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ABSTRACT

Roberts, Leighton E. MSME, Purdue University, December 2014. Analysis of the
Impact of Early Exhaust Valve Opening and Cylinder Deactivation on Aftertreatment
Thermal Management and Efficiency for Compression Ignition Engines. Major
Professor: Gregory M. Shaver, School of Mechanical Engineering.

In order to meet strict emissions regulations, engine manufacturers have imple-

mented aftertreatment technologies which reduce the tailpipe emissions from diesel

engines. The effectiveness of most of these systems is limited when exhaust temper-

atures are low (usually below 200◦C to 250◦C). This is a problem for extended low

load operation, such as idling and during cold start. Use of variable valve actuation,

including early exhaust valve opening (EEVO) and cylinder deactivation (CDA), has

been proposed as a means to elevate exhaust temperatures. This thesis discusses

a research effort focused on EEVO and CDA as potential enablers of exhaust gas

temperature increase for aftertreatment thermal management.

EEVO results in hotter exhaust gas, however, more fueling is needed to maintain

brake power output. The first study outlines an analysis of the impact of EEVO

on exhaust temperature (measured at the turbine outlet) and required fueling. An

experimentally validated model is developed which relates fueling increase with EVO

timing. This model is used to generate expressions for brake thermal efficiency and

turbine out temperature as a function of EVO. Using these expressions the impact

of EEVO is evaluated over the entire low-load operating space of the engine. Con-

sidering the earliest EVO studied, the model predicts an approximate 30◦C to 100◦C

increase in turbine out temperature, which is sufficient to raise many low-load op-

erating conditions to exhaust temperatures above 250◦C. However, the analysis also

predicts penalties in brake thermal efficiency as large as 5%.
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The second study focuses on the impact of 3-cylinder CDA on exhaust temperature

and efficiency at both “loaded” and “unloaded” idle conditions. CDA at idle results

in a reduction in air-to-fuel ratio, and heat transfer surface area. This enables an

increase in exhaust temperature for aftertreatment thermal management, and an

increase in efficiency via reduced pumping and heat transfer losses. At the loaded

idle condition, deactivating 3 cylinders provides an increase in exhaust temperature

from about 200◦C (6-cylinders) to approximately 300◦C (3-cylinders), with no fuel

economy penalty. Additionally, at the unloaded condition, CDA provides an increase

in exhaust temperature of about 20◦C, from about 117◦C to about 135◦C, with a fuel

consumption reduction of 15%-26%.

The third study includes additional research motivating CDA as a thermal man-

agement strategy. Results of an experimental load sweep with CDA show an increase

of about 5% to 7% BTE at low load (1.3 bar) with an increase in exhaust tempera-

ture from 166◦C to about 245◦C. By about 2.5 bar, there is no significant change in

BTE, yet an exhaust temperature increase is observed from 215◦C to about 340◦C.

At 6.4 bar, a reduction of about 10% to 15% BTE is observed with a temperature in-

crease from 354◦C to about 512◦C. As noted above, these are desirable benefits during

steady-state; however, when an engine transitions from low to higher load, more air

is needed to accompany the additional fuel. During transient operation, the reduced

air-fuel ratio as a result of CDA limits the rate at which the load can be increased,

as well as the maximum load that can be achieved. In addition to demonstrating

the benefits of CDA during steady state operation, this paper identifies challenges

with respect to transient operation of CDA for engines incorporating conventional

air handling systems - high pressure EGR and variable geometry turbocharging. The

transient Federal Test Procedure (FTP) cycle requires a load transition from near

zero load to about 6 bar BMEP within approximately one second. This study shows

that at low speed (800 rpm), the test engine operating in CDA mode cannot meet

the load transition required by the FTP without mode transitioning to conventional

6 cylinder operation. At a moderate speed consistent with highway cruise conditions
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(1200 rpm), the transient FTP heavy-duty cycle can be met only by increasing the

higher load air-fuel ratio target from ∼18 to ∼21, which reduces the temperature

benefit seen from CDA by ∼60◦C (from 512◦C to 450◦C) and increases the NOx from

3.2 to 10.3 g/hp-hr. The load response required for the mid-range cycle cannot be

met with CDA due to low air-fuel ratios causing large soot emissions, even when

air-fuel ratio is increased to ∼23.

The work presented here provides insight into the thermal management capabil-

ities of EEVO and CDA. EEVO can significantly raise exhaust temperatures; how-

ever, this comes at a large efficiency penalty. CDA provides large exhaust temper-

ature increase accompanied by fuel consumption benefits at low load. This thesis

demonstrates the benefit of CDA, but illustrates that remaining challenges exist with

enabling transient operation.
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1. INTRODUCTION

1.1 Motivation

Over the past several decades, the U.S. Environmental Protection Agency (EPA)

has tightened regulations on nitrogen oxides (NOx) and particulate matter (PM) from

diesel engines. Fig. 1.1 shows the history of these emissions regulations over the past

20 years. Modern regulations demand that these tailpipe emissions be near zero. The

most recent regulations (EPA 2010) require that PM be no more than 0.01 g/hp-hr

(0.013 g/kWh) and that NOx not exceed 0.2 g/hp-hr (0.27 g/kWh) [1]. CO2 is also

regulated as a greenhouse gas which is reduced by more efficient fuel consumption.

Additionally, energy use in the transportation sector is projected to increase over the

next four decades, while oil prices are expected to remain high [2]. This is further

motivation for engine manufacturers to improve engine efficiencies; higher efficiency

engines reduce overall fuel consumption leading to lower CO2 emissions. However,

future improvements in diesel engine efficiency must not compromise the ability to

meet the EPA 2010 criteria pollutant regulations.

In the past, engine manufacturers have developed several “on-engine” strategies

to meet tailpipe emissions limits. Such strategies include high fuel injection pressure,

late fuel injection, and exhaust gas recirculation (EGR) [4]. To meet the present

regulations, these strategies must be combined with modern aftertreatment technolo-

gies. Typical aftertreatment systems include Selective Catalytic Reduction (SCR) to

reduce NOx emissions, a Diesel Oxidation Catalyst (DOC) to reduce unburned hy-

drocarbons (HC) and carbon monoxide (CO), and a Diesel Particulate Filter (DPF)

to reduce PM emissions.

A major drawback with even the most advanced aftertreatment systems is the need

to operate within a certain temperature range for emissions conversion efficiency. This
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Figure 1.1. Overview of the change to 2010 EPA emissions regulations [3].

is problematic during cold start and at low load engine operation when the exhaust

gas temperature is too low to keep the aftertreatment working effectively. Therefore,

thermal management is needed for efficient aftertreatment operation over a wide range

of duty cycles [5, 6].

Many aftertreatment thermal management strategies penalize fuel consumption.

This can be a significant detriment to overall fuel economy for a drive cycle that

spends a lot of time in idle. For example, one report from industry shows that oper-

ation at idle to meet a particular NOx target on a line haul truck required a 12.5%

fuel consumption increase from nominal idle operation [7]. Discovering more efficient

thermal management methods would demonstrate a significant fuel consumption im-

provement. However, maximizing aftertreatment efficiency allows the engine to be

operated more efficiently (via increased engine out NOx operation) [2, 5]. The ideal

thermal management solution would increase temperature enough to improve the

aftertreatment effectiveness while minimizing the fuel consumption penalty.
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Figure 1.2. Schematic of aftertreatment architecture solution used by Cummins [6].

As will be demonstrated in this thesis, variable valve actuation (VVA) technology

is an attractive solution to thermal management. There are many approaches to

VVA which have significant thermal management potential. Among these are early

exhaust valve opening (EEVO), and cylinder deactivation (CDA).

1.2 Literature Review

1.2.1 Modern Aftertreatment Technology

Fig. 1.2 shows an example of an arrangement of modern aftertreatment catalysts

used by Cummins. This solution includes a DOC followed by a DPF. Two copper

zeolite SCR units are preceded by a urea injector. All these catalysts are followed by

an ammonia oxidation catalyst (AMOx), labeled NH3, used to control ammonia slip

[2]. Additionally, a HC doser is placed upstream of the DOC for thermal management.
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There are three main functions of the DOC: the conversion of CO to CO2, the

oxidation of HC, and the conversion of NO to NO2. The main chemical equations

that take place supporting each of these functions are listed in order [8]:

CO +
1

2
O2 −→ CO2 (1.1)

HxCy +
(x
4
+ y

)
O2 −→ yCO2 +

x

2
H2O (1.2)

NO +
1

2
O2 −→ NO2. (1.3)

The efficiencies of these reactions are different for various catalyst temperatures.

HC oxidation is more efficient at higher temperatures (∼400◦C) whereas NO conver-

sion is most efficient (∼70%) around 325◦C [9, 10]. CO conversion is almost 100%

efficient when the DOC is above 200◦C. The ability to burn HC is useful, and is uti-

lized in modern systems by injecting additional fuel into the exhaust to heat up the

aftertreatment system. This can only take place, however, when the DOC is up to

a proper operating temperature. The conversion of NO to NO2 is desirable for both

DPF passive regeneration and SCR NOx conversion efficiencies [8].

A DPF filters the PM out of the exhaust gas by allowing air to pass through a

porous material which traps the soot particles. As soot builds up on the filter, the

back pressure on the engine increases, reducing the efficiency of the engine. This ne-

cessitates regeneration of the DPF, or burning of the carbon particles, to reduce this

back pressure [11]. Most often this occurs via passive regeneration, which is the oxi-

dation of soot with NO2. Passive regeneration occurs at temperatures between 250◦C

and 400◦C and takes place continuously provided there is enough NO2 available [12].

Fig. 1.3 illustrates how the DOC assists in providing NO2 for passive regeneration. It

should be noted, however, that the total NOx fraction is not reduced through these
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Figure 1.3. NO2/NOx species ratio through DOC and DPF [1].

catalysts. Occasionally, active regeneration of a DPF might be necessary when con-

ditions are not right for passive regeneration. This involves carbon oxidation using

O2 and requires higher exhaust temperatures (above 550◦C). Thermal management

solutions are usually required to achieve active regeneration temperatures [1].

The SCR catalysts are effective in converting NOx into N2 and H2O with the

following main reactions [13]:

2NH3 +NO +NO2 −→ 2N2 + 3H2O (1.4)

4NH3 + 4NO +O2 −→ 4N2 + 6H2O (1.5)

8NH3 + 6NO2 −→ 7N2 + 12H2O. (1.6)

Each of these equations shows the NOx reacting with NH3. Urea, or diesel exhaust

fluid (DEF), is injected upstream of the SCR which decomposes into ammonia and
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carbon dioxide in order to deliver the necessary amount of ammonia to the catalysts.

This urea can only be injected with catalyst temperatures above 200◦C to avoid build

up of solid deposits [2,14]. Copper zeolite catalysts are common because they provide

high efficiency conversion at relatively low temperatures [2]. Typical operating range

for maximum efficiency is between 200◦C to 400◦C [15]. In order to meet EPA stan-

dards, a very high consistent NOx conversion is necessary. Additionally, operation of

the SCR to achieve very high NOx conversion efficiencies allows the engine to be run

with relaxed engine out NOx constraints which generally improves efficiency [6].

A study performed by Naseri et al. [5] compared four different arrangements of

aftertreatment systems from the most basic including DOC, DPF and SCR. The

most advanced configuration included an SCR coated DPF, a high porosity high cell

density SCR and an ammonia slip catalyst. Each aftertreatment configuration was

tested using a cold and hot FTP cycle on a 6 cylinder 9.0 liter HD diesel engine. The

researchers reported that the advanced system showed lower than desired NOx con-

version performance when subjected to the cold FTP cycle. A thermal management

strategy was simulated by preheating the system. The results showed a considerable

improvement was possible if thermal management could be used.

Even with most advanced aftertreatment systems, a major drawback is the need

to operate the aftertreatment system within a certain temperature range. This is

especially problematic at cold start and low loads and idle conditions. Thermal

management strategies are needed for efficient aftertreatment operation over a wide

range of duty cycles [5, 6].

1.2.2 Thermal Management

Thermal management is engine operation aimed at optimization of aftertreatment

effectiveness, including earlier light-off of catalysts and reduced cooling effects of idling

during stop-and-go operation [1].
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While many exhaust thermal management strategies penalize fuel consumption

[1, 8, 16], maximizing aftertreatment efficiency has the potential to improve overall

(engine and aftertreatment) system efficiency. This could be accomplished by more

efficient engine operation (via relaxed engine out NOx constraint) [2,5]. However, in

general, the ideal thermal management solution would increase temperature enough

to improve the aftertreatment effectiveness while minimizing the fuel consumption

penalty.

Conventional Approaches

One of the more common approaches to thermal management is modulation of

main or post fuel injection timings. Another related option is the dosing of fuel in

the exhaust pipe upstream of the DOC for increased HC oxidation in the catalyst,

provided the DOC is already operating at a sufficient temperature [11]. Singh et

al. [17] showed that dosing of fuel upstream of the DOC does effectively increase

temperatures enough for active regeneration in the particulate filter. 99% of the

injected HC was oxidized over the DOC and catalyzed particulate filter. Parks et

al. [18] compared HC dosing in the exhaust with extended main and post injections

in the cylinders in a 4 cylinder 1.7 L engine. They noted that during cold initial

conditions, earlier injection strategies are more effective due to the inability of the

DOC to oxidize fuel at cooler temperatures. [8] also investigated the use of post and

main injection modifications in a 4 cylinder 7.0 L HD engine. The goal of this study

was to increase the DOC temperature to increase the NO2/NO ratio in order to

improve the effectiveness of the SCR.

Charlton et al. [1] mentioned the inclusion of a VGT and a common rail high

pressure fuel system allows for thermal management flexibility for fast warm-up of

the aftertreatment catalysts.

Mayer et al. [19] studied the use of an intake throttle for exhaust temperature in-

crease for the purpose of DPF active regeneration. Their study showed that an intake
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throttle can reduce the air flow, such that air-fuel ratios and exhaust temperatures

consistent with maximum load operation were achievable at part load. One drawback

mentioned was that this method also caused an increase in engine out NOx.

Akiyoshi et al. [20] used a burner at the inlet of the aftertreatment systems to

increase catalyst temperatures to meet the 2010 standards. A spark was used in

the burner to ignite extra fuel injected upstream of the burner. This showed to be

effective for improving SCR light-off time and for active regeneration of the DPF.

Another thermal management strategy has been to implement electrically heated

catalysts (EHC). Kim et al. [21] studied the performance of an EHC placed upstream

of the DOC. They claimed that nominally the test engine emitted 50% of the total

NOx within the first 350 seconds of the FTP75 cycle. The use of the EHC improved

NOx conversion to 90% between 150 and 350 seconds of the FTP75 cycle.

Variable Valve Actuation

The potential for variable valve actuation technology as an enabler of aftertreat-

ment thermal management in diesel engines is being researched. VVA possibilities

include early intake valve closing (EIVC) or late intake valve closing (LIVC), early ex-

haust valve opening (EEVO), internal EGR (IEGR) via negative valve overlap (NVO)

or a secondary exhaust valve bump [22], as well as cylinder deactivation (CDA).

Both EIVC and LIVC reduce the amount of air trapped at valve closing. In the

case of LIVC charge is pushed back into the intake manifold from the cylinder before

closing. EIVC prevents charges from entering the cylinder. These methods reduce

the effective compression ratio and volumetric efficiency. This results in lower NOx

emissions and reduced air-fuel ratio, which results in hotter exhaust temperature.

Opening the exhaust valve early reduces the work done on the piston during the

expansion stroke resulting in a reduction in brake torque. With less energy extracted

as work on the piston more energy remains in the form of heat which is expelled

through the exhaust [23]. IEGR is accomplished by trapping hot exhaust gas with
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NVO or by opening the exhaust valve for a brief time during the intake stroke to

re-induct hot exhaust. This provides EGR without sending the exhaust through a

cooler which provides hotter exhaust temperatures. CDA is accomplished by keeping

the valves shut and injecting no fuel. This prevents the deactivated cylinders from

breathing air. This reduction of airflow through the engine results in lower air-fuel

ratios causing exhaust gas temperatures to increase.

Several studies have been performed researching the effects of these strategies. De

Ojeda [24] studied EIVC on a 6.4 liter V8 diesel with a lost motion electro-hydraulic

VVA device. He found that EIVC could achieve a 100◦C increase in the exhaust

manifold with a 5% improvement in fuel consumption and reduced soot at a constant

NOx level. He claims that this method is more efficient than intake throttling or late

post injection or HC dosing.

Garg et al. [25] used a 6 cylinder diesel equipped with an electro-hydraulic VVA

system to study IVC modulation. They found that IVC modulation provides a sub-

stantial increase in exhaust temperature due to the reduced volumetric efficiency and

air-fuel ratio. They also reported an improvement in fuel consumption due to a reduc-

tion in pumping losses. The experiments showed that NOx also decreased which was

attributed to the lower compression ratio and in-cylinder temperature at the start of

combustion.

Gehrke et al. [26] explored the use of VVA on a single cylinder research engine with

the goal to quickly achieve and maintain aftertreatment system temperature between

200◦C and 400◦C. They compared LIVC/EIVC, NVO, and EEVO strategies in terms

of effects on fuel consumption temperature and emissions. It was reported that LIVC

had the largest temperature gain (∼120◦C) with a small fuel consumption increase.

NVO and EEVO both had moderate exhaust temperature increases of about 65◦C;

however, EEVO had the largest fuel consumption penalty.

Wickstrom [27] also studied and compared multiple VVA strategies including

EIVC/LIVC, EEVO, secondary EV bump and IV and EV phase shifting. His re-

search was conducted on a single cylinder diesel engine. It was reported that EIVC
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and LIVC were both effective in raising exhaust temperature with little fuel con-

sumption penalty. EEVO was not studied in detail due to the large fuel consumption

penalty induced. An exhaust valve bump in the intake stroke proved to give a large

temperature benefit with only a 6% increase in fuel consumption. This work was

also compared to conventional thermal management strategies such as intake throt-

tle, exhaust brake, and hot EGR. Wickstrom reported that the exhaust brake method

showed the highest potential for heating the aftertreatment system.

Honardar et al. [28] compared exhaust valve (EV) phasing with post and main

fuel injection modulation. This study was conducted on a 4 cylinder in-line research

engine equipped with VVA technology. They reported that EV phasing increased fuel

consumption by 11%; however, lower CO, HC and NOx emissions were measured when

compared to late post injection. EV phasing yielded a small exhaust temperature

increase for cold start conditions whereas more than 100◦C increase was measured

with a late post injection strategy.

There are not many public studies on the effectiveness of CDA on thermal man-

agement. Kitabatake et al. [29] studied the use of CDA on a 6 cylinder 9.84 liter

3-stage turbo charged diesel engine for efficiency benefit. The camless VVA system

was driven by hydraulic pressure. This study showed that deactivation of three or

four cylinders produced a fuel economy improvement of 8.9% at light load due to a

reduction in heat loss. The researchers also describe that this is only viable at light

loads; therefore, there is a need to switch to activating the cylinders during transient

operation.

1.3 Experimental Setup

The experiments were conducted on a 2010 Cummins diesel engine at Purdue Uni-

versity’s Herrick Laboratories. This engine has six in-line cylinders and is equipped

with high-pressure common rail fuel injection system, variable geometry turbocharger

(VGT), exhaust gas recirculation (EGR), a charge air cooler (CAC), and high resolu-
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Figure 1.4. Schematic of Cummins multicylinder testbed.

tion emission analyzers for NOx, HC, and PM. A schematic of the engine architecture

is presented in Fig. 1.4. The fresh air flows through the laminar flow element into

the compressor and is then cooled in the CAC before being mixed with cooled recir-

culated exhaust gas. The exhaust that is not recirculated to the intake flows through

the turbine to the exhaust pipe. The exhaust temperature is measured at the exit of

the turbine, referred to in this paper as turbine outlet temperature (TOT). A mix-

ture of two Kistler 6067 and four AVL QC34C in-cylinder pressure transducers in

tandem with an AVL 365C crankshaft position encoder are used with an AVL 621

Indicom module for high-speed data acquisition. Laboratory-grade air flow and fuel

flow measurements are also used.

There is no aftertreatment system installed on this testbed; however, a butterfly

valve is used in the exhaust pipe to simulate the back pressure that would be caused by
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Figure 1.5. Exhaust pressure vs. volumetric flow rate relationship
simulating aftertreatment back pressure.

a typical aftertreatment system. Fig. 1.5 shows the measurement-based relationship

between the exhaust volumetric flow rate and the exhaust pressure at the turbine

outlet to which the valve was controlled during this study.

This engine is also equipped with a fully flexible variable valve actuation (VVA)

system. For each of the 6 cylinders, both the intake and exhaust valve pairs are driven

by the VVA system. As such, the VVA system has a total of twelve actuators. Each

actuator uses position feedback for closed-loop control, enabling cylinder independent,

cycle-to-cycle operation of the system. The VVA system is able to control valve

opening and closing timing and lift. Fig. 1.6 presents a schematic of the VVA

system. The valve profiles are generated in dSPACE and sent to the servo valves via

the controller and amplifier. The servo valves shuttle high pressure hydraulic oil to

one side of the piston actuators. These actuators push on the valve pairs through a
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Figure 1.6. Schematic of Purdue variable valve actuation system.

valve bridge to open them. The return force from the valve springs close the valves

as the actuators retract. Position feedback is obtained through LVDTs.

The aforementioned equipment, full access to the engine control module (ECM),

and additional temperature and pressure sensors are integrated using a dSPACE sys-

tem. The dSPACE system simultaneously controls the VVA system, sends commands

and receives data with the ECM, and samples all of the external measurement chan-

nels.

The VVA system allows the early exhaust valve opening and cylinder deactivation

operations that will be discussed in the subsequent chapters. Examples of EEVO valve

profiles are shown in Fig. 1.7. Each has the same EVC and EVL but a different EVO.

The nominal valve profile is adjusted to EEVO profiles like those shown in Fig. 1.7

by simply adjusting the EVO parameter.



14

Figure 1.7. Exhaust valve profiles generated on VVA demonstrating EEVO.

Note that EVO here refers to the point in the crank angle domain at which the

valve is commanded to open, not at which it actually begins to open. The difference

between commanded and actual EVO timing varies with how advanced EVO is set.

Figure 1.8 shows an example of the amount of EVO delay when the EVO is set 90

degrees crank angle before the nominal timing.

CDA in this study is performed by deactivating three of the six cylinders. Cylin-

ders are deactivated by turning off valve actuation signals after the intake stroke and

injecting no fuel. This method traps fresh charge air inside the cylinder. There is not

a perfect seal around the piston rings, and some charge is lost from the deactivated

cylinders during each compression. Periodically, the intake valves are opened for one

cycle to recharge or allow a fresh charge into the cylinders in order to keep positive

pressure and avoid oil accumulation around the piston rings. For steady state tests,

this recharge event occurs every 100 cycles. For transient operation, the recharge

event was set to occur every 400 cycles to prevent any interference with the transient

response data collection.
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Figure 1.8. Commanded vs. measured exhaust valve profiles.

1.4 Contributions

The author led the work of several major research accomplishments some of which

are discussed in this thesis. This work includes the study of two VVA-based strategies

for diesel aftertreatment thermal management, EEVO and CDA. GT-Power simula-

tions and experimental validation of EEVO operation was performed. Using exper-

imental EEVO data, models were developed generalizing the relationship between

EVO timing and exhaust temperature and fuel consumption.

Work was also performed on the investigation of the potential thermal manage-

ment benefit of CDA operation at idle. This involved performing several designs of

experiments on the research engine and performing a constrained optimization.

The transient capability and potential challenges of CDA were also explored. In

order to experimentally study transient operation, the author led an effort to modify

the SIMULINK model which communicates with the engine’s ECM to enable simul-
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taneous setting of all the engine input overrides. Additionally, modifications were

made to the fueling input override to allow various fueling profiles during a load tran-

sition to be commanded. Utilizing this update to the engine software, experiments

were performed involving load transitions with various fueling profile strategies for

the characterization of potential challenges of transient operation with CDA.

In addition to the research discoveries and contributions mentioned above, the

author also assisted colleagues in similar research efforts. Assistance was given to

Akash Garg, Chuan Ding, and Mark Magee in the collection of experimental data

for the analysis of VVA strategies on exhaust thermal management. These studies

included intake valve closing timing modulation, negative valve overlap and cylinder

deactivation.

Assistance was also given to Mark Magee and David Fain for the modification

of the SIMULINK model to enable cylinder deactivation. This effort also enabled a

cylinder recharge sequence which opens the intake valves for one cycle in the deacti-

vated cylinders every 100 cycles to keep positive in-cylinder gauge pressure.

1.5 Outline

Chapter 2 discusses the effect of EEVO on raising TOT and also its effect on

BTE. Models are developed for the relationships of how temperature and fueling

change with varying EVO. Chapter 3 outlines an optimization effort comparing CDA

operation to nominal 6-cylinder operation. Chapter 4 begins with motivating results

of CDA at steady-state conditions at several engine loads at a cruising speed. The

second part discusses the limits of CDA during transient load transitions. Chapter 5

gives a summary of the work presented in this thesis. Some discussion of future work

is also included.
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2. MODELING THE IMPACT OF EARLY EXHAUST VALVE OPENING ON

EXHAUST THERMAL MANAGEMENT AND EFFICIENCY

As mentioned in the first chapter, previous studies have discussed the potential of

EEVO to raise exhaust temperatures [27, 28]. However, the studies involving diesel

engines are restricted to reporting data at one or two operating conditions. This

chapter focuses on the modeling, generalization, and prediction of the effect of EEVO

on exhaust gas temperature and the required fueling to maintain torque.

2.1 Experimental Data Collection

The experimental data for this study was conducted at three speed/BMEP con-

ditions: 800 r/min at 1.3 bar, 2000 r/min at 1.3 bar, and 2200 r/min at 6.3 bar. The

point at 800 r/min represents a loaded idle condition. The point at 2000 r/min and

1.3 bar is representative of a condition at a cruising speed without the accelerator

pressed. The third condition was chosen at a moderate load (6.3 bar) and a slightly

higher speed (2200 r/min) to represent the engine condition after the accelerator is

pressed at a cruising speed. The TOTs at the 1.3 bar points are very low, ∼150◦C

and 200◦C for the 800 and 2000 r/min points, respectively, and they are common op-

erating conditions. The TOT at the 6.3 bar load point, another common condition,

is nominally above 250◦C; however, any increase in temperature would be beneficial

for heating the aftertreatment system from cooler conditions.

EEVO sweeps were performed at each of these conditions to explore the primary

impact of EVO modulation. Each EEVO sweep was performed by setting the engine

to run at the desired speed/load condition then adjusting the commanded EVO timing

from the nominal value to 90◦ crank angle before nominal. The experiments were

performed at a constant torque; therefore, the fueling amount was increased as EVO
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was advanced to make up for the torque loss resulting from earlier EVO. All other

engine inputs (e.g. injection timings, rail pressure, VGT, and EGR actuator positions)

were held constant during the sweep. Data was taken for each sweep at five different

EVO values, listed in Table 2.1.

Table 2.1. EVO values studied with respect to nominal.

EVO values

Nominal

-30◦

-50◦

-70◦

-90◦

A total of seven constant-torque EEVO sweeps were performed. Table 2.2 lists

each condition at which the EEVO sweeps were performed and the inputs associated

with the sweep. TOT at nominal EVO (NEVO) is also listed for reference. It was

necessary to isolate the effect of EEVO from the influences of other engine parameters

in order to model the impact of EEVO on TOT and the required fueling increase.

Therefore, three sweeps were conducted at both 2000 r/min at 1.3 bar and 2200

r/min at 6.3 bar but with other inputs (SOI, rail pressure, air/fuel ratio, and EGR

fraction) adjusted. Conditions 1, 2a and 3a have engine parameters consistent with

the production ECM calibration. Start of injection (SOI) and rail pressure were varied

significantly between conditions 2a-c (2000 r/min at 1.3 bar) and between conditions

3a-c (2200 r/min at 6.3 bar). The starting values of air/fuel (A/F) ratios and EGR

fractions for conditions 3a-c were set to values as listed in Table 2.2 using the VGT

and EGR actuators. SOI and rail pressure were held constant during each sweep,

and the VGT and EGR actuators were not adjusted; however, the A/F ratio and

EGR fractions were allowed to float based on changes in the gas exchange process
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caused by EEVO and fueling amounts (which, as noted previously, were adjusted to

maintain torque).

Table 2.2. Engine conditions and inputs for experimental EVO sweeps.

Condition Speed BMEP TOT SOI Rail A/F EGR

at NEVO press. ratio frac.

r/min bar deg C deg bar - -

bTDC

1 800 1.3 147 2.1 900 40.8 0.63

2a 2000 1.3 186 -0.1 1263 83.4 0

2b 2000 1.3 201 -2.8 1800 78.0 0

2c 2000 1.3 213 -7.7 1800 74.5 0

3a 2200 6.3 344 1.4 1538 32.7 0.18

3b 2200 6.3 449 7.6 1593 25.8 0.20

3c 2200 6.3 459 6.6 1800 23.8 0.22

Each sweep was experimentally tested once; however, repeat data was collected

each time the testbed was operated. A measurement uncertainty analysis was per-

formed based on this data. Error bars are included for each variable shown in subse-

quent figures. These error bars represent +/- one standard deviation of this repeat

data. Note that in some cases the error bars are too small to be be visible.

2.2 Experimental Results

The impact of the EEVO sweeps on the TOT is shown in Fig. 2.1. The EVO

timing is displayed on the x-axis where negative numbers represent timings earlier

than nominal. The speed and load of each condition (as specified in Table 2.2)

is represented by different line and marker styles (per legend in Fig. 2.1). TOT

increases by 30◦C to 80◦C with EVO set to the most advanced timing studied. The
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Figure 2.1. TOT vs. EVO for experimental EEVO sweeps (see Table
2.2 for condition details).

TOTs for conditions 1 and 2a-c are all below 250◦C. Increasing these temperatures

would be desirable for aftertreament effectiveness. The experiments demonstrate that

the TOTs for conditions 2b and 2c are increased above 250◦C. Conditions 3a-c, which

nominally have the highest TOT, also have the largest temperature increases with

EEVO. The larger temperature increases are caused by larger quantities of added

fuel to maintain the torque. The TOT increases by about 80◦C for conditions 3b

and 3c. These conditions have nominal TOTs that are hot enough for aftertreatment

effectiveness, however this increase in TOT would be beneficial for more rapid heating

of the aftertreatment system.

The fueling increases measured relative to nominal EVO (NEVO) during the ex-

perimental EEVO sweeps are shown in Fig. 2.2. The highest fueling increase observed

is about 22% at condition 1. The lowest fueling increase was calculated to be 13% at

conditions 3a-c. Conditions 2b and 2c have a measured fuel increase of 18% to 21%.
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Figure 2.2. Fueling vs. EVO for experimental EEVO sweeps (see
Table 2.2 for condition details).

The fueling increase directly affects the engine brake thermal efficiency (BTE),

which is displayed in Fig. 2.3. The brake thermal efficiency represents the overall

efficiency of the engine, or the ratio of the amount of usable power extracted to

the injected fuel power. The experiments were run at a constant BMEP, as noted

previously, which means that the amount of usable power output remained the same

for a given EVO sweep. Therefore, the fueling increase is proportional to the decrease

in BTE. The BTE penalties that were observed in this set of experiments at the

earliest EVO timing were between 10-20%.

It is useful to visually demonstrate the effect of EEVO on the in-cylinder pressure

and, therefore, the work done during a cycle. Figure 2.4 shows a logP-logV diagram of

one of the cylinders at condition 2a, both at nominal valve timing and at the earliest

EVO studied (-90◦). The direct impact on the lost expansion work is manifest at the

volume where the EEVO pressure drops below the nominal pressure. Additional fuel is
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Figure 2.3. Normalized BTE values vs. EVO for experimental EEVO
sweeps (see Table 2.2 for condition details).

added for the EEVO case in order to raise the cylinder pressure enough to compensate

for the loss in gross work during the early blowdown. The re-compression at the end

of the exhaust stroke is a side effect of the EEVO strategy developed on this VVA

system. The closing edge of the profile is also slightly advanced for the EEVO cases

(per Fig. 1.7). This does not significantly affect the fuel consumption results, as will

be shown later.

The results of the experimental EEVO sweeps demonstrate, for the seven condi-

tions discussed, the beneficial and negative impacts of EEVO on thermal management

and fuel economy, respectively. The following section outlines an analysis that allows

generalizable projections of EEVO impact at other operating conditions.
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Figure 2.4. Log P-Log V diagram of nominal and early EVO timing
at 2000 r/min / 1.3 bar.

2.3 Impact of EEVO on required fueling and exhaust temperature at

constant torque

The experiments described in the previous section are useful for understanding

the impact of EEVO at specific operating conditions. Models will be developed in

this section to gain insight into the effect of EEVO at any operation condition where

experiments have not been conducted. A model is developed in the first part of this

analysis to estimate the quantity of fuel increase required during EEVO operation to

maintain a given BMEP. This will lead to a prediction of TOT increase as a function

of EVO. The experimental EEVO sweep data described in the prior section will be

used to validate these models.
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2.3.1 Required fueling at constant torque with EEVO

EEVO reduces the work output during the expansion stroke for a given fuel-

ing amount, and as such, directly affects the gross indicated mean effective pressure

(GIMEP). GIMEP can be calculated as the sum of brake mean effective pressure

(BMEP), pumping mean effective pressure (PMEP), and friction mean effective pres-

sure (FMEP):

GIMEP = BMEP − PMEP + FMEP. (2.1)

However, with torque constant (via increasing fueling for EEVO),

BMEPNEV O = BMEPEEV O. (2.2)

Two key assumptions can be made regarding FMEP and PMEP:

1. EVO advancement has no significant effect on FMEP

2. EVO advancement has no significant effect on PMEP

Friction is primarily affected by speed and peak cylinder pressure. Speed does not

change with a variation in EVO. Peak cylinder pressure only slightly increases with

increased fueling to maintain torque (per Fig. 2.4). EEVO mostly affects the closed

cycle, which includes the compression and expansion strokes of the cylinder. There-

fore, it is not expected to disturb the gas exchange process and, therefore, the pumping

work.

These assumptions can be validated using the experimental data described in

Section 2.2. Fig. 2.5 shows the change in FMEP from the FMEP at nominal EVO

timing versus EVO from the experimental EEVO sweep data. There is no direct

measurement of FMEP on this testbed; therefore, it is calculated from equation 2.1

using measurements of BMEP, GIMEP, and PMEP. The figure shows that, for each

EEVO sweep condition, FMEP varies minimally with EVO, specifically, less than

∼0.15 bar at an EVO of -90◦. This is a small fraction of the GIMEP (per Fig. 2.6)

and BMEP.
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Figure 2.5. Change in FMEP values from nominal for experimental
EEVO sweeps (see Table 2.2 for condition details).

The experimental data, shown in Fig. 2.7, indicates that there was a slight de-

creasing trend for PMEP as EVO was advanced; however, this change is minimal,

specifically, less than ∼0.15 bar along the sweep, a small fraction of the GIMEP (per.

Fig. 2.6) and BMEP. Earlier opening of the exhaust valves causes an elevated pres-

sure of the the burned gases in the exhaust manifold, as shown in Fig. 2.4. The

higher in-cylinder pressures at the intake valve opening event help to recover some of

the work lost to the pumping penalty. This causes the minor increase in the pumping

penalty. However, as stated, this increase is not significant and can be modeled as a

constant with EEVO.

Applying these two key assumptions with equation 2.2 to equation 2.1 reveals that

GIMEPNEV O � GIMEPEEV O (2.3)

will hold as the fueling is increased to maintain a constant BMEP as EVO is mod-

ulated. Fig. 2.6 shows that there is almost no change in GIMEP with modulated
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Figure 2.6. GIMEP values for experimental EEVO sweeps (see Table
2.2 for condition details).

EVO (per equation 2.3). Specifically, GIMEP varies no more than ∼0.2 bar along

each EVO sweep. This is consistent with constant BMEP engine operation, as well

as the small variations in FMEP and PMEP, during each EVO sweep.

GIMEP can be converted into gross power using the speed, N , and engine geom-

etry:

GrossPower =
GIMEP ∗ Vd ∗N

nR

. (2.4)

where Vd is the displacement volume and nR is the number of crankshaft revolutions

for each power stroke (2 for a four-stroke engine). This term is used in calculating

closed cycle efficiency:

ηc =
GrossPower

FuelPower
. (2.5)

Closed cycle efficiency is a measure of the efficiency of the closed cylinder portion

of the cycle and is defined as the ratio of the power released from the injected fuel
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Figure 2.7. Change in PMEP values from nominal for experimental
EEVO sweeps (see Table 2.2 for condition details).

(measured at the piston during the closed cycle) to the energy contained in the fuel.

Fuel power is defined as the product of fuel mass flow rate and the lower heating value

(LHV) of the fuel. The LHV of the fuel is 42.72 MJ/kg. The impact of EVO on the

required fueling for constant brake power (and gross power) can be defined with the

following:

f(EV O) ≡ ηcEEV O

ηcNEV O

=

(
GrossPower
FuelPower

)
EEV O(

GrossPower
FuelPower

)
NEV 0

. (2.6)

Gross power is constant per equation 2.3 when torque (and, therefore, BMEP) is held

constant. Therefore, equation 2.6 can be written as

f(EV O) =
FuelPowerNEV O

FuelPowerEEV O

=
ṁfNEV O

ṁfEEV O

, (2.7)

where f(EV O) essentially scales the fuel power and mass flow for a particular com-

manded EVO. Rearranging equation 2.7 yields

ṁfEEV O
=

ṁfNEV O

f(EV O)
. (2.8)
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Figure 2.8. Function of the change of fuel flow rate as EVO is ad-
vanced (see Table 2.2 for condition details).

f(EV O) can be approximated using the experimental EEVO sweep data described

earlier. Fig. 2.8 illustrates the method used to generate f(EV O). The ratio of the

mass of fuel from the nominal case to the EEVO case (per equation 2.7), as shown on

the y-axis, was averaged at each EVO value. The resulting function represents a fuel

mass flow conversion from nominal to EEVO cases and confirms the expected trend:

more fuel is needed to maintain torque as EVO is advanced. The average decrease of

closed cycle efficiency is 13% at an EVO timing of 90◦ before nominal. This f(EV O)

relationship describes the overall effect on fueling increase from EEVO and will be

used to predict the impact of EEVO on fueling at other operating conditions.

The nature of this generalization implies there is some amount of variation at each

operating condition given that fueling increase is calculated solely with f(EV O).

However, the experiments used to generate f(EV O) include multiple speeds and

loads and various injection timings, rail pressures, air and EGR flow rates, all of

which would be expected to change the rate of efficiency loss. The incorporation
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of these variations in the sweeps allows all the effects on efficiency caused by these

parameters to be approximately accounted for in f(EV O).

Table 2.3 shows the generated values for f(EV O). This fueling model, f(EV O),

is always smaller than 1 and decreases for earlier EVOs. This is consistent with an

expected increase in required fueling to maintain constant torque as EVO is advanced,

per equation 2.8.

Table 2.3. f(EV O) values as EVO is advanced.

EVO f(EV O)

Nominal 1

-30 0.991

-50 0.962

-70 0.924

-90 0.869

2.3.2 Fueling Model Validation

In order to demonstrate the accuracy of the f(EV O) model, (equation 2.8), a

comparison was made of actual fueling values obtained from the experimental sweeps

with calculated values predicted by equation 2.8. A one-to-one comparison of values

from all seven conditions is shown in Fig. 2.9. These values in the plot are normalized

to the largest fueling amount. Figs. 2.10 and 2.11 show this same comparison with

the residual percent errors and true errors in kg/hr at each EVO timing, respectively.

The model shows accurate fueling values within 5% error, with the exception of one

point at -90◦ EVO timing. The largest error shown is about 0.4 kg/hr.
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Figure 2.9. One-to-one comparison of normalized predicted vs. actual
fueling values.

An accurate model for increased fuel flow with EEVO allows for the prediction of

the effect of EEVO on the overall BTE. Incorporating equation 2.8 into the calculation

for BTE yields

BTE =
Torque

ṁfNEV O

f(EV O)
∗ LHV

. (2.9)

Predicted values of BTE were calculated based on the experimental sweeps per-

formed using equation 2.9. A one-to-one comparison is made between these predicted

values and the actual values obtained from experiment, as shown in Fig 2.12. The

values are normalized to the largest measured BTE point. The residual percent and

actual errors are also shown in Figs. 2.13 and 2.14. Almost all of the predicted values

are within 5% error of the actual efficiencies, with the exception of 2 points at -90◦

EVO timing. All actual errors are less than 0.015 points BTE.
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Figure 2.10. Percent residual error of predicted vs. actual fueling values.

A model for generalizing the effect of EEVO on the fueling required to maintain

torque has been described. The following two sections describe the generation of a

model for the impact of EEVO on turbine out temperature.

2.3.3 First Law Balance

A first law based analysis was completed and validated using the EEVO sweep

experiments in order to generalize the impact of early EVO on exhaust temperature.

This analysis also utilizes the fueling model described above.

The control volume for this analysis is defined as everything from the inlet of the

compressor through the engine block to the exit of the turbine, as shown in Fig. 2.15.

This analysis uses the following assumptions:

1. The engine is in steady-state and is an open system.

2. The reference temperature is taken to be ambient temperature.
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Figure 2.11. Actual residual error of predicted vs. actual fueling values in kg/hr.

3. The temperature of the exhaust gas is the turbine outlet temperature.

Based on the first assumption, the energy balance can be written as

Q̇− Ẇb + Ėf + Ėair − Ėexh = 0, (2.10)

where Q̇ is the heat transfer (heat loss), Ẇb is the brake power output, Ėf is the

fuel power, and Ėair and Ėexh are the powers associated with the fresh air flow and

exhaust flow, respectively. Air flow (and exhaust flow) power is defined as

Ėair = ṁaircp(Tair − Tref ), (2.11)

where ṁair is mass flow rate of air (exhaust), cp is the constant pressure specific

heat, Tair is the temperature of the fresh air (or exhaust) and Tref is the reference

temperature. The power associated with the fueling rate is defined as

Ėf = ṁfLHV. (2.12)
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Figure 2.12. One-to-one comparison of normalized predicted vs. ac-
tual BTE values.

Applying all assumptions, the first law can be rewritten as

ṁfLHV − Ẇb − Q̇ = ṁexhcp(TOT − Tref ), (2.13)

where Q̇ is positive with heat transfer out of the system. Performing a mass balance

on the same control volume shows that

ṁexh = ṁair + ṁf . (2.14)

Combining equations 2.13 and 2.14 and rearranging for TOT yields

TOT =
ṁfLHV − Ẇb − Q̇

(ṁair + ṁf ) cp
+ Tref . (2.15)

The impact of EEVO (during constant torque or brake work Ẇb operation) on the

required fueling ṁf has been generalized and modeled in Section A above. Equations

2.8 and 2.15 can be combined to generate an expression for TOT at an early EVO:

TOTEEV O =

⎛
⎝

ṁfNEV O

f(EV O)
∗ LHV − ẆbNEV O

− Q̇(
ṁair +

ṁfNEV O

f(EV O)

)
∗ cp

⎞
⎠+ Tref . (2.16)
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Figure 2.13. Percent residual error of predicted vs. actual BTE values.

The impact of EEVO on the air flow ṁair and heat transfer Q̇ is outlined and

modeled in the following section. Those results, in combination with equation 2.15,

will yield an equation for TOT during EEVO operation just in terms of EVO and the

values of the parameters during nominal engine operation.

2.3.4 TOT increase with EEVO model

Equation 2.16, as mentioned above, calls for two additional generalizations to

be made in order to predict TOT, specifically, how Q̇ and ṁair behave as EVO

is advanced. The experimental EEVO sweep data collected was used to generate

assumptions or relationships between EVO and these parameters. Fig. 2.16 shows

change in measured air flow during the EVO sweeps. All values represent less than 7%

increase in air flow at an EVO of -90◦. This indicates that air flow is not significantly

affected by EEVO and can be assumed as constant:
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Figure 2.14. Actual residual error of predicted vs. actual BTE values.

ṁairEEV O
� ṁairNEV O

. (2.17)

Total heat transfer (to radiation and coolant) is not a direct measurement taken

on the experimental testbed; however, heat loss values can be calculated with engine

data and a first-law energy balance. Q̇ values were calculated by rearranging equation

2.15 using measured TOT and ṁf values from the EEVO sweeps. Fig. 2.17 shows

these heat loss values versus EVO. This figure reveals that the heat transfer from the

engine generally increases as EVO is advanced. This can be explained by realizing

that as fueling increases the in-cylinder temperature also increases, resulting in more

heat transfer. It was assumed that Q̇ increases linearly with ṁf :

Q̇EEV O = C ∗
(

ṁfNEV O

f(EV O)
− ṁfNEV O

)
+ Q̇NEV O. (2.18)

where C is a model fit parameter.
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Figure 2.15. Schematic of engine as the control volume for energy balance.

Fig. 2.18 shows a one-to-one comparison of equation 2.18 predicted heat loss

versus the actual heat loss. The residual percent and actual errors are shown in Figs.

2.19 and 2.20, respectively. The largest percent error is at condition 1 with ∼11.5%

error at -90◦ EVO timing. Only two points have an error greater than 4 kW, and the

majority have less than 5% error.
Applying the assumptions for Q̇EEV O and ṁair (equations 2.17 and 2.18) to equa-

tion 2.16 yields

TOTEEV O = Tref+

⎛
⎜⎜⎝

ṁfNEV O
∗ LHV

f(EV O)
− ẆbNEV O

−
(
C ∗

(
ṁfNEV O
f(EV O)

− ṁfNEV O

)
+ Q̇NEV O

)

(
ṁairNEV O

+
ṁfNEV O
f(EV O)

)
∗ cp

⎞
⎟⎟⎠ .

(2.19)

where TOTEEV O can be calculated based only on knowledge of EVO timing and

engine variables at the nominal EVO timing, including brake work ẆbNEV O
, heat

transfer Q̇NEV O, air flow rate ṁairNEV O
, and fuel mass flow rate ṁfNEV O

.

Turbine out temperature values were calculated using equation 2.19 and compared

with the experimentally measured temperatures, as shown in Fig. 2.21. This one-to-
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Figure 2.16. Fresh air flow values for experimental EEVO sweeps
(see Table 2.2 for condition details).

one comparison demonstrates a good correlation with some amount of over-prediction

at condition 1. The percent residual errors and actual residual errors are shown in

Figs. 2.22 and 2.23. These show that the maximum error is at condition 1 with

∼16% error at an EVO of -90◦, corresponding to an error of about 31◦C. All other

conditions are within 6% error across all EVO timings.

2.4 EEVO impact on other operating points

Models for the impact of EEVO on TOT and fuel consumption increase (equations

2.19 and 2.9, respectively) have been described and validated with data obtained from

experiments. An analysis was conducted utilizing these expressions to predict the fuel

penalty and TOT increase at conditions where experiments have not been conducted.

Fig. 2.24 shows TOT for steady-state engine operation with the baseline calibra-

tion and nominal valve timings for engine BMEP less than 7.6 bar. The bold black
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Figure 2.17. Heat loss values for experimental EEVO sweeps (see
Table 2.2 for condition details).

line corresponds to a TOT of 250◦C as a point of reference. This figure demonstrates

that there is a significant potential benefit to thermal management at low loads.

Using equation 2.19, the projected TOT with an EVO 90◦ before nominal is shown

Fig. 2.25. It is evident from Fig. 2.25 that the expected boundary for TOT greater

than 250◦C has been shifted down considerably on the speed/load map. This shows

that EEVO has a significant benefit to aftertreatment thermal management at many

operating conditions.

The change in TOT projected by the model is shown in Fig. 2.26. The model

predicts a 30◦C to 100◦C increase in TOT with EVO 90◦ before nominal where, in

general, the larger TOT increases are predicted at higher loads.

The “fuel cost” for this exhaust temperature benefit can also be predicted using

equation 2.9 as shown in Fig. 2.27 with BTE given in percentage points for an EVO

90◦ before nominal. This analysis shows that the penalty is worse at lower speeds and
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Figure 2.18. One-to-one comparison of predicted vs. actual heat loss values in kW.

higher loads (the conditions at which the engine is nominally more efficient) with a

maximum decrease of about 5 BTE percentage points. The analysis projects that at

higher speeds the temperature can be increased with a lesser penalty. The predicted

BTE reduction at high speeds and low loads is about 2 BTE percentage points.

2.5 Summary

This chapter discusses an experimentally validated analysis strategy for the im-

pact of early exhaust valve opening on turbine out temperature and brake thermal

efficiency. Using data from experimental EEVO sweeps the impact of EEVO on the

required fuel increase to maintain torque is modeled. This fueling model is utilized

in a first law based analysis for the calculation of TOT based on EVO. Heat transfer

is also modeled as a function of fuel increase to account for the increased heat lost

as temperatures are elevated. These relationships are used to project what TOT can
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Figure 2.19. Residual percent error of predicted vs. actual heat loss values.

be achieved by advancing EVO as well as the resulting BTE penalty. The analysis

predicts a ∼30◦C to ∼100◦C increase in TOT at the earliest EVO studied. This is

sufficient to raise many low-load operating conditions to exhaust temperatures above

250◦C for improved aftertreatment effectiveness. However, the model also predicts a

significant fuel consumption penalty of ∼0.02 to ∼0.05 points BTE below nominal

engine efficiency.

This study demonstrates EEVO as one method of utilizing VVA to accomplish

TOT increase for aftertreatment thermal management. The preferred thermal man-

agement strategy would include the increase of both TOT and BTE; however, EEVO

provides a significant trade-off between these parameters. In the next chapter, an

analysis of the effects of cylinder deactivation on TOT and BTE will be discussed.
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Figure 2.20. Actual residual errors of predicted vs. actual heat loss values in kW.

Figure 2.21. One-to-one comparison of predicted vs. actual turbine
out temperature values in ◦C.
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Figure 2.22. Residual percent error of predicted vs. actual turbine
out temperature values.
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Figure 2.23. Actual residual errors of predicted vs. actual turbine
out temperature values in ◦C.

Figure 2.24. TOT under nominal engine operation.
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Figure 2.25. TOT projected with EVO -90◦ from nominal.

Figure 2.26. Change in TOT projected with EVO -90◦ from nominal.



45

Figure 2.27. Change in BTE from nominal projected with EVO -90◦ from nominal.
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3. ANALYSIS OF THE IMPACT OF CYLINDER DEACTIVATION AT LOADED

AND UNLOADED IDLE ON THERMAL MANAGEMENT AND EFFICIENCY

Both unloaded and loaded idle are conditions at which trucks and other vehicles spend

a significant amount of time and at which exhaust temperatures are low making af-

terftreatment thermal management difficult. Exhaust thermal management strate-

gies often are accompanied by fuel consumption penalties, as was demonstrated in

the previous chapter with EEVO operation. The ideal thermal management solution

would increase temperature enough to keep the aftertreatment working effectively

while minimizing the fuel consumption penalty. This chapter outlines a study of

CDA at unloaded and loaded idle conditions and focuses on the quantification of

exhaust temperature increase and potential fuel consumption benefit as a result of

CDA operation.

3.1 Methodology

Two speed/load conditions were selected to study unloaded and loaded idle,

respectively. Engines in trucks and other vehicles are often powering accessories

and other equipment when idling. The load put on the engine can vary; however,

800rpm/100ft-lbs (136 N-m) (800/100) was selected to represent the loaded idle con-

dition in this study. It is a point where TOT is too low for aftertreatment effectiveness

(TOT ≈ 200◦C) and where thermal management is important. Unloaded idle in this

study is represented by 800rpm/11ft-lbs (15 N-m) (800/11). Unloaded idle could be

represented as 800rpm/0ft-lbs (0 N-m), however, for simplification of experimental

testing, the driveshaft was left connected to the engine and dynamometer, with the

dynamometer disengaged. The 11 ft-lbs (15 N-m) represents the friction from leaving
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the driveshaft attached. Each operating condition was studied in CDA and 6-cylinder

operation. In this study, 3 of the 6 cylinders were deactivated for CDA operation.

The focus of this study was to explore the potential impact of CDA on fuel con-

sumption and TOT. The experiments were constrained to three NOx targets at each

operating condition. NOx was measured as brake specific NOx (BSNOx) in g/hp-hr

(g/kWh) at the loaded condition. No emphasis was placed on brake power at the

unloaded case; therefore, NOx rate was measured in mass per time (g/hr). The NOx

targets selected were 1, 3, and 4 g/hp-h (1.3, 4.0, and 5.4 g/kWh) BSNOx and 20,

30 and 38 g/hr NOx at the loaded and unloaded conditions, respectively. These

engine-out targets represent values that are consistent with meeting tailpipe NOx

emission regulations with modern aftertreatment. In order to thoroughly understand

the potential benefit of CDA, the following optimal trade-offs were investigated:

1. Minimize fuel consumption at specific NOx levels within constraints with tra-

ditional hardware (i.e. 6-cylinder operation).

2. Minimize fuel consumption at specific NOx levels within constraints with CDA

(three cylinders deactivated).

3. Maximize TOT at specific NOx levels within constraints with CDA (three cylin-

ders deactivated).

Trade-offs 1 and 2 are designed to show a comparison between 6-cylinder and

CDA for potential benefit in fuel consumption. Trade-off 3 is meant to provide addi-

tional insight into the highest TOT that can be achieved by operating in CDA. All

data presented in this paper and in subsequent figures were based upon one of these

optimizations.

Two additional emissions constraints were imposed on all optimized results as

listed in Tab. 3.1. These were selected based on the low speed (800 rpm) of the

engine during these tests. These constraints are also designed to represent values

that are consistent with meeting tailpipe emissions regulations.



48

Table 3.1. Emissions constraints.

Emission Constraint Value

Unburned Hydrocarbons 200 ppm

PM (Smoke Number) 1.0 FSN

Table 3.2. Mechanical constraints.

Parameter Maximum Constraint

Turbine In Temperature 760◦C

Compressor Out Temperature 230◦C

Turbo Speed 193 kRPM

Peak Cylinder Pressure 17.2 MPa

Exhaust Manifold Pressure 400 kPa (gauge)

Pressure Rise Rate 100 bar/sec

The results were also constrained by mechanical limits of the engine hardware, as

are shown in Tab. 3.2. These limits represent the maximum pressures, temperatures,

etc. at which the engine can operate. All work in this study was done at low loads at

idle speed; therefore, no adjustments of operating conditions were needed to adhere

to these limits.

3.2 Experimental Data Collection

The three trade-offs mentioned above were generated using constrained optimiza-

tion utilizing on-engine experimental data. This data was obtained by performing a

design of experiments (DOE) on the engine. Each DOE was a face centered central
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composite design. The independent variables chosen for the DOEs were SOI (deg

BTDC), rail pressure (bar), VGT position (% closed), and EGR position (% open).

DOEs were run in both CDA and 6-cylinder mode. After each DOE was run on the

test bed, the data was analyzed using Minitab software. Constrained optimization

was performed for each trade-off at each NOx level to generate the trade-offs. The

ranges of the independent variables were adjusted, and another iteration of DOE

testing was performed if the optimized results returned inputs that were against the

limits of the independent variable ranges specified in the DOEs.

Once the optimized results were found, those inputs were rerun on engine to val-

idate the accuracy of the constrained optimization. Each optimized point was run

once on engine for validation. Three consecutive measurements were taken for each

operating condition (loaded and unloaded) and each mode of operation (6-cylinder

and CDA) to be used for a measurement uncertainty analysis. This uncertainty is

shown on all plots as error bars of +/- one standard deviation of each variable mea-

sured/calculated. All results discussed in this paper are from experimental validation

of the optimized results.

3.3 Results and Discussion

3.3.1 Turbine Out Temperature

Loaded Idle

This optimization effort shows there is a substantial benefit of CDA with respect

to TOT at 800/100. TOT for each of the three trade-off curves is shown in Fig. 3.1.

Error bars are included on the plot; however, the uncertainty of TOT is too small to

be visible. The optimized trade-off to which each set of points belongs is labeled in

the legend. The mode of operation (6-cylinder or CDA) is also listed for reference. A

comparison of the minimized brake specific fuel consumption (BSFC) curves (trade-

offs 1 and 2) indicates that TOT increases from about 190◦C to about 300◦C in CDA.
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Figure 3.1. Turbine out temperature at 800/100.

This increase is independent of the BSNOx target. The optimization for maximum

TOT with CDA (trade-off 3) yielded temperatures very similar to the minimum BSFC

case. Maximum TOT observed was 308◦C, at the 3 g/hp-hr BSNOx target. This

shows that, while maximizing for TOT with CDA provides some additional increase

in temperature, the major benefit is realized with CDA operation, even focused at

minimizing BSFC. Nominal TOT at this operating point, as mentioned above, is too

low for aftertreatment effectiveness. The major benefit here is realized because the

TOTs in CDA are hot enough for most aftertreatment systems to work effectively.

The increase in TOT with CDA is mainly due to the reduction in the air-fuel ratio.

The air-fuel ratios for each data point are displayed in Fig. 3.2. Note that the error

bars are also very small for air-fuel ratio. The air-fuel ratio nominally in 6-cylinder

mode is between 30-40. Fresh air flow increases as EGR is decreased to meet the

higher BSNOx targets causing air-fuel ratios to be elevated for higher BSNOx levels.

Charge flow is reduced with CDA because only half of the cylinders are “breathing.”

This causes a reduction in air-fuel ratio to about 20-25 in trade-off 2. Fueling is
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Figure 3.2. Air to fuel ratio at 800/100.

approximately doubled on a cylinder specific basis to maintain the torque with half

the cylinders firing. These reduced air-fuel ratios in CDA are closer to, yet still

above, the stoichiometric value of about 14.6 which causes combustion temperatures

to increase. The increased in-cylinder temperatures lead directly to higher TOT.

There is little difference in air-fuel ratio between trade-offs 2 and 3 which points to

the similar TOTs measured at these points.

A first law-based analysis helps to verify why TOT is increased for CDA operation.

Placing the control volume around the cylinders allows a calculation of the heat

transfer from the engine block. The heat lost from the cylinders is shown in Fig.

3.3. There is no statistical distinction between trade-offs 2 and 3; however, the CDA

points clearly show greater heat transfer than the 6-cylinder points at each BSNOx

level. The greater heat loss in CDA is caused by higher in-cylinder temperatures.

There is an approximately 65% to 75% reduction in EGR flow in CDA mode. This

causes the heat rejected through the EGR cooler to be less with CDA. The sum of

the heat losses from the cylinders and the EGR loop is shown in Fig. 3.4. This plot
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Figure 3.3. Heat loss from cylinders at 800/100.

shows that the heat loss is about the same for all points at each BSNOx target. The

additional heat loss from the turbocharger is similar for all points and does not affect

the relative difference in heat loss from that shown in Fig. 3.4. The combination

of lower air-fuel ratios in CDA and no significant difference in heat transfer leads to

greater TOTs with CDA.

Unloaded Idle

The condition at 800/11 or unloaded idle is also a point of thermal management

concern because engines spend a considerable amount of time at idle, and the TOT is

very low due to the small amount of fuel used. The optimized points show that TOT

in CDA is also increased at 800/11 above nominal temperatures as shown in Fig.

3.5. The TOTs measured in 6-cylinder mode were approximately 117◦C independent

of the NOx rate target. Trade-off 2 shows an increase above trade-off 1 with TOT

ranging from 131◦C to 134◦C. Optimizing for maximum TOT with CDA yielded

TOTs about 3◦C to 5◦C above the minimized fuel consumption points, specifically
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Figure 3.4. Heat loss from cylinders and EGR loop at 800/100.

Figure 3.5. Turbine out temperature at 800/11.

134◦C to 137◦C. CDA can provide about a 20◦C increase above nominal 6-cylinder

operation.
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Figure 3.6. Air to fuel ratio at 800/11.

The increase in TOT is primarily due to the reduced air-fuel ratios in CDA, as

was described for the loaded idle case. The air-fuel ratios for 800/11 are shown in

Fig. 3.6. For trade-off 1, air-fuel ratios range from 85 at low NOx to 125 at the

highest NOx target. This is due to the decrease of EGR used to meet the higher NOx

targets. These high air-fuel ratios are a consequence of the small amount of fuel used

at the unloaded idle condition. The air-fuel ratios for trade-offs 2 and 3 are around

60 to 70. There is not a significant variation between these two trade-off sets. It

is expected that as the NOx level decreases, the TOT between 6-cylinder and CDA

would be closer due to more similar air-fuel ratios. However, as shown in Fig. 3.5,

the relative difference in TOT between 6-cylinder and CDA is almost constant across

all NOx targets. This can be explained further by a comparison of heat transfer.

The heat loss from the cylinders is shown in Fig. 3.7. The heat lost in CDA

mode is about 5.5 to 6.5 kW across all NOx levels. At the lower two NOx targets,

6-cylinder heat loss is about 20% to 25% higher. This is a different result than what

was seen at the loaded case. The temperatures are similar between each mode with
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Figure 3.7. Cylinder heat loss at 800/11.

∼20◦C difference in the TOTs. There is also a higher surface area of firing cylinders

which leads to greater heat transfer. Combustion temperatures at the higher NOx

level are expected to be cooler which reduces the heat transfer.

There is also a reduction in EGR flow with CDA (45% to 65%) at the unloaded

condition; however, the lower temperatures reduce the amount of heat transfer that

occurs in the EGR cooler for both 6-cylinder and CDA operation. The heat loss in

the EGR loop and the turbocharger are about equal for CDA and 6-cylinder mode

meaning the relative difference in total engine heat transfer is similar to what is

shown in Fig. 3.7. This difference in heat loss reveals why the difference in TOT is

not much larger at 20 g/hr NOx than at 38 g/hr NOx. The combustion temperature

is expected to be higher in 6-cylinder operation at 20 g/hr NOx but the heat transfer

is also greater at 20 and 30 g/hr NOx to offset this difference.
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3.3.2 Fuel Consumption

Loaded Idle

Figure 3.8 shows the BSFC trade-off results at 800/100 which indicate that while

raising TOT (per Fig. 3.1), CDA consumes approximately equal fuel as 6-cylinder

operation. The fuel consumption values are normalized to the 6-cylinder values at

each NOx target. CDA values above 1 indicate that more fuel is consumed, while

values below 1 demonstrate that less fuel is consumed. A comparison of trade-off 2

with trade-off 1 shows that optimizing for BSFC with CDA does not improve efficiency

above 6-cylinder operation. There is a possible BSFC penalty of about 3% at 1 g/hp-

hr BSNOx target. The BSFC is equal at the other two BSNOx targets; however,

the error bars on the points demonstrate that there is no significant difference in fuel

consumption. There was also very little difference in TOT between trade-offs 2 and

3. The approximately equal fueling between 6-cylinder operation and CDA means

that there is no fuel consumption penalty to the increase in TOT obtained with CDA.

This is a benefit as other strategies might cause a fuel consumption penalty in order

to increase exhaust temperatures. In short, Figs. 3.1 and 3.8 demonstrate that at the

loaded idle condition, deactivating 3 cylinders provides an increase in engine exhaust

temperature from ∼200◦C to 300◦C with no fuel economy penalty.

It is worthwhile to consider why there is essentially no change in BSFC between

CDA and 6-cylinder operation. One of the purposes of running with deactivated

cylinders at low load is to avoid driving excess air through the engine that is not

needed. This generally will increase the open cycle efficiency, which may in turn

lead to higher brake thermal efficiencies. However, as shown in Fig. 3.9, 6-cylinder

operation at the loaded condition is already near 100% open cycle efficiency. As such,

at the optimized condition, CDA cannot provide a significant improvement to open

cycle efficiency with 6-cylinder already operating near perfect open cycle efficiency.

There is also very little improvement in closed cycle efficiency, as shown in Fig.

3.10. Closed cycle efficiency is a measure of the efficiency of the power stroke (com-
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Figure 3.8. BSFC at 800/100.

Figure 3.9. Open cycle efficiency at 800/100.

bustion and expansion) and is defined as the ratio of the power released from the

injected fuel (measured at the piston) to the energy contained in the fuel. The fuel-

ing is approximately doubled in the active cylinders during CDA operation, increasing



58

Figure 3.10. Closed cycle efficiency at 800/100.

the burned gas temperatures, which increases the heat transfer from the cylinders.

Greater cylinder heat transfer has a negative impact on closed cycle efficiency, but

despite this increase, CDA still has slightly higher closed cycle efficiency, due to ag-

gressive heat release. This increase is realized independent of optimizing for BSFC or

for TOT. There is less than 5% increase in closed cycle efficiency across all trade-offs

and BSNOx levels.

It is worthwhile to note that, despite improved open and closed cycle efficiencies

in CDA mode (per Figs. 3.9 and 3.10), there is no overall benefit to fuel consumption

at this condition. This can be attributed to a decrease in mechanical efficiency for

CDA; however, the specific cause of this reduction is not known.

Unloaded Idle

Fuel consumption in CDA has significant improvement at 800/11. Fuel consump-

tion values, normalized to the 6-cylinder cases at each NOx target are shown in Fig.

3.11. Fuel consumption values below the 6-cylinder cases indicate that less fuel is
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consumed. A comparison of trade-offs 1 and 2 show that optimizing for minimized

fuel consumption yields much lower fuel consumption in CDA across all NOx targets.

The maximum benefit measured was at 30 g/hr NOx with a 26% reduction in fuel

consumption with CDA. The minimum fuel consumption benefit, observed at 38 g/hr

NOx, is 15%. There is also a large benefit at 20 g/hr NOx. This reduction in fuel

consumption also comes with an approximate 15◦C increase in TOT, as described

above.

Optimizing for maximum TOT in CDA also shows there is a benefit in fuel con-

sumption, as shown with trade-off 3; however it requires slightly more fuel at these

conditions than is measured for trade-off 2 points. This extra fuel is the cost for

achieving the 3◦C to 5◦C increase over the optimized fuel consumption points in

CDA. At 30 g/hr NOx target, however, there is still a 25% improvement in fuel con-

sumption while achieving the maximum TOT increase of 20◦C. Together, Figs. 3.5

and 3.11 demonstrate that at the unloaded idle condition, CDA provides an increase

in exhaust temperature of about 20◦C, from about 117◦C to about 135◦C, with a fuel

consumption reduction of 15%-26%.

Figure 3.11. Fuel consumption at 800/11.
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Deactivating cylinders, as mentioned above, reduces the charge flow which can

reduce the pumping penalty and increase the open cycle efficiency. The engine pumps

a great amount of excess air at unloaded idle, and as such, there is a large potential

for efficiency improvement. The open cycle efficiency for 800/11 is shown in Fig.

3.12. The open cycle efficiency is approximately equal in CDA between trade-offs

Figure 3.12. Open cycle efficiency at 800/11.

2 and 3. There is a 20% to 35% increase in open cycle efficiency with CDA. This

improvement comes from a reduction in the charge flow by approximately half when

half the cylinders are active. In addition, less EGR is needed in CDA to meet the

same NOx targets as with 6-cylinders. This allows the VGT to be more open to drive

less EGR, reducing the pumping penalty, and increasing the open cycle efficiency.

Closed cycle efficiency also is improved with CDA at unloaded idle. However,

because of the reduction of EGR in CDA, the air flow is similar between both CDA

and 6-cylinders for the lower NOx targets. This leads to similar air-fuel ratios. The

in-cylinder temperatures are not very different, but in CDA mode, there is less surface
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area for heat transfer to occur with only three cylinders active. As such, the heat lost

from the cylinders is reduced with CDA, which improves closed cycle efficiency.

3.4 Summary

This chapter discusses an experimental based analysis of cylinder deactivation

versus nominal 6-cylinder operation on a diesel engine with a focus on raising turbine

out temperatures and improving fuel consumption at both loaded and unloaded idle

conditions. A constrained optimization was performed utilizing data obtained from

design of experiments. The optimization was performed for minimizing fuel consump-

tion or BSFC with both 6-cylinder operation and CDA and maximizing TOT with

CDA. The results of the optimization were validated on the experimental testbed.

CDA provides the largest benefit in TOT at the loaded idle case (800/100). Op-

timizing either for maximum TOT or minimum BSFC showed that CDA can achieve

more than 115◦C increase in TOT while consuming approximately the same amount

of fuel as with 6-cylinder operation. This provides enough TOT increase for im-

proved effectiveness for many aftertreatment systems while avoiding a fuel consump-

tion penalty.

CDA enables a significant fuel consumption improvement at unloaded idle (800/11).

Optimizing for minimum fuel consumption yields 15% to 26% reduction in fuel con-

sumption with CDA depending on the NOx target under consideration. An increase

in TOT of about 20◦C is also realized with CDA at the unloaded condition. This

is significant given the fact that this increase comes with a major reduction in fuel

consumption. Work is continuing with other VVA functions to explore means to

further increase TOT. However, CDA alone provides significant benefit to TOT at

loaded idle and improvement to fuel consumption and TOT at unloaded idle. The

stated efficiency comparisons between 6-cylinder and CDA operation do not account

for the extra fuel that would be required to maintain adequate TOTs to support the

aftertreatment.
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The results of this study make CDA appear to be an attractive option for af-

tertreatment thermal management at low load. However, engines are often operated

transiently, transitioning from low to higher load. The airflow needs to be increased

to operate at higher loads. The reduced airflow from CDA can potentially challenge

the operation of CDA during transient operation. The following chapter will discuss

the associated challenges of CDA.
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4. CHARACTERIZATION OF CHALLENGES OF CYLINDER DEACTIVATION

FOR TRANSIENT LOAD PERFORMANCE

This chapter discuses the thermal management and efficiency potential benefit of

three cylinder deactivation on a diesel engine operating at cruising speed. Addition-

ally, a transient study is performed to characterize the potential challenge for load

performance of the engine during CDA operation. The transient load performance

limitation comes from the reduced airflow caused by the deactivation of half the

cylinders.

4.1 Steady State Load Sweeps

This first section discusses an effort to quantify the benefits of operating CDA in

a diesel engine at several different loads. For more detail on this effort, the reader is

referred to [30].

4.1.1 Steady State Data Collection

The steady-state data was taken at 1200 rpm, which is a typical cruising speed for

on-highway trucks and heavy-duty vehicles. On-highway vehicles spend the majority

of time at cruising speed conditions; therefore, emissions control and aftertreatment

thermal management are very important considerations at these conditions. Any

benefit in thermal management as a result of CDA would be significant.

Load sweeps (from low to high load) were performed in order to investigate the

potential benefits and tradeoffs of TOT and fuel consumption at various operating

conditions. BMEP was increased starting from 1.27 bar, and data was taken every

1.27 bar until a constraint was reached. Data was taken at each operating point after

allowing the engine to reach a steady-state condition.



64

Three load sweeps were performed with CDA, each with a specific BSNOx level

targeted, specifically 1.5, 3, and 4 g/hp-hr BSNOx. The 6 cylinder fueling inputs

such as SOI, Rail Pressure, Pilot Quantity and Timing, Post Quantity and Timing

at twice the load were used as guides for fueling inputs in CDA. EGR and VGT were

varied as required to meet NOx targets. SOI was also modified at the higher loads

to help meet the NOx targets.

One load sweep in 6-cylinder operation was performed for a baseline comparison.

NOx was targeted between 3 and 4 g/hp-hr to keep the NOx comparable with the

CDA cases. The fueling inputs for the 6-cylinder cases were based on the baseline

engine calibration.

Note that the results presented here do not represent optimized operating condi-

tions; however, the screening effort performed on the experimental engine provides

an approximation of the potential benefit with respect to the nominal 6-cylinder op-

eration. This analysis will be used to quantify the ability of CDA to increase TOT

and then to examine its effect on engine efficiency.

4.1.2 Steady State Results

The TOT results are shown in Fig. 4.1. The BMEP is displayed on the x-axis.

The 6-cylinder results with each NOx target CDA load sweep results are shown with

different symbols as shown in the legend. At 1.5 g/hp-hr, the maximum achievable

load was approximately 7.6 bar. At 3 g/hp-hr, the maximum achievable load was

approximately 8.0 bar, and at 4 g/hp-hr, the maximum achievable load was approxi-

mately 8.3 bar. As the NOx target is decreased, more EGR is required, resulting in

a decrease in AFR, which increases the turbine inlet temperature, the limiting factor

in all three cases.

The experimental results indicate that CDA is effective at raising exhaust tem-

peratures significantly at every BMEP. The CDA points have similar TOTs with

some variation due to different EGR rates used to meet the specific NOx targets.
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Figure 4.1. Turbine out temperature results of load sweeps at 1200 rpm.

At 1.27 bar, the TOTs with CDA have an approximate 88◦C increase, from 166◦C

in 6-cylinder operation to 254◦C with CDA. This is enough temperature increase for

significant improvement in aftertreatment catalyst effectiveness. The elevated tem-

perature in CDA is also approximately equivalent to the TOT with 6 active cylinders

at 3.8 bar. The TOT increase from CDA is about 174◦C (from 354◦C in 6-cylinder op-

eration to about 528◦C with CDA) at 6.4 bar. The temperature increase at this load

would allow for active regeneration of a DPF. The increase at any load is beneficial

for increased heat-up of the aftertreatment from cold conditions.

The TOT increase is primarily a result of reduced AFR, as shown in Fig. 4.2. 6

cylinder AFR is between 70 at low load to about 25 at the maximum BMEP studied.

The charge flow is reduced by about half when three cylinders are deactivated. This

leads to reduced airflow and, therefore, AFR. As the NOx targets are decreased, more

EGR is used which displaces the fresh air causing an even greater reduction in the
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Figure 4.2. Air-fuel ratio results of load sweeps at 1200 rpm.

AFR. As the AFR approaches the stoichiometric value of 14.7, TOT continues to

increase significantly.

The impact of CDA on overall BTE is an important factor when determining

the effectiveness of the thermal management strategy. BTE results normalized to

the maximum 6-cylinder value, are shown in Fig. 4.3. There is an improvement

in BTE at 1.3 bar by 5% to 7%. It is worth noting that this efficiency increase

also comes with a significant TOT benefit, as described above. By 2.5 bar, the

efficiency is approximately equivalent, while CDA still provides a significant TOT

benefit. However, at high loads, there is a BTE penalty which is worse for the lower

NOx targets. At 7.6 bar, the BTE penalty for the TOT increase realized is about

10% to 15% reduction from the baseline efficiency.

The BTE increase for CDA at low loads is due to an improvement in open cycle

efficiency (OCE), as shown in Fig. 4.4. At the lower loads, the exhaust and intake



67

Figure 4.3. Brake thermal efficiency results of load sweeps at 1200 rpm.

manifold pressures are both close to atmospheric, and the VGT is fully open, min-

imizing the pumping work. At 1.3 bar, there is a 5% increase to OCE. However,

this improvement disappears at high loads where higher EGR fractions are required.

To meet the requirements, the VGT is closed to build up exhaust manifold pressure

driving EGR flow, and increasing the pumping work required.

The closed cycle efficiency (CCE) of the engine is shown in Fig. 4.5, and follows

a similar trend as open cycle efficiency. At 1.3 bar, there is an improvement in CCE

caused by main injection placement in CDA closer to top dead center (TDC). As the

centroid of the heat release rate approaches TDC, combustion becomes more efficient,

improving CCE. From 3.8 bar and above, there is a reduction in CCE, due to the

delay in main injection timings that are required at higher loads in order to meet the

BSNOx targets.
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Figure 4.4. Open cycle efficiency results of load sweeps at 1200 rpm.

An example of the delayed heat release is shown in Fig. 4.6. The heat release

rates for both 6 and 3 cylinder operation are shown for 7.6 bar at 3 g/hp-hr BSNOx.

The crank angle degree (CAD) is displayed on the x-axis. The injector current is

also shown in dashed lines for reference. As the injections are pushed later for CDA,

the centroid of the heat release is delayed resulting in a reduction in the closed cycle

efficiency.

CDA is very effective in raising TOT higher across the load range up to about 7.6

bar as a result of decreased airflow and, therefore, AFR. Therefore, when considering

relevant NOx targets, CDA can improve aftertreatment performance up to approxi-

mately 7.6 bar (per Fig. 4.1), but there will be an efficiency penalty above 2.5 bar

(per Fig. 4.3).

This analysis shows there are significant steady state benefits to CDA operation,

especially in TOT, as a result of reduced airflow. However, during transient oper-
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Figure 4.5. Closed cycle efficiency results of load sweeps at 1200 rpm.

ation from low to high loads the reduced airflows achieved during CDA may limit

the load responsiveness of the engine. The next section describes an experimental

characterization of the limitations of the transient response of an engine operating

CDA.

4.2 Transient Analysis

This section describes an analysis that compares the load response required by the

federal test procedure (FTP) with the engine response to a load transition in both

CDA and 6-cylinder operation.
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Figure 4.6. Heat release rate profiles and injector current for 6 and
3 cylinder operation at 7.6 bar at 3 g/hp-hr BSNOx.

4.2.1 Methodology

The FTP is a regulatory emissions testing standard designed to replicate various

driving cycles in urban and freeway conditions. This procedure, as a dynamic drive

cycle test, contains a series of engine load and speed transitions. On-road vehicles

must meet the emissions requirements outlined by this procedure when subjected

to this test. The load transitions represented in the FTP are also representative

of the load response that would be required of an engine. This cycle requires an

approximately constant speed load transition from near zero load to about 6.3 bar

BMEP within approximately one second. In this study, any experiments that do not

meet this response while maintaining other emissions limits were determined to be

unable to meet the FTP.
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4.2.2 Transient Data Collection

These experiments were attempted at both idle speed (800 rpm) and at cruising

speed (1200 rpm). At 800 rpm, the engine cannot be operated with CDA higher than

6.1 bar due to the reduced airflow leading to stoichiometric combustion conditions.

Therefore, it was concluded that the test engine cannot meet the torque response

required by the FTP at 800 rpm with CDA operation.

At 1200 rpm, the experiments were performed by setting the engine to low load

(1.3 bar) and transitioning to 6.4 bar. The setpoints for all inputs at each load were

obtained from the steady state load sweep experiments described in the previous

section. The CDA inputs were taken from the data points targeting 3 g/hp-hr BSNOx.

The start of injection, rail pressure, VGT, and EGR actuators were given a step

change command at the time of transition. Multiple methods were used throughout

this study to transition the commanded total fueling amount from the low to high

values. The fueling command was stepped for the initial experiments. In order to

maximize the load response while maintaining proper soot limits, linear ramp and

variable fueling strategies were utilized, as will be described later.

It is important to observe emissions limits to maintain a fair comparison between

CDA and 6-cylinder operation and the FTP. The assumed transient smoke limit for

this effort was 1.5 filter smoke number (FSN). Also, it was assumed that the AFR is

to remain above the stoichiometric condition.

Due to the inability to operate the engine with CDA at 800 rpm at a sufficient load

to meet the FTP requirements, no data from 800 rpm will be presented here. However,

it is noted that CDA operation is limited at lower speed in transient operation. The

following section will discuss the results of experiments at 1200 rpm. It will be shown

that there is also a challenge in meeting a reasonable torque response at 1200 rpm

with CDA operation.
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4.2.3 Transient Results

The initial experiments involved a step change of all inputs, including fueling

amount. This was performed in both 6-cylinder and CDA operation. The BMEP,

AFR, and soot responses are each shown in Fig. 4.7. The commanded fueling for

each experiment is also shown for reference. The fueling command is normalized

to values of zero to one with zero being the initial value and one being the fueling

consistent with the higher load condition. Experiments are time aligned such that

the point of transition is set to 0.5 seconds. BMEP is from the load measured at the

dynamometer. The AFR is calculated from the measured airflow through the LFE

and commanded fueling quantity. The soot response is from an AVL Micro Soot 483

Analyzer. There is almost no noticeable change in soot for the 6-cylinder baseline

experiment. Even with a step fueling change, the AFR only reduced to ∼20. A

step fueling strategy for 6-cylinder operation represents the fastest possible transition

while maintaining acceptable limits. However, a step fueling input with CDA yielded

soot much greater than the assumed 1.5 FSN limit. Note that the calculation for FSN

from soot concentration does not resister at numbers above 5 FSN. This soot response

comes from an AFR below 10 and also inhibits the load response. As such, the engine

needs a different fueling method for the load transition during CDA operation.

In order to reduce the soot generation during a load transition with CDA a linear

ramp fueling input strategy was explored. This was used as an effort to allow the

airflow to increase faster than the fueling in order to keep the AFR high enough to

avoid excessive soot generation. While the fueling input strategy was modified, all

other inputs were stepped to the new values at the time of transition. The fueling

ramp rate was specified in milligrams per stroke per second (mg/st/sec). Experiments

were conducted with various ramp rates until the soot response was within the limit.

Fig. 4.8 shows the response of two different ramp rates compared with the 6-cylinder

baseline step fueling case. The amount of time it took to reach the higher fueling

setpoint is displayed next to the fueling strategy label in the legend. As shown in
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Figure 4.7. Transient responses showing BMEP, AFR, fueling, and
soot for 6 and 3 cylinder step fueling.

the plots, the fueling ramp rate must be quite slow to maintain a soot level below

1.5 FSN. The fastest transition time with a ramp fueling input is ∼2.8 seconds. This

is much slower than the FTP which requires a load transition in approximately 1

second.

A variable fueling strategy was implemented as a means to reduce the soot gen-

eration during a load transition. This fueling strategy was designed as a series of

linear ramps with the ability to change the ramp rate three times during the transi-

tion period. Examples of these variable fueling profiles are shown in Fig. 4.9. These

experiments were variations on the ramp fueling experiment with a 2.33 second tran-

sition time and a soot peak greater than the 1.5 limit. Each fueling profile used
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Figure 4.8. Transient responses showing BMEP, AFR, fueling, and
soot for 6 cylinder step and 3 cylinder ramp fueling.

was varied in an attempt to reduce the peak soot concentration. It was found that

no fueling profile could significantly reduce the soot measured from the linear ramp

fueling case. This was due to the low AFR that occurs as the fueling reaches the

maximum value. The results indicate that the way to increase the minimum AFR is

to slow down the ramp rate or increase the time to transition between the operating

conditions. As shown in the BMEP plot, no variable fueling strategy could improve

the overall load response.

Since the transition cannot be made within a reasonable time at such a low steady

state AFR, transient experiments were conducted with a transition to the high load

condition (6.3 bar) with a higher steady state AFR. This was accomplished by remov-
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Figure 4.9. Transient responses showing BMEP, AFR, fueling, and
soot for 6 cylinder step and 3 cylinder variable fueling.

ing the EGR at the higher load point by setting the EGR valve position to zero at

the time of transition. This change allows airflow to increase to a higher value. The

reduction of EGR also increases the NOx, which no longer is kept within the target

range as discussed in the first section. to achieve 6.3 bar reduced which also increases

AFR. The elimination of EGR causes the steady state AFR to increase from ∼18 to

∼21.

A ramp fueling strategy was again used to explore the potential responses for the

case with “relaxed” (i.e. higher) high load AFR. Fig. 4.10 shows the responses of

two additional experiments in comparison to the ramp fueling experiment at a steady

state AFR of 18 previously shown. As shown, the fueling ramp rate was increased
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Figure 4.10. Transient responses showing BMEP, AFR, fueling, and
soot for 6 cylinder step and 3 cylinder ramp fueling at an elevated
steady state AFR of 20.7.

until the 1.5 FSN soot limit was violated and resulted in a reduction in the transition

time from 2.33 to 0.46 seconds.

A variable fueling strategy was again used to attempt to reduce the soot response

with a transition time of 0.46 seconds. Two of these responses are shown in Fig.

4.11. The fueling profiles were designed to start with slower ramp rates and end with

elevated ramp rates to allow time for the airflow to increase. The experiment shown

in red indicates that a variable fueling strategy may be enough to reduce the soot

peak to a value below 1.5 FSN. This shows that 0.46 seconds is approximately the

fastest fueling transition time possible between the two given load setpoints while
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Figure 4.11. Transient responses showing BMEP, AFR, fueling, and
soot for 6 cylinder step and 3 cylinder variable fueling at an elevated
steady state AFR of 20.7.

maintaining a reasonable soot response. As shown in the BMEP plot, this effect of

varying the fueling ramp rates is small on the load response.

As described above, in order to reduce the load transition time, the steady state

AFR was increased at the 6.3 bar operating condition. This causes negative effects

on TOT and BSNOx. The TOT at 6.3 bar was reduced ∼60◦C from 512◦C to 480◦C.

This represents a significant drawback because thermal management is the primary

advantage for operating CDA at this condition. In addition, as mentioned above, the

BSNOx target is not met at the elevated AFR point; BSNOx increases from 3.2 to

10.3 g/hp-hr.
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Figure 4.12. Comparison of 6 and 3 cylinder load responses with
both heavy-duty and mid-range FTP cycles.

The CDA load response using a variable fueling strategy as well as the 6-cylinder

step fueling experiment were compared to a typical load transition in the FTP, as

shown in Fig. 4.12. The experimental load responses were compared with both the

heavy-duty and mid-range cycles. The start of transition was assumed to be at 25.3

seconds into the FTP. The 6-cylinder BMEP response rate is more than adequate

for the required load transitions. The CDA load response is consistent with the

heavy-duty FTP cycle but not the medium duty one.
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4.3 Summary

In this chapter, experimental results were discussed for both steady state and

transient operation of a diesel engine utilizing cylinder deactivation. The steady

state experiments involved a load sweep at 1200 rpm. These results showed promising

benefits to CDA both for thermal management as well as efficiency at low load. CDA

yields a TOT increase by more than 88◦C at 1.3 bar and about 160◦C at 6.4 bar. In

addition, BTE is increased by 5% to 7% at 1.3 bar.

The reduced airflow that comes from deactivating three cylinders was shown to

cause issues when attempting to meet the load transitions required by the FTP. It

was observed that at 800 rpm CDA cannot be run at high enough load to meet the

first load transition of the FTP. At 1200 rpm, it was found that the mid-range FTP

cycle cannot be met with any fueling strategy or by relaxing the benefit of CDA at

higher loads via higher steady state AFRs. However, the heavy-duty cycle can be

met by increasing the steady state AFR at 6.3 bar from ∼18 to ∼21, decreasing the

TOT by 60◦C. Also, NOx is increased from 3.2 to 10.3 g/hp-hr with a decrease in

EGR to raise the airflow.
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5. CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

Modern diesel aftertreatment systems are effective in reducing emissions, however

they must operate at sufficiently high temperatures. Thermal management is a means

to provide these systems with the heat energy they need for efficient operation. The

objective of this work was to explore the potential benefits of two strategies involving

variable valve actuation for aftertreatment thermal management, namely early ex-

haust valve opening and cylinder deactivation. This effort describes the quantification

of the benefits and penalties of exhaust temperature and fuel economy, respectively.

In addition, the potential challenges for CDA during transient operation were also

investigated.

The first technology discussed in this work was EEVO. This section described

how a model was developed for determining the impact of EEVO on both turbine out

temperature and brake thermal efficiency. This work utilizes a first-law energy balance

analysis with data from experimental EEVO sweeps to develop generalizations about

how temperature and fuel consumption are increased as EVO is advanced. The model

was validated at a wide range of engine speeds, from 800 rpm to 2200 rpm and at

loads up to about 7 bar. The model analysis shows that EEVO can cause a significant

increase in exhaust temperature; however, the fuel consumption penalty is also large.

Due to the significant fuel consumption penalty observed as a result of EEVO,

CDA was studied in the following chapter. The focus of the work in this section was at

idle (both loaded and unloaded) at which condition thermal management has room for

significant temperature and efficiency improvements. This experimental based effort

utilized design of experiments and constrained optimization to compare the exhaust

temperature benefit and the corresponding efficiency impact relative to the optimized
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6-cylinder case. The results showed enough temperature increase for aftertreatment

effectiveness at loaded idle with no fuel economy penalty. The temperature increase

was not significant at unloaded idle, but CDA operation showed to have a large fuel

economy benefit.

CDA shows to be a promising thermal management strategy; deactivating three of

six cylinders yields a large exhaust temperature increase with fuel consumption reduc-

tion at low loads. The next section discussed an experimental load sweep screening

effort at cruising speed and all possible loads. The operating conditions studied in

this work were then utilized in a transient analysis of how CDA load response com-

pares with the FTP during a load transition. Results of the load sweep screening

are consistent with the optimization work completed focusing on CDA operation at

idle. Specifically, there is an efficiency improvement with CDA at loads below 1.3

bar, with a significant exhaust temperature increase at all loads. However, there was

found to be drawback to CDA during transient operation. The tests showed that

the test engine could not meet the load response required by the FTP at either 800

rpm or 1200 rpm with operating conditions focused on maximizing exhaust tempera-

ture. A relaxed air-fuel ratio condition allowed for experiments to meet a heavy-duty

FTP cycle load response within emissions limits. These results indicate a tradeoff be-

tween maximizing thermal management benefits and allowing for fast transient load

transitions.

The results of the work presented in this thesis indicate that at steady state low

load operation CDA is an ideal aftertreatment thermal management strategy due

to the large temperature gains with improved fuel economy. However, this strategy

cannot be used at higher loads and may not be sufficient for transient operation. For

aftertreatment warm up over a variety of drive cycles, other thermal management

strategies may be needed, if the transient challenges with CDA cannot be solved.
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5.2 Future Work

Thermal management of aftertreatment is not a simple problem. It is dynamic

with multiple systems that need to work together, each with high efficiency, in order

to increase overall system efficiency. There are a plethora of strategies that have

been researched which are effective in raising exhaust gas temperatures for improved

thermal management. Some of these methods are more efficient than others, and some

are more suited to particular applications or drive cycles. Since all strategies have

some tradeoffs between efficiency and temperature, it is important to know which

strategy will provide adequate thermal management benefit with the smallest fuel

consumption penalty. It is imperative that the aftertreatment system operate at near

maximum efficiency. The thermal management strategy that can enable this most

efficiently has potential to improve the efficiency of the whole system.

This thesis described a detailed analysis for EEVO and CDA. The steady state

benefits in temperature and the associated benefits/penalties in brake thermal ef-

ficiency have been discussed. Future work will include the comparison of these two

strategies over a transient drive cycle to determine the effectiveness of each on heating

up the catalysts in the aftertreatment system. The conclusions made in this thesis

could inform a simulation analysis to be performed with transient aftertreatment tem-

perature models. Both EEVO and CDA should be compared with more conventional

thermal management strategies, especially those that are use in modern production

engines. In addition, multiple VVA based strategies could be combined to further

improve the benefits observed in this work. This would inform if implementation of

either strategy (or both) would help to improve overall vehicle efficiency.

The fourth chapter of this thesis also describes the challenges for transient op-

eration of CDA. Future work could involve research into potential solutions to this

transient problem. One simple strategy could be the transition to fewer deactivated

cylinders. This would increase airflow quickly and has the potential to allow for faster

transition times. However, this just allows for a load increase after CDA operation. If



83

CDA is desired even after a load transition other solutions will need to be developed.

Some potential solutions that could be involved in future work are electrification of

the turbo-machinery, powertrain hybridization, or supercharging.
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