression along with the 

recognition of LPS of Gram-negative bacteria by the TLR4/CD14 complex has been 

shown to benefit the immune defense system leading to phagocytosis of bacteria (Nunes 

et al., 2010). Therefore we can speculate this mechanism is occurring in the current study.   

Dec205 is a receptor expressed on dendritic cells and monocytes, which plays a 

role in antigen presentation to T cells as part of regulating the adaptive immune response 

(Jiang et al. 1995). Jiang et al. (1995) showed that the antigen-presentation function of 

lymphocytes is associated with high levels of DEC205 expression on antigen presenting 

cells. We were not expecting any treatment differences in Dec 205 expression among 

treatments, because of the association of Dec205 with mature dendritic cells (Butler, 
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2007). However, the HS calves tended to have a higher florescence intensity of Dec205 

compared to CT calves. The higher florescence intensity in Dec205 was also seen in 

calves challenged to Salmonella dublin compared to control calves (Eicher et al., 2011). 

These findings indicate that maturation of dendritic cells was already being modulating in 

the HS calves compared to CT calves, suggesting prenatal HS may cause the neonate to 

have an altered adaptive response sooner than if they weren’t pre-exposed to maternal 

HS.  

In the present study, the mRNA expression of IL-1β and IL-RA were both up-

regulated in the HS calves compared to the CT calves. Along with TNF-α, IL-1β is a pro-

inflammatory cytokine mediated by recognition molecules responsible for a variety of 

cellular activities, including cell proliferation, differentiation, and apoptosis. Interleukin 1 

expression is rapidly up-regulated following immune stimulation (Takashi and Kodama, 

1994). In association with IL-1β, IL-RA acts as an inhibitor to IL-1 by competing with 

the IL-1 receptor. The levels of IL-1β and IL-RA were also both up-regulated in rats 

exposed to HS (Lin et al., 1995). Additionally, previous studies found that the 

pretreatment of IL-RA reduced damage caused by HS in rats (Lin et al., 1995) and rabbits 

(Lin et al., 1994). Thus based on previous HS studies in other species, the HS calves on d 

0 and 7 may have increased IL-RA expression to compensate for the increase in IL-1β 

expressed to recover from the prenatal HS. Additionally, with the current results, we 

speculate that during HS recognition molecules may mediate specific cytokines; TLR2 

and TNF-α were both greater in the HS calves while TLR4 and IL-1β were both less in 

the HS calves compared to the CT calves. Furthermore, IL-RA, IL-1β, and TLR-4 all 

decreased after day 7, while TNF-α decreased after day 0, which not only indicates they 
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are part of the first response of the innate system but also further evidence of their 

specific association. In another study, there was no seasonal effect on TLR-4, but there 

was an effect on the summer treatment, which had less TNF-α concentrations (Deng, 

2011). This supports the speculation that certain recognition molecules may be associated 

with the release of specific cytokines during late gestational prenatal HS observed in the 

current study.   

As the first line of defense against bacterial infection, the phagocytic and 

oxidative burst activities of neutrophils provide valuable information on the functional 

activity of these immune cells (Kampen et al., 2004). Oxidative burst is a process in 

which the pathogen is killed by toxic ROS after it has been phagocytized by a neutrophil 

or macrophage (Elbim and Lizard, 2009). During late gestation, heat-stressed cows had 

impaired neutrophil phagocytosis and oxidative burst relative to cooled cows on d 2 and d 

20 (do Amaral et al., 2011). However, in the present study, the percentage of 

phagocytosis+ ROS+ was greater in the HS calves compared to the CT calves on d 3 and d 

21. The mechanism behind the results are unclear but we can speculate that while it 

appears the calves in the current study didn’t lose neutrophil function, they did require 

more oxidative burst from the residual effects of the prenatal HS.  

It has been established that due to the increase in the number of neutrophils and 

the decrease in lymphocytes, the N/L is a suitable measure often used to assess the stress 

response in cattle (Friend et al., 1987; Stull and McDonough, 1994). An increased 

neutrophil and decreased lymphocyte and eosinophil percentage was also reported to 

occur after many types of environmental stressors including diseases of bacterial 

infection in cattle (Radostist et al., 1994). While there was no difference among 
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treatments in the N/L ratio, HS calves did have a higher percentage of neutrophils and a 

lower percentage of lymphocytes and eosinophils compared to the CT calves, indicating 

prenatal HS continued to carry over to the neonate. Additionally, Tao et al. (2012) 

observed decreases in the hematocrit, total plasma protein, and IgG concentrations in 

heifer calves born to cows exposed to late-gestational HS. Similarly, late-gestation HS in 

neonate calves (Stott, 1980) and piglets (Machado-Neto et al., 1987) caused a decrease in 

the concentration of IgG. In the current study, there was no difference in the hematocrit, 

but there was a lower PP concentration observed in the HS calves compare to the CT 

calves. The combined results indicate that passive immunity could have been 

compromised in calves exposed to prenatal HS during late gestation. Tao et al. (2012) 

found no differences among treatments in circulating cortisol levels and the stress 

hormones were not measured in the current study. Thus the primary mechanism behind 

the potential compromise in passive immunity from prenatal HS of the dam is still 

unclear.  

  

Conclusion 

 The current data suggests immunological evidence of an altered immune system 

in neonates due to maternal HS during late gestation.  Calves exposed to prenatal HS 

were associated with a greater percentage of neutrophils, a lower percentage of 

lymphocytes, and lower levels of plasma proteins. The expression of pro-inflammatory 

cytokines and recognition molecules were also affected in HS calves compared to the CT 

calves. From the current study, we conclude that prenatal HS compromises the calf's 
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immune system, and therefore greater measures are necessary for higher quality 

colostrum and more intense observation of those calves.  
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Table 3.1. Primers and probes used for real-time PCR 
 
Gene Primers Amplification Efficiencies, % Product 

Length, bp 
Reference/ 
Accession 
no. 

TNF-α1 
(f2) TGGGAAGCTTACCTTTTCCTTTC 
(r3) CTTCTTCATGACCCAGATACATCCT 
(p4) CCTCAAGTAACAAGCCG (VIC/MGB) 

98 61 Bienhoff and 
Allen, 1995 

IL-1β4 
(f) TTCCTGTGGCCTTGGGTATC 
(r) TGGGCGTATCACCTTTTTTCA 
(p) CAAGAATCTATACCTGTCTTGT (VIC/MGB) 

78 69 
Ito and 

Kodama, 
1996 

IL-RA5 
(f) CCTCCTTTCTCACCCCAGATC 
(r) AGAAAATGGAAGCCGCTTAGG 
(p) CAG GCGCTCACTTC (VIC/MGB) 

96 64 Kirisawa et 
al., 1998 

TLR26 
(f) CCACGGAAGGAGCCTCTGA  
(r) GCCATCGCAGACACCAGTT 
(p) CAGGCTTCTTCTCTGTCTT (VIC/MGB) 

86 65 AF368419 

TLR47 
(f) CCGGATCCTAGACTGCAGCTT 
(r) TCCTTGGCAAATTCTGTAGTTCTTG 
(p) CCGTATCATGGCCTCT (VIC/MGB) 

104 71 AAG32061 

 

1Tumor necrosis factor α 
2Forward primer 
3Reverse primer  
4 Probe 
5Interleukin 1β 
6Interleukin receptor antagonist 
7Toll-like receptor 2 
8Toll-like receptor 4 
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Table 3.2. Effects of heat stress on cow respiration rate, rectal temperature, and posture1  
 
Treatment2 CT HS P-value 
  Min THI  < 64 75 - 
  Mean THI  69 83 - 
  Max THI  79 85 - 
    
  Min RR, breaths/minute 34.77 ± 1.02 46.90 ± 1.02 < 0.0001 
  Mean RR, breaths/minute 47.86 ± 1.29 64.36 ± 1.29 < 0.0001 
  Max RR, breaths/minute 62.56 ± 1.72  82.64 ± 1.72  < 0.0001 
    
  Min RT °C 37.73 ± 0.19 38.63 ± 0.19  0.0013 
  Mean RT °C 38.46 ± 0.03 38.96 ± 0.03  < 0.0001 
  Max RT, °C 39.02 ± 0.04 39.45 ± 0.04  < 0.0001 
    
  Standing, %3 53.35 ± 3.71 62.80 ± 3.71  0.089 
  Lying, % 46.65 ± 3.71 37.20 ± 3.71  0.089 
 

1All means reported are least square means ± SE (n = 10 cows/treatment) created by 

mixed model analysis. 
2CT = control cows; HS = heat stressed cows; Min THI = temperature and humidity index 

for the minimum room temperature; Mean THI = temperature and humidity index for the 

mean room temperature; Max THI = temperature and humidity index for the maximum 

room temperature; Min RR = mean of the minimum respiration rates; Mean RR = mean of 

the average respiration rates; Max RR = mean of the maximum respiration rates; Min RT 

= mean of the minimum rectal temperatures; Mean RT = mean of the average rectal 

temperatures; Max RT = mean of the maximum rectal temperatures. 
3The percent of observations based on whether the cow was lying or standing before the 

respiration rates were counted (12 obsevations/day/cow) 
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Table 3.3. Effects of heat stress on calf mRNA expression in leukocytes1 
 
Treatment2 TNF-α IL-1β IL-RA TLR-2 TLR-4 
  Treatment Effect    
CT 2.21 ± 0.26 0.16 ± 0.02 0.34 ± 0.05 0.41 ± 0.07 0.29 ± 0.03 
HS 1.42 ± 0.26  0.21 ± 0.02 0.55 ± 0.05 0.20 ± 0.07 0.42 ± 0.03 
      
  Day Effect    
d 0 4.16 ± 0.48 0.26 ± 0.04 0.61 ± 0.09 0.39 ± 0.12 0.52 ± 0.06 
d 3  2.26 ± 0.44 0.26 ± 0.03 0.55 ± 0.08 0.34 ± 0.12 0.44 ± 0.05 
d 7 1.72 ± 0.46 0.26 ± 0.04 0.61 ± 0.09 0.32 ± 0.12 0.50 ± 0.05 
d 14 0.85 ± 0.44 0.11 ± 0.03 0.29 ± 0.08 0.23 ± 0.12 0.25 ± 0.05 
d 21 1.06 ± 0.44 0.13 ± 0.03 0.32 ± 0.08 0.35 ± 0.11 0.24 ± 0.05 
d 28 0.81 ± 0.45 0.10 ± 0.04 0.27 ± 0.09 0.21 ± 0.12 0.18 ± 0.05 
      
P-value      
Treatment 0.0342 0.1044 0.0039 0.0361 0.0022 
Day < 0.0001 0.0002 0.0044 0.8875 < 0.0001 
Treatment*Day 0.5501 0.1304 0.3714 0.4931 0.1327 
      
 
1All means reported are least square means ± SE in relative abundance to 18S created by 

mixed model analysis (n = 10 calves/treatment). 
2CT = calves born to thermal neutral dams; HS = calves exposed to prenatal heat stress; 

TNF-α = tumor necrosis factor alpha; IL-1β = interleukin 1 beta; IL-RA interleukin 

receptor antagonist; TLR-2 = toll-like receptor 2; TLR-4 = toll-like receptor 4. 
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Table 3.4. Heat stress effects on calf hematology measurements1  
 

Treatment2 CT HS Treatment 
P- value 

Day Treatment*Day 
PP (g/dL) 6.34 ± 0.06 6.11 ± 0.06 0.0095 0.0004 0.3181 

WBC (K/µL) 7.65 ± 0.47 8.17 ± 0.45 0.4271 0.0117 0.0813 

N/L ratio 2.89 ± 0.38 3.36 ± 0.37 0.3762 0.0344 0.8656 

NE (K/µL) 5.07 ± 0.51 5.33 ± 0.50 0.1639 0.5543 0.5522 

LY (K/µL) 2.31 ± 0.17 2.22 ± 0.16 0.7040 0.2047 0.5140 

MO (K/µL) 1.22 ± 0.33 0.49 ± 0.33 0.1200 0.3138 0.4566 

EO (K/µL) 0.44 ± 0.11 0.12 ± 0.10 0.0288 0.6552 0.6003 

BA (K/µL) 0.11 ± 0.05 0.01 ± 0.05 0.2122 0.3246 0.3431 

NE (%) 54.57 ± 1.89 62.90 ± 1.86 0.0022 0.0057 0.9326 

LY (%) 32.85 ± 1.89 27.92 ± 1.86 0.0650 0.0104 0.5938 

MO (%) 8.01 ± 0.54 6.75 ± 0.53 0.0992 0.0128 0.7394 

EO (%) 3.98 ± 0.78 2.27 ± 0.77 0.1209 0.0742 0.7424 

BA (%) 0.60 ± 0.25 0.17 ± 0.24 0.2219 0.2891 0.3135 

HCT (%) 24.34 ± 1.25 25.64 ± 1.20 0.4548 0.6068 0.8298 

 
1All means reported are least square means ± SE created by mixed model analysis (n=10 

calves/treatment). 
2CT = calves born to thermal neutral dams; HS = calves exposed to prenatal heat stress; 

PP = plasma protein concentration; WBC = white blood cell count; N/L = neutrophil to 

lymphocyte ratio; NE = neutrophil count or percentage; LY = lymphocyte count or 

percentage; MO = monocyte count or percentage; EO = eosinophil count or percentage; 

BA = basophil count or percentage; HCT = percentage hematocrit.
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Table 3.5. Effect of heat stress on the percentage of cells positive for surface expression 

or phagocytosis activity in calves 1 

Treatment2 CT HS Treatment 
P- value 

Day Treatment*Day 
No gate      

CD18, % 40.63 ± 3.95 51.96 ± 3.92 0.0438 0.8033 0.8984 
CD14, % 24.23 ± 2.19 27.78 ± 2.17 0.2517 0.4703 0.4066 
Dec205, % 3.70 ± 1.84 6.60 ± 1.83 0.2597 0.1839 0.4678 
Phagocytosis+ROS+, % 2.24 ± 0.16 2.72 ± 0.16 0.0382 0.5221 0.0757 
Lymphocytes      

CD18, % 0.08 ± 0.08 0.11 ± 0.08 0.7761 0.9151 0.9230 
CD14, % 0.60 ± 0.07 0.66 ± 0.07 0.5042 0.1685 0.8824 
Dec205, % 0.69 ± 0.01 0.71 ± 0.01 0.1874 0.4528 0.2605 
Phagocytosis+ROS+, % 0.10 ± 0.05 0.16 ± 0.05 0.3554 0.6757 0.0243 
Monocytes      

CD18, % 23.80 ± 2.97 32.12 ± 2.94 0.0493 0.0529 0.2241 
CD14, % 2.22 ± 0.13 2.41 ± 0.12 0.2797 0.0492 0.0266 
Dec205, % 1.78 ± 0.15 1.91 ± 0.14 0.5455 0.0009 0.1091 
Phagocytosis+ROS+, % 8.27 ± 1.94 7.17 ± 1.94 0.6899 0.3962 0.1253 
PMN      

CD18, % 40.69 ± 4.06 51.96 ± 4.02 0.0510 0.8033 0.8984 
CD14, % 3.11 ± 0.11 3.19 ± 0.11 0.6077 0.8745 0.7669 
Dec205, % 1.99 ± 0.20 1.93 ± 0.19 0.8126 0.7532 0.9474 
Phagocytosis+ROS+, % 11.90 ± 3.08 15.23 ± 3.08 0.4469 0.7774 0.1714 
 

1All means reported are least square means ± SE created by mixed model analysis (n=10 

calves/treatment). 
2CT = calves born to thermal neutral dams; HS = calves exposed to prenatal heat stress; 

CD18 = cluster of differentiation CD18; CD14 = cluster of differentiation CD14; Dec205 

= cluster of differentiation Dec205; ROS = reactive oxygen species; PMN = polymorph 

nuclear cells.  
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Table 3.6. Effect of heat stress on the mean fluorescence of individual cells in calves1  

Treatment2 CT HS Treatment 
P- value 

Day Treatment*Day 
No gate      

CD18 8.19 ± 0.16 8.51 ± 0.16 0.1447 0.0727 0.0842 
CD14 7.62 ± 0.19 7.57 ± 0.20 0.8588 0.1701 0.7655 
Dec205 6.10 ± 0.32 6.10 ± 0.40 0.1777 0.4157 0.4157 
Lymphocytes      

CD18 4.16 ± 0.75 5.64 ± 0.52 0.1065 0.2329 0.4928 
CD14 4.71 ± 0.62 5.79 ± 0.54 0.1965 0.9467 0.0614 
Dec205 5.76 ± 0.61 4.96 ± 0.62 0.3561 0.5958 0.1068 
Monocytes      

CD18 7.76 ± 0.17 8.41 ± 0.16 0.0058 0.0057 0.0308 
CD14 8.25 ± 0.18 8.43 ± 0.17 0.4866 0.2090 0.8020 
Dec205 6.60 ± 0.18 7.06 ± 0.17 0.0708 0.3586 0.1065 
PMN      

CD18 8.19 ± 0.16 8.51 ± 0.16 0.1447 0.0727 0.0842 
CD14 7.62 ± 0.19 7.57 ± 0.20 0.8588 0.1701 0.7655 
Dec205 6.10 ± 0.32 6.80 ± 0.40 0.1777 0.4157 0.2404 
 
1All means reported are least square means ± SE created by mixed model analysis (n=10 

calves/treatment). 
2CT = calves born to thermal neutral dams; HS = calves exposed to prenatal heat stress; 

CD18 = cluster of differentiation CD18; CD14 = cluster of differentiation CD14; Dec205 

= cluster of differentiation Dec205; PMN = polymorph nuclear cells.  
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Figure 3.1.  

a. b. 

 

 

 

 

 

 

 

 

c.    d. 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. The day effect on tumor necrosis alpha (TNF-α) (Panel a), interleukin 1-beta 

(IL-1β) (Panel b), interleukin receptor antagonist (IL-RA) (Panel c), and toll-like receptor 

4 (TLR-4) (Panel d) in leukocytes on days 0, 3, 7, 14, 21, and 28. Data is shown as least 

squares means ± SEM. Different letters indicate significant differences between days (P < 

0.05). Data are relative abundance to a stable internal standard, 18S.   
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Figure 3.2. 

a.  

 

 

 

 

 

 

 

 

 

 

b. 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. The percent positive of all leukocytes (No gate), lymphocytes (LY), 

monocytes (MO), and polymorph nuclear cells (PMN) that express cluster of 

differentiation (CD) 18 on their cell surface (Panel a) and the mean fluorescence 

expression of CD18 (Panel b). Data is shown as mean values ± SE (n=10 

calves/treatment). Percent positive data and fluorescence intensity data was log 

transformed before statistical analysis. * indicate significant differences between 

treatments within each cell population (P < 0.05). 
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Figure 3.3. 

a.  

 

 

 

 

 

 

 

 

 

 

 

b. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. The percent positive of all leukocytes (No gate), lymphocytes (LY), 

monocytes (MO), and polymorph nuclear cells (PMN) that express cluster of 

differentiation (CD) 14 on their cell surface (Panel a) and the mean fluorescence of CD14 

(Panel b). Data is shown as mean values ± SE (n=10 calves/treatment). Percent positive 

data and fluorescence intensity data was log transformed before statistical analysis. 
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Figure 3.4. 

a. 

 

 

 

 

 

 

 

 

 

 

 

b. 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. The percent positive of all leukocytes (No gate), lymphocytes (LY), 

monocytes (MO), and polymorph nuclear cells (PMN) that express Dec205 on their cell 

surface (Panel a) and the mean fluorescence of Dec205 (Panel b). Data is shown as mean 

values ± SE (n=10 calves/treatment). Percent positive data and fluorescence intensity data 

was log transformed before statistical analysis. * indicate significant differences between 

treatments within each cell population (0.05 < P < 0.01).  
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Figure 3.5. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. The percent positive of all leukocytes (No gate), lymphocytes (LY), 

monocytes (MO), and polymorph nuclear cells (PMN) for phagocytosis+ ROS+. Data is 

shown as mean values ± SE (n=10 calves/treatment). Percent positive data was log 

transformed before statistical analysis. * indicate significant differences between 

treatments within each cell population (P < 0.05).  
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Figure 3.6. 
 

a.         

 

 

 

 

 

 

 

 

 

 

 

b.  

 

 

 

 

 

 

 

    

 

 

 

 

Figure 3.6. The day effect on the expression of cluster of differentiation (CD) 18 (Panel a) 

and Dec 205 (Panel b) on the monocyte population (MO). Data is shown as mean values ± 

SE. Percent positive data was log transformed before statistical analysis. Different letters 

indicate significant differences between treatments (P ≤ 0.01). 
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Figure 3.7. 
 

a.         

 

 

 

 

 

 

 

 

 

 

b.  

  

 

 

 

 

 

 

 

 

 

 

Figure 3.7. The treatment by day effect on the percentage of leukocytes expressing 

phagocytosis+ ROS+ (Panel a) and on the mean fluorescence of cluster of differentiation 

(CD) 18 (Panel b). Data is shown as mean values ± SE (n=10 calves/treatment). Percent 

positive data and the fluorescence intensity was log transformed before statistical analysis. 

* (0.05 < P < 0.01) and ** (P < 0.05) indicate significant differences between treatments 

on that day.  
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Figure 3.8. 

a.         

 

 

 

 

 

 

 

 

 

 

b.  

  

 

 

 

 

 

 

 

 

 

 

Figure 3.8. The treatment by day effect on the percentage of lymphocytes expressing 

phagocytosis+ ROS+ (Panel a) and on the mean fluorescence of cluster of differentiation 

(CD) 14 (Panel b). Data is shown as mean values ± SE (n=10 calves/treatment). Percent 

positive data and the fluorescence intensity was log transformed before statistical analysis. 

* (0.05 < P < 0.01) and ** (P < 0.05) indicate significant differences between treatments 

on that day.  
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Figure 3.9. 

a.         

 

 

 

 

 

 

 

 

 

 

b.  

  

 

 

 

 

 

 

 

 

 

 

Figure 3.9. The treatment by day effect on the expression of cluster of differentiation 

(CD) 14 (Panel a) on the surface of monocytes and on the mean fluorescence of cluster of 

differentiation (CD) 18 (Panel b) on monocytes. Data is shown as mean values ± SE (n=10 

calves/treatment). Percent positive data and the fluorescence intensity was log transformed 

before statistical analysis. * (0.05 < P < 0.01), ** (P < 0.05), *** (P < 0.001) indicate 

significant differences between treatments on that day.  

 

 

** * **

1

2

3

4

0 3 7 14 21 28

Pe
rc

en
t p

os
iti

ve
, %

Days

CD14
Control

Heat Stress

***

5

6

7

8

9

10

0 3 7 14 21 28

Fl
uo

re
sc

en
ce

 in
te

ns
ity

Days

CD18
Control

Heat Stress



126 
 

Figure 3.10.         

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. The treatment by day effect on the mean fluorescence of cluster of 

differentiation (CD) 18 in polymorph nuclear cells (PMN). Data is shown as mean values 

± SE (n=10 calves/treatment). Fluorescence intensity was log transformed before 

statistical analysis. * indicates significant difference between treatments on that day (P < 

0.05). 
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Figure 3.11. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11. The day effect on plasma protein concentration. Data is shown as mean 

values ± SE. Different letters indicate significant differences between days (P < 0.05). 

 
 
  

 

 

bc

a

ab

d
cd cd

5.5
5.7
5.9
6.1
6.3
6.5
6.7
6.9

0 3 7 14 21 28

To
ta

l p
ro

te
in

, g
/d

L

Days

Plasma Protein



128 
 

Figure 3.12. 
 

 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

Figure 3.12. The treatment by day effect on white blood cell counts (WBC). Data is shown 

as mean values ± SE (n=10 calves/treatment). * indicates differences between treatments 

on that day (0.05 < P < 0.01). 
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Figure 3.13. 
 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

Figure 3.13. The day effect on the neutrophil to lymphocyte (N/L) ratio. Data is shown as 

mean values ± SE. Different letters indicate significant differences between days (P < 

0.05). 
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Figure 3.14. 
 

 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14. The effect of days on the percentage of neutrophils (NE), lymphocytes (LY), 

monocytes (MO), and eosinophils (EO). Data is shown as mean values ± SE (n=10 

calves/treatment). Different letters indicate significant differences between days for each 

separate cell type (P < 0.1). 
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CHAPTER IV 

 
 
 

SUMMARY AND FUTURE RESEARCH 
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With the increase in global climate change and the population growth driving the 

high demand for additional food production, HS is a major concern in the livestock 

industry across all species.  The effects of HS are detrimental to the welfare of the 

animal, which leads to the reduction of their overall performance. Animals experience HS 

when exposed to high environmental temperatures outside their thermal neutral zone. The 

level of the effects is dependent upon the length and intensity of HS to which the animal 

is exposed to. Both physical and physiological changes occur in laying hens and dairy 

cattle as a result of HS, but there are some similarities and differences between the two 

species. Cattle have sweat glands, but chickens do not, therefore cattle have a better 

ability to dissipate heat during hotter temperatures. However, they both increase their 

respiration rates resulting in panting during high temperatures to adjust for the extra heat 

load.   

Consequently, the changes that occur in the animal to compensate for the added 

heat load ultimately results in impaired animal welfare, a reduction in production, and 

also leads to higher incidences of morbidity and mortality. In laying hens, HS has been 

shown to decrease feed intake, increase water consumption, increase panting, reduce egg 

production, and impair egg qualities. In dairy cattle, HS has also caused a decrease in 

feed intake and an impairment in reproduction, as well as a decrease in milk production. 

As a result of these adverse effects of HS, there is need for extensive research on the 

effects of HS on the immune system, as well as potential methods to alleviate the stress in 

both dairy cattle and laying hens. Such research will in turn decrease morbidity and 

mortality during HS episodes and increase the production globally in hot environments 

outside livestock thermal neutral zones.  
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There is evidence that thermally regulated cooled perches can be used to alleviate 

HS in chickens. Hens have a natural tendency to perch for resting and protection and 

more than 25% of heat produced can be lost through their feet by modulating blood flow. 

Thus the increase in conductive heat transfer from the feet to the thermally controlled 

perch has previously been shown to help relieve HS in laying hens. It has also been 

demonstrated that broiler chickens prefer to roost on cooled perches when exposed to 

high environmental temperatures, resulting in a decrease in panting, a reduction in core 

body temperature, and an increase in BW gain. The aforementioned studies have 

determined the effectiveness of cooled perches to improve chicken performance during 

HS in broilers. However, there is insufficient evidence as to how cooled perches would 

affect laying hens during HS. The strategy of using cooled perches, as a method to 

alleviate HS in broilers, has provided evidence on the potential for cooled perches to 

improve laying hen immunity during HS. 

In the first experiment, we observed the potential of cooled perches as a method 

to alleviate the immunological changes that occur from exposure to HS on laying hens of 

a popular commercial breed; Hy-Line W36. Measurements were taken at both acute and 

ambient environmental conditions; at 27 and 32 weeks of age respectively. Specific 

measurements suggested that cooled perches can be used to alleviate the immunological 

effects that occur from HS, such as a reduction in the H/L ratio, but to fully understand 

the extent of cooled perches on the immune system, an increase in stress on the birds is 

required. Additionally, the current data provides researchers with a basis of how 

thermally regulated perches have the potential to provide a strategy that can be 

implemented to improve hen immunity. There is a great opportunity for future research to 
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further expand upon our results by determining the effects of cooled perches on laying 

hens exposed to a longer duration of a more stressful environment, and an induced 

chronic HS over a longer production period. 

As the first study implementing thermally regulated cooled perches in laying 

hens, there are a few considerations when moving forward before cooled perches can be 

applicable to the poultry industry. One area that needs to be greatly considered is the 

initial cost and management requirement for the use of thermally regulated perches. The 

current study did not provide sufficient evidence to outweigh the cost demand for the 

extensive cooled perch caging system. However, it did provide sufficient evidence to 

continue the research on the benefits of cooled perches in order to be implemented in 

future production cages to alleviate the negative effects of HS in laying hens. Secondly, 

no studies have looked at the benefits of cooled perches during HS throughout the life of 

the hen. The results of the current study were completed on young birds; however, HS 

has also been shown to have detrimental effects on older birds. HS has apparent short 

term effects on lying hens, such as a decrease in productivity, but the damage of HS on 

the hen beyond several weeks has been less studied. The long-term effects of HS are 

more of a concern in laying hens, due to their longer lifespan than broilers, allowing them 

to be a better model for the long term benefits of cooled perches used to improve hen 

immunity during HS. Thirdly, in experiment 1, very specific immunological parameters 

provided evidence that hens with access to cooled perches during HS improves hen 

immunity. However, little is known about the specific mechanism of how HS affects the 

immune system in birds. Therefore, to further expand upon how cooled perches alleviate 

HS, additional immunological factors that have been altered by HS should be determined, 
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which has been shown to increase in birds allowing protection from HS. These results 

would be expected to further support the claim that cooled perches improve hen 

immunity during HS. Lastly, it has been shown that birds are more susceptible to disease 

during HS and several studies have shown different methods to combat the effects, such 

as with nutritional supplementation and genetic selection. Thus, as more evidence is 

gathered on the benefits of thermally cooled perches on the immune system in birds, the 

next stage would be to see if access to cooled perches improved the immune function 

enough to reduce morbidity during HS. 

 Allowing access to regulated zone cooling through cooled perches has benefits on 

improving the immune system in laying hens during HS, especially during the summer 

months. The present study determined cooled perches have the potential to inhibit heat 

stress-induced immunological changes in laying hens during exposure to high 

temperatures. However, future research is required before thermally regulated perches 

can be implemented in the poultry industry.  

 The effects of HS on dairy cattle have been extensively studied, but less is known 

on the prenatal effects of HS on the neonate. Previous studies found that cows exposed to 

increased environmental temperatures have increased rectal temperatures and respirations 

rates. The cows also have a decrease in production and an impaired reproduction and 

immune system during HS. Our study was based on the hypothesis that with the physical 

and physiological changes occurring in the mother during HS in late gestation, there 

would be an effect on the offspring resulting in an impaired immune system.  A few 

studies in pigs, mice, and sheep looked at the effects of HS on the offspring, but only one 

other study in dairy cattle has investigated the effects of prenatal HS during late gestation 

 

 



136 
 

on the growth and immune system of the neonate. Maternal HS during late gestation was 

found to inhibit the immune response of the offspring and lower birth weight. In that 

study there were limited immune factors analyzed, so in the current study we expanded 

the immunological parameters measured to determine how maternal HS during late 

gestation effects the offspring’s immune function.  

  Like the other study, we anticipated that maternal heat load during late gestation 

would suppress the innate immune system in neonatal calves. In the second experiment, 

we observed immunological changes in the calves born to prenatal HS. Measurements 

were taken at 0, 3, 7, 14, 21, and 28 days of age while the calves were exposed to similar 

environmental temperatures after birth. We determined specific immunological 

parameters that suggest maternal HS does alter the calf innate immune system. 

Additionally, a previous study reported that 2 wk old calves are more vulnerable to 

bacterial infections since their maternal antibodies are declining but their own immune 

system is still not fully developed yet. Therefore, with the changes in immune function, 

shown in the current study, the calves may become more susceptible to disease after 

prenatal HS to microorganisms that may normally be nonpathogenic.  

 There is immense opportunity for future research to further expand upon our 

results in determining the effects of prenatal HS on neonate immunity by measuring 

additional maternal stress-related physiological changes, such as stress hormone levels to 

further understand the relationship between the maternal HS effects and the neonates' 

innate immune function. In addition, the implications of HS research are remarkable, and 

have the potential to be linked to the health and welfare of multiple species, including 

humans. Therefore, future studies regarding the prenatal HS effects on calf innate 
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immunity may have an application for better understanding and implementing strategies 

to prevent the maternal HS effects on offspring immunity in humans.   

In conclusion, HS greatly impacts many different species and poses a wide threat 

on the health and wellbeing of animals due to the global climate changes and increased 

demands on the livestock industry. Thermally cooled perches, as a method to improve 

hen immunity during HS, has allowed additional knowledge for creating a long-term 

strategy to alleviate HS in laying hens. The changes found in neonatal immunity after 

exposure to late gestational prenatal HS has potentially opened other avenues of research 

to better understand the effects of prenatal HS on the offspring of both livestock and 

humans. While one study is alleviating the effects of direct HS and the other is 

investigating the effects of indirect HS, both experiments expand the much needed area 

of HS research in livestock production.  
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