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ABSTRACT

Pietrzak, Bradley W. M.S.M.E., Purdue University, December 2014. Algorithm De-
velopment and Analysis for Advanced Engine Technologies including Piezoelectric
Fuel Injection and Variable Valve Actuation. Major Professor: Gregory M. Shaver,
School of Mechanical Engineering.

As vehicle emissions standards and fuel economy constraints become increasingly

strict, the automotive industry must employ the use of advanced engine technologies

to overcome these challenges. Fuel injection rate shaping and cylinder deactivation

(CDA) are two such technologies, and both of them require the design and imple-

mentation of algorithms using various hardware and software tools.

Fuel injection rate shaping is one path towards cleaner and more efficient diesel

engines. Piezoelectrically-actuated fuel injectors are well-suited for rate shaping op-

eration, but are difficult to control. Control-related challenges arise primarily due to

the lack of measurements available in a fuel injection system on-engine, the inher-

ent complexity in the dynamics of a piezoelectric fuel injector, and variability from

injector-to-injector and over the life of a given injector. Although these challenges are

significant, model-based fuel flow rate estimation and control is of the utmost impor-

tance due to the fact that the brake torque in a diesel engine is primarily influenced

by the total amount of injected fuel per engine cycle. This thesis studies the effect of

injector model parameter uncertainties on the model-based estimate of the injector’s

output fuel flow rate. Specifically, the relationship between the injector’s needle seat

area and needle lift is investigated. While off-engine experiments can be conducted

to determine this parameter, this study presents an on-engine parameter estimation

strategy that can accommodate for some of the aforementioned injector variability. In

the presence of an initial parameter error of 25%, the parameter estimator improved



xiv

the model-based prediction of total injected fuel by approximately 10% in Matlab

simulations.

CDA is another technology that enables improved fuel economy and reduced

tailpipe emissions in diesel engines. As the name suggests, CDA involves deacti-

vating some combination of an engine’s cylinders in order to temporarily reduce the

total displacement of the engine. Reduced engine displacement can improve fuel econ-

omy and reduce harmful engine emissions (by means of reduced air-to-fuel ratio and

reduced pumping work), especially at low engine speed and load conditions. How-

ever, there are a few challenges that CDA presents. First, engine lubricating oil can

accumulate in deactivated cylinders as time progresses. Second, cylinders may not

perform normally immediately upon reactivation (a concept referred to as “first-fire

readiness”) due to this oil accumulation as well as low in-cylinder temperatures that

are the result of a prolonged deactivation. Third, changing the combination of firing

cylinders can yield undesirable torsional vibrations during CDA operation. This thesis

analyzes the first and second of these issues using in-cylinder pressure measurements

to study combustion in cylinders that have been reactivated after prolonged periods

of deactivation. Experiments show that as more time is spent in CDA mode, more oil

accumulates in deactivated cylinders. This oil accumulation can be as much as 500

mg for cylinders that have been deactivated for 20 minutes. CDA durations of 5 and

10 minutes yield accumulated oil masses of up to 376 mg and 255 mg, respectively,

while a CDA duration of 0.5 minutes yields an oil accumulation of less than 1 mg.

Since the combustion of this accumulated oil causes abnormally large cumulative heat

releases in the engine cycles following the transition from CDA to six cylinder mode,

the brake torque does not smoothly transition between these two engine modes. For

CDA times of 5, 10, and 20 minutes, these torque fluctuations make such long periods

of CDA-only operation unacceptable from a first-fire readiness perspective.

Finally, this thesis presents a basic cylinder recharging strategy that can be used in

future work to mitigate the effect of oil accumulation and improve first-fire readiness.

While improvements in piston ring design can prevent oil accumulation, this cylinder
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recharging strategy uses software to reactivate all deactivated cylinders for a single

engine cycle at regular intervals in an effort to raise in-cylinder pressures enough

to prevent oil from seeping into deactivated cylinders. The ability to perform these

“recharge events” has been added to the engine test cell used in this study and has

been validated experimentally. Although CDA-only operation is unacceptable for

periods of time greater than or equal to 5 minutes, CDA operation with regularly-

spaced recharge events could enable prolonged CDA operation by mitigating the

effects of oil accumulation and first-fire readiness.



1

CHAPTER 1: INTRODUCTION

1.1 Motivation

In diesel engines, harmful emissions primarily appear in the form of oxides of Ni-

trogen (NOx) as well as particulate matter (PM), and their reduction often inherently

involves some increased use of fuel. Figure 1.1 shows the evolution of EPA-mandated

emissions standards for on-highway heavy-duty diesel engines from 1994 through 2010

in the US. This approximately ten-fold decrease in emissions limits has motivated the

development of a variety of novel diesel engine technologies, including advanced fuel

injection techniques and cylinder deactivation.

Figure 1.1. US EPA regulations for on-highway heavy-duty diesel engines [1].

Fuel injectors capable of high pressure, multi-pulse operation with precise control

of both fueling quantity and spacing is a key enabler for the development of engines

that offer reduced emissions, as well as quieter and more efficient operation [2–4].
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Further improvement in fuel injection technology can be made via the use of a more

complex type of injection event known as “rate shaping” [5].

Piezoelectric actuators have very fast response times enabling the creation of a

variety of injection events [6], including rate shaping [7]. For the purposes of reduced

emissions and improved fuel economy, a special type of rate shape known as the

“boot profile” is of interest [8–10]. Fig. 1.2 shows an example of a boot-shaped

injection profile, and while it will be discussed in detail later in this thesis, it should

be mentioned here that its generation poses a unique set of problems compared to

conventional pulse-shaped fuel injections. Because the injector is hovering somewhere

Figure 1.2. Example of boot-shaped fuel injection profile.

between fully on and fully off during the “toe” portion of a boot shaped injection

event, injector models which account for complex phenomena including piezostack

hysteresis and needle compliance must be used. Additionally, parameter variations

with time and from injector-to-injector become more significant. The development of

the parameter estimation algorithm presented in this thesis improves the closed-loop

control of fuel injection rate in piezoelectric injectors.

CDA is another technology that aims to improve fuel economy while also reduc-

ing NOx and PM emissions by improving the efficacy of exhaust gas after-treatment

systems. The primary mechanism by which CDA improves fuel economy is a reduc-

tion in engine pumping losses via a reduction in the number of cylinders that are

drawing charge gas from the intake manifold. Fuel economy benefits are particularly

noteworthy at low load conditions, and often result in improvements on the order
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of 10-26% [11–16]. Of at least equal importance is the ability of CDA to increase

exhaust gas temperatures. The “light-off” temperatures of many modern exhaust

after-treatment systems is approximately 250 ◦C, and this represents the lowest ex-

haust gas temperature at which the after-treatment systems - including a diesel oxida-

tion catalyst (DOC), diesel particulate filter (DPF), and selective catalytic reduction

(SCR) - can function effectively. At low load and idle engine conditions, exhaust gas

temperatures are well below 250 ◦C. By lowering the engine’s air-to-fuel ratio (AFR),

CDA significantly raises exhaust gas temperatures, thereby reducing emissions at low

speed and load conditions.

The implementation of CDA poses a few unique problems, including the accumula-

tion of engine lubricating oil in-cylinder during prolonged CDA operation, difficulty in

the reactivation of deactivated cylinders due to their cooling-down during CDA mode

(referred to as “first-fire readiness”), and noise, vibration, and harshness (NVH) is-

sues that may arise due to undesirable torsional vibrations that arise in CDA mode.

The first two of those three issues can be addressed in a few ways. Since oil seeps

into deactivated cylinders via imperfections in the piston ring seal, improved piston

ring design could reduce oil accumulation. Additionally, reformulating the engine oil

itself could reduce its tendency to accumulate via changes in fluid properties such as

viscosity. However, this thesis focuses on the development of an algorithm that re-

activates each deactivated cylinder for a single engine cycle periodically during CDA

operation in an effort to mitigate oil accumulation and first-fire readiness in future

work.

Previously, several of the author’s colleagues successfully implemented an algo-

rithm that opens and closes the intake and exhaust valves one time in deactivated

cylinders at user-specified intervals. These single-cycle valve events are referred to as

“recharge events,” and they serve to occasionally increase the pressure in each deac-

tivated cylinder in order to prevent oil from seeping into the combustion chambers

via the imperfect seal created by the piston rings. While this technique is effective

to some degree, it is beneficial to also inject fuel during the recharge event so that
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a normal combustion event can occur. Such a recharge event is known as a “fired

recharge” because the deactivated cylinders experience a combustion event during the

single recharge engine cycle.

Compared to non-fired recharges, fired recharges have the additional ability to

raise cylinder temperatures during a recharge event. Furthermore, the increase in

in-cylinder pressure created by a fired recharge is greater than that of a non-fired

recharge, at least initially. Accordingly, this thesis investigates the potential need for

fired recharges by studying the effect of long periods of CDA-only (i.e. without fired

or non-fired recharges) operation on oil accumulation and first-fire readiness. Using

the fired recharge algorithm presented in this thesis to reduce oil accumulation and

improve first-fire readiness is the subject of future work.

1.2 Literature Review

1.2.1 Fuel Injection Rate Shaping

While multi-pulse fuel injectors are somewhat common in modern engines, injec-

tors capable of rate shaping operation are comparatively rare. Rate shaping has been

accomplished via rail pressure modulation in [17], and needle displacement modula-

tion in [18]. While the injector used in this thesis also achieves rate shaping by the

modulation of its needle, it does so using a piezoelectric actuator. The injector in [18],

on the other hand, does this using a hydro-mechanical feedback circuit.

Parameter estimation for fuel injection systems has been accomplished in the liter-

ature. In [19], the parameters of an injector model for a Bosch V fuel injection system

were determined using vibration measurements recorded during fuel injection events.

While no online parameter estimator was proposed, the method used in this paper

could be incorporated into an online technique because of the non-intrusive nature of

vibration measurements. [20] presents an offline parameter estimation technique for

a port fuel injection system.
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Online parameter estimators are rarely found in the literature for any type of

fuel injector, especially piezoelectric injectors. However, piezoelectric actuators have

been adaptively controlled outside of fuel injector applications. In [21], a least-mean-

square algorithm was used to adaptively control a piezoelectrically-actuated micro-

positioning system. In [22], a piezoelectric actuator was adaptively controlled using

a recursive-least-square algorithm. Critically, these two adaptive controllers relied on

measurements of piezo-actuator displacement, which is not available in a fuel injection

system.

Prior efforts by several of the author’s colleagues and predecessors have resulted

in physically-based dynamic models of the injector during multi-pulse [23] and rate

shaping [24] operation. Using these models, an output fuel flow estimator for the

piezoelectric injector was developed in [25] for cycle-to-cycle control of closely-spaced,

multi-pulse injection events, and in [26] for rate shaped injection events. The dynamic

injector model in [24] was simplified in [26] for control purposes, and a closed-loop

fuel flow rate controller was designed and validated in [27].

1.2.2 Cylinder Deactivation

While CDA is used commonly in the literature, the majority of its applications are

for spark-ignited (SI) engines. Specific implementations of CDA will be highlighted

in the following paragraphs.

Falkowski et al [28] implemented CDA on a V8, gasoline-powered, SI, Daimler-

Chrysler 5.7 L HEMI R© Engine. In this application, the implementation of CDA

was tested in a full-vehicle environment with practical considerations such as NVH,

maintenance intervals, and reliability taken into account. Specifically, the use of CDA

was required to be completely transparent from the driver’s point of view. This was

accomplished by incorporating CDA-capability into the vehicle’s design from concept

to completion, which allowed for maximum design flexibility. One of the key design

considerations was the inclusion of a torque controller to maintain a smooth transition
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between CDA and normal engine operation. Additionally, a fired recharge strategy

was used to prevent in-cylinder oil accumulation, though the specifics of the strategy

such as its recharge interval were not specified.

Leone et al [11] implemented CDA on several dyno-tested engines of various sizes

and studied fuel economy benefits while each engine was subject to different operating

constraints. For example, the fuel economy benefit of CDA was tested during con-

ditions of engine warm-up, low speed, and different drive cycles (US EPA, Japanese,

European, etc). The tests found that CDA yielded fuel economy benefits in the

range of 6-14%, with specific improvements depending greatly on which condition

was constraining the engine’s operation.

Boretti et al [29] proposed a CDA mechanism that disables piston movement in

addition to the disabling of valves and fuel injectors. The goal of this effort was

to reduce the friction losses that are still problematic during CDA due to piston

movement, even with the pumping loss reduction that is present when the valves and

fueling are deactivated. While this novel piston deactivation mechanism was only

studied in a simulation of a V8 engine, the reduction in friction losses was concluded

to be significant.

In-Cylinder Oil Accumulation

In this thesis, the effect of oil accumulation in deactivated cylinders is outlined,

and there are a few other instances of this in the literature. Ma [30] studied the effect

of oil transport via piston rings in deactivated cylinders. The accumulation of oil

via this transport mechanism was deemed significant, and several piston ring design

changes were suggested to reduce this oil accumulation. These changes included

alterations to the piston ring/groove clearances and ring gap and drain hole sizes,

reducing cylinder bore distortion, and improving the piston-land and oil drain hole

structures to reduce upward oil flow.
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Yilmaz et al [31] studied oil consumption in a 4-cylinder SI engine that was

equipped with instrumentation which enabled real-time oil consumption rate mea-

surements. Yilmaz et al considered three sources of oil consumption: evaporation, oil

entrained in blowby gas flow, and oil flow through piston rings and valve guides in

the combustion chambers. They concluded that at low loads (i.e. loads of less than

50% of the maximum, which are the primary focus of this thesis), oil consumption

via oil transport past the piston rings into the combustion chambers was responsible

for approximately 90% of total oil consumption, and this consumption rate increased

as load decreased.

Froelund et al [32] investigated the effect of oil consumption on diesel particulate

filter (DPF) deterioration, and found that this deterioration could be mitigated with

both engine and oil design changes. Since the DPF is one of the most ubiquitous

emissions reduction systems in modern diesel engines, its deterioration is very unde-

sirable. Engine-design-related and oil-design-related suggestions to reduce oil-based

PM emissions were discussed, and these are of great relevance to this thesis since

future work on the test engine at Purdue will likely seek to minimize in-cylinder oil

accumulation and consumption.

1.3 Experimental Hardware

Since two completely separate experimental setups were used in this thesis, they

will be described independently in this section.

1.3.1 Piezoelectric Fuel Injector Experimental Setup

The off-engine injector experimental setup at Purdue is shown in Fig. 1.3. This

setup allows a single piezoelectric fuel injector to be tested while measuring rail pres-

sure, line pressure, stack voltage, and output fuel flow rate. Particularly noteworthy

is the measurement of output fuel flow rate, which is not measurable on-engine. This

measurement is performed using the Bosch-type technique [33], and was used by the
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author and his colleagues for model-based estimation and controller validation pur-

poses. A photograph of the entire experimental setup illustrated in Fig. 1.3 is shown

Figure 1.3. Schematic of Off-Engine Injector Experimental Setup

in Fig. 1.4

Several additional pieces of hardware are used in the setup for control and mea-

surement. Perhaps most critical is the NI CompactRIO FPGA, which sends a control

signal to the piezostack driver while also reading measurements of stack voltage, line

pressure, and output fuel flow rate. Additionally, the FPGA executes an implementa-

tion of the model-based estimation [26] and fuel flow control [27] algorithms designed

for this injector. These algorithms are coded in LabVIEW and then compiled into

low-level FPGA code using the LabVIEW FPGA module.

The data acquisition (DAQ) capabilities of the FPGA run at a frequency of 500

kHz, while the KROHN-HITE anti-aliasing filter operates at a frequency of 200 kHz.

The Qortek piezostack driver sends out a control signal at a frequency of 100 kHz.
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Figure 1.4. Photograph of Off-Engine Injector Experimental Setup

All of these devices, as well as the power supply for the FPGA, are photographed in

Fig. 1.5.

1.3.2 CDA and Oil Accumulation Experimental Setup

The experimental setup used in the CDA fired recharge and oil accumulation study

is shown in a schematic in Fig. 1.6 and a photograph in Fig. 1.7. The engine used

is a 6 cylinder diesel engine with high pressure cooled EGR which is regulated using

an electronically-controlled EGR valve, a nozzle-type variable geometry turbocharger

(VGT), a charge air cooler, and a common rail fuel injection system. Several nominal

parameters of this engine are specified in Table 1.1. The engine lubricating oil used

in this engine is Valvoline 15W-40 oil for heavy duty diesel engines, and the age of

the engine during the experiments described in this thesis was approximately 2600

hours.
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Table 1.1. Nominal engine parameters.

Parameter Value Units

No. of Cylinders 6 —

Valves per Cylinder 4 —

Firing Order 1,5,3,6,2,4 —

Maximum Injection Pressure 1800 bar

Bore Diameter 107 mm

Stroke 124 mm

Connecting Rod Length 192 mm

Static Geometric Compression Ratio 17.3 mm

Intake Valve Opening 340 aTDC CAD

Intake Valve Closing 565 aTDC CAD

Exhaust Valve Opening 565 aTDC CAD

Exhaust Valve Closing 380 aTDC CAD

Exhaust Valve Closing 380 aTDC CAD

Intake Valve Diameter 29.27 mm

Exhaust Valve Diameter 29.4 mm
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Figure 1.5. Photograph of Off-Engine Injector Control and Measurement Hardware

The most unique feature of this setup is its variable valve actuation (VVA) capa-

bility. All six cylinders make use of an electro-hydraulic VVA system which enables

cycle-to-cycle control of both intake and exhaust valve events. Specifically, the VVA

system can modulate the timings of valve opening and closing, as well as valve lift,

ramp rate and velocity. This flexibility is used in this study to disable both the in-

take and exhaust valves of three of the engine’s six cylinders during the transition

into CDA mode. Furthermore, the cylinder recharging algorithm presented in this

study uses the VVA system to resume normal valve events during a recharge event

for a single engine cycle. A schematic diagram of the electro-hydraulic VVA system

is shown in Fig. 1.8.
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Figure 1.6. Schematic of engine testbed.
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Figure 1.7. Experimental testbed with VVA.
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Figure 1.8. Schematic of fully flexible electro-hydraulic VVA actuator.

1.4 Contributions

1.4.1 LabVIEW FPGA Code Optimization

Together with his colleague Dr. Dat Le, the author optimized pre-existing Lab-

VIEW FPGA code in order to fit the closed-loop fuel flow rate controller code onto

the FPGA [27,34]. The primary contribution of the author was in the optimization of

the subsection of the LabVIEW program that modeled piezostack hysteresis. By con-

verting the pre-existing LabVIEW code into a form that was more FPGA-amenable,

the FPGA processing power consumed by the hysteresis portion of the LabVIEW

code was significantly reduced. This ultimately freed up enough FPGA resources to

enable the closed-loop controller to be implemented and validated. This effort is not

described in this thesis, but is described in [27].
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1.4.2 Model-Based Estimation of Piezoelectric Fuel Injector Parameters

This effort, led by the author, resulted in an online parameter estimation technique

for a piezoelectric fuel injector that is capable of estimating the relationship between

the injector’s needle seat area vs. needle lift on-engine. While previous efforts by

the author’s colleagues [24] were made to determine the injector model’s parameters

using off-engine experiments, this study improves upon those efforts by correcting for

parameter error that may be introduced during injector manufacturing and aging.

This effort is described in this thesis, and is also outlined in [35].

1.4.3 Oil Accumulation Measurement and Analysis

This study, conducted by the author, assessed the effect of extended periods of

CDA-only operation on engine oil accumulation in the deactivated cylinders of a CI

engine operating in CDA mode. A heat-release-based analysis was used to quantify

the mass of accumulated oil, and experiments are conducted at various engine speeds,

loads, and recharge intervals. This study is presented in this thesis.

1.4.4 First-Fire Readiness Analysis

This study, conducted by the author, characterized first-fire readiness in CI engines

utilizing CDA. The heat release rate during combustion was used to study first-fire

readiness, and test plans were developed and executed at various engine speeds, loads,

and recharge intervals. The results of this study are presented in this thesis.

1.4.5 Fired Recharge Algorithm Development and Validation for a Diesel

Engine Utilizing CDA

Conducted by the author, this effort involved the implementation of a fired recharge

algorithm for a diesel engine utilizing CDA. When the engine is operating in CDA

mode, this algorithm reactivates each deactivated cylinder for a single engine cycle
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at user-specified intervals of time. Additional effort was made to maintain a constant

brake torque during the fired recharge. Using SIMULINK software, this algorithm

was implemented on DSpace hardware and validated at different engine speed and

load conditions. The results of this effort and its validation are presented in this

thesis.
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CHAPTER 2: MODEL-BASED ESTIMATION OF PIEZOELECTRIC FUEL

INJECTOR PARAMETERS

This Chapter presents the model-based parameter estimation strategy that was de-

veloped for a piezoelectric fuel injector.

2.1 Injector System and Parameters of Interest

In this section, the piezoelectric injector system will be briefly illustrated and the

parameters in need of online estimation will be described.

2.1.1 Injector System

A schematic diagram of the piezoelectric fuel injector used in this study is shown in

Fig. 2.1. In this type of injector, the piezostack serves as the actuator which expands

when a voltage Vs is supplied by the driver. When Vs is positive, the piezostack

expands and exerts a downward force on the upper plunger. Through the action of

the hydraulic circuit created by the body, control, and trapped volumes, the needle

is ultimately lifted. This opens the nozzle, causing fuel to flow out of the injector.

In order to close the nozzle and stop fuel flow at the end of an injection event, Vs is

reduced to 0, the piezostack contracts, and the springs s1 - s5 force the plungers and

needle to return to their initial positions.

An expanded view of the injector’s needle seat is shown in Fig. 2.2, where Rneed

is the resistance of the needle seat, Rsh is the resistance of the spray holes, A2 is

area of the spray holes, ρ is the density of the fuel in the injector, and Pbv, Psac,

and Pcyl are the pressures in the body volume, sac volume, and cylinder, respectively.

In the expanded view of the needle seat it is apparent that as the needle lift (x2)

increases, the effective area of the needle seat (A1) increases. The exact relationship
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Figure 2.1. Piezoelectric Fuel Injector Schematic Diagram

between A1 and x2 is expected to vary from injector-to-injector due to manufacturing

differences. Additionally, A1(x2) may change over the life of an injector if the needle

incurs cavitation damage as it ages.

In [24], A1(x2) was determined by performing a series of experiments on a single

injector. These experiments were conducted in an off-engine injector test rig (where

a measurement of output fuel injection mass flow rate is available), and the resulting

A1(x2) = A1,0 curve was assumed to be accurate for all injectors. Since A1 essentially

quantifies how open or closed the nozzle is, it plays a critical role in determining

the flow rate of fuel spraying out of the injector (especially during the toe, when the
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Figure 2.2. Expanded view of injector needle seat

model is particularly sensitive [24]). As such, it would be beneficial to determine the

A1(x2) relationship for any given injector on-engine (where no measurement of output

fuel injection flow rate is available).

Other parameters that are expected to vary on an injector-to-injector basis are

piezostack properties (which could also vary over the life an injector) and various

leakage rates of fuel between volumes inside the injector. While these parameters are

undoubtedly important for model accuracy, this thesis will focus only on the online

estimation of the needle seat area A1(x2).

2.1.2 Available Measurements

Before proceeding with the parameter estimation strategy, the measurements that

are available on-engine will be outlined here. The stack voltage Vs, line pressure

Pline (used as a proxy for the body pressure), and total injected fuel per injection

event are measurable on-engine. Additionally, the instantaneous fuel flow rate wstc is
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measurable in the injector test rig at Purdue, but is useful only for model validation

purposes. With this in mind, the state estimator in [26] was used to provide virtual

measurements of all the states as well as output fuel flow rate wstc. The lack of true

measurements available on-engine makes control design and parameter estimation

particularly difficult, as demonstrated later in this Chapter.

2.2 Parameter Estimation

The estimation of parameters for the dynamic system that describes the piezo-

electric fuel injector is made extremely difficult by the lack of measurements that are

available. Since many traditional parameter estimation techniques such as the recur-

sive least squares (RLS) algorithm and model reference adaptive control (MRAC) rely

on input and output measurements, using them to estimate A1(x2) is not straightfor-

ward. Furthermore, A1(x2) is not a constant parameter since it is a function of the

state x2, whose values range from zero to saturation over the course of a single boot-

shaped injection event. The parameter estimation strategy used to estimate A1(x2)

was designed with two “tools” in mind: the total injected fuel per cycle measurement,

and the state estimator from [26]. The complete strategy is illustrated in Fig. 2.3,

and each block therein will be described individually.

2.2.1 Injector Simulation Model

The dynamic injector model described and validated in [24] was used in the “Injec-

tor Simulation Model” block to simulate a real injector. This model contains eleven

states and its outputs to the rest of the strategy are the total injected fuel per injec-

tion and the body pressure (which would be referred to as the line pressure on a real

injector).
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Figure 2.3. Parameter Estimation Strategy

2.2.2 State Estimator

The state estimator, previously designed in [26], is used here to provide an estimate

of the needle lift x2. The estimator is based on a simplified version of the injector

simulation model in [24], and contains six states as well as simplifying assumptions

about the bulk modulus and density of the fuel in the injector.

2.2.3 Flow Rate Measurement Technique

This block accepts the total injected fuel per injection as input. On-engine, the

total injected fuel is calculated by some pre-existing estimation algorithm while in

simulation it is calculated by integrating the output fuel flow rate over the course of

an injection. In order to use this input to calculate the average flow rates during the

toe and shank of a boot-shaped injection, a few assumptions are required.

Fig. 2.4 illustrates the quantities that must be known in order to calculate the toe

and shank average flow rates for a given injection. The total injected fuel measurement

(Areatotal) is the sum of the blue and green areas (Areatoe and Areashank, respectively)
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in Fig. 2.4. The first assumption is that the blue and green areas are rectangular.

In reality this is not the case, but the sloped parts of the injection (e.g. between the

toe and shank) are steep enough to justify this assumption. Assuming rectangular

Figure 2.4. Flow Rate Measurement Technique

blue and green areas, all that must be known in order to calculate toe and shank flow

rates are the injection start time, toe end time, and injection end time. These are

assumed to coincide with the corresponding times in the stack voltage profile, which

is measurable. The final assumption that must be made is that the shank represents

a state of flow saturation. Thus, for a given rail pressure, the shank flow (wshank) is

assumed to be constant. In this fashion, wshank is not actually “calculated.” Rather,

its value is assumed based on the commanded rail pressure for a given injection event.

According to the above assumptions, the following quantities are considered known

in the “Flow Rate Measurement Technique” block of Fig. 2.3: tstart, ttoeend, tinjend,

wshank, and Areashank. Using these quantities, the toe flow rate (wtoe) is calculated

as

wtoe = (Areatotal − Areashank)/(ttoeend − tstart) (2.1)
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where

Areashank = wshank(tinjend − ttoeend) (2.2)

The two other times labeled in Fig. 2.4, ttoe and tshank, must be calculated and

fed into the state estimator so that the appropriate values for needle lift are given to

the “Needle Seat Area Identification” block in Fig. 2.3. ttoe and tshank are calculated

as

ttoe = (tstart + ttoeend)/2 (2.3)

and

tshank = (ttoeend + tinjend)/2 (2.4)

The estimates of x2 at ttoe and tshank are used in the estimation of the needle seat

area.

The piezostack voltage for a typical boot-shaped injection is shown in Fig. 2.5

with the vertical lines illustrating the times tstart, ttoe, ttoeend, tshank, and tinjend. The

corresponding flow rate predicted by the simulation model is shown in Fig. 2.6, with

the same times shown by vertical lines and the calculated average flow rates shown by

horizontal lines. The assumptions made by this measurement technique significantly

impact the accuracy of the wtoe calculation, and this will be addressed later in the

thesis.

2.2.4 Needle Seat Area Identification

In this block, the output equation of the injector model

wstc =
A1(x2)A2

ρcyl

√
2ρ(Pbv − Pcyl)

A2
1(x2) + A2

2

(2.5)

is used to calculate the values of A1 during the toe and shank since all other variables

are known. Specifically, the needle position, x2, during the steady state toe and shank
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Figure 2.5. Piezostack Voltage for Typical Boot-Shaped Injection

portions of the boot profile are estimated by the state estimator, as shown in Fig.

2.3. Rearranging Eqn. (2.5) gives

A1(x2) =
(2ρ(Pbv − Pcyl)

w2
stcρ

2
cyl

− 1

A2
2

)−1/2

(2.6)

By substituting wtoe and wshank into Eqn. (2.6) for wstc, two values of A1(x2) are

estimated per injection. In other words, for a variety of boot-shaped injections with

different toe heights and rail pressures, a variety of x2 and A1 combinations can be

determined, enabling an estimation of A1 as a function of x2. As the engine continues

to run, the accuracy of the A1(x2) estimate ideally improves.
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Figure 2.6. Flow Rate for Typical Boot-Shaped Injection

2.3 Simulation Results

In this section, the parameter estimation strategy will be validated and it will be

demonstrated that using the estimated needle seat effective area vs. needle lift values

in the state estimator improves estimates of fuel flow rate.

2.3.1 Parameter Estimation Simulation

The validation of this parameter estimation strategy involves demonstrating that

the estimated A1(x2) values, Â1(x2), obtained on a cycle-to-cycle basis are close to

those used in the injector simulation model (i.e. the “truth reference,” per Fig. 2.3).

Accordingly, the following simulation approach was used. In the injector simulation

model, A1(x2) was set equal to A1,0. Thus, A1,0 becomes the “true” relationship

A1(x2) in these simulations, and it will henceforth be referred to as A1,true. In the
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estimator, some initial choice of A1,estimator must be used. For the sake of simplicity,

A1,estimator is chosen to be

A1,estimator = αA1,true (2.7)

where α is a positive constant. Whether or not Eqn. (2.7) actually represents the way

in which A1(x2) varies from injector-to-injector is unknown, but this choice remains

useful for simulation purposes.

Simulating fifteen boot-shaped injection events of varying toe heights and rail

pressures yields the results shown in Figs. 2.7 and 2.8 for α = 0.75 and α = 1.25,

respectively.

Figure 2.7. Parameter Estimator Simulation Results for α = 0.75
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Figure 2.8. Parameter Estimator Simulation Results for α = 1.25

2.3.2 State Estimator Simulation

The ultimate goal of this parameter estimation strategy is to use the estimate

Â1(x2) to improve the accuracy of the state estimator flow rate prediction [26]. Ideally,

a new value of Â1(x2) is available after every boot-shaped injection event. As such,

some parameter update law that determines how to most effectively utilize new data

points in the state estimator should be designed. However, the design of such an

update law is out of the scope of this paper. What will be shown is the effect of

simply replacing the data points used in A1,estimator with those obtained after the

fifteen boot-shaped injection events used to obtain the Â1(x2) values shown in Figs.

2.7 and 2.8. In other words, αA1,true is replaced by the red points in Figs. 2.7 and

2.8 after fifteen injections.
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Using this very simple parameter update strategy, the state estimator is simulated.

Simulation results for boot-shaped injections of varying toe heights and α values are

shown in Figs. 2.9 - 2.12

Figure 2.9. State Estimator Simulation Results for α = 1.25, 40% Toe Height

In Figs. 2.9 - 2.12, the black lines represent the output fuel flow rate of the

injector simulation model (the “truth reference”). This is the flow rate that the state

estimator strives to reproduce. The blue lines represent the output fuel flow rate of

the state estimator while using an erroneous initial “guess” of A1(x2), of the form in

Eqn. (2.7). The red lines represent the performance of the estimator after A1,estimator

has been updated with the red points obtained from fifteen boot-shaped injections.

For example, in Fig. 2.10 the initial guess for A1,estimator was

A1,estimator = 1.25A1,true (2.8)
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Figure 2.10. State Estimator Simulation Results for α = 1.25, 50% Toe Height

After fifteen injections, this initial guess of 1.25A1,true was completely replaced by the

red points from Fig. 2.8. This resulted in the improved estimator performance that

is visually apparent in Fig. 2.10.

In order to quantify this improvement in state estimator performance, the percent

error in the total injected fueling quantity predicted by the injector simulation model

and the state estimator both before and after updating A1,estimator was calculated.

Table 2.1 shows these percent error values. The fueling quantities in this table were

calculated by simply integrating the volumetric flow rate curves shown in Figs. 2.9 -

2.12 (results for flow rates not shown here were also included in the table), with the

end of the toe said to be the time at which the normalized flow rate reached half-way

between the nominal toe and shank flow rate.



30

Table 2.1. Injected Fuel Quantity Error

Injection

Profile

Before/After

Parameter Update

Toe Fueling

Quantity Error

(%)

Total Fueling

Quantity Error

(%)

α = 1.25, 50% TH Before 26.63 9.25

α = 1.25, 50% TH After 25.41 0.26

α = 0.75, 50% TH Before 22.76 15.35

α = 0.75, 50% TH After 9.15 17.07

α = 1.25, 40% TH Before 28.73 8.53

α = 1.25, 40% TH After 34.62 1.43

α = 0.75, 40% TH Before 23.30 14.96

α = 0.75, 40% TH After 8.60 16.72

α = 1.25, 30% TH Before 38.78 9.04

α = 1.25, 30% TH After 40.72 2.36

α = 0.75, 30% TH Before 21.33 14.18

α = 0.75, 30% TH After 1.94 16.00

α = 1.25, 20% TH Before 52.68 9.45

α = 1.25, 20% TH After 60.71 3.08

α = 0.75, 20% TH Before 10.27 12.20

α = 0.75, 20% TH After 5.80 15.72
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Figure 2.11. State Estimator Simulation Results for α = 0.75, 50% Toe Height

According to Table 2.1, the parameter estimation strategy outlined in this paper

largely resulted in improvement in the toe fueling quantity prediction (where the

model is most sensitive) after A1,estimator was updated. However, there are a few

cases in which this is not reflected in Table 2.1. Fig. 2.9 is an example of an injection

profile that was not improved by a parameter update. Exactly why this is the case

is unknown, but the parameter estimation strategy in this paper generally seemed to

be more effected for initial errors in A1,estimator that were below its true value.

The error in the total injected fuel prediction also improved after the parameter

update for the profiles in which α = 1.25, but was actually made slightly worse for

the α = 0.75 profiles. Visually inspecting Figs. 2.9 - 2.12, it is clear that the flow

rate from the simulation model “truth reference” (the black line) takes slightly more

time to reach zero at the end of injection than do both of the estimated flow rates.
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Figure 2.12. State Estimator Simulation Results for α = 0.75, 20% Toe Height

This could influence the error in total injected fueling quantity that is apparent in

Table 2.1.

2.4 Discussion and Conclusion

Figs. 2.7 and 2.8 demonstrate that Â1(x2) lies near A1,true.There are two main

issues with this estimation strategy that need to be addressed. First, the accuracy

of toe and shank flow rate measurements that are provided on a cycle-to-cycle basis

by the “Flow Rate Measurement Technique” block depends very strongly on the

assumptions made about saturation flow rate during the shank and the start and

end times of the toe duration. Second, while the state estimator was experimentally

validated in [26], the A1(x2) used therein was one that was determined using off-
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engine experiments. Thus, the x2 estimate supplied by the state estimator must at

least initially be assumed to contain some error since it is being calculated using

presumably inaccurate values of A1(x2).

The first issue can be dealt with in a relatively straightforward manner. Improving

the confidence with which the measurement technique’s assumptions are made would

improve the technique’s accuracy. The second issue is somewhat more difficult. A

priori, there is no guarantee that Â1(x2) will converge to its true value when the

initial value of A1(x2) used in the estimator contains some error. However, results in

section 2.3.1 illustrate that this parameter estimation strategy is reasonably accurate.

The results in section 2.3.2 demonstrate that the parameter estimator in this

paper results in improved state estimator performance, especially for initial guesses

of A1,estimator in which α = 1.25. Perhaps most importantly, the prediction of the fuel

flow rate during the toe exhibited improvement in most cases after the parameter

update, even though the toe is when the injector model is most sensitive.

2.5 Summary

The effort in this Chapter resulted in a parameter estimation strategy that im-

proved the model-based estimate of the injector’s output fuel flow rate in the presence

of initial parameter error.

1. The parameter of interest is the needle seat area as a function of needle lift

(A1(x2))

2. This parameter is expected to vary from injector-to-injector due to imperfections

introduced in the injector manufacturing process.

3. This parameter is also expected to vary over the life of an injector due to

cavitation damage.
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4. Using the state estimator in [26] and an estimate of total injected fuel per

cycle, the injector model’s output equation is used to yield an online estimate

of A1(x2).

5. In the presence of a 25% initial error in A1(x2), the parameter estimator im-

proves the fuel flow rate estimate by approximately 10% after the injector has

operated for several injection events.



35

CHAPTER 3: OIL ACCUMULATION MEASUREMENT AND ANALYSIS

This Chapter presents a technique to analyze the amount of engine lubricating oil

that has accumulated in deactivated cylinders during prolonged CDA engine oper-

ation. While no direct measurement of in-cylinder oil accumulation is available, a

heat-release-based analysis is presented which uses the total heat released during a

combustion event, combined with the lower heating value of engine oil, to calculate a

mass of accumulated oil burned after the engine transitions from CDA to six cylinder

mode. Oil accumulation is studied experimentally for varying lengths of time spent

in CDA mode. This Chapter concludes with accumulated oil mass values, which

show that accumulated oil mass generally increased as the duration of CDA oper-

ation increased, although a few cylinder-to-cylinder and day-to-day variations were

also observed.

3.1 Heat-Release-Based Analysis of Oil Accumulation

In this study, engine oil accumulation in deactivated cylinders is studied by per-

forming experiments with varying lengths of CDA operation (henceforth referred to

as “CDA time”). In this analysis, CDA mode always refers to valve motion and fuel

injection deactivation for three of the engine’s six cylinders. Two combinations of

cylinders are deactivated in this analysis: 1, 2, and 3 or 4, 5, and 6. These combi-

nations are chosen due to the cylinder firing order, and this CDA strategy cuts the

total engine displacement in half. Engine lubricating oil is expected to accumulate

in deactivated cylinders because of the low in-cylinder pressures that occur after long

periods of deactivation. These low pressures enable the transport of engine oil from

the crankcase into the combustion chambers via the imperfect seal created by the pis-

ton rings. It is expected that longer CDA times yield more oil accumulation, and this
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is what the results generally demonstrate. By analyzing heat release data during the

transition from CDA to six cylinder mode, an analytical method was developed which

allows for the calculation of the mass of oil that burned in each newly reactivated

cylinder.

It was assumed that any deviation in a cylinder’s heat release from its normal

value immediately following the transition to six cylinder mode is due entirely to the

combustion of accumulated oil. Thus, the oil mass values presented in this Chapter

represent lower bounds on accumulated oil mass since it is possible that some portion

of the oil and fuel mixture does not completely burn after resuming six cylinder mode.

Fig. 3.1 illustrates this idea for 0.5, 5, 10, and 20 minute CDA times. As shown in

this figure, the cumulative heat release following the transition to six cylinder mode

differs from an active cylinder’s heat release as CDA time increases to 20 minutes.

The grey line represents cylinder 1’s heat release while it is active, and this is assumed

to represent its heat release in the presence of no oil accumulation.

The fundamental equation that describes the combustion of accumulated oil and

injected fuel is∫
dQgross

dθ
dθ = Qgross = mfuelLHVfuel +moilLHVoil (3.1)

where dQgross/dθ is the gross heat release rate, Qgross is the cumulative gross heat

release, mfuel and moil are the masses of fuel and oil combusted after the transition to

six cylinder mode, LHVfuel and LHVoil are the lower heating values of diesel fuel and

engine lubricating oil, respectively, and θ is the cylinder’s crank angle degree. The

diesel fuel used in this study has a lower heating value of LHVfuel = 42.965 MJ/kg.

While the exact lower heating value of the engine oil used in this study is not known,

it can be approximated as LHVoil = 40.2 MJ/kg, [36]. The gross heat release rate is

calculated as

dQgross

dθ
=
dQnet

dθ
+
dQwall

dθ
(3.2)

where dQnet/dθ is the net heat release rate and dQwall/dθ is the rate of heat transfer

through the cylinder walls. In the literature, all three of these heat release rates are
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Figure 3.1. Cumulative heat release in cylinder 1 for 0.5, 5, 10, and
20 minute CDA times. Active cylinder cumulative heat release shown
for comparison.

often referred to as “apparent,” but that is only because they are based on in-cylinder

pressure measurements as opposed to some other measurement of energy transfer. In

this analysis, the term “apparent” will be omitted with regards to these three heat

release rates for the sake of brevity.

The cumulative heat releases shown in Fig. 3.1 take into account the effects of

both the energy transfer to the piston and the heat transfer between the contents of

the cylinder and the cylinder walls. In these cumulative heat release calculations, a

cylinder-pressure-based model of the heat transfer rate, dQwall/dθ must be used in

order to accurately calculate moil.
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The equation used to calculate the rate of heat transfer through the cylinder walls

is

dQwall

dθ
= A(θ)h(θ)(T − Twall) (3.3)

where A(θ) is the inside surface area of the cylinder as a function of crank angle,

h(θ) is the instantaneous heat transfer coefficient, T is the bulk temperature of the

contents of the cylinder, and Twall is the temperature of the cylinder walls. In this

study, Heywood’s approximation [37] for cylinder surface area is used:

A(θ) =
πB2

2
+
πBLstroke

2
[r + 1 − cos(θ) − (r2 − sin2(θ))1/2] (3.4)

where B is the cylinder bore in meters, Lstroke is the piston stroke length in meters,

and r is the connecting rod length in meters. The cylinder wall temperature is taken to

be the mean of the engine coolant temperature and the exhaust manifold temperature

[38]. The bulk temperature of the cylinder contents, T , is calculated using the idea

gas law. Finally, the instantaneous heat transfer coefficient, h(θ), is calculated using

the Woschni model [39]:

h(θ) = βB−0.2P (θ)0.8T (θ)−0.55w(θ)0.8 (3.5)

where B is the cylinder bore in meters, P (θ) is the in-cylinder pressure in kPa, T (θ) is

the in-cylinder temperature in Kelvin, w(θ) is the average in-cylinder gas velocity, and

β is a tunable parameter used to match this coefficient to a specific engine geometry.

The in-cylinder gas velocity, w(θ), is defined as

w(θ) = c1s̄p + c2
VdTr
PrVr

(P − Pmot) (3.6)

where Pmot is the motored cylinder pressure, defined as

Pmot = Pr

(
Vr
V

)γ
(3.7)

γ in Eqn. (3.7) is the specific heats ratio. In Eqn. (3.6), s̄p is the mean piston speed

in meters per second and Tr, Pr, and Vr are the temperature, pressure, and volume
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of the cylinder at some reference condition (intake valve closing in this case). Finally,

the constants c1 and c2 depend on which stroke the cylinder is experiencing. Since

combustion happens during the closed portion of the engine cycle [37],

c1 = 2.28 (3.8)

and

c2 = 3.24 × 10−3 (3.9)

Both of the terms on the right-hand-side of Eqn. (3.2) can be calculated based

on in-cylinder pressure measurements. dQnet/dθ is automatically calculated using

AVL Indicom combustion analysis software every time engine data is collected, and

dQwall/dθ is calculated according to the Woschni correlation. dQgross/dθ is then sum

of these two terms. For a fired recharge in cylinder 6, all three heat release rate terms

are plotted in Fig. 3.2.

Now that dQgross can be calculated, the tunable constant β in Eqn. (3.5) must be

calculated for each cylinder. This is done by calculating dQgross for cases in which it is

assumed that no oil has accumulated in-cylinder (i.e. a cylinder that has been active

for a long time), and then calculating an amount of fuel burned during combustion

using Eqn. (3.1). Rearranging Eqn. (3.1) and solving for mfuel in the case of moil = 0

gives

mfuel =
Qgross

LHVfuel
(3.10)

Values of mfuel calculated according to Eqn. (3.10) can be compared to the ECM

total fueling command as well as the total fuel injected per cycle calculated by the

fuel scale in the test cell. While the fuel scale reading cannot be used to measure

the total fuel injected during a fired recharge due to the long time required to take a

fuel reading, the ECM total fueling command can be compared to the mfuel values

calculated according to Eqn. (3.10). Averaging mfuel calculations for many engine

cycles and comparing with the ECM total fueling command, values of the tunable
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Figure 3.2. Gross, net, and wall heat transfer rates for a fired recharge
in cylinder 6

Table 3.1. Waschni heat transfer model tuning constant for each cylinder.

Cylinder Number β

1 0.85

2 1.10

3 0.98

4 1.33

5 0.86

6 1.41



41

parameter β in Eqn. (3.5) for each cylinder are shown in Table 3.1 for the engine

used in this study.

Since the heat transfer rate can now be calculated accurately after this tuning pro-

cess, Eqn. (3.1) can be rearranged in order to calculate values of moil for combustion

events in recently reactivated:

moil =
Qgross −mfuelLHVfuel

LHVoil
(3.11)

There are several sources of error that contribute to oil mass calculation errors

when using Eqn. (3.11). The first source of error results from differences in each

cylinder’s pressure transducers. The pressure transducers are piezoelectric, and must

be calibrated to yield accurate pressure measurements. Due to the sensitivity of this

calculation, each cylinder’s pressure readings may be slightly different. Since all of

the heat release data (gross, net, and heat transfer) presented in this study is cal-

culated based on in-cylinder pressure measurements, imperfectly calibrated pressure

transducers result in cylinder-to-cylinder variation in calculated heat release. The

second major source of error that arises when calculating oil mass using Eqn. (3.11)

stems from the assumption that mfuel is equal to its ECM-commanded value. If an

overestimate of mfuel is used, Eqn. (3.11) can yield a negative value of moil, which

is obviously not realistic. Even though the ECM can be trusted to deliver similar

amounts of fuel to each cylinder, the experiments outlined in the next section elimi-

nate this problem entirely.

3.2 Test Plan for the Experimental Analysis of Oil Accumulation

At this point, some experimental test plan is needed to acquire “baseline” heat

release data for each cylinder to eliminate the effects of the two major sources of

error in Eqn. (3.11). If each cylinder’s cumulative heat release during a case of no oil

accumulation is known, moil can be calculated as

moil =
Qgross,deactive −Qgross,baseline

LHVoil
(3.12)
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In this equation, Qgross,deactive is the cumulative gross heat release for a given cylinder

while it is assumed that oil and fuel are burning, and Qgross,baseline is the cumulative

heat release for that same cylinder under the same conditions, but while the cylinder

has been active for an extended period. As such, Qgross,baseline represents a cylinder’s

cumulative heat release in a case of no oil accumulation, and it is referred to as the

baseline heat release for that cylinder.

If oil combustion is evident in more than one cycle, the total mass of oil burned

after a cylinder’s reaction is given by

moil =
1

LHVoil

n∑
i=1

(Qgross,deactive,i −Qgross,baseline,i) (3.13)

where i is the cycle number after reactivation and n is the number of cycles in which

oil combustion is evident.

The acquisition of baseline heat release data for each cylinder is performed using

the experimental procedure illustrated in Figure 3.3. At the beginning of an exper-

Figure 3.3. Test plan used to study oil accumulation

iment, cylinders 1, 2, and 3 are deactivated, and a CDA duration of N minutes is

commanded. Next, the ECM total fueling command is set to some value, 2X mg

per cycle. After N minutes of CDA have elapsed, six cylinder mode is resumed,

and the total fueling command is automatically cut in half (i.e. commanded to X
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mg per cycle) to maintain a constant torque. During the transition from CDA to

six cylinder mode, 100 cycles of in-cylinder pressure data are recorded. This data is

used to calculate Qgross,baseline (i.e. baseline heat release) for cylinders 4, 5, and 6,

as well as Qgross,deactive for cylinders 1, 2, and 3. Next, the engine is left to run in

steady-state six cylinder mode for approximately two minutes in order to ensure that

all accumulated oil has been eliminated from the recharging cylinders. After this is

complete, cylinders 4, 5, and 6 are deactivated and the total fueling command is dou-

bled to maintain approximately constant torque. After N minutes of CDA, another

100 cycles of in-cylinder pressure data are recorded which capture the transition to

six cylinder mode, but this time the data used to calculate Qgross,baseline for cylinders

1, 2, and 3, and Qgross,deactive for cylinders 4, 5, and 6. Now, Eqn. (3.12) can be used

to calculate moil with the effects of pressure transducer and fuel injector uncertainty

reduced.

3.3 Results and Discussion

Engine Operating Condition

Using the test plan outlined in Section 3.2, data was recorded at an engine op-

erating condition of 800 rpm with a brake mean effective pressure (BMEP) of 2.54

bar. CDA times of N = 20 minutes, N = 10 minutes, N = 5 minutes, and N = 0.5

minutes were studied. The engine operating condition of 800 rpm and 2.54 bar BMEP

is referred to as “loaded idle.” Loaded idle (as opposed to “unloaded” idle, which has

a BMEP of 0.26 bar) is experienced by an engine that is providing auxiliary power to

a vehicle that is not moving. For example, utility vehicles which utilize a power take

off system commonly operate at loaded idle. Due to its low exhaust gas tempera-

tures (which are not ideal for after-treatment system effectiveness) and the significant

amounts of time spent at it [40], the loaded idle engine condition is the focus of this

study.
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Results

This test plan was executed two times, several days apart, and the data were

analyzed using the following approach.

First, for a given data point, Qgross,baseline and Qgross,deactive were calculated as in

Section 3.1 for all 100 cycles of in-cylinder pressure data. An example of a result

for cylinder 1 after 20 minutes of CDA is shown in Fig. 3.4. The gray line in Fig.

Figure 3.4. Cumulative heat release per cycle in cylinder 1 after 20
minutes of CDA.

3.4 represents cylinder 1’s baseline cumulative heat release per cycle, and it is fairly

constant during the transition from CDA to six cylinder mode, which happens in

cycle 5. The pink line is the cumulative heat release per cycle in cylinder 1 as it is

being reactivated. Clearly, the heat released by combustion in the first cycle after

reactivation is markedly higher than the baseline case. Since the ECM-commanded
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total fueling is identical for the baseline and reactivating cases, the difference between

the pink and gray lines is caused solely by the combustion of accumulated oil.

In Fig. 3.4, Qgross,deactive is significantly greater than Qgross,baseline for several cycles

after the transition to six cylinder mode. This yields two key conclusions regarding

accumulated oil: that it does not combust entirely in the first cycle of six cylinder

mode, and that the uncombusted portion does not all escape via the exhaust valve

opening after some of it has indeed burned. In this analysis, oil combustion is assumed

to be complete as soon as the error bars of Qgross,deactive and Qgross,baseline first overlap.

For example, the oil combustion shown in Fig. 3.4 ends in cycle 24, which is n = 19

cycles after the transition to six cylinder mode which occurred in cycle 5.

The error bars in Fig. 3.4 represent two standard deviations of a 30-cycle mean

of Qgross,baseline. Data sets 1 and 2 refer to the results of the test plan that were

gathered on two separate days, spaced several days apart. Tables 3.2 and 3.3 give the

magnitude of the error bars for each cylinder in data sets 1 and 2, respectively. The

oil mass error bars that correspond to each cumulative heat release error bar are also

given. These oil mass error bars are simply calculated as the heat release error bar

magnitudes divided by LHVoil.

Table 3.2. Magnitudes of error bars for each cylinders cumulative
heat release and accumulated oil mass in data set 1.

Cylinder Number
Heat Release Error

Bar Magnitude (Joules)

Oil Mass Error

Bar Magnitude (mg)

1 40.15 1.00

2 67.17 1.67

3 138.16 3.44

4 39.63 0.99

5 42.49 1.06

6 263.33 6.55
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Table 3.3. Magnitudes of error bars for each cylinders cumulative
heat release and accumulated oil mass in data set 2.

Cylinder Number
Heat Release Error

Bar Magnitude (Joules)

Oil Mass Error

Bar Magnitude (mg)

1 35.18 0.88

2 64.05 1.59

3 206.61 5.14

4 39.83 0.99

5 65.87 1.64

6 284.39 7.08

Now that the number of oil combustion cycles, n, has been defined, oil mass values

can be calculated according to Eqn. (3.13).

The shaded area in Fig. 3.5 illustrates the sum in Eqn. (3.13) for cylinder 1

after 20 minutes of CDA. Dividing this shaded area by LHVoil gives an oil mass of

moil = 219.35 mg, which is approximately 10 times greater than the ECM-commanded

total injected fuel of 22.75 mg for a given cycle for cylinder 1.

Continuing the analysis for cylinder 1, the result shown in Fig. 3.6 was obtained

after a CDA time of 10 minutes. This time, the shaded area is smaller and agrees

with the expectation that shorter CDA times yield smaller amounts of accumulated

oil. The oil mass calculated for this case is moil = 106.89 mg, which is roughly 5

times greater than the injected fuel mass.

After 5 minutes of CDA in cylinder 1, the result shown in Fig. 3.7 was obtained.

This time, the shaded area is smaller yet again and further corroborates the hypothesis

that shorter CDA times yield smaller amounts of accumulated oil. The oil mass

calculated for this case is moil = 7.25 mg, which is roughly 1/3 the injected fuel mass.

Finally, the result for 0.5 minutes of CDA in cylinder 1 shown in Fig. 3.8 was

obtained. This time, there is no shaded area since the two lines’ error bars overlap



47

Figure 3.5. Cumulative heat release per cycle in cylinder 1 after 20
minutes of CDA with sum shaded.

immediately after reactivation. While it is possible that some oil does accumulate

and burn, this analysis cannot calculate that oil mass with any statistical certainty.

The cumulative heat release values in Figs. 3.5 - 3.8 are the integrals of heat

release rate profiles. For the data shown in Fig. 3.5, heat release rate profiles for the

first 5 cycles after reactivation are illustrated in Fig. 3.9. Ten cycles worth of baseline

heat release rates are also indicated by the light gray lines.

The solid blue line shows the heat release rate during the first cycle after reac-

tivation, and it deviates from baseline over nearly the entire range of crank angles

shown in the figure. Over the subsequent 4 engine cycles, the heat release rate settles

closer to the baseline, but significant oil combustion is still present. Fig. 3.10 shows

a similar plot for 0.5 minutes of CDA in cylinder 1.
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Figure 3.6. Cumulative heat release per cycle in cylinder 1 after 10
minutes of CDA with sum shaded.

While some deviation from baseline is visually apparent in the 5 cycles following

reactivation, no statistically significant oil mass can be calculated due to the error

bar overlap in cycle 1 that is shown in Fig. 3.8.
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Figure 3.7. Cumulative heat release per cycle in cylinder 1 after 5
minutes of CDA with sum shaded.
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Figure 3.8. Cumulative heat release per cycle in cylinder 1 after 0.5
minutes of CDA with sum shaded.
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Figure 3.9. Heat release rate as a function of crank angle in cylinder
1 after 20 minutes of CDA.
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Figure 3.10. Heat release rate as a function of crank angle in cylinder
1 after 0.5 minutes of CDA.
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Cylinder 1

The oil mass results for cylinder 1 in data sets 1 and 2 are illustrated in Fig.

3.11. The results are consistent between data sets 1 and 2, and they demonstrate

Figure 3.11. Calculated oil masses in cylinder 1 for data sets 1 and 2.

a monotonically increasing trend that supports the hypothesis that increasing CDA

times yield increasing masses of oil. However, the monotonic increase in data set

2 is only present after a modification is made to the error bar overlap method of

determining n. This modification is necessary due to abnormal combustion that is

seen in the 10 minute CDA time data point.

Fig. 3.12 shows the cumulative heat release per cycle in cylinder 1 after 10 minutes

of CDA in data set 2. Cylinder 1 is reactivated in cycle 5, which is the same cycle in

which the two lines’ error bars first overlap. According to the method used so far, this

means that n = 0 and moil = 0 mg. However, a significant mass of oil does appear

to burn in cycles 6-30. Rather than ignore this oil combustion, the analysis of this
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Figure 3.12. Cumulative heat release per cycle in cylinder 1 after 10
minutes of CDA in data set 2.

specific data point was modified such that the first error bar overlap in cycle 6 was

ignored, yielding n = 24 and moil = 141.66 mg.
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Cylinder 2

The oil mass results for cylinder 2 in data sets 1 and 2 are illustrated in Fig. 3.13.

Compared to cylinder 1, cylinder 2 shows more oil accumulation at 5 and 10 minute

Figure 3.13. Calculated oil masses in cylinder 2 for data sets 1 and 2.

CDA times, more overall oil accumulation at all CDA times greater than 0.5 minutes,

and a “leveling-off” behavior as oil accumulation appears to saturate after 10 minutes

in data set 1 and 5 minutes in data set 2.

The cumulative heat release per cycle for 10 minutes of CDA in data set 1 is

shown in Fig. 3.14. Compared to cylinder 1’s cumulative heat release per cycle after

10 minutes of CDA in data set 1 (Fig. 3.6), cylinder 2’s is significantly higher. Since

this type of behavior occurred in data sets 1 and 2, which were conducted several

days apart, it can be concluded that oil accumulation is generally more significant

in cylinder 2 than cylinder 1. Because the primary means of oil transport into a

deactivated cylinder is through piston ring imperfections, greater oil masses could be
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Figure 3.14. Cumulative heat release per cycle in cylinder 2 after 10
minutes of CDA in data set 1.

evidence of a less perfect piston ring seal. While no piston ring analysis was conducted

by the author, it is possible that cylinder 2’s piston ring is “leakier” than cylinder

1’s, which explains its greater oil mass values.

Cylinder 3

The oil mass results for cylinder 3 in data sets 1 and 2 are illustrated in Fig. 3.15.

While data set 2 shows a non-decreasing trend, the most peculiar aspect of this data is

the zero oil mass calculated at 5, 10, and even 20 minute CDA times. This is at least

partially explained by referring to Tables 3.2 and 3.3, which indicate that cylinders 3

and 6 are by far the “noisiest” due to their error bars being the largest. Large error

bars can significantly affect oil mass calculations by influencing the error bar overlap

cycle that determines n. Small n-values by definition yield small moil values, and Fig.

3.16 demonstrates that this happens in cylinder 3. In Fig. 3.16, reactivation occurs

in cycle 5, and so does the first error bar overlap. Also, Qgross,deactive in cycle 5 is less
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Figure 3.15. Calculated oil masses in cylinder 3 for data sets 1 and 2.

than Qgross,baseline. Fig. 3.20 shows the cumulative heat release as a function of crank

angle for the first 5 cycles after reactivation for the data in Fig. 3.16. In accordance

with Fig. 3.16, the solid blue line in Fig. 3.20 indicates that the cumulative heat

release in the first cycle after reactivation was less than baseline. Furthermore, the

start of combustion was delayed in the first cycle. Fig. 3.18 provides more insight by

showing the heat release rates as a function of crank angle for this data point. Again,

the solid blue line demonstrates that the start of combustion was delayed in the first

cycle, and that its overall heat release is less than baseline. Interestingly, cycles 2-5 in

Figs. 3.16 - 3.18 show that heat release settled near the baseline after the extremely

distorted first cycle. A possible explanation for this effect is that after the distorted

combustion in the first cycle after reactivation, some of the accumulated oil escaped

through the exhaust valve before burning in cycles 2-5. The exact same effect is seen

at the 10 minute CDA time data point in data set 2.
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Figure 3.16. Cumulative heat release per cycle in cylinder 3 after 5
minutes of CDA in data set 2.

However, the zero oil mass value calculated for the 20 minute CDA time data

point in data set 1 is not due to the same behavior. Inspecting the cumulative heat

release per cycle for this data point in Fig. 3.19, the cylinder reactivation in cycle

5 again coincides with the first error bar overlap cycle, yielding zero calculated oil

mass. While Qgross,deactive is greater than Qgross,baseline in cycles 5-9, no modification

to the analysis can reasonably be made as was done for the cylinder 1, 10 minute data

point in Fig. 3.12 since the error bars continue to overlap in this case. Furthermore,

Fig. 3.20 shows that no combustion occurred during the pilot injection in the first

cycle after reactivation. Since subsequent cycles are not significantly different from

the baseline, it is possible that after the distorted combustion in the first cycle, nearly

all of the accumulated oil in cylinder 3 was exhausted before burning in later cycles.
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Figure 3.17. Cumulative heat release as a function of crank angle in
cylinder 3 after 5 minutes of CDA in data set 2.
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Figure 3.18. Heat release rate as a function of crank angle in cylinder
3 after 5 minutes of CDA in data set 2.
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Figure 3.19. Cumulative heat release per cycle in cylinder 3 after 20
minutes of CDA in data set 1.



62

Figure 3.20. Heat release rate as a function of crank angle in cylinder
3 after 20 minutes of CDA in data set 1.
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Cylinder 4

The oil mass results for cylinder 4 in data sets 1 and 2 are illustrated in Fig.

3.21. These results demonstrate a monotonic increase in accumulated oil mass that

Figure 3.21. Calculated oil masses in cylinder 4 for data sets 1 and 2.

is consistent between both data sets.

Cylinder 5

The oil mass results for cylinder 5 in data sets 1 and 2 are illustrated in Fig. 3.22.

While these results generally show a monotonic increase in oil mass, less oil mass was

calculated after 20 minutes of CDA in data set 1 than 10 minutes. Fig. 3.23 shows

the cumulative heat release per cycle for this data point, and it is noteworthy that

Qgross,deactive experiences its maximum value in cycle 9, which is the 5th cycle after

the reactivation in cycle 5. This is further illustrated in Fig. 3.24, which shows that

not only did the maximum heat release occur 5 cycles after reactivation, but also that

no pilot combustion occurred in the first cycle. Fig. 3.25 verifies the lack of pilot
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Figure 3.22. Calculated oil masses in cylinder 5 for data sets 1 and 2.

combustion in the first cycle, and also shows that extremely distorted combustion

occurred in the fourth and fifth cycles following reactivation. The lower overall oil

mass calculated after 20 minutes of CDA than 10 minutes of CDA in data set 1 could

have been caused by the same oil exhaust behavior that has been described previously.
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Figure 3.23. Cumulative heat release per cycle in cylinder 5 after 20
minutes of CDA in data set 1.
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Figure 3.24. Cumulative heat release as a function of crank angle in
cylinder 5 after 20 minutes of CDA in data set 1.
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Figure 3.25. Heat release rate as a function of crank angle in cylinder
5 after 20 minutes of CDA in data set 1.



68

Cylinder 6

The oil mass results for cylinder 6 in data sets 1 and 2 are illustrated in Fig. 3.26.

Like cylinders 1 and 4, these results demonstrate a monotonic increase in accumulated

Figure 3.26. Calculated oil masses in cylinder 6 for data sets 1 and 2.

oil mass that is consistent between both data sets.

Complete Data Set 1

For data set 1, the results of all six cylinder’s oil mass calculations are shown in

Fig. 3.27. Fig. 3.27 indicates that significant oil accumulation occurs in five of the six

cylinders at CDA times of 20 minutes, and nonzero oil accumulation occurred in two

of the six cylinders at only 5 minute CDA times. Cylinder 3’s lack of oil accumulation

at 20 minutes was investigated using plots of heat release and it was hypothesized that

cylinder 3’s particularly large error bars, combined with the possible exhausting of

unburned oil after the first cycle, contributed to its zero oil mass calculation. Cylinder

5 is the only other cylinder that did not exhibit a monotonic increase in oil mass,
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Figure 3.27. Calculated oil masses in all cylinders for data set 1.

and this was also explained by the possible exhausting of unburned oil after quenched

combustion in the first cycle after reactivation.
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Complete Data Set 2

For data set 2, the results of all six cylinder’s oil mass calculations are shown in Fig.

3.28. Fig. 3.28 indicates that all six cylinders experienced significant oil accumulation

Figure 3.28. Calculated oil masses in all cylinders for data set 2.

at 20 minute CDA times, and that three of the six cylinders experienced significant

oil accumulation at 5 minute CDA times.

Overall Figs. 3.27 - 3.28 demonstrate that oil accumulation is generally very

significant as the engine is operated in CDA mode for periods of time greater than 5

minutes. Numerical values for the masses of each cylinders’ oil accumulation for data

sets 1 and 2 are given in Tables 3.4 and 3.5, respectively.



71

Table 3.4. Accumulated oil masses for data set 1.

CDA

Time

(min)

Deactivated

Cylinders

Cyl. 1

Oil

Mass

(mg)

Cyl. 2

Oil

Mass

(mg)

Cyl. 3

Oil

Mass

(mg)

Cyl. 4

Oil

Mass

(mg)

Cyl. 5

Oil

Mass

(mg)

Cyl. 6

Oil

Mass

(mg)

20 1, 2, 3 219.35 386.61 0.00 - - -

20 4, 5, 6 - - - 537.70 120.02 229.85

10 1, 2, 3 106.89 376.21 71.60 - - -

10 4, 5, 6 - - - 151.00 253.38 115.77

5 1, 2, 3 7.25 40.83 0.00 - - -

5 4, 5, 6 - - - 62.16 28.72 0.00

0.5 1, 2, 3 0.90 0.00 0.00 - - -

0.5 4, 5, 6 - - - 0.00 0.06 0.00

Table 3.5. Accumulated oil masses for data set 2.

CDA

Time

(min)

Deactivated

Cylinders

Cyl. 1

Oil

Mass

(mg)

Cyl. 2

Oil

Mass

(mg)

Cyl. 3

Oil

Mass

(mg)

Cyl. 4

Oil

Mass

(mg)

Cyl. 5

Oil

Mass

(mg)

Cyl. 6

Oil

Mass

(mg)

20 1, 2, 3 230.13 327.29 308.52 - - -

20 4, 5, 6 - - - 462.95 277.24 292.94

10 1, 2, 3 141.66 255.51 0.00 - - -

10 4, 5, 6 - - - 229.99 16.77 38.67

5 1, 2, 3 6.17 255.97 0.00 - - -

5 4, 5, 6 - - - 18.46 0.00 0.00

0.5 1, 2, 3 0.00 0.00 0.00 - - -

0.5 4, 5, 6 - - - 0.00 0.00 0.00
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3.4 Summary

The effort in this Chapter resulted in an experimental test plan and a heat-release-

based analysis to calculate the mass of engine lubricating oil that burns in reactivated

cylinders that have previously undergone prolonged periods of deactivation.

1. In-cylinder pressure measurements were used to calculate the cumulative gross

heat release in all six cylinders, including the effect of heat transfer through

cylinder walls.

2. The difference between the heat released by combustion in reactivated cylinders

and active cylinders was assumed to be caused solely by the combustion of

accumulated engine oil.

3. To eliminate the effects of cylinder-to-cylinder pressure transducer and fuel

injector variations, baseline heat release data for each cylinder were collected

while each cylinder was actively firing, as opposed to being reactivated. Heat

release data in data in reactivated cylinders was compared to the baseline data

for the same cylinders.

4. Engine experiments at 800 rpm, 2.54 bar BMEP demonstrated that for CDA

times of up to 20 minutes, as much as 462.95 mg of oil had accumulated. This

is approximately 20 times greater than the total injected fuel per cycle.

5. In some cases, significant oil masses (on the order of the total injected fuel) had

accumulated after CDA times of only 5 minutes.

6. The calculated oil mass varied significantly from cylinder-to-cylinder, with both

data sets indicating that cylinders 2 and 4 allowed for the most oil accumulation.
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CHAPTER 4: FIRST-FIRE READINESS ANALYSIS

This Chapter presents a study of first-fire readiness for a diesel engine utilizing CDA.

As was done for the oil accumulation study presented in Chapter 3, this study uti-

lizes in-cylinder pressure measurements to calculate the heat released in combustion

events during the transition from CDA to six cylinder mode. Additionally, the pres-

sure measurements are used to calculated the gross indicated mean effective pressure

(GIMEP) that the engine experiences during the mode transition. Any deviation in

heat release and GIMEP from normal six cylinder operation during the mode tran-

sition is indicative of a lack of first-fire readiness. Experimental results at an engine

operating condition of 800 rpm, 2.54 bar BMEP demonstrate that after CDA times of

5, 10, and 20 minutes, the engine is not first-fire ready. The results also show possible

first-fire readiness issues for CDA times of as little as 0.5 minutes.

4.1 Analytical Procedure

The study of first-fire readiness in an engine utilizing CDA aims to answer the

following question: Will a cylinder behave properly immediately upon reactivation

after a prolonged period of deactivation? In this context, a cylinder is said to behave

“properly” if it experiences combustion events indistinguishable from those seen in

cylinders that have been actively firing for a long period of time. Since the heat

release rate is a good indicator of combustion, first-fire readiness can be assessed

by comparing the heat release rates of newly reactivated cylinders to those found in

cylinders that have been active for a an extended period of time. Just as in Chapter

3, it is the gross heat release rate that is of interest, since it represents all of the heat

released by the combustion of a cylinder’s contents (injected fuel and accumulated

engine oil), including the heat lost through the cylinder walls.



74

In the study of first-fire readiness, there are a few things to note in a heat release

rate profile. Most importantly, it must be noted whether a cylinder exhibits any

combustion at all immediately upon reactivation. For long enough periods of deacti-

vation, it is possible for a cylinder to cool down to the extent that it is no longer hot

enough to combust a fuel/air mixture properly. This is entirely unacceptable, and

therefore is considered the most important first-fire readiness constraint. Another

issue that appears in a heat release rate profile is deviation from normal combustion

during the pilot injection. Finally, distorted combustion during and after the main

injection must also be noted.

Another major first-fire readiness issue is torque oscillations caused by the com-

bustion of accumulated oil, as outlined in Chapter 3. Statistically significant amounts

of engine oil accumulate in deactivated cylinders over periods of time greater than

five minutes. This oil mixes with injected fuel and combusts upon a cylinder’s re-

activation, and this is reflected in the heat release analysis in Chapter 3. In terms

of first-fire readiness, the additional heat release caused by oil combustion can cause

undesirable torque oscillations at the crank shaft, and this is analyzed using GIMEP

calculations.

The implementation of any CDA strategy on a full vehicle should be completely

transparent to the driver. Accordingly, in this analysis, the engine is determined to

be non-first-fire-ready if at least one cylinder exhibits abnormal combustion or the

GIMEP exhibits any abnormal fluctuations.

4.2 Experimental Results

The experimental study of first-fire readiness is based on the same test plan pre-

sented in Chapter 3. Data sets 1 and 2 from Chapter 3 are again analyzed in this

Chapter, this time with a focus on the first-fire readiness issues outlined in Section

4.1. The following subsections discuss first-fire readiness issues in both data sets at

each of the four CDA times in the test plan.
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20 Minute CDA Time

After 20 minutes of CDA, the engine is not first-fire ready due to both distorted

combustion and GIMEP oscillations during the mode transition. Fig. 4.1 shows

that after 20 minutes of CDA, combustion in cylinder 5 is extremely distorted during

both the pilot and main fuel injections due to the combustion of accumulated oil.

In the first, second, and third cycles, very little combustion occurs during the pilot

injection, and heat release during and after the main injection is expectedly higher

than baseline. In the fourth and fifth cycles, combustion occurs before the pilot (near

340 ◦), and combustion is markedly greater than baseline during the pilot and after

the main. Data from other cylinders also show this kind of distorted combustion.

Figure 4.1. Heat release rate as a function of crank angle in cylinder
5 after 20 minutes of CDA.

Since the cumulative heat release during the transition is greater than it is during

steady-state six cylinder operation, the large GIMEP fluctuations illustrated in Fig.
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4.2 occur. Due to the abnormal combustion and GIMEP oscillations in Figs. 4.1 and

Figure 4.2. GIMEP after 20 minutes of CDA for data sets 1 and 2.

4.2, respectively, the engine is not first-fire ready after 20 minutes of CDA.

10 Minute CDA Time

After 10 minutes of CDA, the engine is not first-fire ready due to both distorted

combustion and GIMEP oscillations during the mode transition. Fig. 4.3 shows that

after 10 minutes of CDA, combustion in cylinder 1 is quenched during both the pilot

and main fuel injections in the first cycle after reactivation. While such quenching is

not apparent in the subsequent cycles, there is evidence of oil combustion after the

main injection. This oil combustion contributes to the GIMEP oscillations illustrated

in Fig. 4.4. While these oscillations are slightly lower in magnitude than those after

20 minutes of CDA, they nonetheless represent a significant deviation from normal

six cylinder operation. Due to the abnormal combustion and GIMEP oscillations in

Figs. 4.3 and 4.4, respectively, the engine is not first-fire ready after 10 minutes of

CDA.
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Figure 4.3. Heat release rate as a function of crank angle in cylinder
1 after 10 minutes of CDA.

Figure 4.4. GIMEP after 10 minutes of CDA for data sets 1 and 2.
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5 Minute CDA Time

After 5 minutes of CDA, the engine is not first-fire ready due to both distorted

combustion and GIMEP oscillations during the mode transition. Fig. 4.5 shows

that after 5 minutes of CDA, combustion in cylinder 3 is quenched during both the

pilot and main fuel injections in the first cycle after reactivation. In the subsequent

cycles, quenching is somewhat less drastic but is still present, particularly during

the pilot injection. This distorted combustion contributes to the GIMEP oscillations

Figure 4.5. Heat release rate as a function of crank angle in cylinder
3 after 5 minutes of CDA.

illustrated in Fig. 4.6. While these oscillations are less pronounced than those after

10 and 20 minutes of CDA, they are significantly different from normal six cylinder

operation. Due to the abnormal combustion and GIMEP oscillations in Figs. 4.5 and

4.6, respectively, the engine is not first-fire ready after 5 minutes of CDA.
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Figure 4.6. GIMEP after 5 minutes of CDA for data sets 1 and 2.

0.5 Minute CDA Time

As the calculations in Chapter 3 demonstrated, little to no oil mass accumulated

after only 0.5 minutes of CDA. Thus, significant GIMEP oscillations are not expected

during the mode transition, and Fig. 4.7 illustrates this. The slight drop in GIMEP

during the transition is due to the increased pumping work required during six cylinder

operation. However, the heat release rate is affected during the transition, as is shown

in Fig. 4.8. In Fig. 4.8, the heat release rate during the first cycle after reactivation

is quenched during the pilot injection and greater than the baseline during the main

injection. While the cumulative heat release per cycle, shown in Fig. 4.9, indicates an

error bar overlap in the first cycle following the mode transition (i.e. zero calculated

oil mass), the abnormal combustion profile in Fig. 4.8 is still noteworthy. While not

statistically different from the baseline in terms of cumulative heat release (and thus,

GIMEP), this kind of abnormal combustion is present in more than 80% of the 0.5

minute CDA data from data sets 1 and 2. This indicates a probable lack of first-fire

readiness, although whether or not this kind of combustion behavior is acceptable is

ultimately a decision that must be made by powertrain manufacturers and designers.
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Figure 4.7. GIMEP after 0.5 minutes of CDA for data sets 1 and 2.

4.3 Summary

The effort in this Chapter analyzed the heat release data from Chapter 3 from

the perspective of first-fire readiness. It was concluded that after CDA times of 5,

10, and 20 minutes, the engine is not first-fire ready. The engine is also probably not

first-fire ready after 0.5 minutes of CDA.

1. The heat release data from Chapter 3 was analyzed from the perspective of

first-fire readiness.

2. First-fire readiness was assessed according to deviations in heat release and

GIMEP from normal six cylinder operation.

3. CDA times of 5, 10, and 20 minutes were determined not to be first-fire ready.

4. A CDA time of 0.5 minutes was determined to probably not be first-fire ready.
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Figure 4.8. Heat release rate as a function of crank angle in cylinder
5 after 0.55 minutes of CDA.
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Figure 4.9. Cumulative heat release per cycle in cylinder 5 after 0.5
minutes of CDA in data set 2.
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CHAPTER 5: FIRED RECHARGE ALGORITHM DEVELOPMENT AND

VALIDATION FOR A DIESEL ENGINE UTILIZING CDA

This Chapter presents the development and implementation of a fired recharge al-

gorithm for a diesel engine utilizing CDA. This algorithm was developed by adding

fueling control to the non-fired recharge algorithm developed by the author’s col-

leagues in [15]. The performance of the fired recharge algorithm is validated in this

Chapter with plots of injector current, heat release rate, and in-cylinder pressure,

which demonstrate that the fired recharge algorithm performed successfully. This

Chapter concludes with statements regarding the potential ability of recharge events

as a means to mitigate the oil accumulation and first-fire readiness issues discussed in

Chapters 3 and 4, respectively. While this Chapter demonstrates that fired recharge

capability has been added to the engine test cell, an experimental investigation of

the effect of recharge events on oil accumulation and first-fire readiness remains the

subject of future work.

5.1 The Fired Recharge Algorithm

The primary goal of this effort is to add functionality to the non-fired recharge

algorithm, [15], which is capable of performing fired recharge events for a diesel engine

in CDA mode. Ultimately, the entire recharge algorithm (both fired and non-fired

recharge events) will enable the experimental analysis of recharge events on oil ac-

cumulation and first-fire readiness. The algorithm used in this study behaves in the

following way.

First, the user selects between non-fired and fired recharge events. For a non-fired

recharge, the series of events illustrated in Fig. 5.1 occur in all six cylinders. In this
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case, the recharge event consists of an exhaust valve opening and closing, followed by

an intake valve opening and closing. No fuel is injected and no combustion occurs.

Figure 5.1. Order of events during a non-fired recharge event

During a fired recharge engine cycle, all six cylinders undergo the series of events

depicted in Fig. 5.2. First, the cylinder’s valve events (opening and closing) happen

in the same way as in a non-fired recharge. Next the recharging cylinder experiences a

fuel injection, followed by a combustion event. Because the engine used in this study

has a firing order of 1-5-3-6-2-4, a successful fired recharge event must also happen in

this order.

From an NVH perspective, it is important to maintain a constant torque during

the CDA mode transition. Since this particular fired recharge algorithm is essentially

an extremely brief transition between three and six cylinder engine operation, an

effort must be made to prevent the engine output torque from experiencing dramatic

transient fluctuations. In a diesel engine, torque is primarily influenced by the total

amount of fuel being injected per cycle. Since entering CDA mode cuts in half the

number of cylinders receiving fuel, the total fueling, per cylinder, is commanded to

be cut in half during the fired recharge. Thus, the total amount of fuel supplied to all
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Figure 5.2. Order of Events During a Fired Recharge Event

six cylinders remains constant as the cylinders are reactivated and then immediately

deactivated following the fired recharge. While this is not a perfect means of torque

control, it yields a reasonably constant torque during the fired recharge event.

5.2 The Implementation and Validation of the Fired Recharge Algorithm

The cycle-to-cycle control of both fueling and valve events results in a non-

fired/fired recharge algorithm. In the engine test cell used in this study, all of the

valvetrain-related controls are performed using dSPACE. The rest of the engine con-

trol systems, including fueling, are handled by the engine control module (ECM).

While the test cell is equipped such that dSPACE can communicate with the ECM

via a generic serial interface (GSI), such communication can behave unpredictably

when fast, transient behavior is desired. While valve event control using dSPACE

posed no issues, the implementation of the fired recharge algorithm in dSPACE was

difficult due to the lag time between the ECM’s fueling command and response.

The valve events during a fired recharge use the exact same dSPACE code de-

veloped by the author’s colleagues in [14, 15], while the fueling events during a fired

recharge were performed using two ECM variables. The two variables and their func-

tions are summarized in Table 5.1.



86

Table 5.1. ECM variables used in fired recharge algorithm.

ECM Variable Function

C CBM CylCutout Ov Value
Specifies which cylinders

to stop fueling

C CBM CylCutout Ov Enable

Stops fueling cylinders specified

by C CBM CylCutout Ov Value

when value is 1 and resumes

fueling when value is 0

Using these two ECM variables, successful fired recharge events have been per-

formed. In Figs. 5.3 - 5.5, plots of in-cylinder pressure, valve events, injector current,

net heat release rate, and the fueling command signal (C CBM CylCutout Ov Enable)

are shown. Additionally, the smaller plot embedded in each of these figures shows

injector current and net heat release rate, since those lines are obscured in the larger

figures. Since each of these figures contains six lines, most of which represent quanti-

ties in different units, the values on the vertical axes are meaningless since some of the

lines had to be scaled in order to fit all of them on a single plot. Accordingly, the val-

ues on the vertical axes are not shown. Figs. 5.3 - 5.5 primarily serve to demonstrate

that events happen in the correct order during a fired recharge, and these figures are

discussed with that in mind.

An inspection of Fig. 5.3 shows that the fired recharge event in cylinder 4 began

at approximately 5.9 seconds into this particular log of data. Before this time, the

solid red line demonstrates that the in-cylinder pressure had decayed to a steady

state after several seconds of cylinder 4’s deactivation. The dashed red line indicates

that the exhaust valve event was the first event, followed by the intake valve event

shown by the dashed blue line. After the valve events, the solid blue line shows

that cylinder 4’s fuel injector received an increase in its actuator’s current, and this

coincides with a heat release event indicated by the solid black line. Again, these are
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Figure 5.3. Fired recharge in cylinder 4 at 800 rpm
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Figure 5.4. Fired recharge in cylinder 5 at 800 rpm



89

Figure 5.5. Fired recharge in cylinder 6 at 800 rpm
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better illustrated by the small plot embedded in Fig. 5.3. The solid red line shows

that the in-cylinder pressure experienced the expected increase, one of the goals of a

fired recharge strategy. As time passes after the fired recharge, in-cylinder pressure

can be seen to again decay.

The black dashed line in Figs. 5.3 - 5.5 represents the fueling command signal. As

is described in Table 5.1, when this signal is equal to one, fueling is cut to cylinders

4, 5, and 6. When it is equal to zero, fueling is resumed to all six cylinders, as is

desired during the fired recharge cycle. Since the ECM’s behavior can be somewhat

unpredictable, the best times at which to send and stop sending the fueling command

signal during a fired recharge (i.e. setting the signal to zero and then back to one)

were determined experimentally. Engine tests were performed at engine speeds of

800 rpm and 1200 rpm, and the times at which the fueling command was sent were

varied. These experiments yielded results which led to the successful performance of

fired recharge events approximately 90% of the time. Occasionally, cylinder 5 would

not exhibit a net heat release rate consistent with combustion, and its injector current

would not experience an increase consistent with a fuel injection. This is likely due to

some inherent variation in the lag time between ECM command and response when

communicating with the ECM using GSI.

The same series of events are shown in Figs. 5.4 and 5.5 for cylinders 5 and 6. Fig.

5.6 better illustrates that cylinders 4, 5, and 6 recharged in the correct order. This

figure shows data identical to that of Figs. 5.3 - 5.5, but the order of one cylinder’s

events relative to another is more clear. Data from cylinders 1, 2, and 3 during the

fired recharge engine cycle are not shown since those cylinders are constantly firing.

Since the order of events during any one cylinder’s fired recharge is that shown in Fig.

5.2 and since the cylinders recharged in the correct order (cylinder 5, then cylinder 6,

then cylinder 4), the implementation of this fired recharge algorithm was successful.

The final piece of this fired recharge algorithm that has not yet been illustrated in

any of the figures is the maintenance of a constant torque during a fired recharge. In

a diesel engine, the brake torque is chiefly influenced by the total injected fuel mass
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Figure 5.6. Fired recharges in cylinders 4, 5, and 6 at 800 rpm, all
on the same time axis



92

per cycle. Thus, to reduce torque fluctuations, the ECM-commanded total fueling is

cut in half during the single-cycle fired recharge event. While the DSpace software in

the engine test has been modified to perform this fuel-halving, its efficacy as means

of torque control will be investigated in future work.

5.3 The Effect of Recharge Events on Oil Accumulation and First-Fire

Readiness

The results presented in this Chapter demonstrate that the ability to perform

fired recharge events has been added to the engine test cell. This added capability

enables the execution of an important set of experiments that will be conducted in

future work, and these experiments will be outlined in this Section.

By leveraging the results presented in Chapters 3 and 4, the effects of fired and

non-fired recharge events on oil accumulation and first-fire readiness can be exper-

imentally analyzed. The algorithm presented in this Chapter provides an experi-

menter with two inputs: the choice between fired and non-fired recharge events and

the length of the recharge interval. Since the results in Chapters 3 and 4 indicate

that oil accumulation and first-fire readiness are serious issues for CDA times of 5, 10,

and 20 minutes, future work should begin by investigating recharge intervals of less

than 5 minutes. Since a CDA time of 0.5 minutes also presented probable first-fire

readiness issues, it may be necessary to restrict the recharge interval to less than 0.5

minutes. With the proper choice of recharge interval and fired/non-fired recharge

event type, it may be possible to mitigate oil accumulation and first-fire readiness

sufficiently enough to enable the engine to operate in CDA mode and experience its

fuel economy and emissions benefits for extended periods of time.

5.4 Summary

This study resulted in the implementation of a fired cylinder recharging algorithm

for a diesel engine utilizing CDA. While the effectiveness of this algorithm in terms
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of preventing oil accumulation and improving first-fire readiness is not studied in this

thesis, the algorithm could be used to that end in future work. The oil accumulation

and first-fire readiness results presented in Chapters 3 and 4 could influence the choice

of recharge interval.

1. DSpace software was modified such that a fired cylinder recharge can be per-

formed successfully at user-specified recharge intervals 90% of the time.

2. The ECM-commanded total fueling was cut in half during a fired recharge

event to reduce the transient brake torque fluctuations that occur when the

total fueling command is not halved.
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CHAPTER 6: SUMMARY AND FUTURE WORK

6.1 Parameter Estimation for a Piezoelectric Fuel Injector

Summary

The results in Chapter 2 demonstrate that the parameter estimator in this thesis

can correct for an initial error the injector model’s needle seat area vs. needle lift

relationship. In the presence of an initial parameter error of 25%, the parameter

estimator improved the model-based prediction of total injected fuel by approximately

10%. Perhaps most importantly, the prediction of the fuel flow rate during the toe

exhibited improvement in most cases after the parameter update, even though the

toe is when the injector model is most sensitive.

Future Work

In this paper, a parameter estimation strategy was designed and shown to improve

the performance of the state estimator in [26] when there is some initial error in

A1,estimator. However, only a very basic rule for updating A1,estimator was designed (i.e.

update the parameter after 25 boot-shaped injections). A more advanced parameter

update law could be a simple extension of the method used in this paper, in which

A1,estimator would be updated after a certain number of injection events have occurred.

At any rate, the design of a parameter update law is the subject of future work.

In this study, there was no effort to prove that the parameter estimate Â1(x2)

converges to its true value. Such a guarantee would certainly be valuable, and is also

considered future work.

Finally, Figs. 2.7 - 2.12 along with Table 2.1 show that the parameter update was

not quite as effective for α = 0.75 as it was for α = 1.25. The reason for this lack of

symmetry in the parameter estimation strategy in this paper is unknown and could

be explored in future work.
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6.2 Oil Accumulation, First-Fire Readiness, and Cylinder Recharging

Analysis for a Diesel Engine Utilizing CDA

Summary

The results in Chapters 3 and 4 demonstrate that oil accumulation and first-fire

readiness are serious issues for a diesel engine operating in CDA mode for 5, 10, and 20

minutes. After 20 minutes of CDA, up to 462.95 mg can accumulate in deactivated

cylinders. Furthermore, this oil accumulation can cause distorted combustion and

erratic GIMEP fluctuations as the engine transitions from CDA to six cylinder mode.

These two problems lead to the conclusion that the engine is not first-fire ready after

operating in CDA mode for 5, 10, and 20 minutes, and is likely not first-fire ready

after as little as 0.5 minutes of CDA.

The effort in Chapter 5 resulted in a fired cylinder recharging strategy than re-

sumes six cylinder engine operation for a single engine cycle at specified intervals.

This strategy aims to prevent oil accumulation and by raising the in-cylinder pres-

sure such that oil cannot seep in through the piston ring seal. This strategy also has

the potential to improve first-fire readiness performance.

Future Work

Future work will largely revolve around using the fired recharge strategy pre-

sented in Chapter 5 to mitigate oil accumulation and improve first-fire readiness.

Experiments can be conducted at different recharge intervals to determine the opti-

mal recharge interval that minimizes oil accumulation while not interfering with the

benefits of CDA operation.

Further development of the fired recharge algorithm itself could result in more

elaborate cylinder recharging strategies such as not recharging all deactivated cylin-

ders in the same engine cycle. This would require additional software modification,

but the ECM is capable of such behavior.
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Finally, the effects of torsional vibrations during fired and non-fired recharge

events could be studied. Since these torsional vibrations are undesirable, the cylinder

recharging strategy will be designed to minimize their magnitudes.
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