
Purdue University
Purdue e-Pubs

Open Access Theses Theses and Dissertations

Fall 2014

Watershed Delineation in the Field: A New
Approach for Mobile Applications Using LiDAR
Elevation Data
Samuel Adam Noel
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses

Part of the Bioresource and Agricultural Engineering Commons, Hydrology Commons, and the
Natural Resources Management and Policy Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Noel, Samuel Adam, "Watershed Delineation in the Field: A New Approach for Mobile Applications Using LiDAR Elevation Data"
(2014). Open Access Theses. 359.
https://docs.lib.purdue.edu/open_access_theses/359

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F359&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F359&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F359&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F359&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1056?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F359&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1054?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F359&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/170?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F359&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses/359?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F359&utm_medium=PDF&utm_campaign=PDFCoverPages

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement,

Publication Delay, and Certification/Disclaimer (Graduate School Form 32), this thesis/dissertation

adheres to the provisions of Purdue University’s “Policy on Integrity in Research” and the use of

copyrighted material.

Samuel Adam Noel

Watershed Delineation in the Field: A New Approach for Mobile Applications Using LiDAR Elevation
Data

Master of Science in Agricultural and Biological Engineering

Dennis Buckaster

Bernard Engel

Jane Frankenberger

Dennis Buckaster

Bernard Engel

Bernard Engel 11/25/2014

i

i

WATERSHED DELINEATION IN THE FIELD: A NEW APPROACH FOR
MOBILE APPLICATIONS USING LIDAR ELEVATION DATA

A Thesis

Submitted to the Faculty

of

Purdue University

by

Samuel Adam Noel

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Agricultural and Biological Engineering

December 2014

Purdue University

West Lafayette, Indiana

ii

ii

ACKNOWLEDGEMENTS

First, I would like to acknowledge my committee for their support and

guidance throughout this undertaking: Dr. Dennis Buckmaster, Dr. Bernard Engel,

and Dr. Jane Frankenberger. Without their belief in me, I would not have been

able to see through this truly transformative learning opportunity. I would also

like to thank Aaron Ault, who introduced me to programming and also let me ride

around with him in his combine. To that same point I would also like to thank Dr.

Jim Krogmeier as well as Andrew Balmos and Alex Layton for their part in

showing me how to think like a computer engineer (at least as best as I can).

It must also be stated that I could not have done this without the love and

support of my family and friends. I would especially like to thank my parents

Millie and Steve for teaching me the value of hard work and an education. Their

unwavering support has been vital to my commitment to a lifetime of learning.

Finally, I cannot thank enough my future wife Kristen for being there when times

were tough and for helping me find my way through it.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES ...vi
LIST OF FIGURES .. vii
NOMENCLATURE ... xiii
ABSTRACT .. xiv

 INTRODUCTION .. 1 CHAPTER 1.
1.1 Motivation .. 1

1.2 Enabling Technologies .. 2

1.3 Background, Problem, and Proposition ... 3

1.4 Objectives .. 5

 BACKGROUND .. 6 CHAPTER 2.
2.1 Elevation Data ... 6

2.1.1 Digital Elevation Model (DEM) Data Structures 6

2.1.2 Light Detection and Ranging (LiDAR) Data 7

2.2 Current Watershed Delineation Practice 9

2.2.1 Flow Direction ... 9

2.2.2 Pit Filling .. 10

2.2.3 Flow Accumulation .. 12

2.2.4 Flow Accumulation Thresholds and Stream Network Extraction

 ……………………………………………………………………..12

2.2.5 Stream Network Segmentation and Watershed Delineation . 13

2.3 Alternative Flow Direction Methods ... 14

2.3.1 Probability-Based and Multiple Outflow Methods 14

2.3.2 Plane-Fitting Methods ... 15

2.3.3 Facet-Based Methods ... 16

2.3.4 Flat Areas .. 18

iv

Page

2.3.5 Flow Direction Review ... 19

2.4 Alternative Pit-Resolving Methods ... 20

2.4.1 Binomial Smoothing .. 20

2.4.2 Breaching .. 21

2.5 Hydrologic Connectivity and Appropriateness 22

2.6 Problems with Current Methods .. 26

2.6.1 A Potential Solution: Sequential Depression-Filling Algorithms

(SDFAs) (SDFAs) .. 29

 METHODS ... 33 CHAPTER 3.
3.1 Algorithm Description .. 34

3.1.1 Flow Routing ... 34

3.1.2 Excess Rainfall .. 36

3.1.3 Drainage Features... 38

3.1.4 Sequential Depression Filling .. 39

3.1.5 Handling Edge Effects ... 43

3.1.6 The Merging/Filling Process .. 44

3.1.7 Identifying Proper Spillover Locations 49

3.2 Algorithm Example .. 50

3.3 Validation and Analysis ... 53

3.3.1 Sequential Depression Filling Applicability Study 55

3.3.2 Applicability as a Function of Scale 58

 RESULTS ... 61 CHAPTER 4.
4.1 Overview ... 61

4.2 Validation ... 61

4.3 Sequential Depression Filling: Effects on Watershed Delineation 69

4.4 Drainage Feature Implementation – Tile Inlet 73

4.5 Applicability Study ... 75

4.6 Effects of Infiltration ... 80

 WATERSHED DELINEATION MOBILE APPLICATION CHAPTER 5.
METHODS……. . .. 84

5.1 Algorithm Development ... 84

v

v

Page

5.2 Android Libraries ... 86

5.3 Implementation Verification ... 88

5.4 DEM Size Performance Relationship Testing 88

 WATERSHED DELINEATION APPLICATION RESULTS........ 90 CHAPTER 6.
6.1 User Interface Design and Functionality 90

6.2 Implementation Verification ... 96

6.3 DEM Size Performance Relationship Testing 99

6.4 Instructional ... 99

 CONCLUSIONS, RECOMMENDATIONS, AND FUTURE CHAPTER 7.
WORK…………. ... 102

7.1 Conclusions ... 102

7.2 Recommendations... 104

7.3 Future Work ... 106

REFERENCES ... 110
APPENDICES

Appendix A Additional Figures for Section 4.2 .. 119

Appendix B Additional Figures for Section 4.6 .. 121

Appendix C ASM 336 Lab Exercise .. 125

Appendix D Algorithm Code .. 132

vi

v
i

LIST OF TABLES

Table .. Page

Table 1. Pit parameters for each internal depression identified in Figure 11. This

assumes a 1 cm, 1-hour rainfall event (1 cm/h rainfall excess intensity). 51

Table 2. DEM subset sizes, areas, the number of non-overlapping iterations fit

into the 1000 x 1000 cell tile, and the percent of the DEM covered by these non-

overlapping subsets. ... 60

Table 3. Percent difference between watersheds delineated using the ArcGIS

Hydrology Toolkit and the SDFA. ... 65

file://pasture.ecn.purdue.edu/sanoel/pchome/.pcprefs/Desktop/Water%20Management%20Apps/Writings/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405199044
file://pasture.ecn.purdue.edu/sanoel/pchome/.pcprefs/Desktop/Water%20Management%20Apps/Writings/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405199044
file://pasture.ecn.purdue.edu/sanoel/pchome/.pcprefs/Desktop/Water%20Management%20Apps/Writings/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405199045
file://pasture.ecn.purdue.edu/sanoel/pchome/.pcprefs/Desktop/Water%20Management%20Apps/Writings/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405199045
file://pasture.ecn.purdue.edu/sanoel/pchome/.pcprefs/Desktop/Water%20Management%20Apps/Writings/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405199045
file://pasture.ecn.purdue.edu/sanoel/pchome/.pcprefs/Desktop/Water%20Management%20Apps/Writings/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405199046
file://pasture.ecn.purdue.edu/sanoel/pchome/.pcprefs/Desktop/Water%20Management%20Apps/Writings/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405199046

vii

v
ii

LIST OF FIGURES

Figure ... Page

Figure 1. D8 single direction flow direction definition. Each direction is defined

as a unique power of two starting center right and increasing clockwise. 9

Figure 2. D-Infinity flow direction method. Flow direction is defined as the

steepest downward slope on planar triangular facets on a block centered grid

(Tarboton, 1997). .. 17

Figure 3. An agricultural field and surrounding area in Fulton County, Indiana,

USA (approximately 100 hectares, 3 meter resolution): a) reference image, and b)

connectivity map. Each polygon is a collection of cells that flow to a common

location. Black polygons along the perimeter flow off the edge of the DEM. 25

Figure 4. Aerial imagery and view showing ArcGIS flow accumulation and points

where complete connectivity (pit filling) is not realistic at this 1 km2 scale 28

Figure 5. Pseudocode for finding contributing area. ... 35

Figure 6. An example of flow direction as implemented in the algorithm

developed. A) Matrix indexing definition. B) Flow direction indicated with arrows.

C) Flow direction expressed as destination cell index. For example, the flow

direction of cell (1, 1) is expressed as (2, 2), the cell to which it is directed

according to (B). Cell (2, 2) is a pit cell, has no flow direction, and is assigned a

value of (-1, -1). .. 35

file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117441
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117441
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117442
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117442
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117442
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117443
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117443
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117443
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117443
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117444
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117444
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117445
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117446
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117446
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117446
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117446
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117446
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117446

viii

v
iii

Figure ... Page

Figure 7. A 2-D depression annotated to illustrate terminology. 40

Figure 8. Pseudocode for resolving flow direction of cells that have been filled. 45

Figure 9. Comparison of depression scenarios: A) the total volume of the new

depression is the sum of the differences between cell elevations and the new

spillover elevation. B) the previously filled depression retains water above the

spillover elevation which necessitates recording any previously filled volumes as

any two depressions merge. ... 47

Figure 10. This figure illustrates the importance of inspecting one cell beyond the

pit boundaries to find the true minimum spillover elevation: the minimum

boundary elevation for Depression 2 is at Elevation B, but it will not overflow until

filled to Elevation A. .. 49

Figure 11. An Illustrative Example of Sequential Depression Filling. From top to

bottom: cell identification by numbering, the DEM (meters), flow direction matrix,

and pit identification matrix. From left to right: two internal depressions are

initially identified, the two internal depressions merge into a single internal

depression, and the merged internal depression begins to run off of the DEM

after merging with a border depression. ... 51

Figure 12. Watershed contributing area corresponding to a watershed

delineation performed at cell 24 of Figure 11. Initially, only one cell (itself) drains

to this location, but once the depressions overflow, a jump in contributing area

occurs. .. 52

Figure 13. Illustration of two error types in watershed comparisons. 54

file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117447
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117448
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117449
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117449
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117449
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117449
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117449
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117450
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117450
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117450
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117450
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117451
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117451
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117451
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117451
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117451
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117451
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117452
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117452
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117452
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117452
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117453

ix

ix

Figure ... Page

Figure 14. Percent area running off versus rainfall excess corresponding to the

example described in Section 3.3.3. The vertical lines denote X-Year, 24-hour

SCS rainfall events. .. 57

Figure 15. For an agricultural field in Fulton County, Indiana, USA (lower left

corner at -86.187 degrees west longitude, 40.974 degrees north latitude): A)

watersheds based on ArcGIS Hydrology toolset and B) watersheds based on the

SDFA .. 62

Figure 16. For an agricultural field in Fulton County, Indiana, USA (lower left

corner at -86.183 degrees west longitude, 40.990 degrees north latitude): 63

Figure 17. Flow accumulation raster produced using: A) ArcGIS algorithm and B)

the SDFA developed. Darker lines indicate higher flow accumulation. 64

Figure 18. A) Reference cell indexing. B) Elevations. C) ArcGIS flow direction. D)

SDFA flow direction. Although cell 1 is the neighbor with the lowest elevation,

cells 2 and 8 have the greatest distance-weighted drop. 66

Figure 19. Comparison of how flow direction is resolved in depressions that have

been filled. A) ArcGIS solution. B) SDFA solution. C) color/direction key. 67

Figure 20. A) Two watersheds delineated using ArcGIS Hydrology Toolset and

the SDFA. An area that conflicts between methods is shown in orange. B) the

area of difference with underlying flow accumulation data produced from the

ArcGIS methods. C) the area of conflict with underlying flow accumulation data

produced from the SDFA. ... 68

file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117454
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117454
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117454
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117455
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117455
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117455
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117455
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117456
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117456
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117457
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117457
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117458
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117458
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117458
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117459
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117459
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117460
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117460
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117460
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117460
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117460

x

x

Figure ... Page

Figure 21. Watershed delineation in Fulton, County, Indiana (lower left corner at -

86.194 degrees west longitude, 40.974 degrees north latitude). The progression

of a watershed delineated at the marked outlet point with increasing rainfall.

Losses have been accounted for using the SCS Curve Number Method with a

curve number of 75. .. 69

Figure 22. Watershed contributing area versus rainfall for the watershed

delineations in Figure 21. Also demonstrated is how losses with three different

curve numbers to convert excess rainfall to rainfall. ... 70

Figure 23. A) A natural depression with a tile riser at R. Notice the brown

vegetation indicating standing water following a large rainfall event B) A

watershed delineation for the outlet O without accounting for the tile riser R. C) A

watershed delineation for the outlet O while accounting for the tile riser R. 74

Figure 24.The variability of hydrologic connectivity as a function of rainfall excess

for several plots at Throckmorton Purdue Agricultural Center in Tippecanoe

County, IN. A) Orthophotography, B) DEM, and C-L) Catchment map showing

the extent of hydrologic connectivity after 27, 34, 40, 57, 77, 96, 112, 129, 159,

and 188 mm of rainfall excess, respectively. Each colored polygon represents a

hydrologically connected “catchment.” ... 76

Figure 25. Percent of DEM area running off of the DEM versus rainfall

corresponding to the DEM in Figure 24, and several SCS return-period storms for

reference. ... 77

file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117461
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117461
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117461
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117461
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117461
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117462
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117462
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117462
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117463
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117463
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117463
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117463
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117464
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117464
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117464
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117464
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117464
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117464
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117465
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117465
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117465

xi

x
i

Figure ... Page

Figure 26. Percent DEM running Off vs. DEM size for several SCS return period

rainfall events (assuming no infiltration) for DEMs located in A) Fulton County, IN,

B) Pulaski County, IN, and C) Clinton County, IN ... 79

Figure 27. Percent DEM running off vs DEM size for several SCS return-period

rainfall events for DEMS in Pulaski County, Indiana while taking into account

losses using the SCS Curve Number Method. Shown are the same DEMs while

accounting for losses using curve numbers of A) 100, B) 75, and C) 50. 81

Figure 28. Percent DEM running off vs DEM size for several SCS return-period

rainfall events for DEMS in Fulton County, Indiana while taking into account

losses using the SCS Curve Number Method. Shown are the same DEMs while

accounting for losses using curve numbers of A) 100 B) 75 and C) 50. 82

Figure 29. Watershed Delineation App User Interfaces. A) preloading DEM

parameters. B) Action Bar overflow menu. C) Settings screen. 91

Figure 30. Visual Overlays. A) DEM Elevations. High elevations are pink and low

elevations are yellow. B) Catchments. The polygon marked with an X indicates

the catchment containing the watershed delineated in D> C) Puddles. D)

Delineation. The marker indicates the outlet location while the area in red shows

the watershed area draining to that outlet point. ... 93

Figure 31. The Watershed Delineation app listing on the Google Play Store. ... 95

file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117466
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117466
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117466
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117467
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117467
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117467
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117467
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117468
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117468
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117468
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117468
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117469
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117469
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117470
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117470
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117470
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117470
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117470
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117471

xii

x
ii

Figure ... Page

Figure 32. Verification of implementation between Matlab and Android. A)

Imagery, B) DEM, and C-E) catchment grids produced from varying rainfall. C)

Android 0 mm, D) Matlab 0 mm, E) Android 25 mm, F) Matlab 25 mm, G)

Android 250 mm, H) Matlab 250 mm .. 97

file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117472
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117472
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117472
file:///C:/Users/Samuel/Downloads/Noel.Samuel.RevisedThesis-11-23-2014.docx%23_Toc405117472

xiii

x
iii

 NOMENCLATURE

Catchment – In the Watershed Delineation App, catchments refer to the overall
state of connectivity across the entire DEM area. Each unique set of cells that
drain to a common point is a different catchment. They may be either
depressions or areas that drain to and terminate at the edge of the DEM area.

Curve Number – An empirical parameter that describes the runoff potential of a
given area based on hydrologic soil group, cover type (land use), treatment,
hydrologic condition, and antecedent runoff condition.

Depression – An area in which water is retained due to a basin-like shape in the
DEM. The entire area/set of cells that drain into the basin make up the confines
of the depression feature.

DEM – Digital Elevation Model. A digital depiction of the earth’s surface
elevations. Common forms of DEMs include contours, a “point cloud” of
individual point elevation measurements, and a rectangular grid of elevations.
The usage of ‘DEM’ in the methods of this work refers to grid-based models.

Hydrologic Connectivity – The extent to which the landscape impedes or
allows water to be conveyed across the ground surface. In terms of modelling
hydrologic connectivity, it is the number of grid cells or the proportion of the DEM
area that flows freely to and off of the DEM edges.

Pit Cell – The particular cell at the bottom of a depression where all eight
neighboring cells are of a higher elevation, meaning water has nowhere to travel
from this particular cell. It is also common for these cells to be called sink cells.

Puddles – Puddles are an additional visual layer supplied in the Watershed
Delineation App that may be used for troubleshooting and validation of results.
The Puddles layer is generated by comparing the DEM after elevations have
been raised in the filling process with the original DEM. Cells that have been
altered should coincide with puddles on the ground after rainfall.

Watershed – The area draining to a particular point of interest.

xiv

x
iv

ABSTRACT

Noel, Samuel A. M.S.A.B.E., Purdue University, December 2014. Watershed
Delineation in the Field: A New Approach Using LiDAR Elevation Data. Major
Professor: Dennis Buckmaster.

With the advancement of mobile devices, opportunities to take watershed

management tasks out of the office and into the field can be realized. In turn,

field workers can utilize these technologies to expedite the decision-making

process so that they may focus on meeting with clients and addressing

agricultural watershed management issues. High-resolution (~1.5 m post-

spacing) elevation data gathered by light detection and ranging (LiDAR) provides

the topographic detail necessary to model hydrology at the field-scale (~1 km2).

Non-artifactual surface depressions lead to erroneous surface flow patterns

when using existing algorithms. So a sequential depression-filling algorithm

(SDFA) has been developed to address topographies that contain these types of

features. Given a rainfall amount, water distributed across the landscape

accumulates and fills only those depressions as necessary, halting the filling

process when the only depressions that remain require additional rainfall. After

the filling process is completed, the watershed contributing area draining to any

particular point of interest may be identified and in the future this may be used as

xv

x
v

input to hydrologic models. Methods have also been developed to implement

subsurface drainage features such as culverts and tile-inlets as well as soil

infiltration such that the dynamics of how water is shed from a given landscape

can be better represented. Tile inlets and drainage features may be identified via

user input and assigned a drainage rate while infiltration may be implemented by

assigning a drainage rate to each grid cell in the DEM based on their soil-type.

The combination of the sequential depression-filling algorithm and this drainage

feature implementation provides the tools to model localized drainage patterns

that will match user’s field observations at the scale of hundreds of hectares.

The flow routing, depression identification, and filling procedures of the

SDFA were compared to similar functions in the ArcGIS Hydrology Toolset under

conditions where all depressions were filled in order to validate that those

components of the algorithm are identical as intended. Furthermore, several

digital elevation models (DEMs) were analyzed to determine the variability in

hydrologic connectivity across these landscapes as a function of rainfall and as a

function of DEM size. In addition to depression storage, the impacts of infiltration

on hydrologic connectivity over these landscapes were also analyzed using the

SCS Curve Number Method. The assumptions made by existing algorithms that

require complete hydrologic connectivity do not hold up in all landscapes, even

more so when considering the effects of infiltration. In these landscapes, surface

hydrologic connectivity varies noticeably with rainfall excess and it is inaccurate

to assume that the watershed should be modeled as a monotonically descending

surface. In an applicability study of DEM size, depression features began to be

xvi

x
v
i

captured around the 1 km2 scale while it is recommended to use DEMs larger

than 2 km2 to ensure that the depressional features and their contributing areas

are completely captured within the DEM extent so that the SDFA may account for

those features correctly.

The SDFA algorithm was ported from Matlab to an Android application for

mobile phones and tablets. The Watershed Delineation app is free and publicly

available through the Google Play Store. Users may view DEMs on a Google

Map, use the sequential depression-filling algorithm to fill depressions, and

delineate watersheds. It was found that the performance of this algorithm is a

function of the number of depressions in the DEM which increases with DEM

resolution (due to signal-noise effects). At a 3-meter resolution, the ideal DEM

dimensions suitable for use of the SDFA on a Google Nexus 4 phone are about

500 x 500 (225 hectares), which took 68 seconds to run. At DEM sizes much

greater than this, performance is drastically reduced. As DEM resolution

increases, noise effects in the data (which vary based on the raw LiDAR data)

result in a high amount of depression features causing an excessive number of

iterations of the filling procedure within the algorithm.

1

1

 INTRODUCTION CHAPTER 1.

1.1 Motivation

As the global population increases, farmers must work to increase food

production while the number of farmable acres remains relatively constant. To

address this challenge, inputs such as fertilizers, pesticides, herbicides, and

water are being used at increasing rates to improve productivity of the existing

land. These input-intensive farming systems require proper management in

order to maximize productivity while minimizing environmental impacts. Surface

runoff resulting from excessive rainfall events are a major mobilizer of nutrients,

pesticides, and detached sediment. These constituents may be and often are

carried to streams and waterways, leading to eutrophication and dead zones in

streams and coastal waters.

Tools and approaches to manage agricultural runoff at the field scale must

be developed in order to mitigate risks of impairment to the natural resources that

farmers depend on and the environment as a whole. Water issues are local; they

are assessed by observing the specific situation at the location of the problem in

the field, and decisions to manage these issues should be tailored to fit this

situation. For farmers with agricultural water issues, field-scale solutions

currently exist in the form of conservation practices such as grassed waterways.

2

2

Tools such the National Agricultural Pesticide Risk Analysis (NAPRA) tool exist

to evaluate the consequences of various management options to aide in the

decision-making process (Antony and Engel, 2009).

The most basic element utilized in the implementation of these tools and

solutions is the watershed. Most water issues typically demand an inquiry as to

one or more of the following: a) How does the water flow through a given

landscape? b) How much water moves through a specific point? and c) What

area is contributing to some observable adverse effect at a given location?

Correspondingly, a watershed indeed offers some indication as to the general

patterns of water movement throughout an area, the magnitude of water

(volume/flow) at a given outlet point of interest, and the area footprint that must

be managed to produce changes at the outlet point. A tool to delineate field-

scale watersheds seems to be the logical first step to providing management

solutions on the ground at the source of the issue. However, current means of

watershed delineation are not properly equipped to perform well at field-scales.

Traditional watershed algorithms neglect the effects of ponding by assuming that

all topography from ridges to valleys are monotonically descending, providing a

direct route for runoff into waterways. In fact, this is rarely the case due to

natural depressions, road embankments, and berms constructed to prevent

erosion and pollutant-loaded runoff direct access to streams.

1.2 Enabling Technologies

The recent widespread availability of high-resolution Light Detection and

Ranging (LiDAR) data has been one of the major enablers to automated

3

3

watershed delineation at field scales. Additionally, advances in mobile devices

such as cell phones and tablets have effectively given individuals the processing

power and visualization capacity of a small PC in the palm of their hand. With

this, automated watershed delineation can be taken out of offices and into mobile

settings, providing users with a tool to aid their observations, perform hydrologic

computations, and expedite the decision-making process. Furthermore, the

ability to visually communicate information while on site can provide the all-

important “teachable moment” when changes should be made.

1.3 Background, Problem, and Proposition

Current automated watershed delineation practice is based on a set of

functions first described by O’Callaghan and Mark (1984) for the purpose of

digital terrain modeling and stream network extraction. These operations utilized

digital elevation models (DEMs) containing a regularly spaced grid of elevation

values. For each cell in a DEM, the direction of water flow out of that cell is

computed by looking at the 8 surrounding cells to find the one with the steepest

downward slope away from the current cell. The direction to the cell with

steepest descent is assigned as the flow direction for the cell in question. Given

a fully computed set of flow directions, the path of water through a DEM can be

followed. All of those cells upstream and directed toward a cell may be

delineated as the contributing area, or watershed.

However, the application of existing watershed delineation algorithms

developed for low resolution data to high resolution DEMs can produce results

which conflict with in-person observations in the field. These algorithms fail to

4

4

properly account for depression storage as it pertains to generation of surface

flow (Chu et al., 2010; Appels et al., 2011; and Yang and Chu, 2012).

Additionally, localized drainage features such as tile inlets and culverts are not

easily identified by DEMs and dealt with by automated methods.

The glaciated landscapes of the Midwestern United States present

additional complications in the form of enclosed natural depressions that rarely

become hydrologically connected via surface flow. Because standard, large-

scale watershed delineations require hydrologic surface connectivity, areas

which do not naturally drain over the surface such as these depressions become

key problem areas. Existing algorithms artificially alter either water flow direction

or the DEM itself by filling or breaching depressions until complete connectivity is

obtained (O’Callaghan and Mark, 1984; Martz and Garbrecht, 1999; Lindsay and

Creed, 2005). This guarantees that the contributing area to a downstream point

is continuous. However, sometimes these alterations can be quite dramatic,

creating unrealistic scenarios and flow predictions that may not agree with in-

person observations at line-of-sight scales.

Field-scale watershed delineations should not require hydrologic

connectivity. Interesting questions at a field scale are generally related to actual

rainfall events: e.g. the size of tile riser needed to drain a large area in a typical

growing season, or the type and size of grassed waterway needed to reduce

erosion at a particular location. In addition, much of the rainfall on active

farmland drains through infiltration or underground structures such as tiles and

5

5

culverts rather than over the surface. A person in the field can easily identify

manmade structures, real stream locations and flow directions, changes to the

landscape over time, or other conditions that may not be accurately captured by

existing automated watershed delineation algorithms.

1.4 Objectives

Toward the ultimate goal of accurately visualizing water movement while in

person to manage runoff at field scales, the specific objectives of this work were

to:

1) develop an automated watershed delineation algorithm: The

algorithm should account for field-scale topography, match field-level

observations, and take into account field-scale drainage features (i.e. tile

inlets and culverts) and modifications (alteration of elevations).

2) verify and analyze the algorithm: The algorithm will be evaluated by

comparing the outputs of our algorithm to the outputs of traditional pit-

filling algorithms. An applicability study will be performed to evaluate to

what extent the algorithm developed differs from existing methods and any

differences across landscapes.

3) implement delineation into a mobile application: The algorithm should

be accessible and useful in the field. The implementation of the algorithm

into an application for mobile devices and the methods of development

should be described.

6

6

 BACKGROUND CHAPTER 2.

2.1 Elevation Data

2.1.1 Digital Elevation Model (DEM) Data Structures

 Topographic surface data is typically represented by one of three data

structures called digital elevation models: triangular irregular networks (TINs),

contours, and gridded (or rasterized) data. A DEM contains only ground features

while a digital surface model (DSM) may capture buildings, trees, and other non-

ground-level features. Each data structure has its own advantages,

disadvantages, and best-usage situations.

A Triangular Irregular Network (TIN) is a data structure comprised of non-

uniformly spaced point data (x, y, z coordinates) connected by lines to form a

mesh of triangular planes, called facets, that produce a three-dimensional

surface. Areas with low topographic relief do not require the same density of

point data as a more highly variable surface; in this way TINs are a more efficient

data structure than others, often reducing the file size necessary to represent a

surface. However, the irregularity of the data requires more complicated

algorithms and computations for applications such as the water of flow (Moore et

al. 1991).

7

7

Contours are a set of isolines drawn through a landscape where each line

represents a line of constant elevation. The tighter the lines are together, the

more rapid the change in elevation (i.e. the steeper the slope) and vice versa.

Attribution (e.g. slope, specific catchment area, curvature, etc.) of contour data is

generally an order of magnitude higher data size than grid-based data. However,

contours are an appropriate data structure when calculating water flow—lines

drawn orthogonally to the contours represent flow lines across the surface

(Moore et al. 1988).

Grid-based, or rasterized, data is the most commonly used DEM due to its

simple data structure, lending itself to computationally efficient algorithms and

attribution. In comparison to other data structures, grid-based data can become

particularly inefficient in terms of data sizes due to the potential redundancy of

information in low-relief landscapes. Additionally, grid-based data is unable to

handle abrupt changes in topography such as cliffs or undercut embankments

(Moore et al. 1991). Although several data structures for digital elevation models

have just been described, the term DEM is frequently used to refer to grid-based

elevation data and will be used this way in the remainder of the document.

2.1.2 Light Detection and Ranging (LiDAR) Data

Light detection and ranging (LiDAR) is a remote sensing technique used to

collect surface data. In airborne LiDAR, pulses of infrared light are emitted from

an aircraft toward the ground surface, and the reflected light return information is

then recorded. Using high accuracy GPS and Inertial Measuring Units (IMUs) to

triangulate the plane’s position, the location of each surface point may be

8

8

determined given the angle of the pulse and the time elapsed between the pulse

emission and return. Pulses are capable of producing as many as 5 returns

should the pulse get partially intercepted by vegetation. Last returns are those of

those of the lowest elevation, typically the ground surface. Such information is

used to produce classifications for each point such as vegetation, water, ground,

and buildings. The pulses are emitted at high frequencies (150,000 pulses per

second), resulting in non-uniform ‘point clouds’ with an average point spacing

between one to four meters. LiDAR-based DEMs are capable of providing high

levels of surface detail including roads, ditches, streams, and buildings.

According to the USGS, 38% of the lower 49 states have LiDAR coverage as of

August 2013 (USGS, 2014).

However, several disadvantages accompany this increased topographic

detail. Immediately apparent are the large data sizes associated with the amount

of detail inherent in LiDAR-based DEMs (1.7 megabytes per square kilometer for

1.5 meter resolution data). Additionally, with LiDAR’s high point densities, the

signal to noise ratio in the data can become an issue, particularly in low-relief

landscapes where the change in elevation between adjacent cells is below the

vertical accuracy of the dataset which typically ranges from 15 to 30 centimeters

(NOAA 2012). The added detail gained with high resolution data often leads to

additional complications in many applications. For example, hydrologic models

rely on terrain data to route water. If an anthropogenic structure such as a bridge

is captured in a DEM because it is unable to detect the channel underneath, an

algorithm that routes water will have difficulty negotiating this obstruction, leading

9

9

to improper flow routing, streams that flow in the wrong direction, etc. Bridges

are typically removed in the standard hydro-flattening process used by USGS for

all data it distributes (Heidemann, 2014), but additional hydro-conditioning of the

DEM would be required to remove culverts.

2.2 Current Watershed Delineation Practice

Current watershed delineation practice as implemented by GIS software

and tools utilize the steps described in this section.

2.2.1 Flow Direction

The single direction flow direction method was originally described in

Marks et al. (1984) and O’Callaghan and Mark (1984). A 3 x 3 window traverses

the DEM, and the eight neighbors of the center cell are examined to determine

the direction to which the center cell will flow (one of eight possible directions,

hence D8). The slope between the center cell and each of the neighbors is

calculated, and the flow direction will be directed toward the neighbor with the

steepest downslope. From the center cell, the neighbors in the four cardinal

directions have a distance of one while those neighbors in the four diagonal

directions will have a distance of √2, meaning that the flow direction must be

calculated using slope rather than by taking the minimum elevation of the

32 64 128

16 1

8 4 2

Figure 1. D8 single direction flow direction definition. Each direction is defined
as a unique power of two starting center right and increasing clockwise.

10

1
0

neighbors. The flow direction of a cell was encoded as a power of two beginning

with the neighbor to the right and increasing clockwise (Figure 1). Despite a lack

of precision, this method to derive flow direction is quite reliable for many uses,

even using LiDAR data, according to Dhun (2011, pg 21). Flow directions

crossing ridges will not be assigned, allowing major topographic features to

persist in the derivative datasets, regardless of the specific flow direction method.

Special cases, such as multiple equivalent flow directions and flat areas

(discussed later) were not initially addressed by O’Callaghan and Mark’s (1984)

flow direction method. They were later addressed by Jenson and Domingue

(1988) and implemented by several other algorithms (Tarboton, 1997; Pan et al.,

2011; Tribe 1992). When multiple neighbors are of equivalent greatest distance-

weighted drop, a look-up table is used to resolves the flow direction. For

example, when two neighbors are of equivalent, one is chosen arbitrarily, and

when three adjacent neighbors are equivalent, the center cell is chosen (Jenson

and Domingue, 1988).

2.2.2 Pit Filling

If no neighboring cells are found to be downslope when assigning flow

directions, the cell is declared a pit cell (also commonly called a sink cell).

O’Callaghan and Mark (1984) devised an approach that attempts to fill them as

they would be filled by water. The minimum boundary elevation enclosing the

depression is identified as the overflow point, and the flow is redirected out

through this point. This is implemented by reversing the flow of the cells between

the depression bottom and the overflow point in a linear path. While this may be

11

1
1

a way to quickly provide connectivity between all of the cells in a depression and

the downstream areas, the routing of flow within the pit may not be reliable and it

may struggle to handle complicated pit structures (Dhun, 2011). O’Callaghan

and Mark (1984) note that their adjustments to drainage direction to resolve

interior pits ‘were not apparent in the results of the data sets,’ and that ‘more

sophisticated techniques would attempt to modify the drainage directions of other

points in the basin and perhaps treat the flooded area as a special feature.’

Jenson and Domingue (1988) revised how flow direction within a filled pit

is resolved. First, all cells within the pit that are below the overflow elevation are

raised to the overflow point’s elevation. The cells that make up the flat raised

area were encoded with a flow direction equal to the sum of those neighbors’

flow directions which were of equal elevation (e.g. all eight neighbors having the

same elevation would result in a value of 255). Then, the perimeter was

examined to find the outlet point with the largest distance-weighted drop.

Starting with this cell, adjacent cells of the flat area were resolved by directing

them toward this outlet cell. Iteratively, unresolved flat cells were directed toward

cells with known, valid flow directions until all flat cells were resolved. This

approach attempts to respect the change in processes as flow would be routed

more uniformly across the filled “puddle” areas. Each pit is iteratively resolved in

this manner until all sink/pit cells are removed from the DEM. Due to its

straightforwardness, this method of filling has seen widespread implementation

(Jenson and Domingue, 1988; Tarboton, 1997; Martz and Garbrecht, 1999).

12

1
2

2.2.3 Flow Accumulation

Following the flow direction operation, the number of cells flowing through

each cell, known as flow accumulation, is calculated. By iteratively looking at

each cell and tracing the flow paths directed toward that cell, the number of cells,

or contributing area, may be found for each cell (O’Callaghan and Mark, 1984).

Band (1989) implemented this concept recursively. Specifically, each cell in the

flow direction matrix is traversed, and each of the eight neighbors are checked to

determine whether it points toward the center cell. If so, then the flow

accumulation of the target cell is incremented and the function is recursively

called upon that neighbor cell and checked for neighbors pointing to it in a similar

fashion. During recursion, if a cell has no neighboring cells directed to it, the

function returns, falling back to the downstream cell where it resumes looking for

any unchecked neighbors.

To increase the efficiency of flow accumulation computations, the matrix

may be updated while operating in these recursive calls, allowing for each cell to

be visited only once (Tribe, 1992). In future accumulation inquiries, it may first be

determined whether a cell value has already been calculated before the recursive

function is called to ensure each cell is visited only once. This decreases the

algorithm complexity, making for more time-efficient computations.

2.2.4 Flow Accumulation Thresholds and Stream Network Extraction

Mark (1984) proposed that stream networks identified by these algorithms

should represent areas where flow is concentrated to the extent that fluvial

processes dominate hillslope processes. The flow accumulation operation

13

1
3

attempts to represent this runoff flow concentration spatially. In other words,

once flow accumulates beyond a specified threshold then the above-mentioned

transition in geomorphological processes takes place (Mark, 1984). A spatial

stream network dataset consists of those cells which exceed this threshold.

Speight (1968) first performed this by hand using a contour map. A

square grid of points were placed over a contour map and a set of slope lines

perpendicular to the contours were drawn downslope from each point on the grid

to the edge of the map. Then, a set of line segments parallel to the contours

were drawn on the square grid. If more than 100 slope lines crossed a contour

segment then that point was considered on a ‘water-course’ (Speight, 1968; as

obtained by Mark, 1984).

2.2.5 Stream Network Segmentation and Watershed Delineation

Once a stream network is established, stream links are defined as the

unbranched segments between junctions in the stream. Interior links have a

junction at each end and exterior links, or first order streams, occur where a

stream is initiated at the upstream end and a junction is at the downstream end

(O’Callaghan and Mark, 1984). A watershed may then be delineated as the area

draining to a given stream link or set of adjacent stream links.

Tarboton and Rodrigues-Iturbe (1991) explored these thresholds more

closely. They examined the relationship of scaling laws that reflected the above-

mentioned transition between hillslope and channel erosion and transport

mechanisms. According to Broscoe (1959), the average drop in elevation from

end to end of a Strahler stream segment is roughly constant, regardless of the

14

1
4

stream order. By weighting cells that are upwardly concave and utilizing this

‘constant drop law,’ a threshold in weighted contributing area exists where the

difference in mean stream drop between first and higher order streams is not

significantly different. This threshold corresponds to the initiation of the stream

network (Tarboton and Rodrigues-Iturbe, 1991).

2.3 Alternative Flow Direction Methods

The routing of water across a surface is a critical computation in providing a

model that reliably represents natural phenomenon. In terms of watershed

delineation, a reliable flow direction method may be backtracked from the outlet

point of interest to determine the contributing area, essentially finding the ridges

enclosing that outlet point. Flow direction methods may also play a role in

compensating for the data structure of the terrain dataset. For example, in grid-

based DEMs, the basic element is the grid cell, which have some inherent area,

and naturally they are simplified into a set of square planes where elevations are

known only at the center of each plane. This makes assigning flow directions

across these planes—specifically ridge cells—a particularly ambiguous task.

The following flow direction methods focus on routing water in grid-based

elevation datasets.

2.3.1 Probability-Based and Multiple Outflow Methods

Single direction flow methods are challenged by divergent (convex) and

convergent (concave) topography. On convex surfaces, grid bias in the eight

major directions in the flow direction data results in the concentration of flow

15

1
5

when, in fact, flow should be dispersed more evenly across the surface (Costa-

Cabral and Burges, 1994; Tarboton 1997; Pan et al., 2011).

Several solutions were devised to accommodate situations when multiple

downslope neighbors are encountered. Fairfield and Leymarie’s Rho8 model

(1991) introduced a stochastic element by randomly assigning flow direction to

one of the eligible neighbors with the probability of choosing that neighbor

proportional to slope. Multiple outflow methods such as those developed by

Quinn (1991) and Freeman (1991) proportioned flow to all of the eligible

neighbors. While Quinn proportioned flow based on slope, Freeman

proportioned flow based on slope raised to an exponent. Lea (1992) and Costa-

Cabral and Burges (1994) fit local planes to each pixel and determined flow

direction as the aspect of that plane expressed as an angle.

2.3.2 Plane-Fitting Methods

Lea (1992) routes flow as a ball released from the center of pixel, based

on a plane created by averaging elevations at pixel corners from the adjacent

cells. This method provides a more precise (0 - 2𝜋) direction without dispersion.

Costa-Cabral and Burges’ (1994) DEMON fitted planes to the grid by taking pixel

values as the corners of each plane, and routed water in two-dimensional flow

strips originating over the entire pixel area rather than from the center of one

pixel to another as in Lea’s method. Costa-Cabral and Burges (1994) were

concerned with the ability of flow direction methods to represent divergent and

convergent flow as it relates to the calculation of specific contributing area (SCA)

16

1
6

and specific dispersal area (SDA) where understanding the area over which flow

is spread is important.

Specific contributing area is defined as the total contributing area (TCA), A,

also known as upslope area, divided by the length of the contour of which the

upslope area was inquired. This produces an area per unit width of contour

which has applications in geomorphology and hydrology such as hillslope

hydrologic response, landslide risk, soil water content, vulnerability to pollution,

and long-term basin evolution (Costa-Cabral and Burges, 1994). Similarly,

specific dispersal area is related to the downslope area over which the contour

may potentially disperse and may be used to determine areas prone to pollution

given an upstream source or as an indicator of soil drainage rate (Costa-Cabral

and Burges, 1994; Speight, 1975).

2.3.3 Facet-Based Methods

Tarboton’s (1997) D-Infinity method operates by traversing the DEM with a

3 x 3 window in a manner similar to single direction methods. Eight triangular

facets are developed between the center cell and pairs of adjacent neighbors as

in Figure 2. The steepest downslope vector is then taken amongst the eight

facets, producing an angle between 0 and 2 𝜋 (hence, an infinite number of

potential directions). If this angle falls on a cardinal or diagonal direction then

flow is apportioned to the appropriate neighbor. If the angle falls between two

neighbors, flow is distributed between the neighbors given the proportion of the

angles between each neighbor and the direction vector. Flats and pits are

17

1
7

resolved using D8 methods to ensure that infinite loops in flow direction are

removed (Tarboton, 1997).

Similar in the usage of triangular facets, Zhou et al. (2011) developed a

flow routing method that attempts to model flow convergence and divergence

appropriately. For each set of four adjacent points in a square orientation, there

are two triangular facets formed in one of two possible configurations by either

drawing a diagonal from one set of opposite corners or the other. The slope and

aspect of each facet are calculated to determine a continuous flow direction from

0 to 2 𝜋. By originating flow at the center of each facet, the flow from each facet

is tracked across the facet network to create a network of flow lines. At this point,

the amount of accumulated flow can be calculated for a line segment of interest

as the number of flow lines crossing that line segment. As such, this method

provides accumulation values that are more consistent with the SCA definition.

Figure 2. D-Infinity flow direction method. Flow direction is defined as the
steepest downward slope on planar triangular facets on a block centered grid

(Tarboton, 1997).

18

1
8

Dispersion is avoided by tracing the linear flow path from each facet to its

ultimate destination (pit, outlet of interest, or DEM edge) rather than distributing

flow to multiple neighboring cells. Additionally, by tracing the flow of each facet

individually, the propagation of error in flow accumulation data from error-prone

upstream cell accumulation values is also avoided.

2.3.4 Flat Areas

Flow direction methods are challenged by flat areas in the DEM because

of their localized nature; if a valid downslope flow direction cannot be resolved

from the eight adjacent neighbors, the cell is deemed a pit. A method to handle

these flat areas becomes important because not only do they occur naturally in

DEMs as a result of limited vertical precision or from landscapes with low relief,

but also because the pit filling approach alleviates pits by raising groups of cells,

creating large areas of constant elevation. Several efforts have been made to

resolve flow direction across these flat areas.

Garbrecht and Martz (1997) developed a method in which a gradient is

applied across flat areas. Flat cells adjacent to areas of higher terrain are raised

infinitesimally such that a gradient is formed in a direction away from areas of

higher elevation. Incrementally, the gradient is grown outward from higher terrain

and toward one or more outlets of lower elevation.

Pan et al. (2011) proposed a similar method that utilizes linear

interpolation across elevations within flat areas. Rather than raise elevations by

arbitrary, infinitesimal amounts, elevations are raised by linearly interpolating

between high terrain and low terrain outlet elevations along the perimeter of the

19

1
9

flat region, scaling elevations between these areas more naturally. This way,

flow is routed in a direct line from each point within the flat region to the outlet

where possible. Irregularly-shaped flat areas are navigated by iteratively

resolving cells that have a direct route available, grouping any remaining

unresolved cells, and similarly routing them in direct lines toward cells that have

already been resolved.

2.3.5 Flow Direction Review

Tarboton (1997) offers a review of many of these flow direction methods as

well as his own D-Infinity flow direction method. In devising his D-Infinity method,

Tarboton (1997) targets five ways in which grid-based (DEM) flow direction

methods may be evaluated:

1) The need to avoid or minimize dispersion

2) The need to avoid grid bias, due to orientation of the numerical grid

3) The precision with which flow directions are resolved

4) A simple and efficient grid based matrix storage structure.

5) Robustness. The ability to cope with “difficult” data such as saddle-

shaped topographic features, but also including pits and flat areas.

It is noted that single flow direction methods (D8) handle points 1, 4, and 5,

but lack precision in resolving flow direction, introducing grid-bias as discussed

above. In regard to Fairfield and Leymarie’s (1991) probability-based method,

algorithmically unpredictable or unrepeatable solutions are not desirable,

specifically as it concerns deterministic values such as SCA. The Quinn (1991)

and Freeman (1991) multiple outflow methods disperse flow significantly, to as

20

2
0

many as all eight neighboring pixels. Tarboton (1997) argues that although SCA

may be used as a surrogate for a physical quantity that is affected by dispersion,

it is inconsistent with the physical definition of upslope area and SCA. Dispersion

should be minimized in the calculation of SCA and may then be accounted for

independently. In addition, these multiple outflow methods require complicated

data storage structure because flow to each neighbor must be stored (point 4).

Finally, the local plane-fitting methods (Lea, 1992 and Costa-Cabral and Burges,

1994) result in surfaces that are not continuous from one pixel to another

because the planes cannot be fitted to the four pixel corners. As a result,

numerous special cases are required to handle complex topographic features

(point 5).

2.4 Alternative Pit-Resolving Methods

As empirical datasets, most DEMs contain pit-like depressions that

terminate flow paths because no downhill neighboring flow paths exist. If many

pits exist, particularly in low-relief landscapes, then most flow direction

approaches provide little useful information since the resulting flow information

will be largely disconnected and segmented. As a result, several methods

including the previously-mentioned pit-filling method were devised.

2.4.1 Binomial Smoothing

In the early stages of automated stream network delineation, Mark (1984)

implemented binomial smoothing as developed by Tobler (1966) to remove pit

cells from DEMs. Within the first or second pass of this smoothing operator,

most if not all pit cells were eliminated from the DEMs. However, this smoothing

21

2
1

operation would alter not only the elevations of pit cells, but also the elevations of

the remaining DEM including natural pits and stream valleys. It was observed

that additional passes would begin to produce obstructions by smoothing over

stream valleys, resulting in discontinuities in the stream network. For this reason,

Collins’ (1975) comments are appropriate regarding the preservation of DEM

data: ‘all available information about terrain elevation resides in the raw data of

the DEM…it should not be diluted or falsified by any smoothing or averaging

technique.’ Such adjustments to the DEM have the potential to introduce

significant error in flow direction (Zhou and Liu, 2004).

2.4.2 Breaching

As DEM resolutions improved to the point that small-scale obstacles such

as roads and ditches became discernable, it was necessary to handle the man-

made structures which route water through them. Martz (1998) identified

elevated cells at the perimeter of depressions as obstructions to continuous flow.

By lowering these few cells in the DEM at the depression edges (known as

breaching), more appropriate flow paths could be computed.

While filling assumes depressions are artifacts created by underestimation

of the surface when the data was collected, breaching assumes the opposite.

Breaching recognizes that overestimation errors also exist as raised obstructions

to flow and lowers these values in an effort to leave a smaller footprint on the

DEM (Martz and Garbrecht, 1998). Martz and Garbrecht (1999) proposed a

breaching algorithm which looks at all of those cells within the contributing area

of a closed depression and determines if an adjacent cell exists which is outside

22

2
2

of the contributing area and below the “overflow” outlet elevation of that closed

depression. As many as two cells may be lowered to this elevation (a distance of

60 meters given the 30-meter resolution DEMs used)—the cell outside of the

closed depression perimeter, satisfying the above-mentioned conditions, and a

second cell just inside of the depression. If the criteria for breaching were not

met, the depression was filled instead. Breaching is particularly effective to

resolve pits that are the result of roads that cross a stream or ditch. DEMs are

only able to detect the top surface elevation of the bridge or road, resulting in

obstructions to flow when in fact water should be able to pass underneath

through bridges and culverts.

Lindsay and Creed (2005) developed a method that fills and breaches

depressions such that the impact on the DEM is minimized. The number of

modified cells (NMC) and the extent to which the elevations of cells are modified,

called the mean absolute difference (MAD) are assessed for each depression via

both breaching and filling, and the one which impacts the DEM least is chosen.

Depressions which are tightly associated with one another (cascading

depressions are the example given) must be considered together, and the least-

cost method of either filling or breaching is performed on the group as a whole.

2.5 Hydrologic Connectivity and Appropriateness

Filling and breaching, together, are known as hydrologic conditioning; they

are methods for altering a DEM or flow directions in order to make hydrologic

analyses (e.g. stream network extraction, watershed delineation) more effective.

In each method, pits are removed in order to guarantee complete surface

23

2
3

hydrologic connectivity: i.e. yield a depressionless DEM where each cell has an

unbroken, monotonically descending path to the DEM edges. This requirement

ends up modeling unrealistic scenarios. For example, some depressions would

require a major flood in order to overflow, but these depressions are filled the

same as small depressions which overflow after a relatively small rainfall event.

There is considerable debate on the appropriateness of requiring hydrologic

connectivity given that surface depressions widely exist in nature and are readily

apparent in higher resolution DEMs (Martz and DeJong, 1988; Tribe, 1992;

MacMillan et al., 1993; McCormack et al., 1993; Burrough and McDonnell, 1998;

Metcalf & Buttle, 1999). Lindsay and Creed (2006) summarize the reasons that

most depressions were previously assumed to be artifactual and fit for removal:

1. Natural depressions with an extent equal to or greater than that of the

DEM resolutions (30-meter or 90-meter resolution at that time) are

generally non-existent with exception to some land features such as rock

quarries (Lindsay and Creed 2006, Tribe 1992).

2. Only specific terrain types such as glacial, karst, and limestone are

acknowledged as areas containing natural depressions (Lindsay & Creed,

2006; Tribe, 1992; Muehrcke & Muehrcke, 1998; Mark, 1988; O’Callaghan

& Mark, 1984).

3. Finally, it could be assumed that these depressions have minimal impact

on hydrogeomorphic processes as these depressions are likely to

overflow and or take subsurface pathways closely approximated by

surface topography (Lindsay & Creed, 2006).

24

2
4

Given new acquisition techniques and the resulting accessibility of high-

resolution DEMs, these assumptions are no longer as reliable (Lindsay and

Creed 2006). It may be argued that the significance of natural depressions may

be greater and the occurrence more frequent than has been acknowledged in

related literature. High-resolution DEMs are capable of resolving finer

topographic details including natural depressions which before were too small for

the course-resolution DEMs. Moore (1991) notes that the hydrologic significance

of surface depressions may vary between terrains; the hydrologic response of

some areas such the prairie pot-hole region in the Midwestern US are heavily

influenced by surface depressions.

Additionally, at finer scales in flat areas, the landscape relief may be less than

the vertical accuracy of the acquisition method, leading to a greater number of

depressions in the data of these surfaces. Figure 3b shows the drainage

patterns of the 100-hectare area shown in Figure 3a when flow direction is

derived from a LiDAR-based DEM at 3-meter resolution before filling any

depressions. Each uniquely colored polygon flows to a common destination and

is a unique depression. Cells that are colored black are not part of a depression

and are edge effects: if the dataset extent were slightly larger, they would also

belong to a depression. According to MacMillan et al. (2003), the number of

depressions increases exponentially with increasing DEM resolution. Because

these depressions may become so numerous, it is no longer appropriate to

assume all depressions are artifacts and that it is suitable to fill them

indiscriminately. Moreover, because of the interdependence of small pits

25

2
5

(potentially noise in the data) nested within larger pits (likely natural depressions),

filling such ‘first-order’ pits may not remove the larger second-order pits; these

relationships must be understood.

Lindsay and Creed (2006) present methods to distinguish actual depressions

from artifactual depressions in a DEM. By considering several approaches

including ground inspection, modeling, classification systems, knowledge-based

approaches, and examination of the source data, four methods were devised to

determine artifactual pits from actual pits. Given that ground inspection should

provide the most reliable results, the four methods developed are approaches

that may be automated:

1) A discriminant analysis in which a classification model is calibrated given a

representative DEM where natural and artifactual pits may be confirmed.

A B

Figure 3. An agricultural field and surrounding area in Fulton County, Indiana,
USA (approximately 100 hectares, 3 meter resolution): a) reference image, and
b) connectivity map. Each polygon is a collection of cells that flow to a common

location. Black polygons along the perimeter flow off the edge of the DEM.

26

2
6

This method explicitly requires ground inspection on the representative

DEM before it may be applied to other DEMs. The calibration is based on

depression properties such as depth, volume, and location.

2) A heuristic rule whereby all depressions with ‘minor extent’ (less than two

cells large) are removed.

3) A heuristic rule whereby all depressions with ‘minor extent’ and depth

(less than 0.3 meters deep) are removed.

4) A Monte Carlo-based modeling approach, referred to as stochastic

simulation modeling (SSM).

After finding the Gaussian error probability distribution function for the

elevation data, values from this PDF may be applied at random to each cell in the

DEM. By repeating this several times for the entire DEM, the probability of a

depression being natural may be calculated as the number of outcomes where

the depression existed divided by the total number of times the process was

repeated. A threshold probability may be determined such that those

depressions that have a probability below this threshold are removed Lindsay

and Creed (2006).

2.6 Problems with Current Methods

The application of existing algorithms to LiDAR-based DEMs may produce

several effects which would conflict with field observations and reality. The first

conflict is that surface flow connections are observed in locations that rarely see

surface flow, and this occurs at multiple locations as the result of several different

reasons in this particular DEM. Occasionally, berms are established along

27

2
7

streams in order to prevent erosion and loss of nutrients directly into streams. By

obstructing flow, these berms create areas that allow water to collect and puddle.

Subsurface drainage is typically relied on to remove this excess water while an

inlet may be used if standing water becomes an issue. Traditional algorithms do

not have this information and instead enforce complete hydrologic connectivity by

filling these depressions until they flow over the berms and into the streams. The

downstream hydrologic responses resulting from the implementation of such

drainage features will vary from those produced from actual overland flow.

In Figure 4, this phenomenon can be observed as connections B, and D

are shown to flow directly into the ditch. In connections E, I, J, and K, water is

shown to flow over road embankments, and the marked location G is a surface

flow connection made after a natural depression was filled. Locations D, E, and

G are drained by tile risers while connections B, I, J, and K are drained by

culverts.

Another conflict observed was that streams were shown to be flowing in

the opposite direction of reality. This is because bridges and other obstructions

prevent water from flowing downhill. At location C, a section of the stream flows

off of the northern edge of the DEM when, in reality, water travels in the opposite

direction. Because the DEM data captured the elevation of the bridge at location

A rather than the channel elevation below, this obstruction prevents flow to

continue downstream (westward) through the ditch. Instead, a pit cell was

located at the lowest channel elevation just before the raised obstruction, and the

associated depression was eventually filled. Filling continued working upstream

28

2
8
 through the ditch until the “path of least resistance” is found to be out the

northern edge of the DEM as shown (and before a path was found over the

berms or the bridge). By mapping the filled areas, it can be observed that filling

took place all along the low-elevation stream channel cells until a path was made

available which exited the DEM.

If the DEM were extended northward then the ‘path of least resistance’

would likely be over or around the bridge. Although they are not stream locations,

this also occurs at the marked locations F and H. For location F, the raised berm

B
A C

D E

H

G

F

I J K

Figure 4. Aerial imagery and view showing ArcGIS flow accumulation and points
where complete connectivity (pit filling) is not realistic at this 1 km2 scale

29

2
9

and lane elevations obstructed flow, and flow was rerouted back uphill to the east

because this was the path of least resistance. This serves to emphasize two

points: a) the extent of the DEM is an important consideration before watershed

delineations take place and b) tile and culvert drainage connections affect flow

patterns.

2.6.1 A Potential Solution: Sequential Depression-Filling Algorithms (SDFAs)

Depressions play an important role in the field hydrology as well as

sediment and chemical movement. Surface flow is a primary means of transport

for pesticides and phosphorus to surface water bodies and aquatic

ecosystems (Blanchoud et al, 2007; Louchart et al., 2001; Probst, 1985; Turtola

& Jaakkola, 1995; Simard et al, 2000; Heathwaite et al., 2005); typically, surface

flow concentrations of phosphorus are ten times greater than groundwater or tile-

drained effluent concentrations (Rozemeijer, 2010). However, surface

depressions act as detention basins, providing short-term storage for water,

sediment, and nutrients while allowing water to evaporate and infiltrate (Lindsay

& Creed, 2006; Hubbard & Linder, 1986; Rosenberry & Winter, 1997; Hayashi &

van der Kamp, 2000; Antonic et al., 2001).

Enforcing hydrologic connectivity (i.e. performing hydrologic conditioning),

which assumes that all water flows across the surface of the ground rather than

being held in surface depressions, could therefore result in very different

estimates of the transport of pesticides, nutrients, and sediment when estimating

water quality. The effects of hydrologic connectivity on infiltration, runoff

generation, and evaporation have been studied recently with the use of

30

3
0

sequential depression-filling algorithms (Darboux et al., 2001; Chu et al., 2010;

Chu et al., 2013; Antoine et al., 2009; Zinn and Harvey, 2003). By understanding

the dimensions of each depression in the DEM, the capacity to retain water in

these depressions may be modeled and the order in which these depressions

overflow may be determined. In doing this, hydrologic responses may be

understood as connectivity varies throughout the merging process.

The current sequential depression-filling algorithms focus on depressions

at microtopographic scales. Darboux et al. (2001) analyzed the effects of soil

surface roughness on hydrologic connectivity; the DEMs used were acquired

using a laser profiler on 2.4 meter × 2.4 meter lab soil boxes. A model was

developed to fill microtopographic depressions using a condition-walker method

given randomly distributed water over the entire surface. Chu et al. (2010)

developed a Windows-based software package that delineates depressions, their

retention volumes, and their hierarchy given a filling-merging-spilling process.

Higher-order depressions are created as a pair of lower-order depressions merge

(i.e. when one depression overflows into a second). The study was performed

on a DEM acquired from a lab soil box using a laser profiler (0.98-mm resolution)

as well as on a 30-meter resolution watershed-scale DEM. Chu et al. (2013)

further examines the hierarchy of these puddle units (i.e. depressions),

specifically addressing the possibility of a high-order puddle splitting back into

two lower-order puddles should water levels recede due to infiltration or

evaporation as rainfall decreases.

31

3
1

Antoine et al. (2009) made use of three statistically generated surfaces (river,

random, and crater) of varying hydrologic connectivity developed by Zinn and

Harvey (2003) to study indicators of runoff connectivity properties. These

connectivity indicators were divided in terms of structural variables such as

elevation and soil properties that can be studied without specifying boundary

conditions and functional variables that are process-based and reflect the

propensity of the system to respond to a boundary stimulus (e.g. the ability for

water to move). A filling algorithm similar to Darboux et al. (2001) was

implemented to produce simplified hydrographs that show the effect of retention

storage on runoff triggering. Appels et al. (2011) again made use of the

statistically generated surfaces from Zinn and Harvey (2003) to understand

hydrologic connectivity of microtopography using a ponding and redistribution

model that also integrates Philip’s infiltration model. The model performs a water

balance for each depression at each time step in order to calculate water levels.

Hydrographs similar to those of Antoine et al. (2009) were used, and a

dimensionless analysis was performed to evaluate the development of surface

runoff in relation to fields of varying size and statistical structure.

Currently, watershed delineation algorithms assume complete hydrologic

connectivity. The effects of topography are neglected in that ponding in surface

depressions is unaccounted for. All pits are filled to provide a monotonically

descending path from each cell to the edges of the area of interest, resulting in

surface flow connections that may be rarely observed in the field; the conflicts

typically occur because some depressions have sufficient retention capacity that

32

3
2

they require a substantial amount of rainfall to overflow and because there are

man-made connections such as tiles or culverts that are not represented in the

digital elevation data. The development of sequential depression filling algorithms

have enabled studies of hydrologic connectivity as it pertains to field-scale

depressions and the resulting impact on watershed delineations. Depressions

within field-scale topography may be quantified, the fill-spill-merge hierarchy of

these depressions may be developed, an appropriate extent of connectivity may

be determined, and watersheds may be delineated under a given state of

connectivity.

33

3
3

 METHODS CHAPTER 3.

A sequential depression-filling algorithm (SDFA) was developed to handle

field-scale topography (i.e. natural depressions) and to allow for the adjustment

of the extent of hydrologic surface connectivity to match field observations. The

algorithm can account for drainage features such as tile inlets and culverts.

Because it is aimed at field-scale delineations while on location, optimizations

were made to facilitate implementation of the algorithm on mobile devices in

resource-constrained environments.

To evaluate the algorithm, watersheds were delineated and compared to

traditional algorithms which fill all depressions in order to determine whether

ridges are located properly and the correct spatial area is shown to drain to the

desired outlet points. A suitability study was also performed on the algorithm in

order to determine the implications of assuming all depressions should be filled

versus filling depressions sequentially across various landscapes. For several

DEMs throughout Indiana, USA, the variation in hydrologic connectivity was

plotted and compared to the levels at which complete depression filling occurs,

and it will be determined whether this difference is significant.

34

3
4

3.1 Algorithm Description

3.1.1 Flow Routing

Given the initial landscape DEM, a system for routing flow must first be

devised. Single direction (D8) flow routing, as described in O’Callaghan and

Mark (1984), was selected due to its simplicity and robustness. For each cell,

the neighboring eight cells are searched, to determine the maximum distance-

weighted drop. Cells which have a maximum distance-weighted drop less than

or equal to zero are denoted as pit cells and assigned a flow direction value of -1.

If multiple neighbors have the same maximum distance-weighted drop, the first

one encountered is taken. Neighbors are traversed beginning with the first

column (far left) and looping through all rows (top to bottom) before moving onto

the next column. In this way, flow is routed across the landscape, downhill from

one grid cell to another until it either runs off of the edge of the DEM or it reaches

a local minima, or pit cell, where no further downhill route is available. At these

minima locations, water must accumulate and overflow before it may continue to

flow further downstream.

However, an alternative approach was taken in the way the method was

implemented. A tree structure was developed by representing flow direction as

the index of the cell to which it is directed (i.e. its ‘child’). The cells pointing into

the current cell may also be associated as another attribute (i.e. a list of ‘parents’),

making the tree structure doubly-linked. Figure 5 demonstrates this

implementation. By associating the indices of parents and children directly to

each cell, the speed at which flow paths are traversed may be increased when

35

3
5

compared to methods where flow direction must be translated from a power of

two to a particular neighbor. Given the tree structure outlined, flow paths are

simple to traverse iteratively to perform computations such as contributing area

(Figure 6). For the purpose of determining the cells that drain to a pit cell, this

becomes advantageous because a WHILE loop may be utilized instead of

recursion; the order in which the cells are traversed is not important as long as

Figure 5. An example of flow direction as implemented in the algorithm
developed. A) Matrix indexing definition. B) Flow direction indicated with

arrows. C) Flow direction expressed as destination cell index. For example, the
flow direction of cell (1, 1) is expressed as (2, 2), the cell to which it is directed

according to (B). Cell (2, 2) is a pit cell, has no flow direction, and is assigned a
value of (-1, -1).

x

1 2 3

1 (1, 1) (2, 1) (3, 1) ↘ ↓ ↓ (2 ,2) (2 ,2) (3, 2)

y 2 (1, 2) (2 ,2) (3, 2) → Pit ↓ (2 ,2) (-1,-1) (3, 3)

3 (1, 3) (2, 3) (3, 3) → → ↖ (2, 3) (3, 3) (2 ,2)

A B C

Add original outlet cell to the list of cells to check for parents

WHILE the list of cells to check is not empty

 FOR each parent of the first cell in list of cells to check

 Increment contributing area

 Add parent cell to list of cells to check

ENDFOR

Remove first cell in list of cells to check

ENDWHILE

Figure 6. Pseudocode for finding contributing area.

36

3
6

each parent is traversed and subsequent additional parents of that cell are added

to the list of connected cells. While this doubly-linked tree structure can multiply

the memory usage, the cost of the increase can be mitigated through caching of

large flash storage that is generally available on mobile devices.

3.1.2 Excess Rainfall

Abstractions such as the infiltration of water into the soil are a critical

component that affects how well the model represents reality. Vegetative

interception, root uptake, infiltration, and evapotranspiration take place, reducing

the rainfall excess, or effective rainfall, which is runoff-ready and may be

simulated in the depression-filling model. Without these abstractions, the ground

is modeled as an impervious surface where all rainfall is applied to the

depression-filling process, resulting in an overestimation of hydrologic

connectivity. Without abstractions, the algorithm would represent conditions

when the soil is frozen, saturated, compacted, or when the rainfall rate is much

greater than the infiltration rate, but, in most scenarios, losses should be

considered before runoff begins.

The SCS Curve Number Method was utilized to maintain a

computationally efficient algorithm while adjusting the simulated rainfall to

account for infiltration and other abstractions. It is a runoff equation that makes

use of an empirical curve number which represents the runoff potential of various

surfaces. Given the input rainfall event and the land characteristics, rainfall

excess may be calculated, providing a means to scale rainfall events simulated in

37

3
7

the model to more closely match field observations. Curve numbers are

published in the SCS TR-55 Manual for various land use, condition, and soil type

combinations (USDA 1986). Equation 1 may be used to calculate the potential

maximum retention after runoff begins:

𝑆 =
25400

𝐶𝑁
− 254 (1)

Where:

 S = maximum soil water retention, mm

CN = runoff curve number

Knowing this and the input precipitation amount, Equation 2 may be used to

calculate rainfall excess:

𝑄 =
(𝑃−0.2𝑆)2

𝑃+0.8𝑆
 (2)

Where:

 Q = direct runoff, effective rainfall, or rainfall excess, mm

 P = precipitation, mm

A curve number must be selected which best represents the overall

conditions of a given DEM. Spatial land use and soil type information may be

used to calculate an area weighted average curve number, but accounting for

infiltration on a cell-by-cell basis would put the computational complexity beyond

the scope of a watershed delineation algorithm. The calculated excess rainfall is

38

3
8

then applied to the SDFA, which accounts for topographical retention (as

compared to microtopographical retention at the soil surface).

3.1.3 Drainage Features

Sub-surface drainage tiles are a common practice across the United States

Midwest to increase agricultural trafficability and yields. While these tiles are

typically laid horizontally approximately one meter below the ground surface, a

tile inlet may be run up to the ground surface to drain puddles and concentrated

surface flows. Oftentimes, natural depressions in the Midwest are tile drained

because they are so prone to puddle following rainfall. Once tile drained, a

depression is much less likely to overflow and drain over land into adjacent areas

during typical rainfall.

The algorithm will handle drainage features such as agricultural drainage

tile risers and road culverts that effectively reduce the rate at which a depression

fills. If the algorithm did not account for drainage features, depressions may

overflow and surface flow may occur in locations where that would only occur in

the most extreme cases. Drainage rate is controlled by the pipe diameter and

slope (as opposed to an absolute volume value), necessitating a time-based

SDFA in order to properly compute accumulation rates for each depression. For

example, if a given amount of rain falls over the course of several days (low

intensity), it is less likely to exceed the drainage capacity of a tile drain than the

same amount of rainfall spread over 10 minutes (high intensity). As a result, in

the former case, the depression is less likely to overflow while in the latter case it

is more likely to accumulate rainfall in excess of the drainage rate, fill the

39

3
9

depression (assuming the riser is located in a depression), overflow, and

contribute surface flow downstream.

In terms of the algorithm developed, drainage features are implemented by

assigning a drainage rate on a cell-by-cell basis. Through user input (because

this is intended for field workers), drainage features and drainage rates may be

specified. During the assignment of flow directions, the incoming rainfall rate

(intensity) must exceed the drainage rate on a cell-by-cell basis before a flow

direction is assigned. If the rainfall rate does not exceed the drainage rate, the

cell is considered a pit cell in the flow direction matrix.

3.1.4 Sequential Depression Filling

A sequential depression filling algorithm is key to simulating physical

processes and enabling the visualized output to match real-world situations with

varied rainfall events. Specifically, as shown in Figure 7, a single pit cell and all

the cells which flow to it will be referred to as a depression. Each depression is

given a unique, positive identification number and all cells that are part of that

depression are marked in a depression identification matrix.

For each depression, there is a minimum ridge elevation along the

perimeter whereby if the pit were filled with water, it would begin to spill over at

this spillover elevation. After finding the spillover elevation, the volume of a

depression may be determined. For each cell in the depression with an elevation

below this elevation, the volume may be computed as the difference between the

spillover elevation and the DEM surface elevation of that cell multiplied by the

40

4
0

grid cell area. Equation 3 is used to calculate the volume of depressions which

have not been filled, or first-order depressions:

𝑉𝑑
1 = ∑ (𝐸𝑠 − 𝐸𝑖) × 𝐴𝑖

𝑛
𝑖=1 (3)

Where:

 𝑉𝑑
1 = total volume of first-order depression, m3

 Es = spillover elevation, m

 Ei = cell elevation

 Ai = cell area, m2

 n = number of cells identified within the depression

The retention volume of the depression is important in determining how

much water it may take before a depression overflows, but equally important is

the contributing area. Because the accumulation of water in a depression is

Figure 7. A 2-D depression annotated to illustrate terminology.

Depression
Volume

Spillover Elevation

Ridge Cells

Pit Cell

Flow Directions

41

4
1

dependent on rainfall, the contributing area determines the area over which water

is funneled into the depression. For example, given two depressions with the

same volume, the one with a greater contributing area will have a larger area

over which to funnel water into the depression, and so it will overflow more

rapidly. Furthermore, the volume to contributing area ratio may be used to

quantify the relative rates at which a depression will overflow. In fact, this value

is equivalent to the excess rainfall amount (depth) necessary to fill it. Equation 4

calculates this value:

𝑃 =
𝑉𝑑

𝐴𝑐
 (4)

Where:

𝑃 = rainfall amount necessary to fill a depression, or volume to

contributing area ratio, m

𝑉𝑑 = Depression volume, m3

𝐴𝑐= depression contributing area m2

 This description of relative overflow sequence is satisfactory in the

absence of drainage features. However, in the presence of drainage features,

the rate at which water accumulates in a depression is no longer purely a

function of contributing area. Drainage features act to reduce the rate of water

accumulation in a depression, necessitating a time-based computation to

determine when each depression will overflow relative to each other. The rate of

accumulation for a given depression may be computed using Equation 5:

42

4
2

𝑅𝑎 = ∑ (𝑖𝑒 −𝑛
𝑖=1 𝑅𝑑,𝑖) × 𝐴𝑖 (5)

Where:

 𝑅𝑎 = Rate of accumulation of the depression,
𝑚3

ℎ

 ie = rainfall excess intensity,
𝑚

ℎ

 Rd,i = drainage rate of cell i,
𝑚

ℎ

The rainfall excess intensity may be computed using Equation 6:

𝑖𝑒 =
𝑃𝑒

𝑇𝑑
 (6)

Where:

 𝑃𝑒 = rainfall excess amount, m

 𝑇𝑑 = rainfall duration, h

The length of time it will take for a first-order depression to fill can be computed

using Equation 7:

𝑇𝑜
1 =

𝑉𝑑
1

𝑅𝑎
 (7)

Where:

 𝑇𝑜
1 = Time to overflow of a first-order depression, h

And 𝑇𝑜
1 = ∞ if 𝑅𝑎 ≤ 0

By definition, cells with drainage rates that exceed the excess rainfall intensity

may only occur at the depression bottom (i.e. pit cell). However, if the pit cell’s

43

4
3

drainage rate is excessive, this may result in a negative overall depression

accumulation rate. Consequently, the time to overflow will be a negative value.

When filling begins, the depressions that require the least amount of time to fill

will overflow first; depressions with a negative overflow time will erroneously be

filled first in the filling sequence. To avoid this, any depressions with a negative

drainage rate are assigned an infinite overflow time. These depressions are

incapable of overflowing, but other depressions may overflow into them. They

will behave as an infinitely deep sink until sufficient cells begin to flow into the

depression causing the rate of accumulation to become a positive value.

Depressions which require more time than the storm duration will not overflow;

they will remain their own hydrologically common subcatchment, and do not flow

and contribute to downstream watersheds.

3.1.5 Handling Edge Effects

Because cells along the edge of the DEM lack all eight neighboring cells

to determine a valid flow direction, no flow direction is assigned. However, it is

possible that other cells within the area of interest may flow toward one of these

boundary cells. To denote hydrologically common areas that have begun to flow

off of the edge of the area of interest, each cell along the DEM perimeter is

identified as a unique pit cell and any cells initially flowing into these edge pit

cells are considered a hydrologically common edge depression. They are each

given a unique negative ID number to distinguish them in the pit identification

matrix.

44

4
4

Depressions identified along the perimeter have no retention capacity,

they are not involved in the filling sequence, and it is unnecessary to store many

of the parameters for these depressions. Internal depressions that must be filled

and are not connected to the DEM edges may overflow into these edge

depressions, whereby the aggregate merged depression would no longer be

“live,” is furthermore identified as an edge depression, and given a negative ID

number accordingly.

3.1.6 The Merging/Filling Process

Once the parameters for each depression have been computed, the pits

are sorted in ascending order based on the time required to overflow each of

them. At this point, the set of depressions are prepared to be filled in sequence.

The depression filling “rainfall simulation” starts by overflowing the first

depression in the list, and continues in order until either all depressions are filled

or until the rainfall duration expires and any depressions that are still on the list

remain unfilled.

When a depression overflows, it will either overflow into another

depression or it will begin to flow off of the edges of the area of interest. If it

overflows into another depression, the new spillover location and time to overflow

are calculated for the aggregate depression. The DEM is adjusted, raising those

cells of the depression that are below the overflow elevation up to the overflow

elevation (i.e. fill the depression). Flow direction within this depression is then

resolved using an iterative process similar to the Jenson and Domingue (1988)

method described in Section 2.1. Beginning with the outlet cell, neighboring cells

45

4
5

that are part of the flat region are iteratively resolved by directing them back

toward cells with known, valid flow directions. Figure 8 presents pseudocode for

this process.

In this way, the SDFA is able to keep track of each change in the state of

hydrologic connectivity by performing computations only on those depressions

involved in the overflow event. The loop runs once per depression rather than

using any particular time step. Depression relationships and hierarchy are

causal in that relationships between low-order depressions and high-order

depressions are realized only after each spillover event. When a depression

overflows, it affects one other depression (the one into which it overflows), and

only at that moment are the higher-order, aggregate depression parameters

computed. Because of this, the hierarchy of multiple depressions cannot be

determined ahead of time, but only one depression is handled at a time.

Because of the possible orientation of two merging depressions and

Add outlet cell to the list of cells to check for flat neighbors

WHILE list of cells to check for flat neighbors is not empty

 FOR each neighbor of the first cell in the list of cells to check

IF neighbor is part of the flat area and hasn’t already been resolved

 Direct that neighbor cell back to the current cell

 Add neighbor cell to list of cells to check

 ENDIF

ENDFOR

Remove first cell in list of cells to check

ENDWHILE

Figure 8. Pseudocode for resolving flow direction of cells that have been filled.

46

4
6

because the elevations of some cells are raised in the filling process, Equation 3

may not be used to calculate the total depression volume of depressions which

are comprised of one or more depressions that have been filled. To illustrate this,

Figure 9 depicts two possible orientations of a pair of depressions as they merge.

In the first scenario (Figure 9a), two first-order depressions are initially

defined as spilling over into one another. After one overflows into the other

(based on time to overflow), the new, combined depression’s spillover elevation

will be different than the spillover elevations of either of the two lower-order

depressions. Equation 3 will not account for the previously filled volume due to

the raised elevations of filled depressions. A revised equation is necessary and

will be presented below.

In the second scenario (Figure 9b), one of the lower-order depressions fills,

cascading down into the other. The application of Equation 3 to this scenario

would result in a miscalculation of the total volume of the merged depression

because entire depression that was filled exists above the aggregate

depression’s new spillover elevation.

Given these examples, it is necessary to record the volumes of any lower-

order depressions that have previously been filled for each depression in the

database. As any two depressions merge, the total volume of the depression

that is being filled is summed into the previously filled volume of the depression

with which it merged. The previously filled volume of the merged, higher-order

pit may be calculated using Equation 8:

47

4
7

𝑉𝑝𝑓
ℎ = 𝑉𝑑,1 + 𝑉𝑝𝑓,2 (8)

Where:

 𝑉𝑝𝑓
ℎ = previously filled volume of higher-order depression, m3

 𝑉𝑑,1 = total volume of the depression that overflows, m3

 𝑉𝑝𝑓2 = previously filled volume of the depression that is overflowed into, m3

The total volume of higher-order depressions may now be calculated using

Equation 9:

Previously Filled Volume

New Depression Volume

New Spillover Elevation

New Depression Boundaries

Flow Direction

Depression Scenario 1 A

Depression Scenario 2 B

Figure 9. Comparison of depression scenarios: A) the total volume of the new
depression is the sum of the differences between cell elevations and the new
spillover elevation. B) the previously filled depression retains water above the

spillover elevation which necessitates recording any previously filled volumes as
any two depressions merge.

48

4
8

𝑉𝑑
ℎ = ∑ (𝐸𝑠 − 𝐸𝑖) × 𝐴𝑖

𝑛
𝑖=1 + 𝑉𝑝𝑓

ℎ (9)

Where:

 𝑉𝑑
ℎ = total volume of higher-order (non-first-order) depressions, m3

Accordingly, the overflow time of higher-order depression may be computed with

Equation 10:

𝑇𝑜
ℎ =

𝑉𝑑
ℎ

𝑅𝑎
 (10)

Where:

 𝑇𝑜
ℎ = Time to overflow of a higher-order (non-first-order) depression, h

And 𝑇𝑜
ℎ = ∞ if 𝑅𝑎 ≤ 0

By precomputing the time to overflow each depression and sorting the

overflow times, algorithmic complexity is improved. The algorithm does not

waste time looping through time steps where no spillover events occur. The

computationally intensive maintenance of dynamic water levels in each pit during

simulation is avoided. After one depressions overflows into another, this

relationship is realized and, thereafter, the aggregate depression is considered a

single unit and the time to overflow this aggregate is computed. This new

depression is then placed back into the sorted list of depressions based on the

overflow time. Since the list is already sorted, inserting the new merged pit into

the list is algorithmically more efficient. This makes the algorithmic complexity

49

4
9

dependent solely on the number of pits that need to be filled rather than the

number of time steps in the simulation.

3.1.7 Identifying Proper Spillover Locations

Because flow direction is defined as the direction of steepest descent, the

maximum elevation cell at a ridge peak will belong to only one of the two

adjacent depressions that meet at that ridge feature. As such, when inspecting

the ridges of a given depression to find the spillover location, a cell of greater

elevation may lay one cell beyond the edge cells of the depression. Looking at

Figure 10, the minimum boundary elevation of Depression 2’s ridge cells is at

Elevation B. However, it is apparent that Depression 2 will not overflow until

filled to Elevation A. This distinction is important with respect to the calculation of

each depression’s retention volume, time to fill, and, consequently, ordinal

position in the filling sequence. It is therefore important when gathering

Depression 1

Elevation A

Elevation B

Depression 2

Figure 10. This figure illustrates the importance of inspecting one cell beyond the
pit boundaries to find the true minimum spillover elevation: the minimum

boundary elevation for Depression 2 is at Elevation B, but it will not overflow until
filled to Elevation A.

50

5
0

information about each depression to inspect one cell beyond the depression

boundaries. Treating cells in this manner also properly handles single-cell

depressions whereby no adjacent cells flow into the pit cell.

3.2 Algorithm Example

Figure 11 shows a small (5 x 8 cell) contrived DEM containing two internal

depressions. Each step in the filling process is displayed as a column of

datasets including the DEM, flow direction, and pit identification matrices

corresponding to that stage in the filling process. Internal depressions are color

coded for convenience. Notice, the initial depressions are defined by the flow

direction of the raw DEM. Pit cells are then identified and the set of cells

contributing to each pit cell makes up each unique depression. Each cell along

the border is given a unique, negative ID number and no flow direction is defined.

Given one centimeter of rainfall excess over a duration of one hour, a

rainfall intensity of 1
𝑐𝑚

ℎ
 is computed using Equation 6. Using this rainfall event

and assuming a one meter DEM resolution, the calculated values of volume,

contributing area, and rainfall excess to fill each depression are listed in Table 1.

For the first order depressions (Depressions 1 and 2), volume is calculated using

51

5
1

1 9 17 25 33

2 10 18 26 34

3 11 19 27 35

4 12 20 28 36

5 13 21 29 37

6 14 22 30 38

7 15 23 31 39

8 16 24 32 40

20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

20 18 17 17 20 20 18 17 17 20 20 18 17 17 20

20 19 15 18 20 20 19 17 18 20 20 19 15 18 20

20 19 17 19 20 20 19 17 19 20 20 19 17 19 20

20 16 13 14 20 20 16 13 14 20 20 16 13 14 20

20 15 9 17 20 20 15 9 17 20 20 15 9 17 20

20 19 14 19 20 20 19 14 19 20 20 19 14 19 20

20 19 7 19 20 20 19 7 19 20 20 19 7 19 20

↘ ↓ ↙ ↘ ↓ ↙ ↘ ↓ ↙

→ x ← → ↓ ← → ↓ ←

↘ ↓ ↙ ↘ ↓ ↙ ↘ ↓ ↙

→ ↓ ← → ↓ ← → ↓ ←

→ x ← → x ← → ↓ ←

↗ ↑ ↖ ↗ ↑ ↖ ↗ ↓ ↖

-1 -20 -21 -22 -12 -1 -20 -21 -22 -12 -1 -20 -21 -22 -12

-2 1 1 1 -13 -2 3 3 3 -13 -2 -23 -23 -23 -13

-3 1 1 1 -14 -3 3 3 3 -14 -3 -23 -23 -23 -14

-4 2 2 2 -15 -4 3 3 3 -15 -4 -23 -23 -23 -15

-5 2 2 2 -16 -5 3 3 3 -16 -5 -23 -23 -23 -16

-6 2 2 2 -17 -6 3 3 3 -17 -6 -23 -23 -23 -17

-7 2 2 2 -18 -7 3 3 3 -18 -7 -23 -23 -23 -18

-8 -9 -10 -11 -19 -8 -9 -10 -11 -19 -8 -9 -23 -11 -19

Flow

Direction

Matrices

Pit

Identification

Matrices

Cell Identification

Initial First Pit Merger Complete Connectivity

Elevations

(m)

Figure 11. An Illustrative Example of Sequential Depression Filling. From top to
bottom: cell identification by numbering, the DEM (meters), flow direction matrix,

and pit identification matrix. From left to right: two internal depressions are
initially identified, the two internal depressions merge into a single internal

depression, and the merged internal depression begins to run off of the DEM
after merging with a border depression.

Table 1. Pit parameters for each internal depression identified in Figure 11. This
assumes a 1 cm, 1-hour rainfall event (1 cm/h rainfall excess intensity).

Pit ID Volume (m

3
) Area (m

2
) Rainfall to Fill (mm)

1 2 6 333

2 6 12 500

3 8 18 444

52

5
2

Equation 3, area is calculated as the number of cells that make up that

depression, and the rainfall excess amount to fill that depression is calculated

using Equation 4.

Given this initial configuration, Depression 1 will overflow before

Depression 2. Depression 1 will overflow into Depression 2, forming Depression

3. The elevations of Depression 1 are raised to simulate filling at the time of this

merger. As a result, Equation 8 must be used to keep track of this filled volume,

while Equation 9 is then used to sum it with the unfilled portion of Depression 3.

Finally, the overflow time of this aggregate depression is calculated using

Equation 10. Notice that parameters are not maintained for negative

Figure 5. Watershed contributing area corresponding to a watershed delineation
performed at cell 24 of Figure 11. Initially, only one cell (itself) drains to this

location, but once the depressions overflow, a jump in contributing area occurs.

53

5
3

depressions (i.e. those that flow off of the edges). Figure 12 shows how these

depressions can affect a watershed delineation; the contributing area of cell 24

(of Figure 10) versus rainfall excess will yield a jump in contributing area as the

spillover event occurs and Depression 3 begins to flow through this downstream

location.

3.3 Validation and Analysis

For those steps of the algorithm that were an implementation of existing

methods (i.e. flow direction, filling and flow rerouting procedures), a set of

validation procedures were developed to ensure the algorithm functions as

intended. The primary distinction between the algorithm developed and existing

methods is that all depressions are not required to be filled. However, it must be

verified that flow between cells is routed properly, ridges are recognized, and the

contributing area resulting from watershed delineations be evaluated. Several

points were delineated after filling all depressions using the SDFA and the

resulting watersheds were compared with watersheds generated by processing

the same DEM and performing delineations at the same set of locations using

the ArcGIS Hydrology toolset (ESRI, 2013).

The resulting watersheds were then compared on a cell-by-cell basis and

the percent error was computed using Equation 11:

𝜖 =
∑ 𝐴𝑖

𝑛
𝑖=1 ×|𝛿𝑖,𝐴−𝛿𝑖,𝑆|

𝐴𝑖×𝛿𝑖,𝐴
× 100 (11)

Where:

54

5
4

 𝜖 = Percent Error (%)

 𝛿𝑖,𝐴 = 1 if cell i is in the ArcGIS Hydrology toolset watershed, otherwise 0

 𝛿𝑖,𝑆 = 1 if cell i is in the SDFA watershed, otherwise 0

 As shown in Figure 13, error may occur because a) cells are missing from

the SDFA watershed that are present in the ArcGIS watershed and b) cells exist

which are part of the ArcGIS watershed that are not part of the SDFA watershed.

The relative contributions of these two components to the error term may be

described by rewriting Equation 11 as Equation 12:

𝜖 =
(∑ 𝐴𝑖

𝑛
𝑖=1 ×𝛿𝑖,𝑆×|𝛿𝑖,𝐴−𝛿𝑖,𝑆|)+ (∑ 𝐴𝑖

𝑛
𝑖=1 ×𝛿𝑖,𝐴×|𝛿𝑖,𝐴−𝛿𝑖,𝑆|)

𝐴𝑖×𝛿𝑖,𝐴
× 100 (12)

Where:

 Error A = ∑ 𝐴𝑖
𝑛
𝑖=1 × 𝛿𝑖,𝑆 × |𝛿𝑖,𝐴 − 𝛿𝑖,𝑆| = number of SDFA cells outside of the

ArcGIS watershed

 Error B = z∑ 𝐴𝑖
𝑛
𝑖=1 × 𝛿𝑖,𝐴 × |𝛿𝑖,𝐴 − 𝛿𝑖,𝑆| = number of SDFA cells missing

from the ArcGIS watershed

SDFA Watershed ArcGIS Watershed

Watersheds
Match

Error B Error A

Figure 63. Illustration of two error types in watershed comparisons.

55

5
5

In ArcMap, watersheds were created by starting with a newly created point-

type feature class which may be edited to create the desired watershed outlet

locations. This layer was then converted to a raster by using the Feature to

Raster tool. Then, the DEM was processed by running the Fill (Tarboton 1991),

Flow Direction (Greenlee 1987, Jenson and Domingue 1988), Flow Accumulation

(Jenson and Domingue 1988, Tarboton 1991), and Watershed tools in that order.

The same “pour point” watershed outlets were then imported into MATLAB (The

Mathworks, Inc. 2013) before watersheds were delineated using the SDFA.

DEMs were acquired from OpenTopography for various locations at a 3-meter

DEM resolution (OpenTopography 2012); this source provides on-the-fly gridding

of Indiana’s LiDAR point data into DEMs (IndianaMap 2013). For the gridding

process, inverse distance weighting with a search radius of 3 meters was used

while cells lacking LiDAR point data were filled with a given “Null Filling” window

size parameter of 7.

3.3.1 Sequential Depression Filling Applicability Study

While the development of the SDFA was initially motivated by the

presence of observable surface depressions and inconsistencies in the outputs

of existing algorithms as described in Section 2.6, it remains necessary to

understand how surface flow connectivity varies in different landscapes to

determine the applicability and necessity of the SDFA developed over existing

methods. Those landscapes that have many depressional features and

experience a greater variation in connectivity may necessitate usage of the

SDFA to provide the appropriate extent of connectivity before delineations take

56

5
6

place. For landscapes that lack natural depressions, filling all depressions may

be more fitting.

The area draining off of the edge of the DEM may be analyzed as an

indicator of hydrologic connectivity and will also enable comparisons of the SDFA

to current methods. By definition, hydrologic connectivity increases as any

depression overflows and begins to contribute elsewhere (whether they begin to

flow off of the DEM or not); however, this analysis observes only those

depressions that overflow and begin to drain off of the edge of the DEM because

that is the goal sought by the current methods and so this methodology would

enable comparison to that standard.

Plotting the area draining off of the edge of the DEM versus rainfall excess

produces stepwise function that shows a step up each time a depression

overflows and begins to run off of the area of interest. Such an analysis

communicates the effects of depression storage as a function of rainfall. The

plots generated may be normalized to the total DEM area by expressing runoff

area as a percentage of the total area. Figure 14 shows this demonstrated for

the example outlined in Section 3.3. Notice the cells along the edge of the DEM

produce an initial level of 55% flowing off of the DEM edges. When the

depression overflows after 44 millimeters of rainfall, there is a step to 100% of

the DEM area running off.

If complete connectivity is approached rapidly, it may be assumed that the

effects of depressions are negligible in that terrain. However, if several distinct

57

5
7

steps are apparent in the response and connectivity is reached only after a

significant amount of precipitation, the assumptions of complete hydrologic

connectivity may be inappropriate and having this insight can be valuable. To

that end, SCS return-period storm events also may be plotted with the watershed

response to determine the extent to which complete connectivity contrasts with

the SDFA response. If a 100-year rainfall event is required to fill several

depressions in the area of interest, then filling all depressions may be a radical

assumption to make for some applications. For example, using a watershed that

is generated only by a 100-year rainfall event may be excessive for a grassed

Figure 7. Percent area running off versus rainfall excess corresponding to the
example described in Section 3.3.3. The vertical lines denote X-Year, 24-hour

SCS rainfall events.

58

5
8

waterway design. For example, in Figure 14, a rainfall event in excess of the 25-

year, 24-hour rainfall amount is necessary to achieve complete connectivity.

3.3.2 Applicability as a Function of Scale

Scale is another important consideration when trying to understand the

variation of hydrologic connectivity for a given DEM. Depressions may be

encompassed only at a particular DEM size or the interplay of depressions filling

and overflowing into one another may need to be evaluated at a particular scale

in order to be represented correctly. From a single DEM tile, non-overlapping

subsets will be taken at a range of DEM sizes. For each non-overlapping sub-

DEM iteration at a given DEM size, the percent of the DEM running off of the

edges will be recorded as a function of rainfall excess. Additionally, as described

in the previous section, SCS return-period storms were plotted for reference; the

points where the curve intersects each SCS return period storm may then be

plotted for each DEM size. Also included will be an epsilon rainfall excess value

of 5 mm as a baseline minimum level so as to definite the initial extent of

connectivity.

At small scales (the hectare scale), it is unlikely that significant

depressions will be captured in DEM subsections, and the entire DEM subsection

area is likely to run off after only a small amount of precipitation. At medium

scales (tens of hectares), field-scale depressions should be present in the

subsets and perhaps occupy a large portion of the DEM area. At large scales

(hundreds of hectares), the rainfall amount required to fill all depressions will

indicate the presence of significant depressions which affect hydrologic

59

5
9

connectivity while the percentage of the DEM running off after various rainfall

levels may indicate the occurrence of depressions at that scale; it could be

determined whether depressions are throughout the DEM or whether a single

depression with small area footprint exists. If full connectivity is approached at

minimal levels of rainfall for all scales, then depressions play little role in that

landscape as it pertains to hydrologic connectivity.

To perform these analyses, several LiDAR-based DEMs were acquired.

Because this application is aimed toward the management of agricultural runoff,

agricultural areas were targeted for available LiDAR DEMs. DEM datasets

supplied by Indiana’s LiDAR vendor were sought out to avoid the steps of filtering

ground points and gridding the LiDAR point data. These DEMs are often

delivered in small tiles due to the large file sizes associated with this high-

resolution data. Tile sizes and DEM resolutions vary by state (typically 100-250

hectares, 1000 x 1000 to 3000 x 3000 cells). This study utilized DEMs from

Fulton, Clinton, and Pulaski County, Indiana. The DEM data for these areas are

at 1.524-meter (5-feet) resolution and provided in 1000 x 1000 cell tiles via the

Indiana Spatial Data Portal (Indiana University 2014). Table 2 presents the DEM

subset sizes to be analyzed and the corresponding percent of the full 1000 x

1000 tile covered by the non-overlapping subsets.

The percent of the DEM running off at each of the return-period rainfall

amounts was determined for each DEM subset, and for each DEM size these

values were averaged. A plot of percent of the DEM running off versus DEM size

60

6
0

was produced for each return period rainfall event. Using this plot, trends in

hydrologic connectivity as a function of DEM scale could be observed.

DEM Size DEM Area (hectares) Number of Subsets Percent Coverage

100 x 100 2.32 100 100

200 x 200 9.29 25 100

300 x 300 20.9 9 81

400 x 400 37.2 4 64

500 x 500 58.1 4 100

750 x 750 131 1 56

1000 x 1000 232 1 100

Table 2. DEM subset sizes, areas, the number of non-overlapping iterations fit
into the 1000 x 1000 cell tile, and the percent of the DEM covered by these non-

overlapping subsets.

61

6
1

 RESULTS CHAPTER 4.

4.1 Overview

An algorithm has been developed that enables field-scale watershed

delineations on LiDAR-based DEMs. Depressions are filled sequentially in order

to match surface flow conditions as observed in the field, enabling that filling may

be stopped. First, to establish that the algorithm developed can properly

delineate watersheds, several point delineations were performed after all

depressions are filled sequentially and the results were compared with those

produced using the ArcGIS Hydrology Toolset. Next, the functionality of the

algorithm was demonstrated through the identification of depressions and the

possible variation in the extent of depressions filled (i.e. hydrologic connectivity).

An example will illustrate the implementation of drainage features into the

algorithm and how these features can alter field-scale hydrologic surface

connectivity. Finally, the implications of complete filling were evaluated using

contributing area versus rainfall plots on several DEMs. The effects of scale on

these hydrologic connectivity responses were analyzed on these DEMs.

4.2 Validation

After preparing two DEMs using both the SDFA as well as ArcGIS Hydrology

Toolset, several watershed delineations were performed to validate that the

62

6
2

algorithm routes flow properly, recognizes ridge features as hydrologic

boundaries, and delineates upslope contributing areas in a similar manner. The

percent difference in watershed area when comparing the two methods was

computed using Equation 10.

Figures 15 and 16 show the watershed delineations produced using each

method on two fields in Fulton County, Indiana. Parts A and B of these figures

represent the watersheds delineated after filling depressions using the ArcGIS

and SDFA methods, respectively. Appendix B shows two additional DEMs in

which an additional 12 watersheds were validated. Table 3 presents the

resulting percent difference when comparing the watersheds produced from the

SDFA developed to the existing ArcGIS methods. The error may result from

cells missing from the SDFA watershed that are present in the ArcGIS watershed

or cells in the SDFA watershed that are not part of the ArcGIS watershed.

3

2 4

1

6

5 3

2 4

1

6

5

Figure 15. For an agricultural field in Fulton County, Indiana, USA (lower left
corner at -86.187 degrees west longitude, 40.974 degrees north latitude): A)

watersheds based on ArcGIS Hydrology toolset and B) watersheds based on the
SDFA.

63

6
3

Based on the percent difference, the delineations give similar results.

However, there are situations in which differences may occur. Flow

accumulation rasters (Figure 17) may be used as a guide to determine locations

where watershed delineations are likely to yield a considerable contributing area.

Delineations performed along high flow accumulation “stream” lines will produce

large watersheds, while delineations performed even one cell off of these high

flow accumulation cells will result in watersheds dramatically smaller in size. As

a result, delineations performed in locations where the high flow accumulation

cells do not align between the two methods will produce watersheds which

conflict most. For example, looking at a zoomed-in area of Figure 15 shown in

Figure 17, it is apparent that there are some differences where high flow

accumulation cells do not align between the two methods. This is a result of

17

18

19

16
15 13

14

12

11 9

10
8 4 3

2

1 5 6 7

17

18

19

16
15 13

14

12

11 9

10 8 4 3

2

1 5 6 7

Figure 86. For an agricultural field in Fulton County, Indiana, USA (lower left
corner at -86.183 degrees west longitude, 40.990 degrees north latitude):

A) watershed based on ArcGIS Hydrology toolset. B) watersheds based on
SDFA.

64

6
4

differences in the underlying flow direction information, and, as a result,

delineations performed in the conflicting cells will produce watersheds with a high

percent difference. Despite the differences about to be explained, it is apparent

that flow is routed in a similar manner and that depressions have been identified,

filled, and flow rerouted in ways that are similar. The same ridgelines that

separate watersheds have been identified in each method as expected.

Therefore, the behavior of the filling process implemented in the SDFA

developed is roughly equivalent to those comparable existing ArcGIS processes.

Conflicts in flow routing and the subsequent flow accumulation data are

caused by differences in how flat areas are handled. Specifically, challenges

occur when 1) the flow direction of a single cell is to be assigned, but more than

one neighbor has the same maximum distance-weighted drop, 2) one or more

cells are raised to the same elevation as a result of the filling process and flow

direction across this filled area must be resolved, and 3) a spillover location is to

Figure 97. Flow accumulation raster produced using: A) ArcGIS algorithm and
B) the SDFA developed. Darker lines indicate higher flow accumulation.

A B

65

6
5

Table 3. Percent difference between watersheds delineated using the
ArcGIS Hydrology Toolkit and the SDFA.

DEM Watershed
Error A, Cells in

SDFA, not ArcGIS

Error B, Cells in

ArcGIS, not SDFA

Total ArcGIS

Cell Count

Percent

Difference

Figure 15 1 65 49 2414 4.70%

Figure 15 2 90 113 2116 9.60%

Figure 15 3 12 41 2063 2.60%

Figure 15 4 122 30 9833 1.50%

Figure 15 5 768 48 2054 39.70%

Figure 15 6 28 271 2923 10.20%

Figure 15 7 317 2852 5822 54.40%

Figure 15 8 20 25 2818 1.60%

Figure 15 9 3514 220 50503 7.40%

Figure 15 10 265 373 65185 1.00%

Figure 15 11 119 617 14869 4.90%

Figure 15 12 69 65 4725 2.80%

Figure 15 13 28 81 5738 1.90%

Figure 15 14 60 96 2821 5.50%

Figure 15 15 263 470 91011 0.80%

Figure 15 16 10 71 2379 3.40%

Figure 15 17 130 83 7561 2.80%

Figure 15 18 588 295 12758 6.90%

Figure 15 19 593 71 3896 17.00%

Figure 16 1 74 52 4679 2.70%

Figure 16 2 57 52 16700 0.70%

Figure 16 3 113 32 4678 3.10%

Figure 16 4 50 723 8528 9.10%

Figure 16 5 72 56 6592 1.90%

Figure 16 6 678 99 17036 4.60%

Figure B1 1 70 70 15799 0.89%

Figure B1 2 232 543 86607 0.89%

Figure B1 3 45 300 5914 5.83%

Figure B1 4 740 167 32228 2.81%

Figure B1 5 3 12 3767 0.40%

Figure B2 1 28 88 12025 0.96%

Figure B2 2 44 93 18551 0.74%

Figure B2 3 20 12 3387 0.94%

Figure B2 4 6 9 2847 0.53%

Figure B2 5 39 28 21701 0.31%

Figure B2 6 171 70 16603 1.45%

Figure B2 7 3 106 5516 1.98%

9506 8383 574647 3.11%TOTALS

66

6
6

be identified, but multiple cells along the perimeter are of the same minimum

elevation. The first challenge arises when flow direction of a single cell is to be

assigned and multiple neighbors have the same maximum distance-weighted

drop. In the SDFA developed, the maximum distance-weighted drop is updated

only as a new maximum is encountered. As a result, when multiple neighbors

have an equivalent maximum distance-weighted drop, the last one encountered

is taken as the flow direction. However, in the Jenson and Domingue (1988)

method employed by ArcGIS, a lookup table is used to decide flow direction

based on the orientation of the neighbors with equivalent maximum distance-

weighted drops.

Figure 18 shows how this distinction may affect how flow is routed in each

of the two methods. When identifying the flow direction of cell 5, cells 2 and 8 are

of an equivalent maximum distance-weighted drop. The SDFA developed directs

flow toward cell 2 because it is encountered first and a new maximum is not

found thereafter. However, because cells 2 and 8 are on opposite sides, the

look-up table utilized by the ArcGIS method assigns flow toward cell 8.

Figure 10. A) Reference cell indexing. B) Elevations. C) ArcGIS flow direction.
D) SDFA flow direction. Although cell 1 is the neighbor with the lowest

elevation, cells 2 and 8 have the greatest distance-weighted drop.

1 4 7 247.41 247.55 247.50 ← ↖ ↑ ← ↖ ↑

2 5 8 247.45 247.56 247.45 ↖ → ↖ ↖ ← ↖

3 6 9 247.47 247.59 247.58 ↖ ← ↑ ↖ ← ↑
A B C D

67

6
7

In the second situation, both methods resolve flow within a region that has

been filled by iteratively working from the outlet, directing cells in the flat area

toward cells with a known flow direction. As a result, a similar diagonal pattern is

formed in the flow direction data (Figure 19), separating two contiguous areas of

the same flow direction value. However, the specific order in which neighboring

cells are traversed differs between each method, resulting in different flow

direction values and flow accumulation datasets. In each method, the solution is

arbitrary in that they are imperfect representations of the physical process of

water flow through a puddle. Instead, the patterns in flow direction are the result

of methods developed to assure that each cell in the filled region will reach the

outlet.

The third situation occurs when a spillover location is to be identified for a

given depression, but multiple cells along the perimeter are of the same minimum

elevation. The true overflow location is obscured by limitations in the vertical

resolution of the elevation data. Because the algorithms may check the

Figure 119. Comparison of how flow direction is resolved in depressions that
have been filled. A) ArcGIS solution. B) SDFA solution. C) color/direction key.

A B

↖ ↑ ↗

← →

↙ ↓ ↘

C

68

6
8

boundary cells in a different, arbitrary order, contradictory overflow points may be

chosen. Should the depression overflow frequently, the true overflow point may

eventually erode over time and become a more dominant spillover location.

Figure 20 shows a large region which conflicted in the DEM analyzed in Figure

15. From the underlying flow accumulation data shown in Figure 20, parts B and

C, it can be seen that each method had routed flow from the orange area in

opposite directions. Upon further investigation, this region was indeed a

depression which had the same minimum spillover elevation on either side of the

depression. While it was filled to the same elevation in each algorithm, the

selection of the spillover location resulted in conflicting results. This particular

example demonstrates the consequences that may occur as a result of

differences in the fine details of each algorithm (combined with limited vertical

data resolution).

A B C

Figure 20. A) Two watersheds delineated using ArcGIS Hydrology Toolset and
the SDFA. An area that conflicts between methods is shown in orange. B) the
area of difference with underlying flow accumulation data produced from the

ArcGIS methods. C) the area of conflict with underlying flow accumulation data
produced from the SDFA.

69

6
9

4.3 Sequential Depression Filling: Effects on Watershed Delineation

While it is valuable to know that the SDFA developed mimics the flow direction

and filling procedures of existing algorithms (when all depressions are filled), the

utility of the SDFA lies its ability to fill only those depressions that will be filled in a

specified rainfall event in an automated fashion. Figure 21 shows a location for

which an inlet tile or culvert may need to be sized; watersheds are delineated

with increasing rainfall using the developed SDFA and the resulting polygons are

Figure 21. Watershed delineation in Fulton, County, Indiana (lower left
corner at -86.194 degrees west longitude, 40.974 degrees north latitude).
The progression of a watershed delineated at the marked outlet point with
increasing rainfall. Losses have been accounted for using the SCS Curve

Number Method with a curve number of 75.

70

7
0

shown. Figure 22 shows the associated contributing area plot for this selected

outlet point as a function of rainfall applied. As the retention capacity of each

surface depression is reached, a spillover event occurs, resulting in a step-wise

increase in the watershed contributing area. To assume complete hydrologic

connectivity would be to assume that the largest (outermost) polygon represents

the appropriate watershed for all usage scenarios. However, the largest polygon

in Figure 21 would occur only after 137 mm of rainfall, nearly equivalent to the

100-year, 24-hour storm event on a lossless surface. For analyses of lesser

storm severity, this assumption is an error and leads to an overestimation of

contributing area.

While rainfall excess is provided as a result of the depression storage and

Figure 12. Watershed contributing area versus rainfall for the watershed
delineations in Figure 21. Also demonstrated is how losses with three

different curve numbers to convert excess rainfall to rainfall.

71

7
1

sequential filling components of the algorithm, rainfall is instead plotted which

allows for increased interpretive value as it is now possible to compare directly to

return period design storms. Using the SCS Curve Number Method, plots of

precipitation were determined from the given rainfall excess values by calculating

infiltration and losses u sing curve numbers of 50, 75, and 99. These values

span a wide range of ground conditions including all of those associated with

agricultural land usages. A curve number of 50 represents the best-case (high-

infiltration) scenario for most agricultural land uses while a curve number of 99

(the maximum curve number) converts nearly all rainfall to runoff-ready rainfall

excess as a nearly lossless surface. With lower curve numbers (i.e. more liberal

assumptions of infiltration and losses), the plot is shifted further to the right. It

takes more rainfall to generate the same contributing area. The calculation of

precipitation values from rainfall excess is unconventional. However, the SDFA

developed handles surface flow and depression storage which occur after

infiltration and other losses takes place.

Having the inputs in terms of precipitation leads to more intuitive output

such as “the contributing area resulting from 50 mm of rainfall is 300 square

meters.” In the end, the inclusion of losses furthers the point that surface flow

connectivity and watershed delineations are a function of rainfall in many

landscapes; with more losses, additional rainfall is necessary before runoff

begins and more rainfall is necessary to fill depressions and produce a

hydrologically connected landscape. This goes against watershed model

structures that apply hydrologic estimates of infiltration and other processes to a

72

7
2

given, predetermined watershed boundary; at large scales, the effects of such

assumptions may not affect the model overall.

Additional examples of how watershed contributing area may vary with

rainfall are provided in Appendix A (as Figures A1-A4). Losses in each of these

watersheds have been accounted for by using a curve number of 75. Figure A1

shows a small watershed (taken from an agricultural field in Fulton County, IN)

which includes a known natural depression which the algorithm estimates to

require 113 mm of rainfall to overflow. Figure A2 demonstrates another

watershed in Fulton County, Indiana which was found to experience two distinct

jumps in the rainfall versus contributing area plot (Figure A2a) that occur as a

result of natural features; the first is a natural depression which is estimated to

require 142 mm of rainfall while the other (more on this in Figure 23). The

second, however, is a pond which requires an extraordinary amount of rainfall to

overflow. Such features should be omitted from downstream analyses because

of they are so unlikely to overflow. From the associated plot of contributing area

versus rainfall this can be easily observed (over 1000 mm of rainfall for this last

step). It can then be excluded from analysis or incorporated in a retention pond

model if it is determined to drain into this watershed. However, there are other

landscapes which lack natural depressions and as a result require very little

rainfall to achieve their maximum potential watershed size (and complete

hydrologic connectivity). Figures A3 and A4 (though they each have a small

natural depression in the forested areas) demonstrate this. It should be noted

that, because there are no macrotopographic features in these watersheds, the

73

7
3

plots associated with Figures A3 and A4 more clearly show individual, small

steps caused by depressions produced from noise in the LiDAR-derived DEMs.

In fact, small exclusions can be observed that appear like holes in the watershed

polygons.

4.4 Drainage Feature Implementation – Tile Inlet

Tile inlets or risers act to drain areas that are hydrologically isolated and

frequently inundated if not remedied by these subsurface conduits. Because

these features go undetected in the DEM, the depressions that are drained by

these tile risers will be filled and rerouted over the ground surface. As a result,

watershed delineations will be affected by such alterations to surface flow

patterns.

Figure 23 shows the implementation of a tile drainage inlet using the

SDFA on one of the DEMs used in Section 5.2 (validation). Figure 23a shows

the location of a tile riser (R) located at the base of a natural depression that

requires drainage. The 20-cm inlet at this location is capable of a draining

around 1500 cubic meters per hour (assuming typical materials and 1% grade,

Panuska, 2012). Figure 23b shows a watershed delineated downstream of this

depression after all depressions have been filled, yielding 54 hectares. As the

1500 m3/h are being drained, 17000 m3 must accumulate in order to overflow the

basin (which at 10 mm/h would take 6.8 hours, for example). In Figure 23c a 14-

hectare watershed is delineated downstream of the depression while accounting

for this drainage feature. Such considerations are important if watershed

74

7
4

delineations are to match on-site observations and reality. In this scenario, the

riser actually diverts a significant (in this case 75%) of the watershed area.

Tile Riser R, (40.9945, -86.1939)

R

O

R

O

Figure 13. A) A natural depression with a tile riser at R. Notice the brown
vegetation indicating standing water following a large rainfall event B) A

watershed delineation for the outlet O without accounting for the tile riser R. C)
A watershed delineation for the outlet O while accounting for the tile riser R.

A

B C

75

7
5

4.5 Applicability Study

The relevance of sequential depression-filling hinges on the extent of

hydrologic connectivity present across a given landscape as runoff begins.

Landscapes with natural depressions and other features that inhibit surface flow

connectivity (e.g. road embankments) will vary in connectivity more widely as a

function of rainfall than landscapes lacking significant depression storage. It may

be determined whether depressions are singular, localized features or spread

relatively homogenously across a given region. As scales increase, the role of

depressions may either diminish or they may dominate the hydrology of a

landscape on the whole.

Additionally, scale is also an important consideration when determining an

appropriate minimum DEM size acceptable for use on a mobile device. Because

memory and computational resources are more limited on a mobile device than

on a desktop platform, the DEM area footprint may be based on agricultural field

boundaries rather than watershed boundaries to reduce file sizes. A

recommendation of minimum DEM size can be issued after the scale at which

depressions and their full contributing area has been determined.

Figure 24 shows how connectivity may vary across an entire DEM in

response to several rainfall events. Each uniquely colored polygon represents

an area that drains to a common location. Isolated polygons are depressions

that have some storage capacity and are yet to overflow, while polygons

connected to the edge of the DEM are no longer involved in the filling process.

Figure 25 plots the corresponding area draining off of the DEM in response to

76

7
6

increasing rainfall for the DEM shown in Figure 24. Each step represents a

threshold in depression storage that was breached, where a depression began to

Figure 24.The variability of hydrologic connectivity as a function of rainfall
excess for several plots at Throckmorton Purdue Agricultural Center in

Tippecanoe County, IN. A) Orthophotography, B) DEM, and C-L) Catchment
map showing the extent of hydrologic connectivity after 27, 34, 40, 57, 77, 96,

112, 129, 159, and 188 mm of rainfall excess, respectively. Each colored
polygon represents a hydrologically connected “catchment.”

A

D

B C

E F

G H I

J K L

77

7
7

overflow and run off of the DEM. Rainfall excess has been converted to rainfall

by back calculating losses using the SCS Curve Number Method assuming a

curve number of 75.

Figure 26 shows the percent area running off as a function of DEM size for

several rainfall events and three different counties in Indiana, USA. Each point

on these curves represents the average percent area running off of the DEM

after a given rainfall event. For example, for a DEM size of 100x100, 100 non-

overlapping sub-DEMs (from a 1000x1000 DEM) were analyzed, and for these

100 sub-DEMs, the average percent of the DEM with a monotonically

descending path off of the DEM edges after the epsilon rainfall event (0.1 mm of

Figure 25. Percent of DEM area running off of the DEM versus rainfall
corresponding to the DEM in Figure 24, and several SCS return-period storms

for reference.

78

7
8

rainfall) was 25.6 percent. Figure 26c demonstrates a landscape with relatively

little change in hydrologic connectivity as a function of scale or rainfall excess.

With very little precipitation, nearly 100 percent of the DEM runs off at all scales

examined. In this type of landscape, filling all depressions prior to delineating

watersheds is a safe assumption (though infiltration may shift these curves

downward as will be pointed out later).

The landscapes plotted in Figures 26a and 26b exhibit a wider fluctuation

in connectivity with rainfall and scale. At most scales, complete hydrologic

connectivity is not achieved even after significant rainfall occurs. As scale

increased (from 2 to 232 hectares) for a given rainfall amount, connectivity

trended downward in general. This is due to the larger storage volume, per unit

area, that exists at larger scales. This contradicts the common assumption made

with coarser-resolution, large scale DEMs that sinks are erroneous. As DEM

size increased, connectivity is more likely to be a function of rainfall. In these

landscapes it is more important to be mindful of the implications of filling all

depressions before delineating watersheds. Appropriate and accurate

delineations performed in these landscapes are much more likely to vary with

rainfall.

With landscapes that have significant depression storage, many of them

exhibit a particular pattern as a function of DEM size where the percent running

off begins very high, then decreases to a minimum around the 125-hectare scale,

then they begin again to increase. This is because at small scales, depressions

are not completely encompassed in the DEM. As a result, these areas may

79

7
9

immediately flow off of the edge of the DEM or else overflow quickly because the

ridges are not entirely encompassed in the DEM. As the DEM size increases,

the full depression storage area is encompassed in the DEMs and storage

increases. Further increases in DEM size will include the full contributing area of

Figure 26. Percent DEM running Off vs. DEM size for several SCS return
period rainfall events (assuming no infiltration) for DEMs located in A)
Fulton County, IN, B) Pulaski County, IN, and C) Clinton County, IN

A

B

C

80

8
0

these depressions, working to reduce the storage per unit area; in other words, at

this stage, the “funnel” of basins will increasingly be included in the DEM while

the retention volume remains relatively constant.

It should also be noted that a certain portion of the DEM area will always

run off because the DEM extent will likely never align with ridge features. For

example, if a region were characterized by having many depressions one next to

the other, then it would be expected that very little of the DEM runs off with a

small amount of rainfall; however, unless the extent of all depressions were fit

perfectly into the extent of the DEM, there will inevitably be depressions that will

drain off the edge of the DEM immediately or otherwise overflow sooner than

expected. Similarly, it is equally unlikely that the contributing area of depressions

will align with the DEM bounding box so that some depressions may take longer

to overflow than expected.

4.6 Effects of Infiltration

The plotted points in Figure 26 represent the percent of the DEM running

off of the edges after the specified rainfall amount without considering infiltration

or other losses. Figure 27 employs the SCS Curve Number Method to estimate

the runoff-ready portion of rainfall before it is applied to the SDFA for analyses.

Figures 27a, 27b, and 27c display the landscape from Figure 26a after

considering losses resulting from curve numbers of 100, 75 and 50, respectively.

Likewise, Figures 28a, 28b, and 28c corresponding to the landscape in Figure

26c after again considering losses resulting from curve numbers of 100, 75, and

50.

81

8
1

For the landscape in Figure 27, these considerations do not alter the

outcome significantly. In a high infiltration scenario with a curve number of 50,

80% of the DEM runs off after the 100-year storm. This would indicate that, on

average, 20% of the DEM will vary from the ArcGIS assumptions, meaning that

delineations may be effected in this percentage of the DEM area on average.

For the landscape in Figure 28, the potential impacts of infiltration and

other losses are substantial. For a curve number of 75, the plots have shifted

Figure 147. Percent DEM running off vs DEM size for several SCS return-period
rainfall events for DEMS in Pulaski County, Indiana while taking into account

losses using the SCS Curve Number Method. Shown are the same DEMs while
accounting for losses using curve numbers of A) 100, B) 75, and C) 50.

A

B

C

82

8
2

notably to the point that the most extreme rainfall event plotted achieves only 85%

connectivity. For a curve number of 50, the 100-year, 24-hour rainfall event

results in only 60% of the DEM running off at the largest scale.

Subsurface drainage has a quantifiable and clear effect on field-scale

hydrologic connectivity. Not all landscapes have complete hydrologic

connectivity as runoff begins. Many models simulate overland flow in two simple,

lumped steps: 1) conversion of rainfall into rainfall excess for each of many

different HRUs (hydrologic response units: areas that all share a common land

use + soil + slope classification) and 2) routing of streamflow (using, for example,

Figure 28. Percent DEM running off vs DEM size for several SCS return-period
rainfall events for DEMS in Fulton County, Indiana while taking into account

losses using the SCS Curve Number Method. Shown are the same DEMs while
accounting for losses using curve numbers of A) 100 B) 75 and C) 50.

A

B

C

83

8
3

the Muskingum method). Hydrologic response is often modelled with the use of

a lag time variable which is a function of the longest flow path length in the in the

DEM after filling all depressions. Through the methods describing the SDFA, it

should be clear that water may spend a considerable amount of time in surface

depressions for highly disconnected landscapes, complicating the lag time

calculation.

In landscapes lacking hydrologic connectivity, it often may be the case

that drainage features have been implemented to enforce connectivity and keep

agricultural lands productive. Plots and maps reflecting a landscape with low

hydrologic connectivity demonstrate the extent to which human modification is

necessary to achieve connectivity as we know it. However, the processes of

infiltration and subsurface drainage are different than overland flow. As such,

hydrologic connectivity may play a larger role in better understanding the

interactions between surface and subsurface flow.

84

8
4

 WATERSHED DELINEATION MOBILE APPLICATION METHODS CHAPTER 5.

As described in the introduction, it may be desirable to perform some tasks

such as watershed delineation in the field in order to more rapidly resolve issues

that are observed while in the field. A mobile application may be used to assist

users’ field observations, allowing them to make reliable estimations and suggest

possible solutions to their clients without returning to the office, expediting the

typical design and decision-making process.

5.1 Algorithm Development

The SDFA outlined in Chapter 3 was initially developed in Matlab to prove

the concept and refine the algorithm. This allowed for rapid visualization of data,

code development, robust testing, and generation of graphs and other outputs.

By contrast, the Android development system is a more complex software

ecosystem. Android makes use of Java, an object-oriented programming

language. Specific restrictions are applied to code placed in the user interface

(UI) thread such that resource-heavy computations likely to slow the user

experience must be handled in the background. As far as the end-user

experience, interfaces developed in Android have a higher ceiling than Matlab in

terms of user-friendliness, simplicity, and visual appeal. Because mobile

85

8
5

application users are unlikely to be interested in modifying scripts, the number of

variables will be minimized and presented in a convenient interface.

In order to begin developing Android applications, several components

must be acquired in order to begin programming. One must typically make use

of an integrated development environment (IDE) such as Eclipse that includes

the workspace to write, build, compile, and debug code (Eclipse Foundation,

2014). An IDE is useful to organize the complex directory structure and project

setup files of Android applications. The Android Developer Tools (ADT) contains

all of the necessary software libraries and application programming interfaces

(APIs) to specifically develop applications on the Android platform. The

combination of the Eclipse IDE and the ADT are available online and packaged

together in the Android Software Development Kit (SDK). Once this software is

installed, applications can be developed and tested on Android devices (or a

software emulation of an Android device on a computer).

Most mobile devices have several sensors and tools onboard that

developers may utilize. The GPS, accelerometers, camera, network connection,

and touchscreen enable the development of innovative applications and tools.

Mapping services such as the Google Maps API may be used to display spatial

information, and when used in tandem with a device’s GPS, this can provide

added functionality such as navigation and geographic data collection.

To publish signed apps online for the public to download at the Google Play

Store (i.e. the marketplace for all Android apps, books, music, etc.), one must

register as an Android Developer and pay a one-time 25 dollar fee. After

86

8
6

uploading the application file to the marketplace, developers may track their

download statistics, receive bug reports, and publish updates to their application.

The listing displayed on the Google Play Store may be edited to include a

description and sample screenshots.

5.2 Android Libraries

The geospatial data abstraction library (GDAL) was used to incorporate

additional GIS functionality such that most any raster data types and geospatial

referencing systems may be supported by the Watershed Delineation App.

GDAL is a library produced by the Open Source Geospatial Foundation (OSGeo)

which allows for reading, writing, and even manipulating raster data. The GDAL

library also contains OpenGIS Simple Features Reference Implementation

(OGR), the vector data component of the GDAL library. The GDAL library is

available in several languages including Perl, Python, Java, C#, C++, Ruby, and

R. The Java version of GDAL is comprised of Simplified Wrapper Interface

Generator (SWIG) Java bindings. The Java version of GDAL can be compiled

for Android using the Android Native Development Kit (NDK). The Android NDK

is a toolset that allows for usage of native code in Android apps. The app also

makes use of the file-writing capabilities of the GDAL library to export raster

watershed delineation datasets.

 The Watershed Delineation App also makes use of OpenATKLib. This

library was produced from the OpenATK project which focuses on farm

management apps (OpenATK, 2014). It adds additional mapping user-interface

functionalities on top of the Google Maps API such as clickable polygon features

87

8
7

(the Google Maps API does not include any listeners for click events on polygons,

only markers). In addition to clickable polygons, the OpenATKLib offers an

implementation of markers which includes the ability to give markers a “super

draggable” quality. In the Google Maps API, markers are used to represent

points, and in the Watershed Delineation App, a marker is used to indicate the

outlet location of the watershed to be delineated. This “super draggable” feature

allows users to simply touch and drag the marker without the standard “long-hold”

touch required by the Google Maps API marker functionality. The long-hold

marker movement requires the user to press in a specific location of the marker

icon (in which the user’s fingertip is likely to entirely cover) and remain held in

that position for around 3 seconds; if the user’s finger does not first make contact

with the exact “hit box” location of the marker, the long-hold event will not be

triggered. If the user moves their finger while long-holding the marker, it may

instead pan the map. What is more, there is no inherent indication to the user

that they must perform a long-hold to move the marker and so this procedure is

not apparent unless previously demonstrated to the user. This is a clear

example of how user experience can be improved.

 The combination of GDAL and OpenATKLib libraries that provided GIS

data and user-interface functionality to the Watershed Delineation App have

been combined into a library which future watershed management mobile apps

can utilize and on top of which they can build. This WMACLib will incorporate

GDAL and OpenATKLib to handle raster DEM datasets as described in Section

88

8
8

6.2. WMACLib will also include hydrologic analysis GIS functions such as flow

direction, flow accumulation, and pit-filling.

5.3 Implementation Verification

After implementation of the SDFA as an Android application, it was verified

that the algorithm was correctly ported from Matlab to Java and the algorithm

operates as demonstrated in the previous chapters. To make the comparison,

catchment grids were generated from a DEM before rainfall and after applying 25,

and 250 millimeters of rainfall using Matlab as well as the Android application.

5.4 DEM Size Performance Relationship Testing

While mobile device performance is rapidly improving, there are still

resource constraints when compared to desktop computers and while attempting

to process high-resolution DEMs. To get a better grasp of the limitations of the

mobile device platform, the algorithm was run on several DEMs of differing sizes

and resolutions until all depressions have been filled and the run times will be

recorded. DEM sizes of 125 x 125, 250 x 250, 500 x 500, and 1000 x 1000 will

be evaluated at 1-meter and 3-meter resolutions. It is expected that the

algorithm’s performance is directly related to the number of depressions in the

DEM, and so the initial number of depressions will be reported for each run of the

algorithm as well. Given a roughly uniform distribution of depressions across the

landscape evaluated, the number of depressions is expected to vary

proportionately with DEM size. To ensure roughly uniform distribution of

depressions, all DEMs were be taken from the same area of Clinton County,

Indiana, USA. Furthermore, it is expected that the initial amount of depressions

89

8
9

in the DEM are affected by the chosen DEM resolution due to elevated signal-

noise effects as horizontal resolution increases while vertical accuracy remains

constant. For each DEM size and resolution combination, run times and initial

number of depressions were recorded.

90

9
0

 WATERSHED DELINEATION APPLICATION RESULTS CHAPTER 6.

6.1 User Interface Design and Functionality

Upon installation of the application, a directory is created on the device

called ‘dem’ and a sample DEM is placed in this directory so that the app may be

demonstrated when used for the first time. A sample DEM was included to allow

potential users to try out the app without downloading data.

All DEMs in the ‘dem’ directory are displayed on the map as a rectangular

polygon of the DEM boundary. If the user taps inside of one of these boundaries,

that DEM will be loaded as the current operating DEM. Alternatively, a DEM may

be chosen from a list by navigating to Menu > Choose DEM (Figure 29b).

Alternate DEM directories may be specified by going to Menu > Settings >

Choose DEM Folder (Figure 29b). After choosing a DEM, it loaded and a

colored overlay is created on the map.

When a DEM is selected, some preprocessing such as flow direction and

initial pit identification occurs while the user is allowed to pan, zoom, and edit

settings (Figure 29a). The Simulate Rainfall button, which fills depressions and

prepares other datasets from which watershed delineations can be performed,

remains grayed out until preprocessing is completed (Figure 29a). As described

in the previous chapters, the extent of connectivity and resulting watershed

91

9
1

delineations may vary based on the amount of rainfall applied. The rainfall

amount to be simulated may be edited from the settings screen. The option to fill

all depressions may also be specified by tapping a checkbox (Figure 29c).

 Several visual data layers are available after the SDFA has been run

(Figure 29). The visibility of these layers may be toggled from the menu in the

upper right while the transparency of each layer may be adjusted from the

Settings screen (Figure 29c). In the Catchments overlay (Figure 30b), each

uniquely colored polygon represents a different catchment (i.e. depression) after

employing the SDFA. Some drain off of the map while others that have yet to be

filled may appeared as isolated polygons. This is effectively a connectivity map

where hydrologically connected cells which flow to a common destination share

the same color. Notice that the polygon delineated in Figure30d is a subset of

A B C
Figure 29. Watershed Delineation App User Interfaces. A) preloading DEM

parameters. B) Action Bar overflow menu. C) Settings screen.

92

9
2

the polygon marked with an X in Figure 30b. If a delineation were performed at

the location where the watershed meets the edge of the map, the delineated

watershed polygon would match the marked polygon in the catchment map. By

comparing the DEM elevations before and after depressions have been filled,

cells that have been raised may be visualized using the Puddles layer (Figure

30c) by coloring these altered cells blue.

 The Delineation layer (Figure 30d) displays the watershed by displaying

those cells draining to the red marker in red. Additional watersheds may be

delineated by simply dragging the red marker to a new location within the DEM

bounds. After the marker has been dropped at the desired location, the upslope

contributing area is delineated by tracing the flow direction information to find all

cells draining to that location. Initially, delineations were performed by hitting a

“Delineate” button. However, Android allows for actions to be triggered upon the

end of a marker drag event (i.e. upon letting go of and dropping the marker).

This is an example of simplifying the user experience and de-cluttering the user

interface.

 Initially, watershed delineation attempts were performed by selecting a

single pixel at the tip of the marker location. However, because of high data

resolutions, a single pixel rarely has a high number of cells flowing through it (see

flow accumulation discussion in Section 5.2). As a result, it took several attempts

to find an interesting delineation with a considerable contributing area. To

resolve this, a small buffer (a 7 x 7 window) was placed around the single pixel to

increase the area of interest for the delineation. The resulting delineated

93

9
3

watershed represents the area draining to any of the cells in the buffered area of

interest. Less precision and fewer attempts will be required to produce a non-

trivial result. The delineated area value in acres is displayed in the results panel

at the bottom of the screen. In the future, other parameters and information such

as average slope and surface retention may be displayed in this panel.

This approach allows for watershed delineations to be performed in rapid

A

C

B

D

Figure 30. Visual Overlays. A) DEM Elevations. High elevations are pink
and low elevations are yellow. B) Catchments. The polygon marked with
an X indicates the catchment containing the watershed delineated in D>

C) Puddles. D) Delineation. The marker indicates the outlet location
while the area in red shows the watershed area draining to that outlet

point.

X

94

9
4

succession across the DEM area under the selected state of connectivity (i.e.

rainfall event). Alternatively, a second approach would allow for the selection of

one or more watershed outlet points before the algorithm has been run, and then

the SDFA could be run to find the watersheds for various rainfall events. The

algorithm would only run a single time and watersheds could be delineated for

several rainfall events of interest as depressions are filled with increasing rainfall.

This approach may prove useful in the case of a known outlet point in an area

that is known to vary widely as a function of rainfall. However, the first approach

was selected because watershed delineations at the field scale are often a

process that takes some trial-and-error. If a user were to choose a poor outlet

point, it may become frustrating to have to repeatedly run the algorithm to find a

suitable outlet point. While discussing these options, it is worth mentioning that

the algorithm could be easily modified to allow it to be paused and continued if

this were a desirable usage scenario. However, it is significantly more difficult to

reverse the algorithm (see Section 7.3, Future Work). For example, imagine

attempting to derive the individual elevations of several hundred adjacent cells

that had been all raised to the same elevation in the filling process.

 After a given depression has been filled, the filled area (i.e. the puddle) is

treated as a collective feature where users cannot delineate the area draining

only to portion of the puddled area. If a user clicks within a puddle feature, the

entire puddle and all of those cells flowing into that puddle shall be included in

the watershed delineation. If not handled in this matter, then it is likely that

delineations performed inside a puddle will produce linear, artifactual watersheds

95

9
5

as a result of the patterns in flow direction that are produced when resolved

during the filling process (see Section 4.2).

 The Catchments and Delineation layers may be output as a raster geotiff

file. For the Catchments layer, raster cells making up each catchment polygon

are assigned their particular depression ID value. For the delineation layer, a

value of 1 is assigned to all cells delineated within the watershed of interest while

all remaining cells are assigned a value of 0. Each of these raster layers will be

given the same output extent as the input DEM. In the future, these layers may

be output as vector datasets (e.g. shapefile format).

 The Watershed Delineation app can be found on the Google Play Store

under the title “Watershed Delineation – WMAC” as shown in Figure 31

(https://play.google.com/store/apps/details?id=org.waterapps.watershed&hl=en).

Figure 31. The Watershed Delineation app listing on the Google Play Store.

96

9
6

Similarly, the code for the entire Android application project can be downloaded

as a GitHub repository (https://github.com/WaterApps/watershed-delineation-

app). Critical Java classes implementing the SDFA are included in Appendix D

6.2 Implementation Verification

Figure 32 displays the catchments produced from a DEM for an agricultural

field in Fulton County, Indiana before filling any depressions, and after filling

depressions with 25 and 250 mm of rainfall. Before rainfall begins, the set of

catchments produced by the two implementations match identically with 5427

depressions that must be filled and another 1352 polygons that run off of the

DEM edges. After 10 mm of rainfall, it can be observed that the same polygons

exist in each of the Matlab and Android catchment grids (Figures 32e and f).

This indicates that the functionality of the rainfall-based SDFA has been

implemented identically between the two. Furthermore, the final catchment grids

produced after filling all depressions (250 mm) are identical.

Some differences are visible when comparing the catchment grids produced

from the two implementations. These differences could have originated from any

number of sources including the associated coding languages and the

differences in implementation of the two platforms themselves. For example, in

Matlab, the grid data is indexed with zero on the left and increases to right.

However, in Java, an image read into memory is indexed in the opposite

direction. One must reverse the order of all FOR loops with respect to only the x-

axis to mimic the opposite platform. For example, when assigning flow directions,

in the case of multiple eligible downhill neighbors of the same distance-weighted

97

9
7

A

B

C E G

H F D

Figure 32. Verification of implementation between Matlab and Android. A) Imagery, B) DEM, and C-E)
catchment grids produced from varying rainfall. C) Android 0 mm, D) Matlab 0 mm, E) Android 25 mm,

F) Matlab 25 mm, G) Android 250 mm, H) Matlab 250 mm

9
7

98

9
8

drop, the first cell encountered is taken as the direction of flow; if traversing the

data in the opposite direction with respect to the x-axis, different results will be

obtained.

Differences may have also been encountered if attention was not given

to all special cases. As explained in previous chapters, datasets with flat

topography where differences in elevation between adjacent grid cells are at or

below the vertical accuracy of the dataset results in several special cases which

must be handled by the algorithm. Because the DEM analyzed in Figure 32

contains flat areas, these special cases are magnified, particularly when a

comparison is made between implementations on two different platforms (i.e.

Matlab on a PC versus Java on an Android device).

A number of special cases must be handled due to limited vertical precision

such as the assignment of flow direction and the identification of spillover

locations. Additionally, elevations were rounded to the nearest centimeter

because the dataset had a vertical accuracy of about 15 cm. Any additional

digits of precision could not be relied on, and, instead, any flat areas resulting

from this loss of precision should be handled by the algorithm. With only

centimeter precision, it becomes increasingly likely to have multiple depressions

with the same volume and that require equivalent amounts of time to overflow if

they also have the same area (which is quite common at the initial state of

connectivity). As a result, the sequence that depressions are filled becomes

random between depressions with the same spillover time, and differences in the

sorting functions of Matlab and Java may lead to different results.

99

9
9

6.3 DEM Size Performance Relationship Testing

Table 4 presents the number of depressions and run times for various DEM

sizes and resolutions. The number of depressions appears to be linearly related

the DEM area, confirming that depressions are relatively uniformly distributed

across the chosen area. For example, increasing DEM size from 125 x 125 to

250 x 250, a factor of four in area, similarly results in an increase in the number

of depressions from 1715 to 6971, roughly a factor of four. However, with the

increase in depressions, performance is impacted exponentially; the increase

from 1715 to 6971 results in a sharp reduction in performance from two seconds

to 94 seconds. Unfortunately, this means particular attention must be given to

the size of the DEM to ensure that performance isn’t affected usability.

Table 4. Performance Evaluation of SDFA on Android Device

 1-meter Resolution 3-meter Resolution

DEM
Size

DEM Area
(hectares)

Number of
Depressions

Run
Time (s)

DEM Area
(hectares)

Number of
Depressions

Run
Time (s)

125
x 125

1.56 1715
2.07

14.31 390
0.91

250
x 250

6.25 6971
94.0

56.25 1993
5.79

500
x 500

25 25682
1280

(21 min)
225 5032

67.5

1000
 x 1000

100 --- --- 900 27346
1340

(22 min)

6.4 Instructional

The Watershed Delineation app and the Water Plane app were utilized in a

classroom setting as a lab assignment for students in Agricultural Systems

Management 336: Environmental Systems Management (Appendix C, ASM 336

Lab Assignment). The Water Plane app is a relatively uncomplicated tool which

100

1
0

0

allows for the visualization of an area for which a DEM has been acquired. A

virtual “water plane” of constant elevation across the entire DEM may be raised

and lowered with the swipe of a finger along a slider. As the water plane moves,

cells in the DEM are colored blue to indicate that they are below the water plane

and left transparent (displaying imagery) when above the elevation of the water

plane. To better conceptualize this, imagine it were the sea level raising or

lowering.

The Water Plane app allows rapid identification the highest areas in the field,

ridgelines, depressions, and channel or valley-shaped features. A marker locked

to the users’ position can read out their current elevation and additional markers

can be set so that relative elevations can be tracked between their elevation, the

elevation of the water plane, and the elevations of these other markers

throughout the DEM. This smooth, simple functionality utilizing high-resolution

LiDAR-based DEMs makes for a wide range of potential uses such as planning a

building site, familiarizing oneself with new terrain, etc. User interface designs

are consistent between this app and the Watershed Delineation app in order to

give users a sense of familiarity and intuitiveness when used together. For

example, both applications display the available DEM bounding boxes on the

map and allow users to click on them to load them as the operational DEM.

The assignment exposed students to mobile technologies to demonstrate

how tools specially designed to be used in the mobile context (i.e. apps) can

provide a new outlook when performing various tasks. The usage of the apps in

this setting also demonstrated the functionality of the applications and served as

101

1
0

1

a means to receive some preliminary feedback regarding the usability of the

applications.

In the assignment, students begin by using the Water Plane app to identify

low spots in a particular field as potential wetland sites or depressions that may

require tile drainage. Next, students begin the preliminary design of a grassed

waterway by identifying a channel-like feature in the topography with the Water

Plane app. The assignment then made use of the Watershed Delineation app to

find the area draining to a culvert where the channel is intersected by a road.

Students estimate runoff using the SCS Curve Number Method.

102

1
0

2

 CONCLUSIONS, RECOMMENDATIONS, AND FUTURE WORK CHAPTER 7.

7.1 Conclusions

An algorithm was developed which fills depressional features sequentially

as they would fill with water given an input rainfall event. This type of algorithm is

advantageous in the presence of natural depressions which may alter surface

flow patterns from those produced using existing watershed delineation methods.

The algorithm enables field-scale analyses by accounting for field-scale

topography and sub-surface drainage features in a dynamic way, providing a

wide range of field-scale connectivity conditions to affirm users’ on-site

observations. Furthermore, modifications to the flow direction implementation

have been made to allow connectivity between non-adjacent cells such as in the

case of tile inlets draining a depression or a culvert draining water across a road.

The algorithm functions identically to the Jenson and Domingue (1988)

method used in ArcMap with the exception of the sequential depression-filling

component. In the cell-by-cell comparison of 37 watershed delineations across

four different DEMs, an average percent difference of 5.8% was found between

those watersheds produced from the SDFA and ArcGIS Hydrology Toolset with

an overall percent difference of 3.11%. That is, in the scenario where all

depressions are filled, the same depressions are identified within the DEM and

103

1
0

3

filled to equivalent elevations. Flow is routed similarly across the landscape and

rerouted through the depression’s minimum spillover location after they are filled.

Minor differences are present, primarily in regarded to how a flow direction is

decided in the case of flat areas, and it is not possible to say which is better.

An applicability study was performed to look for any major patterns in the

response of hydrologic connectivity as a function of rainfall excess across various

landscapes and DEM sizes. It was found that landscapes vary widely in the

extent of hydrologic connectivity as a function of rainfall excess. While some

landscapes exhibit no change in hydrologic connectivity based on rainfall, others

with prominent natural depressions may require in excess of the 50-year return-

period rainfall event in order to fill all depression and attain the complete

hydrologic connectivity that is assumed by the current filling algorithms.

Accounting for infiltration and losses further exaggerates the effects of

depressions on hydrologic connectivity.

For those landscapes that fluctuate noticeably with natural or man-induced

depression features, it was determined in Section 4.5 that DEM size is an

important consideration. At small DEM sizes, depressions are not completely

captured in the DEMs, causing full connectivity to be approached rapidly. In this

case, edge effects comprise a majority of the DEM area. At medium scales,

DEMs may be captured, but the areas contributing to them may not be, and, as a

result, more rainfall excess may be required to achieve complete connectivity.

Finally, at large scales, depressions and their contributing areas may be captured

in the DEMs while edge effects occupy only a small proportion of the DEM. As a

104

1
0

4

result, the rainfall excess required to fill all depressions at the largest scales (232

hectares) was found to be less than medium scales (100 hectares) but greater

than small scales (less than 50 hectares).

Finally, the algorithm has been implemented as a mobile application for the

Android operating system. With the exception of drainage features, the full

rainfall-based SDFA is carried out on mobile devices in the Watershed

Delineation app. The Watershed Delineation app is free and publicly available

on the Google Play Store. When using the application, DEM size should be

considered carefully (based on resolution, e.g. limited to ~300 hectares at 3-

meter resolution) to avoid experiencing a drop in performance.

7.2 Recommendations

Two conditions are recommended in order to acquire a good representation

of field-scale surface flow: 1) the DEM should be large enough such that the

entire contributing area of any desired features are likely to be contained in the

DEM and 2) tile inlets and culvert connections should be known. The first

condition may be challenging because this requires some knowledge of the

solution before it has been found unless a very large DEM is acquired. This may

encourage users to download large DEMs, but this is undesirable because of the

greater processing and memory requirement associated with large DEMs. Given

the results of Section 4.6 regarding suggested DEM size, it is recommended to

acquire DEMs greater than 1.5 km2 in size. However, those analyses utilized

DEMs at a 1.5-meter resolution which may be unnecessarily high resolution for

hydrologic modelling, even at the field scale. While some features that affect

105

1
0

5

drainage patterns such as small roadside ditches may not be captured even at

1.5-meter resolution, a DEM at 3-meter resolution will be a quarter of the file size

while it will still capture features such as streams, ditches, and gently rolling field

topography. As far as identifying tile inlets and other drainage features, a

moderate rainfall event (e.g. 20 - 50 mm) may be simulated and any isolated

catchments may be further investigated for the presence of such drainage

features.

 Properly accounting for drainage features makes the delineation algorithm

into a time-based model. Although infiltration and losses were implemented in

this research using the curve number method, rate-based soil infiltration could be

implemented in a way similar to drainage features. This, however, starts down

the path of a field scale, finite-element, completely distributed model that

attempts to mimic and simulate the entire natural system. The current

implementation of time-based depression filling (i.e. rainfall duration, intensity,

and rates of drainage) completely ignores the fact that rainfall intensity is not

uniform over a given storm and changes in soil moisture and infiltration over time

should likely be accounted for to maintain model integrity at such a level of detail.

Moreover, the case is rare that rainfall exceeds the drainage rates of a

functioning subsurface drainage system to the point that a large surface

depression overflows and connectivity is altered. With this in mind, drainage

features as currently implemented should be used to enforce specific, known

surface connectivity patterns rather than to calculate combatting effects of rainfall

intensity to drainage rates.

106

1
0

6

7.3 Future Work

Currently, the algorithm is only capable of generating a single state of

connectivity per run of the algorithm. In the future, an ideal interface allowing

users to alter the rainfall amount and seamlessly view the corresponding

hydrologic connectivity, and delineate watersheds would provide a truly powerful

user experience. While this functionality is more challenging, it could be

achieved in several ways. One option would require storing the history of each

depression merger and the corresponding flow direction information. This option

is immensely memory-intensive under the current data structure which requires

gridded datasets as well as a database-like array of parameters for each existing

depression; the most basic implementation of this would require duplicating these

datasets at each state of connectivity. To improve upon this, a clever tree

structure may be investigated that stores the hierarchy of depressions (e.g.

Depressions 1 and 2 form Depression 3) along with the critical parameters to

derive the corresponding gridded datasets at any desired state of connectivity.

Alternatively, the data may be precomputed and served to users over the

internet. Post-SDFA flow direction grids may be delivered for various rainfall

events or only critical design-storm rainfall events and, from this watershed

delineations and the hydrologic connectivity grid can be derived. Caching and

local storage would allow the data to be acquired before going to the job site in

remote areas lacking WiFi or cellular internet connectivity. By removing the

computational burden of the algorithm from the mobile device, a more

complicated algorithm may be devised which applies the SDFA at larger scales

107

1
0

7

and accounts for infiltration, non-uniform rainfall, etc. This would enable

watershed delineations at all scales, including delineations performed in streams

and rivers. The algorithm would be run only once to generate the necessary

datasets, after which it will be stored on a server. However, this will limit

opportunities for the user to respond to on-site observations and alter inputs to

the algorithm such as drainage features, topographic modifications, and

infiltration. Again, this method would require a server to host the data with and a

folder structure (if not a server with geospatial capabilities) that will allow for

spatial queries to access tiled subsets of the data for a particular areas.

Another challenge that is faced concerns the ability to delineate larger

streams and watersheds that may span outside of the area of interest when a

field-scale DEM is analyzed. For example, Figure 14 (Section 4.14) shows a

DEM of a large field with a ditch that runs across the northern edge. Because

the DEM does not include the full upstream area draining to this ditch, the

watershed area will be underestimated for a delineation performed in the ditch.

Alternative data structures such as TINs may also be investigated for

possibilities to make gains in memory or computational performance over gridded

DEM data. Unlike gridded DEM data which can be redundant in flat areas, a

TIN-based data structure is more flexible in that it allows points to be spaced

sparsely across invariable topography and more densely in areas with high

topographic variability such as stream channels. Furthermore, ridge features,

which are important in the determination of water flow, can be represented more

precisely when elevation samples are associated with a specific point (as in a

108

1
0

8

TIN) rather than a small square plane (as in a gridded DEM). However, gridded

DEMs have an inherent x-y spacing from which the geospatial location can be

easily determined given the location of a corner point. To sustain the same file

size, the TIN must use one third of the amount of points from the gridded DEM in

order to store x and y positional information.

Additionally, there is room for improvement on the implementation of

drainage features and non-adjacent flow connections in the algorithm. Currently,

these drainage features are treated as infinite sinks for the purpose of enforcing

known surface flow patterns (e.g. a particular depression will never overflow due

to a tile inlet). In the future, the outlets of such drainage features should be

accounted for so that the downstream hydrologic response more correctly

reflects the linkages made by these features. In the future, a database of these

known drainage feature connections may be of value for studies analyzing the

impacts of increased hydrologic connectivity due to anthropogenic structures and

drainage tile inlets.

As far as utilizing mobile applications to affect watershed management

decisions in the field, watershed delineations are only one of many inputs into

solving watershed management issues. After a watershed has been delineated,

this information should be fed into a hydrologic model to analyze various

watershed management options be they alternative practices or structures.

Under a sister USDA-NIFA grant directed toward mobile apps for farm

management, efforts have been made toward a note-taking mobile application

called the Field Notebook. A map-view provides utilities that allow users to draw

109

1
0

9

points, lines, and polygons to which text and pictures may be associated. These

notes may be searched and organized either spatially or in a list-view.

Such an app should prove useful to conservation agents whose work relies

on variety of spatial notes. While the types of notes taken will differ, most of the

design elements of the Field Notebook app can be shared between these two

open-source projects. The primary difference will be that this app may also be

utilized as the point of entry for specific, required hydrologic model inputs. It may

be easiest to use this app to record observed land use information, record

agricultural management decisions after speaking with the farmer, or look up

rainfall and soil-type data for the area of interest.

As stated, this data would then be fed into a hydrologic model provide

estimates of the risk associated with various management decisions (e.g.

fertilizer and pesticide application) and the efficacy of various best management

practice options. Similar methods and principles should be applied in the

development of these apps; user inputs should be minimal and all designs should

be based on realistic user scenarios recognizing the mobile context.

110

1
1

0

REFERENCES

110

1
1

0

REFERENCES

Acushla Antony, I. C. (2013, November 15). Napra Web. Retrieved from

https://engineering.purdue.edu/napra

Administration, N. O. (2014, June). NOAA Digital Coast. Retrieved July 1, 2014,

from United States Interagency Elevation Inventory:

http://www.csc.noaa.gov/digitalcoast/tools/inventory

Antoine, M., Javaux, M., & Bielders, C. (2009). What indicators can capture

runoff-relevant connectivity properties of the micro-topographyh at the plot

scale? Advances in Water Resources 32 (8), 1297-1310.

Antonic, O., Hatic, D., & Pernar, R. (2001). DEM-based depth in sink as an

environmental estimator. Ecological Modelling 138, 247-254.

Antony, A., & Engel, B. A. (2009). Web-Based Decision Support Tool for Nutrient

and Pesticide Analysis. ASABE Annual International Meeting. Reno,

Nevada: ASABE.

Appels, W., Bogaar, P., & van der Zee, S. (2011). Influence of spatial variations

of microtopography and infiltration on surface runoff and field scale

hydrologic connectivity. Advances in Water Resources 34 (2), 303-313.

Band, L. E. (1986). Topographic Partition of Watershed with Digital Elevation

Models. Water Resources Research, 15-24.

111

1
1

1

Blanchoud, H., Moreau-Guigon, E., Farrugia, F., Chevreuil, M., & Mouchel, J.

(2007). Contribution by urban and agricultural pesticide uses to water

contamination at the scale of the marine watershed. Science of the Total

Environment 34 (2), 168-179.

Broscoe, A. J. (1959). "Quantitative analysis of longitudinal stream profiles of

small watersheds", Office of Naval Research, Project NR 389-042,

Technical Report No. 18. New York: Department of Geology, Columbia

University.

Burrough, P., & McDonnell, R. (1998). Spatial Information Systems and

geostatistics. In P. Burrough, & R. McDonnell, Principles of Geographical

Information Systems (p. 333). New York: Oxford University Press.

Chu, X., Yang, J., Chi, Y., & Zhang, J. (2013). Dynamic puddle delineation and

modeling of puddle-to-puddle filling-spilling-merging-splitting overland flow

processes. Water Resour. Res., 3825-3829. doi:10.1002/wrcr.20286

Chu, X., Zhang, J., Chi, Y., & Yang, J. (2010). An improved method for

watershed delineation and computation of surface depression storage.

Watershed Management 2010: Innovations in Watershed Management

under Land Use and Climate Change, (pp. 1113-1122).

Collins, S. B. (1975). Terrain parameters directly from a digital terrain model. The

Canadian Surveyor 29, 507-518.

Costa-Cabral, M. C., & Burges, S. J. (1994). Digital elevation model networks

(DEMON): A model of flow over hillslopes for computation of contributing

and dispersal areas. Water Reesources Research, 29.

112

1
1

2

Darboux, F., Davy, P., & Gascuel-Odoux, C. (2002). Effect of depression storage

capacity on overland flow generation for rough horizontal surfaces: water

transfer distance and scaling. Earth Suface Processes and Landforms 27,

177-191.

Darboux, F., Davy, P., Gascuel-Odoux, C., & Huang, C. (2001). Evolution of soil

surface roughness and flowpath connectiviy in overland flow experiments.

Catena, 125-139.

Dhun, K. (2011). Application of LiDAR DEMs to the Modelling of Surface

Drainage PAtterns in Human Modified Landscapes. University of Guelph.

Eclipse Foundation. (2014). Retrieved June 19, 2014, from Eclipse:

http://www.eclipse.org

Environmental Systems Research Institute (ESRI). (2013). ArcGIS Desktop:

Release 10.2. Redlands, CA, United States.

Fairfield, J., & Leymarie, P. (1991). Drainage networks from grid digital elevation

models. Water Resources Research, 27(5), 709-717.

Foundation, O. S. (2014). GDAL/OGR In Java. Retrieved June 19, 2014, from

GDAL: http://trac.osgeo.org/gdal/wiki/GdalOgrInJava

Freeman, T. G. (1991). Calculating Catchment Area with Divergent Flow Based

on a Regular Grid. Computers and Geosciences, 17(3), 413-422.

Garbrecht, J., & Martz, M. W. (1997). The assignment of drainage direction over

flat surfaces in raster digital elevation models. Journal of Hydrology, 204-

213.

113

1
1

3

Google. (2014). Android SDK. Retrieved June 19, 2014, from Android

Developers: http://developer.android.com/sdk/index.html

Hayashi, A., & van der Kamp, G. (2000). Modelling and managing critical source

areas of diffuse pollution from agricultural land using flow connectivity

simulation. Journal of Hydrology 237, 74-85.

Heathwaite, A., Quinn, P., & Hewett, C. (2005). Modelling and managing critical

source areas of diffuse pollution from agricultural land using flow

connectivity simulation. Journal of Hydrology 304(1-4), 446-461.

Heidemann, H. K. (2012, November). Lidar base specification. U.S. Geological

Survey Techniques and Methods, Book 11, chap. B4, 67 p. with

appendices, ver 1.2, http://dx.doi.org/10.3133/tm11B4.

doi:http://dx.doi.org/10.3133/tm11B4

Hubbard, D., & Linder, R. (1986). Spring runoff retention in prairie pothole

wetlands. Journal of Soil and Water Conservation 41 (2), 122-125.

Indiana University. (2014). Indiana Spatial Data Portal. Retrieved August 13,

2013, from Single File Download Interface:

http://gis.iu.edu/isdp_dl/map/m10000.html

IndianaMap. (2013). IndianaMap Framework Data. Retrieved from

http://dx.doi.org/10.5069/G9959FHZ

Jenson, S. K., & Domingue, J. O. (1988). Extracting Topographic Structure from

Digital Elevation Data for Geographic Information System Analysis.

Photogrammetric Engineering and Remote Sensing, 1593-1600.

114

1
1

4

Lea, N. L. (1992). An aspect driven kinematic routing algorithm. In Overland Flow:

Hydraulics and Erosion Mechanics. New York: Chapman & Hall.

Lindsay, J., & Creed, I. (2005). Removal of artefact depressions from DEMs:

towards a minimum impact appraoch. Hydrological Processes 19 (16),

3113-3126.

Lindsay, J., & Creed, I. (2006). Distinguishing actual and artefact depressions in

digital elevation data. Computers and Geosciences 32, 1192-1204.

Louchart, X., Voltz, M., Andrieux, P., & Moussa, R. (2001). Herbicide transport to

surface waters at field and watershed scales in a mediterranean vineyard

area. Journal of Environmental Quality 30(3), 982-991.

MacMillan, R. A., Furley, P. A., & Healey, R. G. (1993). Using hydrological

models and geographic information systems to assist with the

management of surface water in agricultural landscapes. In Landscape

Ecology and GIS (pp. 181-209). London: Taylor & Francis.

MacMillan, R., Martin, T., Earle, T., & McNabb, D. (2003). Automated analysis

and classification of landforms using high-resolution digital elevation data:

applications and issues. Canadian Journal of Remote Sensing 29 (5), 592-

606.

Mark, D. (1984). Automated detection of drainage networks from digital elevation

models. Cartographica 21(2-3), 168-178.

Mark, D. (1988). Network models in geomorphology. In M. Anderson, Modelling

Geomorphological Systems (pp. 73-97). New York, NY: Wiley.

115

1
1

5

Marks, D. M., Dozier, J., & Frew, J. (1984). Automated BAsin Delineation From

Digital Elevation Data. Geo-processing 2, 299-311.

Martz, L. W., & Garbrecht, J. (1998). The treatment of flat areas and depression

in automated drainage analysis of raster digital elevation models.

Hydrological Processes, 12, 843-855.

Martz, L., & DeJong, E. (1988). CATCH: A FORTRAN program for measuring

catchment area from digital elevation models. Computers and

Geosciences 14 (5), 627-640.

Martz, L., & Garbrecht, J. (1999). An outlet breaching algorithm for the treatment

of closed depressions in a raster DEM. Computeres & Geosciences 25 (7),

835-844.

McCormack, J., Hogg, J., & Hoyle, B. (1993). Feature-based derivation of

drainage networks. International Journal of Geographical Information

Systems 7 (3), 263-279.

Metcalfe, R., & Buttle, J. (1999). Semi-distributed water balance dynamics in a

small boreal forest basin. Journal of Hydrology 226, 66-87.

Moore. (n.d.).

Moore, I. D., Grayson, R. B., & Ladson, A. R. (1991). Digital Terrain Modelling: A

Review of Hydrological, Geomorphological, and biological Applications.

Hydrological Processes, 5(1), 3-30.

Moore, I. D., O'Loughlin, E. M., & Burch, G. J. (1988). A countour-based

topographic model for hydrological and ecological applications. Earth

Surfaces Processes Landforms, 13, 306-320.

116

1
1

6

Muehrcke, P., & Muehrcke, J. (1998). Map Use: Reading, Analysis, and

Interpretation, Fourth ed. Madison, WI: JP Publications.

National Oceanic and Atmospheric Administration (NOAA) Coastal Services

Center. (2012). Lidar 101: An Introduction to Lidar Technology, Data, and

Applications. Revised. Charleston, SC: NOAA Coastal Services Center.

O'Callaghan, J., & Mark, D. (1984). The extraction of drainage networks from

digital elevation data. Computer Vision, Graphics, and Image Processing

28, 323-344.

OpenATK. (2013). Retrieved June 19, 2014, from Open Ag Toolkit:

http://www.openagtoolkit.com

OpenATK. (2014). OpenATKLib. Retrieved June 19, 2014, from Github:

https://github.com/OpenATK/OpenATKLib

OpenTopography. (2012). OpenTopography. Retrieved November 14, 2012,

from 2011-2013 Indiana Statewide LiDAR: http://opentopography.org

Pan, F., Stieglitz, M., & McKane, R. B. (2011). An algorithm for treating flat areas

and depressions in digital. Water Resources Research, 48, W00L10,

doi:10.1029/2011WR010735.

Probst, J. (1985). Nitrogen and phosphorus exportation in the Garonne basin

(France). Journal of Hydrology 76 (3-4), 281-305.

Quinn, P. K., Beven, K., Chevallier, P., & Planchon, O. (1991). The Prediction of

Hillslope Flow Paths for Distributed Hydrological Modeling Using Digital

Terrain Models. Hydrological Processes 5, 59-80.

117

1
1

7

Rosenberry, D., & Winter, T. (1997). Dynamics of water-table fluctuations in an

upland between two prarie-pothole wetlands in North Dakota. Journal of

Hydrology 191, 266-189.

Rozemeijer, J. (2010). Dynamics in groundwater and surface water quality: from

field-scale processes to catchment-scale monitoring. Utrecht: Faculty of

Geosciences, Utrect University.

Simard, J. G., Beauchemin, S., & Haygarth, P. (2000). Potential for preferential

pathways of phosphorus transport. Journal of Environmental Quality, 29(1):

97-105.

Speight, J. G. (1968). Parametric description of land form. In Stewart, G.A., editor,

Land Evaluation, Papers of a CSIRO Symposium in Cooperation with

UNESCO, 26-31.

Tarboton, D. G. (1997). A New Method for the Determination of Flow Directions

and Upslope Areas in Grid Digital Elevation Models. Water Resources

Research, 33(2), 309-319.

Tarboton, D., Bras, R., & Rodriguez-Iturbe, I. (1991). On the extraction of

channel networks from digital elevation data. Hydrological Processes 5,

81-100.

The MathWorks, Inc. (2013). MATLAB and Statistics Toolbox Release 2013b.

Natick, Massachusetts, United States.

Tobler, W. R. (1966). Numerical map generalization and notes on the analysis of

geographical distributions. Michigan Inter-University Community of

Mathematical Geographers, Discussion Paper 8, University of Michigan.

118

1
1

8

Tribe, A. (1992). Automated recognition of valley lines and drainage networks

from grid digital elevation models: a review and a new method. Journal of

Hydrology 139, 263-293.

Turtola, E., & Jaakkola, A. (1995). Loss of phosphorus by surface runoff and

leaching from a heavy clay soil under barley and grass ley in Finland. Acta

Agriculturae Scandinavica B-S P 45(3), 159-165.

United States Department of Agriculture. (1986). Urban hydrology for small

watersheds SCS Technical Release 55.

Watershed Management Apps Center. (2014). WMACLib. Retrieved June 19,

2014, from Github: https://github.com/WaterApps/watershed-delineation-

app

Yang, J., & Chu, X. (2012). Effects of DEM resolution on surface depression

properties and hydrologic connectivity. Journal of Hydrologic Engineering,

18(9), 1157-1169.

Zhou, Q., & Liu, X. (2004). Analysis of errors of derived slope and aspect related

to DEM data properties. Computers & Geosciences 30, 369-378.

Zhou, Q., Pilesjo, P., & Chen, Y. (2011). Estimating surface flow paths on a

digital elevation model using a triangular facet network. Water Resources

Research, 47, W07522, doi:10.1029/2010WR009961.

119

1
1

9

APPENDICES

119

1
1

9

Appendix A Additional Figures for Section 4.2

Figure B-1.

A

B
4

5

1

2 3

1

2
3

5

4

Figure B1. For an agricultural field in Clinton County, Indiana, USA: A)
Watershed based on ArcGIS Hydrology toolset. B) Watersheds based on SDFA.

120

1
2

0

B

5

B

7

5 1

2 3

8 6

5 1 8

2 3

6

7

A

Figure B2. For an agricultural field in Lawrence County, Indiana, USA: A)
Watershed based on ArcGIS Hydrology toolset. B) Watersheds based on SDFA.

121

1
2

1

Appendix B Additional Figures for Section 4.6

Figure A1. a) A watershed delineation performed in Fulton County, Indiana
showing watershed area as a function of rainfall. Losses have been accounted

for using the SCS Curve Number method with a curve number of 75. b) The
associated full plot of contributing area versus the required rainfall amount to

produce that watershed.

A

B

122

1
2

2

Figure A2. a) A watershed delineation performed in Fulton County, Indiana
showing watershed area as a function of rainfall. Losses have been

accounted for using the SCS Curve Number method with a curve number
of 75. b) The associated full plot of contributing area versus the required

rainfall amount to produce that watershed

A

B

123

1
2

3

Figure A3. a) A watershed delineation performed in Clinton County, Indiana
showing watershed area as a function of rainfall. Losses have been accounted

for using the SCS Curve Number method with a curve number of 75. b) The
associated full plot of contributing area versus the required rainfall amount to

produce that watershed.

A

B

124

1
2

4

Figure A4. a) A watershed delineation performed in Lawrence County, Indiana showing
watershed area as a function of rainfall. Losses have been accounted for using the SCS

Curve Number method with a curve number of 75. b) The associated full plot of contributing
area versus the required rainfall amount to produce that watershed.

A

B

125

1
2

5

Appendix C ASM 336 Lab Exercise

ASM336 Lab

Applications for Mobile Devices for Water

Learning Outcomes
At the end of this assignment, students should be able to:

1. Identify a potential location for a) a tile riser, b) a wetland, and c) a
grassed waterway

2. Delineate a watershed
3. Establish a relationship between precipitation amount and the area

inundated/contributing runoff
4. Implement SCS curve number method to estimate runoff volume

You will use two mobile device Applications (Apps), the Water Plane App and the
Watershed Delineation App, to achieve the learning outcomes. These Apps are
intended to be used as tools to assist your on-site observations, so keep this in
mind as you proceed. Toshiba Thrive tablets will be supplied to use, but you are
encouraged to use your personal Android devices.

Android Device Crash Course:
There are typically 3 navigation buttons on all Android devices – the back button,
home button, and the Application drawer that allows you to switch between
opened Applications. The home page typically has an icon for the Google Play
Store which is the Android equivalent of iTunes Store where you may view and
purchase Apps. There is also an Apps icon which allows you to view all installed
Apps. Device settings such as WiFi/GPS access, screen brightness, etc. may be
accessed by pressing in the lower right by the time and then pressing Settings.

Log onto PAL for Wifi Access
Go to the Settings screen and select Wireless and networks on the upper left
side. From the right panel select Wi-Fi settings. Select PAL3.0 and select
Forget. Find PAL3.0 again in the list of available networks and select it. Enter
your login information – your Purdue Career Account ID and password.

Install the Apps
Go to the Watershed Management Apps Center website at www.waterapps.org.
The two apps are shown in the upper right, and are linked to their Google Play
Store listings. Download the apps on your device.

Open the Apps
Upon installation, icons of installed Apps are placed on the home screen. They
may also be found using the Apps icon to list all installed Apps. Open them! We
will start with the Water Plane App.

126

1
2

6

The Water Plane App
The Water Plane App is primarily a visualization and surveying tool that makes
use of publicly available, state-wide high resolution elevation data. Using the
slider at the bottom of the screen, the water level may be raised and lowered
while the map shows how this water level intersects the landscape. By doing this,
the highest and lowest regions may quickly be identified, and one may be able to
get a feel for the landscape. If a puddle-like isolated area of water forms as you
raise the water plane, then it is likely that this is a low spot surrounded by higher
elevation, perhaps a suitable location for a tile drain or wetland. If you raise the
water plane and visible “fingers” are present, these areas are likely channels
where the surrounding area drains.

The Watershed Delineation App
A watershed is the area that drains to a given location. The Watershed
Delineation App is a tool developed to assist in resolving water issues in the field.
As you may expect, the area that drains to a given location depends on the
amount of precipitation that falls upon the area; natural depressions are present
in the terrain, capable of retaining water, and only after they puddle and overflow
do they drain further downhill or downstream. Users may select a rainfall amount
to simulate on the landscape using the Menu button in the upper right, then
selecting Settings, then editing the Rainfall Event.

After selecting a rainfall amount, the event may be simulated using the Simulate
Rainfall button. Following the rainfall simulation, several layers are displayed
which may be toggled on or off from the Menu. The Puddles layer displays
puddles in the field. The Catchments layer displays each area that drains
together as a uniquely colored polygon. However, at times, you may want to
know how an area drains within a subsection of these polygons. The marker
placed on the map may be dragged (hold your finger on it for a moment and it
becomes draggable), and the watershed draining to that location is then
delineated.

127

1
2

7

Figure 1. 10-Year 24-Hour Rainfall Map.

Reference: www.cpesc.org/reference/tr55.pdf (page 148, note: additional maps available).

128

1
2

8

Figure 2 - SCS Curve Number Method – Curve Number Table.

Reference: www.cpesc.org/reference/tr55.pdf (page 18).

129

1
2

9

Figure 3. SCS Curve Number Method – Equations.

Reference: www.cpesc.org/reference/tr55.pdf (page 13).

130

1
3

0

Computer Lab, #3

ASM 336

Assignment
1. Use the Water Plane App to identify potential locations for a) a tile riser, b) a

wetland, and c) a grassed waterway using the instructions given. Describe

what made this location a suitable location (based on the App, not indications

from the Google Maps imagery). Label these points on the provided map view

with the letters A, B, and C, respectively.

2. Gather some preliminary information for a grassed waterway design. Grassed

waterways are typically designed using the 10-year, 24-hour storm event.

Identify this rainfall value for the Feldun Purdue Agricultural Center using

Figure 1 (instructions).

3. The SCS curve number method is an approach to estimate runoff given a

generalized set of land use and soil type characteristics. For example,

Name:

131

1
3

1

assume the grassed waterway will be placed in an area that is straight row

cropped with corn on hydrologic soil group B soils in good condition. What

would be the runoff produced (in inches) as a result of the 10-year, 24-hour

storm found in Question 2? The curve number may be found in Figure 2,

while the necessary equations are in Figure 3 (instructions).

4. Because the Watershed Delineation App doesn’t take infiltration into account,

the input rainfall event is actually “effective rainfall,” or rainfall minus

infiltration and initial abstractions. Use the runoff value found in Question 3 as

the input rainfall amount to the Watershed Delineation App. Delineate the

area that drains to the point specified in Figure 1 (above). (This could be the

base of a grassed waterway.) Record the acreage of this watershed, and

multiply this value by the runoff found in Question 3 to get a total volume of

runoff (acre-inches of runoff).

5. OPTIONAL (bonus): Using the Watershed Delineation App, vary the rainfall

amount and look for the changes in watershed area at a given location (Go to

Menu > Run New Simulation, then Menu > Settings > Rainfall Amount to

prepare a new rainfall simulation. Simulate 0.5”, 1.0”, and 2.0” of rainfall, and

make a plot of the resulting watershed area vs. each of these rainfall amounts.

Discuss this relationship.

132

1
3

2

Appendix D Algorithm Code

This appendix contains the critical Java classes used to implement the SDFA in

the Watershed Delineation App on Android devices. The rest of the project code

necessary to duplicate the app are available on Github (https://github.com/

WaterApps/watershed-delineation-app).

Pit Class

package org.waterapps.watershed;

import java.util.ArrayList;

import java.util.LinkedList;

import java.util.List;

import android.graphics.Point;

import android.util.Log;

public class Pit implements Comparable{

 int pitId; // pit identification number. Negatives flow off the DEM edge while
positive value pits have storage

 Point pitPoint;

// List<Point> allPointsList; // this is used to speed up several calculations when
pits merge: Re-IDing the two merging pits, and finding new retention volume
critical to causal sequential depression filling

 List<Point> pitBorderIndicesList; // list of indices along the border of the
depression. Used to find new spillover elevation when merger takes place

 float spilloverElevation = Float.NaN; // threshold elevation before the
depression will overflow

 Point pitOutletPoint; // spillover elevation and

 Point outletSpilloverFlowDirection; // cell to which this pit will overflow

 int area;

133

1
3

3

 float retentionVolume; // used to calculate spillover time. Derived from
elevation difference from spillover elevation to pit cells lower than spillover
elevation

 float filledVolume; // critical to know when pits merge and calculate

 float spilloverTime; // used to order depressions

 float pitDrainageRate; // NOT USED CURRENTLY (left null) for accumulation
rate calculation

 public Pit(int pitId, Point pitPoint) {

 this.pitPoint = pitPoint;

 this.pitId = pitId;

 }

 public void completePitConstruction(List<Point> indicesDrainingToPit, float[][]
drainage, float cellSize, float[][] dem, int[][] pitIdMatrix) {

 area = indicesDrainingToPit.size();

 // Border-dependent variables and calculations

 pitBorderIndicesList = new ArrayList<Point>(indicesDrainingToPit);

 for (int i = 0; i < indicesDrainingToPit.size(); i++) {

 Point currentPoint = new Point(indicesDrainingToPit.get(i));

 int r = currentPoint.y;

 int c = currentPoint.x;

 boolean onBorder = false;

 for (int x = -1; x < 2; x++) {

 for (int y = -1; y < 2; y++){

 if (x == 0 && y == 0) {

 continue;

 }

 if (currentPoint.y+y > pitIdMatrix.length-1 || currentPoint.y+y < 0 ||
currentPoint.x+x > pitIdMatrix[0].length-1 || currentPoint.x+x < 0) {

 continue;

 }

134

1
3

4

 if (pitIdMatrix[r+y][c+x] != pitId || (r == pitIdMatrix.length-1 || r == 0 || c ==
pitIdMatrix[0].length-1 || c == 0)) {

 float currentElevation = dem[r][c];

 float neighborElevation = dem[r+y][c+x];

 onBorder = true;

 if ((Float.isNaN(spilloverElevation)) || (currentElevation <=
spilloverElevation && neighborElevation <= spilloverElevation)) {

 spilloverElevation = (float) Math.max(neighborElevation,
currentElevation);

 pitOutletPoint = currentPoint;

 outletSpilloverFlowDirection = new Point(c+x, r+y);

 }

 }

 }

 }

 if (onBorder == false) {

 pitBorderIndicesList.remove(currentPoint);

 }

 }

 // Volume/elevation-dependent variables and calculations

 retentionVolume = 0.0f;

 filledVolume = 0.0f;

 pitDrainageRate = 0.0f;

 float netAccumulationRate = (RainfallSimConfig.rainfallIntensity *
indicesDrainingToPit.size() * cellSize*cellSize);//cubic meters per hour -
pitDrainageRate

 spilloverTime = retentionVolume / netAccumulationRate; //hours

 }

 public void completeNegativePitConstruction(List<Point> indicesDrainingToPit,
float[][] drainage, float cellSize, float[][] dem, int[][] pitIdMatrix) {

 area = indicesDrainingToPit.size();

135

1
3

5

 // Border-dependent variables and calculations

 pitOutletPoint = pitPoint;

 spilloverElevation = dem[pitOutletPoint.y][pitOutletPoint.x];

 pitBorderIndicesList = new ArrayList<Point>(indicesDrainingToPit);

 for (int i = 0; i < indicesDrainingToPit.size(); i++) {

 Point currentPoint = new Point(indicesDrainingToPit.get(i));

 int r = currentPoint.y;

 int c = currentPoint.x;

 boolean onBorder = false;

 for (int x = -1; x < 2; x++) {

 for (int y = -1; y < 2; y++){

 if (x == 0 && y == 0) {

 continue;

 }

 if (currentPoint.y+y > pitIdMatrix.length-1 || currentPoint.y+y < 0 ||
currentPoint.x+x > pitIdMatrix[0].length-1 || currentPoint.x+x < 0) {

 continue;

 }

 if (pitIdMatrix[r+y][c+x] != pitId || (r == pitIdMatrix.length-1 || r == 0 || c ==
pitIdMatrix[0].length-1 || c == 0)) {

 onBorder = true;

 }

 }

 }

 if (onBorder == false) {

 pitBorderIndicesList.remove(currentPoint);

 }

 }

 // Volume/elevation-dependent variables and calculations

136

1
3

6

 retentionVolume = 0.0f;

 filledVolume = 0.0f;

 pitDrainageRate = 0.0f;

 spilloverTime = Float.POSITIVE_INFINITY;

 }

 @Override

 public int compareTo(Object obj) {

 Pit f = (Pit) obj;

 if (spilloverTime > f.spilloverTime) {

 return 1;

 }

 else if (spilloverTime < f.spilloverTime) {

 return -1;

 }

 else {

 return 0;

 }

 }

}

PitRaster Class

package org.waterapps.watershed;

import java.util.ArrayList;

import java.util.List;

import org.waterapps.watershed.WatershedDataset.WatershedDatasetListener;

import android.graphics.Bitmap;

import android.graphics.BitmapFactory;

import android.graphics.Color;

import android.graphics.Point;

137

1
3

7

public class PitRaster {

 // bitmap represents rasterized elevation data

 List<Pit> pitDataList;

 int[][] pitIdMatrix;

 int numrows;

 int numcols;

 private WatershedDatasetListener listener;

 static int status = 40;

 private float[][] dem;

 FlowDirectionCell[][] flowDirection;

 float cellSize;

 int maxPitId = 1; // positive pits need to be filled

 int minPitId = -1; // negative pits are connected to the edge of

 // constructor method

 public PitRaster(float[][] dem, float[][] drainage,FlowDirectionCell[][]
flowDirection, float inputCellSize, WatershedDatasetListener listener) {

 this.dem = dem;

 this.flowDirection = flowDirection;

 this.cellSize = inputCellSize;

 this.listener = listener;

 }

 public void constructPitRaster(int pitCellCount) {

 numrows = flowDirection.length;

 numcols = flowDirection[0].length;

 pitIdMatrix = new int[numrows][numcols];

 pitDataList = new ArrayList<Pit>(pitCellCount + (numrows*2) + (numcols*2) -
4);

 //identify catchments raster

138

1
3

8

 for (int c = 0; c < numcols; c++) {

 for (int r = 0; r < numrows; r++) {

 // Edge cells were marked with a null flow direction child. Identify each
edge cell and

 // those cells that flow to it as a unique pit with a negative id.

 if (flowDirection[r][c].childPoint == null) {

 Point pitPoint = new Point(c, r);

 Pit currentPit = new Pit(minPitId, pitPoint);

 pitDataList.add(currentPit);

 minPitId--;

 } else if (flowDirection[r][c].childPoint.y < 0) {

 Point pitPoint = new Point(c, r);

 Pit currentPit = new Pit(maxPitId, pitPoint);

 pitDataList.add(currentPit);

 maxPitId++;

 }

 }

 status = (int) (40 + (25 * ((((c*numrows)))/((float) numrows*numcols))));

 listener.simulationOnProgress(status, "Locating Surface Depressions");

 }

 // After identifying the pits matrix, gather pit data for each pit

 for (int i = 0; i < pitDataList.size(); i++) {

 if (pitDataList.get(i).pitId > -1){

 List<Point> indicesDrainingToPit = findCellsDrainingToPoint(flowDirection,
pitDataList.get(i).pitPoint, pitDataList.get(i).pitId);

 pitDataList.get(i).completePitConstruction(indicesDrainingToPit, null,
cellSize, dem, pitIdMatrix);

 } else {

 List<Point> indicesDrainingToPit = findCellsDrainingToPoint(flowDirection,
pitDataList.get(i).pitPoint, pitDataList.get(i).pitId);

139

1
3

9

 pitDataList.get(i).completeNegativePitConstruction(indicesDrainingToPit,
null, cellSize, dem, pitIdMatrix);

 }

 status = (int) (65 + (25 * (i/(float)pitDataList.size())));

 listener.simulationOnProgress(status, "Computing Surface Depression
Dimensions");

 }

 }

 public List<Point> findCellsDrainingToPoint(FlowDirectionCell[][] flowDirection,
Point pitPoint, int pitId) {

 List<Point> indicesDrainingToPit = new ArrayList<Point>();

 indicesDrainingToPit.add(pitPoint);

 List<Point> indicesToCheck = new ArrayList<Point>();

 indicesToCheck.add(indicesDrainingToPit.get(0));

 while (!indicesToCheck.isEmpty()) {

 int r = indicesToCheck.get(0).y;

 int c = indicesToCheck.get(0).x;

 pitIdMatrix[r][c] = pitId;

 indicesToCheck.remove(0);

 if (flowDirection[r][c].parentList.isEmpty()) {

 continue;

 }

 for (int i = 0; i < flowDirection[r][c].parentList.size(); i++) {

 indicesDrainingToPit.add(flowDirection[r][c].parentList.get(i));

 indicesToCheck.add(flowDirection[r][c].parentList.get(i));

 }

 }

 return indicesDrainingToPit;

 }

 public int getIndexOf(int inputPitID) {

140

1
4

0

 for (int i = 0; i < pitDataList.size(); i++) {

 if (pitDataList.get(i).pitId == inputPitID) {

 return i;

 }

 }

 int pitListIndex = -1;

 return pitListIndex;

 }

 public Bitmap highlightSelectedPit(int selectedPitIndex) {

 BitmapFactory.Options options = new BitmapFactory.Options();

 options.inPurgeable = true;

 options.inInputShareable = true;

 Bitmap icon =
BitmapFactory.decodeResource(MainActivity.context.getResources(),
R.drawable.watershedelineation, options);

 Bitmap pitsBitmap = Bitmap.createScaledBitmap(icon,
this.pitIdMatrix[0].length, this.pitIdMatrix.length, false);

 Bitmap highlightedPitBitmap = Bitmap.createBitmap(pitsBitmap);;

 Pit selectedPit = this.pitDataList.get(selectedPitIndex);

 for (int i = 0; i < selectedPit.pitBorderIndicesList.size(); i++) {

 highlightedPitBitmap.setPixel(pitIdMatrix[0].length - 1 -
selectedPit.pitBorderIndicesList.get(i).x, selectedPit.pitBorderIndicesList.get(i).y,
Color.BLACK);

 }

 return highlightedPitBitmap;

 }

}

WatershedDataset Class

package org.waterapps.watershed;

141

1
4

1

import java.util.ArrayList;

import java.util.Arrays;

import java.util.Collections;

import java.util.List;

import java.util.Random;

import org.gdal.gdal.Dataset;

import org.gdal.gdal.gdal;

import org.gdal.gdalconst.gdalconst;

import org.gdal.gdalconst.gdalconstConstants;

import org.gdal.ogr.Driver;

import org.gdal.ogr.Feature;

import org.gdal.ogr.FeatureDefn;

import org.gdal.ogr.Geometry;

import org.gdal.ogr.Layer;

import org.gdal.ogr.ogr;

import org.gdal.osr.SpatialReference;

import android.graphics.Bitmap;

import android.graphics.BitmapFactory;

import android.graphics.Color;

import android.graphics.Point;

import android.os.AsyncTask;

import android.util.Log;

import com.google.android.gms.maps.model.LatLng;

import com.openatk.openatklib.atkmap.models.ATKPolygon;

public class WatershedDataset {

 FlowDirectionCell[][] flowDirection;

 float[][] originalDem;

 float[][] dem;

 float[][] drainage;

 public static PitRaster pits;

142

1
4

2

 static float cellSize;

 static int status = 0;

 static String statusMessage = "Reading DEM";

 public static float noDataVal;

 public static boolean fillAllPits = false;

 public static int delineatedArea = 0;

 WatershedDatasetListener listener;

 DelineationListener delineationListener;

 static Layer layer;

 static org.gdal.ogr.DataSource dst;

 public interface WatershedDatasetListener {

 public void simulationOnProgress(int progress, String status);

 public void simulationDone();

 }

 public interface DelineationListener {

 public void delineationOnProgress(Bitmap bitmap);

 public void delineationDone();

 }

 // Constructor

 public WatershedDataset(float[][] inputDem, float inputCellSize, float
inputNoDataVal, AsyncTask task) {

 if(task instanceof WatershedDatasetListener) {

 listener = (WatershedDatasetListener) task;

 } else {

 throw new ClassCastException("WatershedDataset - Task must implement
WatershedDatasetListener");

 }

143

1
4

3

 noDataVal = inputNoDataVal;

 drainage = null;

 cellSize = inputCellSize;

 // Load the DEM

 listener.simulationOnProgress(status, "Reading DEM");

 originalDem = inputDem;

 dem = new float[originalDem.length][originalDem[0].length];

 for (int r = 0; r < originalDem.length; r++) {

 for (int c = 0; c < originalDem[0].length; c ++) {

 dem[r][c] = originalDem[r][c];

 }

 }

 listener.simulationOnProgress(status, "Discovering Flow Routes");

 // Compute Flow Direction

 int pitCellCount = computeFlowDirection();

 // Compute Pits

 listener.simulationOnProgress(status, "Identifying Surface Depressions");

 pits = new PitRaster(dem, drainage, flowDirection, cellSize, listener);

 pits.constructPitRaster(pitCellCount);

 listener.simulationOnProgress(status, "Done");

 }

 public void recalculatePitsForNewRainfall() {

 MainActivity.simulateButton.setEnabled(false);

 for (int i=0; i < WatershedDataset.pits.pitDataList.size(); i++) {

 if (WatershedDataset.pits.pitDataList.get(i).pitId < 0) {

 continue;

 }

 }

144

1
4

4

 MainActivity.simulateButton.setEnabled(true);

 }

 public void setTask(AsyncTask task){

 if(task instanceof WatershedDatasetListener) {

 listener = (WatershedDatasetListener) task;

 } else {

 throw new ClassCastException("WatershedDataset - Task must implement
WatershedDatasetListener");

 }

 }

 public int computeFlowDirection() {

 int pitCellCount = 0;

 flowDirection = new FlowDirectionCell[this.dem.length][this.dem[0].length];

 for (int c = 0; c < this.dem[0].length; c++) {

 for (int r = 0; r < this.dem.length; r++) {

 Point childPoint = null;

 // If the cell is along the border then it should remain a null

 if (r == this.dem.length-1 || r == 0 || c == this.dem[0].length-1 || c == 0) {

 flowDirection[r][c] = new FlowDirectionCell(childPoint);

 continue;

 }

 float minimumSlope = Float.NaN;

 for (int x = -1; x < 2; x++) {

 for (int y = -1; y < 2; y++){

 if (x == 0 && y == 0) {

 continue;

 }

 float distance = (float) Math.sqrt((Math.pow(x, 2) + Math.pow(y, 2)));

145

1
4

5

 float slope = (dem[r+y][c+x] - dem[r][c])/distance;

 //maintain current minimum slope, minimum slope being the steepest
downslope

 if (Float.isNaN(minimumSlope) || slope < minimumSlope) {

 minimumSlope = slope;

 childPoint = new Point(c+x, r+y);

 flowDirection[r][c] = new FlowDirectionCell(childPoint);

 }

 }

 }

 // Identification of pit cells (no downslope available) as (-1, -1) flow
direction childpoint

 if (minimumSlope >= 0) {

 pitCellCount++;

 childPoint = new Point(-1, -1);

 FlowDirectionCell flowDirectionCell = new FlowDirectionCell(childPoint);

 flowDirection[r][c] = flowDirectionCell;

 }

 }

 status = (int) (20 + (10 * (((c*this.dem.length))/((float)
this.dem.length*this.dem[0].length))));

 listener.simulationOnProgress(status, "Discovering Flow Routes");

 }

 // Now go back through and also build a list of parents so the tree structure
can be traversed either way.

 // Edge pixels may have parents, but lack the neighbors to determine a valid
flow direction (child).

 for (int c = 0; c < this.dem[0].length; c++) {

 for (int r = 0; r < this.dem.length; r++) {

 Point currentPoint = new Point(c, r);

 ArrayList<Point> parentList = new ArrayList<Point>(8);

146

1
4

6

 // Find all cells pointing to current cell.

 for (int x = -1; x < 2; x++) {

 for (int y = -1; y < 2; y++){

 if (x == 0 && y == 0) {

 continue;

 }

 if (r+y > this.dem.length-1 || r+y < 0 || c+x > this.dem[0].length-1 || c+x
< 0) {

 continue;

 }

 if (flowDirection[r+y][c+x].childPoint != null) {

 if (flowDirection[r+y][c+x].childPoint.x == currentPoint.x &&
flowDirection[r+y][c+x].childPoint.y == currentPoint.y) { //apparently, this is not
the same thing as "flowDirection[r+y][c+x].childPoint == currentPoint"; perhaps
checking == for two points doesn't work

 parentList.add(new Point(c+x, r+y));

 }

 }

 }

 }

 flowDirection[r][c].setParentList(parentList);

 }

 status = (int) (30 + (10 *
(((c*this.dem.length))/((float)this.dem.length*this.dem[0].length))));

 listener.simulationOnProgress(status, "Discovering Flow Routes");

 }

 return pitCellCount;

 }

 public void findFlowDirectionParents(List<Point> cellsToFindParents) {

 for (int i = 0; i < cellsToFindParents.size(); i++) {

 int r = cellsToFindParents.get(i).y;

 int c = cellsToFindParents.get(i).x;

147

1
4

7

 ArrayList<Point> parentList = new ArrayList<Point>(8);

 for (int x = -1; x < 2; x++) {

 for (int y = -1; y < 2; y++){

 if (x == 0 && y == 0) {

 continue;

 }

 if (r+y > this.dem.length-1 || r+y < 0 || c+x > this.dem[0].length-1 || c+x <
0) {

 continue;

 }

 if (flowDirection[r+y][c+x].childPoint != null) {

 if (flowDirection[r+y][c+x].childPoint.y == r &&
flowDirection[r+y][c+x].childPoint.x == c) { //apparently, this is not the same thing
as "flowDirection[r+y][c+x].childPoint == currentPoint"; perhaps checking == for
two points doesn't work

 parentList.add(new Point(c+x, r+y));

 }

 }

 }

 }

 flowDirection[r][c].setParentList(parentList);

 }

 }

 public void resolveFlowDirectionParents() {

 for (int c = 0; c < this.dem[0].length; c++) {

 for (int r = 0; r < this.dem.length; r++) {

 if (r > this.dem.length-1 || r < 0 || c > this.dem[0].length-1 || c < 0) {

 continue;

 }

 Point currentPoint = new Point(c, r);

 ArrayList<Point> parentList = new ArrayList<Point>();

148

1
4

8

 // Find all cells pointing to current cell. This comes after assuring that the
current cell isn't on the border.

 for (int x = -1; x < 2; x++) {

 for (int y = -1; y < 2; y++){

 if (x == 0 && y == 0) {

 continue;}

 if (r+y >= this.dem.length-1 || r+y <= 0 || c+x >= this.dem[0].length-1 ||
c+x <= 0) {

 continue;

 }

 if (flowDirection[r+y][c+x].childPoint.x == currentPoint.x &&
flowDirection[r+y][c+x].childPoint.y == currentPoint.y) {

 Point parentPoint = new Point(c+x, r+y);

 parentList.add(parentPoint);

 }

 }

 }

 this.flowDirection[r][c].setParentList(parentList);

 }

 }

 }

 // Wrapper function that simulates the rainfall event to iteratively fill depressions
until the rainfall event ends or no more remain

 @SuppressWarnings("unchecked")

 public boolean fillPits() {

 long start = System.currentTimeMillis();

 statusMessage = "Filling and Merging Depressions";

 int fill_counter = 0;

 Collections.sort(WatershedDataset.pits.pitDataList);

 int numberOfPits = pits.pitDataList.size();

 long pre = System.currentTimeMillis();

 if (fillAllPits) {

149

1
4

9

 // Once a pit is connected to the edge of the map, it becomes negative. All
negative pits (and only negative pits) should have an

 // infinite spillover time, placing them at the end of the list. If the first pit in
the list has a negative ID,

 // then all remaining pits are negative and filling is complete.

 while (WatershedDataset.pits.pitDataList.get(0).pitId > 0) {

 altMergePits();

 Collections.sort(WatershedDataset.pits.pitDataList);

 fill_counter++;

 status = (int) (100 * (fill_counter/(float)numberOfPits));

 listener.simulationOnProgress(status, "Simulating Rainfall");

 }

 } else {

 // Handle rainfall/duration-based filling.

 while (WatershedDataset.pits.pitDataList.get(0).spilloverTime <
RainfallSimConfig.rainfallDuration) {

 altMergePits();

 fill_counter++;

 status = (int) (100 * (fill_counter/(float)numberOfPits));

 listener.simulationOnProgress(status, "Simulating Rainfall");

 }

 Log.w("runtime", Long.toString((System.currentTimeMillis()-start)));

 }

 // time has expired for the storm event, filling is 100% complete for this
simulation

 status = 100;

 listener.simulationOnProgress(status, "Finished");

 drawPuddles();

 long post = System.currentTimeMillis();

 System.out.println(Long.toString(post-pre) + ",");

 return true;

 }

150

1
5

0

 public boolean altMergePits() {

 Pit firstPit = WatershedDataset.pits.pitDataList.get(0);

 int secondPitId =
WatershedDataset.pits.pitIdMatrix[firstPit.outletSpilloverFlowDirection.y][firstPit.o
utletSpilloverFlowDirection.x];

 int secondPitListIndex = WatershedDataset.pits.getIndexOf(secondPitId);

 Pit secondPit = WatershedDataset.pits.pitDataList.get(secondPitListIndex);

 // Handle pits merging with other pits

 if (secondPitId > 0) {

 int mergedPitId = WatershedDataset.pits.maxPitId;

 WatershedDataset.pits.maxPitId++;

 secondPit.pitBorderIndicesList.addAll(firstPit.pitBorderIndicesList);

 secondPit.spilloverElevation = Float.NaN;

 // traverse in reverse order. some of the border indices will be found to be
not on the border and removed from the list (necessitating the onBorder variable)

 for (int i = secondPit.pitBorderIndicesList.size()-1; i > -1; i--) {

 Point currentPoint = secondPit.pitBorderIndicesList.get(i);

 int r = currentPoint.y;

 int c = currentPoint.x;

 boolean onBorder = false;

 for (int x = -1; x < 2; x++) {

 for (int y = -1; y < 2; y++){

 if (x == 0 && y == 0) {

 continue;

 }

 if ((WatershedDataset.pits.pitIdMatrix[r+y][c+x] != firstPit.pitId) &&
(WatershedDataset.pits.pitIdMatrix[r+y][c+x] != secondPitId)) {

 float currentElevation = this.dem[r][c];

 float neighborElevation = this.dem[r+y][c+x];

151

1
5

1

 onBorder = true;

 if (Float.isNaN(secondPit.spilloverElevation) || (currentElevation <=
secondPit.spilloverElevation && neighborElevation <=
secondPit.spilloverElevation)) {

 secondPit.spilloverElevation = (float) Math.max(neighborElevation,
currentElevation);

 secondPit.pitOutletPoint = currentPoint;

 secondPit.outletSpilloverFlowDirection = new Point(c+x, r+y);

 }

 }

 }

 }

 if (onBorder == false) {

 secondPit.pitBorderIndicesList.remove(currentPoint);

 }

 }

 secondPit.pitId = mergedPitId;

 secondPit.filledVolume = secondPit.filledVolume + firstPit.retentionVolume;

 secondPit.retentionVolume = secondPit.filledVolume;

 int raisedPointsCount = 0;

 List<Point> indicesToCheck = new ArrayList<Point>(firstPit.area);

 indicesToCheck.add(firstPit.pitPoint);

 for (int j = 0; j < firstPit.area; j++) {

 int r = indicesToCheck.get(j).y;

 int c = indicesToCheck.get(j).x;

 if (this.dem[r][c] <= firstPit.spilloverElevation) {

 raisedPointsCount++;

 this.dem[r][c] = firstPit.spilloverElevation;

 } else {

 WatershedDataset.pits.pitIdMatrix[r][c] = mergedPitId;

 }

 if (this.dem[r][c] < secondPit.spilloverElevation) {

152

1
5

2

 secondPit.retentionVolume += ((secondPit.spilloverElevation -
this.dem[r][c]) * cellSize * cellSize);

 }

 if (flowDirection[r][c].parentList.isEmpty()) {

 continue;

 }

 for (int i = 0; i < flowDirection[r][c].parentList.size(); i++) {

 indicesToCheck.add(flowDirection[r][c].parentList.get(i));

 }

 }

 indicesToCheck = new ArrayList<Point>(secondPit.area);

 indicesToCheck.add(secondPit.pitPoint);

 // re-ID second pit

 for (int j = 0; j < secondPit.area; j++) {

 int r = indicesToCheck.get(j).y;

 int c = indicesToCheck.get(j).x;

 WatershedDataset.pits.pitIdMatrix[r][c] = mergedPitId;

 if (this.dem[r][c] < secondPit.spilloverElevation) {

 secondPit.retentionVolume += ((secondPit.spilloverElevation -
this.dem[r][c]) * cellSize * cellSize);

 }

 if (flowDirection[r][c].parentList.isEmpty()) {

 continue;

 }

 for (int i = 0; i < flowDirection[r][c].parentList.size(); i++) {

 indicesToCheck.add(flowDirection[r][c].parentList.get(i));

 }

 }

 indicesToCheck = null;

 // Resolve flow direction to direct flow out of the pit

153

1
5

3

 List<Point> toCheckForNeighbors = new
ArrayList<Point>(raisedPointsCount);

 this.flowDirection[firstPit.pitOutletPoint.y][firstPit.pitOutletPoint.x].childPoint
= firstPit.outletSpilloverFlowDirection;

this.flowDirection[firstPit.outletSpilloverFlowDirection.y][firstPit.outletSpilloverFlo
wDirection.x].parentList.add(firstPit.pitOutletPoint);

WatershedDataset.pits.pitIdMatrix[firstPit.pitOutletPoint.y][firstPit.pitOutletPoint.x]
= mergedPitId;

 toCheckForNeighbors.add(firstPit.pitOutletPoint);

 for (int i = 0; i < raisedPointsCount; i++) {

 for (int x = -1; x < 2; x++) {

 for (int y = -1; y < 2; y++){

 if (x == 0 && y == 0) {

 continue;

 }

 Point neighborPoint = new Point(toCheckForNeighbors.get(i).x + x,
toCheckForNeighbors.get(i).y + y);

 // check if the point is part of the complete list to be resolved, but not
already on the "next up" list

 if
((WatershedDataset.pits.pitIdMatrix[neighborPoint.y][neighborPoint.x] ==
firstPit.pitId) &&
(WatershedDataset.pits.pitIdMatrix[neighborPoint.y][neighborPoint.x] !=
mergedPitId)) {

 this.flowDirection[neighborPoint.y][neighborPoint.x].childPoint =
toCheckForNeighbors.get(i);

 WatershedDataset.pits.pitIdMatrix[neighborPoint.y][neighborPoint.x]
= mergedPitId;

 toCheckForNeighbors.add(neighborPoint);

 }

 }

 }

 }

 findFlowDirectionParents(toCheckForNeighbors);

154

1
5

4

 toCheckForNeighbors = null;

 //Sum the drainage taking place in the pit

 secondPit.area = firstPit.area + secondPit.area;

 secondPit.pitDrainageRate = 0;

 float netAccumulationRate = (RainfallSimConfig.rainfallIntensity *
secondPit.area * cellSize * cellSize) - secondPit.pitDrainageRate;

 secondPit.spilloverTime = secondPit.retentionVolume/netAccumulationRate;

 // Handle pits that begin to run off the DEM

 } else if (secondPitId < 0) {

 int mergedPitId = WatershedDataset.pits.minPitId;

 WatershedDataset.pits.minPitId--;

 secondPit.pitBorderIndicesList.addAll(firstPit.pitBorderIndicesList);

 // traverse in reverse order. some of the border indices will be found to be
not on the border and removed from the list (hence, the onBorder variable)

 for (int i = secondPit.pitBorderIndicesList.size()-1; i > -1; i--) {

 Point currentPoint = secondPit.pitBorderIndicesList.get(i);

 int r = currentPoint.y;

 int c = currentPoint.x;

 boolean onBorder = false;

 for (int x = -1; x < 2; x++) {

 for (int y = -1; y < 2; y++){

 if (x == 0 && y == 0) {

 continue;

 }

 if (r+y > WatershedDataset.pits.pitIdMatrix.length-1 || r+y < 0 || c+x >
WatershedDataset.pits.pitIdMatrix[0].length-1 || c+x < 0) {

 continue;

 }

 if ((WatershedDataset.pits.pitIdMatrix[r+y][c+x] != secondPit.pitId &&
WatershedDataset.pits.pitIdMatrix[r+y][c+x] != firstPit.pitId) || (r ==

155

1
5

5

WatershedDataset.pits.pitIdMatrix.length-1 || r == 0 || c ==
WatershedDataset.pits.pitIdMatrix[0].length-1 || c == 0)) {

 onBorder = true;

 }

 }

 }

 if (onBorder == false) {

 secondPit.pitBorderIndicesList.remove(currentPoint);

 }

 }

 secondPit.pitId = mergedPitId;

 // Fill the first pit and resolve flow direction. This must be completed before
the new pit entry is created or else retention volumes will be incorrectly
calculated (the first pit must be filled).

 int raisedPointsCount = 0;

 List<Point> indicesToCheck = new ArrayList<Point>(firstPit.area);

 indicesToCheck.add(firstPit.pitPoint);

 for (int j = 0; j < firstPit.area; j++) {

 int r = indicesToCheck.get(j).y;

 int c = indicesToCheck.get(j).x;

 if (this.dem[r][c] <= firstPit.spilloverElevation) {

 raisedPointsCount++;

 this.dem[r][c] = firstPit.spilloverElevation;

 } else {

 WatershedDataset.pits.pitIdMatrix[r][c] = mergedPitId;

 }

 if (flowDirection[r][c].parentList.isEmpty()) {

 continue;

 }

 for (int i = 0; i < flowDirection[r][c].parentList.size(); i++) {

 indicesToCheck.add(flowDirection[r][c].parentList.get(i));

156

1
5

6

 }

 }

 indicesToCheck = new ArrayList<Point>(secondPit.area);

 indicesToCheck.add(secondPit.pitPoint);

 // re-ID second pit

 for (int j = 0; j < secondPit.area; j++) {

 int r = indicesToCheck.get(j).y;

 int c = indicesToCheck.get(j).x;

 WatershedDataset.pits.pitIdMatrix[r][c] = mergedPitId;

 if (flowDirection[r][c].parentList.isEmpty()) {

 continue;

 }

 for (int i = 0; i < flowDirection[r][c].parentList.size(); i++) {

 indicesToCheck.add(flowDirection[r][c].parentList.get(i));

 }

 }

 indicesToCheck = null;

 // Resolve flow direction to direct flow out of the pit

 List<Point> toCheckForNeighbors = new
ArrayList<Point>(raisedPointsCount);

 this.flowDirection[firstPit.pitOutletPoint.y][firstPit.pitOutletPoint.x].childPoint
= firstPit.outletSpilloverFlowDirection;

this.flowDirection[firstPit.outletSpilloverFlowDirection.y][firstPit.outletSpilloverFlo
wDirection.x].parentList.add(firstPit.pitOutletPoint);

WatershedDataset.pits.pitIdMatrix[firstPit.pitOutletPoint.y][firstPit.pitOutletPoint.x]
= mergedPitId;

 toCheckForNeighbors.add(firstPit.pitOutletPoint);

 for (int i = 0; i < raisedPointsCount; i++) {

157

1
5

7

 for (int x = -1; x < 2; x++) {

 for (int y = -1; y < 2; y++){

 if (x == 0 && y == 0) {

 continue;

 }

 Point neighborPoint = new Point(toCheckForNeighbors.get(i).x + x,
toCheckForNeighbors.get(i).y + y);

 // check if the point is part of the complete list to be resolved, but not
already on the "next up" list

 if
((WatershedDataset.pits.pitIdMatrix[neighborPoint.y][neighborPoint.x] ==
firstPit.pitId) &&
(WatershedDataset.pits.pitIdMatrix[neighborPoint.y][neighborPoint.x] !=
mergedPitId)) {

 this.flowDirection[neighborPoint.y][neighborPoint.x].childPoint =
toCheckForNeighbors.get(i);

 WatershedDataset.pits.pitIdMatrix[neighborPoint.y][neighborPoint.x]
= mergedPitId;

 toCheckForNeighbors.add(neighborPoint);

 }

 }

 }

 }

 findFlowDirectionParents(toCheckForNeighbors);

 toCheckForNeighbors = null;

 secondPit.area = firstPit.area + secondPit.area;

 secondPit.filledVolume = secondPit.filledVolume + firstPit.retentionVolume;

 secondPit.retentionVolume = secondPit.filledVolume;

 secondPit.pitDrainageRate = 0.0f;

 secondPit.spilloverTime = Float.POSITIVE_INFINITY;

 }

 //Remove first pit

 WatershedDataset.pits.pitDataList.remove(firstPit);

158

1
5

8

 if (secondPit.spilloverTime == Float.POSITIVE_INFINITY) {

 WatershedDataset.pits.pitDataList.add(secondPit); // add to end of list;
shouldn't change order of list

 WatershedDataset.pits.pitDataList.remove(secondPit);

 }else {

 WatershedDataset.pits.pitDataList.remove(secondPit);

 for (int i = 0; i < WatershedDataset.pits.pitDataList.size(); i++) {

 if (WatershedDataset.pits.pitDataList.get(i).spilloverTime >
secondPit.spilloverTime) {

 WatershedDataset.pits.pitDataList.add(i, secondPit);

 break;

 }

 }

 }

 return true;

 }

 public Bitmap delineate(Point point, AsyncTask task) {

 if(task instanceof DelineationListener) {

 delineationListener = (DelineationListener) task;

 } else {

 throw new ClassCastException("WatershedDataset - Task must implement
DelineationListener");

 }

 BitmapFactory.Options options = new BitmapFactory.Options();

 options.inPurgeable = true;

 options.inInputShareable = true;

 Bitmap icon =
BitmapFactory.decodeResource(MainActivity.context.getResources(),
R.drawable.watershedelineation, options);

159

1
5

9

 Bitmap delinBitmap = Bitmap.createScaledBitmap(icon, this.dem[0].length,
this.dem.length, false);

 //skip outside cells

 for (int r = 1; r < this.dem.length-1; r++) {

 for (int c = 1; c < this.dem[0].length-1; c++) {

 delinBitmap.setPixel(this.dem[0].length - 1 - c, r, Color.TRANSPARENT);

 }

 }

 delineatedArea = 0; //number of cells in the delineation

 // discover adjacent points that may be part of a puddle

 List<Point> indicesToCheck = new ArrayList<Point>();

 List<Point> indicesToCheckPuddle = new ArrayList<Point>();

 float puddleElevation = this.dem[point.y][point.x];

 indicesToCheck.add(point);

 indicesToCheckPuddle.add(point);

 while (!indicesToCheckPuddle.isEmpty()) {

 int r = indicesToCheckPuddle.get(0).y;

 int c = indicesToCheckPuddle.get(0).x;

 indicesToCheckPuddle.remove(0);

 if (delinBitmap.getPixel(this.dem[0].length - 1 - c, r) == Color.RED){

 continue;

 }

 delinBitmap.setPixel(this.dem[0].length - 1 - c, r, Color.RED);

 delineatedArea++;

 for (int x = -1; x < 2; x++) {

 for (int y = -1; y < 2; y++){

 if (x == 0 && y == 0) {

 continue;

 }

160

1
6

0

 if (r+y >= this.dem.length-1 || r+y <= 0 || c+x >= this.dem[0].length-1 ||
c+x <= 0) {

 continue;

 }

 if (dem[r+y][c+x] == puddleElevation &&
delinBitmap.getPixel(this.dem[0].length - 1 - (c+x), (r+y)) != Color.RED) {

 indicesToCheckPuddle.add(new Point(c+x, r+y));

 indicesToCheck.add(new Point(c+x, r+y));

 }

 }

 }

 }

 // Add a buffer around the chosen pixel to provide a more likely meaningful
delineation

 for (int x = -3; x < 4; x++) {

 for (int y = -3; y < 4; y++) {

 if (point.y+y > this.dem.length-1 || point.y+y < 0 || point.x+x >
this.dem[0].length-1 || point.x+x < 0) {

 continue;

 }

 if (delinBitmap.getPixel(this.dem[0].length - 1 - (point.x+x), (point.y+y)) !=
Color.RED) {

 indicesToCheck.add(new Point(x+point.x, y +point.y));

 delinBitmap.setPixel(this.dem[0].length - 1 - (point.x+x), (point.y+y),
Color.RED);

 delineatedArea++;

 }

 }

 }

 // Now find all cells draining to either the puddle or the buffered delineation
point

 while (!indicesToCheck.isEmpty()) {

161

1
6

1

 int r = indicesToCheck.get(0).y;

 int c = indicesToCheck.get(0).x;

 indicesToCheck.remove(0);

 if (flowDirection[r][c].parentList.isEmpty()) {

 continue;

 }

 for (int i = 0; i < flowDirection[r][c].parentList.size(); i++) {

 if (delinBitmap.getPixel(this.dem[0].length - 1 -
flowDirection[r][c].parentList.get(i).x, flowDirection[r][c].parentList.get(i).y) !=
Color.RED) {

 indicesToCheck.add(flowDirection[r][c].parentList.get(i));

 delinBitmap.setPixel(this.dem[0].length - 1 -
flowDirection[r][c].parentList.get(i).x, flowDirection[r][c].parentList.get(i).y,
Color.RED);

 delineatedArea++;

 }

 }

 }

 return delinBitmap;

 }

 public Bitmap altDrawPits() {

 BitmapFactory.Options options = new BitmapFactory.Options();

 options.inPurgeable = true;

 options.inInputShareable = true;

 Bitmap icon =
BitmapFactory.decodeResource(MainActivity.context.getResources(),
R.drawable.watershedelineation, options);

 Bitmap pitsBitmap = Bitmap.createScaledBitmap(icon, dem[0].length,
dem.length, false);

 Random random = new Random();

 for (int i = 0; i < WatershedDataset.pits.pitDataList.size(); i++) {

162

1
6

2

 int red = random.nextInt(255);

 int green = random.nextInt(255);

 int blue = random.nextInt(255);

 int pitColor = Color.rgb(red,green,blue);

 List<Point> indicesToCheck = new
ArrayList<Point>(WatershedDataset.pits.pitDataList.get(i).area);

 indicesToCheck.add(WatershedDataset.pits.pitDataList.get(i).pitPoint);

 while (!indicesToCheck.isEmpty()) {

 int r = indicesToCheck.get(0).y;

 int c = indicesToCheck.get(0).x;

 pitsBitmap.setPixel(this.dem[0].length - 1 - c, r, pitColor);

 indicesToCheck.remove(0);

 if (flowDirection[r][c].parentList.isEmpty()) {

 continue;

 }

 for (int j = 0; j < flowDirection[r][c].parentList.size(); j++) {

 indicesToCheck.add(flowDirection[r][c].parentList.get(j));

 }

 }

 }

 return pitsBitmap;

 }

 public Bitmap drawPuddles() {

 int[] colorarray = new
int[WatershedDataset.pits.pitIdMatrix.length*WatershedDataset.pits.pitIdMatrix[0]
.length];

 Arrays.fill(colorarray, Color.TRANSPARENT);

 Bitmap.Config config = Bitmap.Config.ARGB_8888;

163

1
6

3

 Bitmap puddleBitmap = Bitmap.createBitmap(colorarray, this.dem[0].length,
this.dem.length, config);

 puddleBitmap = puddleBitmap.copy(config, true);

 for (int r = 1; r < this.dem.length-1; r++) {

 for (int c = 1; c < this.dem[0].length-1; c++) {

 if (r >= this.dem.length-1 || r <= 0 || c >= this.dem[0].length-1 || c <= 0) {

 continue;

 }

 if (originalDem[r][c] < dem[r][c]) {

 puddleBitmap.setPixel(this.dem[0].length - 1 - c, r, Color.BLUE);

 }

 }

 }

 return puddleBitmap;

 }

 public static void writeRaster(String rasterFilePath, int[][] rasterData, String
fileOutPath) {

 gdal.AllRegister();

 ogr.RegisterAll();

 Dataset demRaster = gdal.Open(rasterFilePath);

 // Transform from 2D array to 1D array

 int[] array = new int[rasterData.length * rasterData[0].length];

 int i = 0;

 for (int r = 0; r < rasterData.length; r++) {

 for (int c = 0; c < rasterData[0].length; c++) {

 array[i] = rasterData[r][rasterData[0].length - c - 1];

 i++;

 }

 }

164

1
6

4

 //mask the outer rows

 int[] mask = new int[rasterData.length * rasterData[0].length];

 i = 0;

 for (int r = 0; r < rasterData.length; r++) {

 for (int c = 0; c < rasterData[0].length; c++) {

 if ((r == 0) || (r == rasterData.length - 1) || (c == 0) || (c ==
rasterData[0].length - 1)) {

 mask[i] = 0;

 i++;

 } else {

 mask[i] = 1;

 }

 }

 }

 //Create a new file that is a copy of the DEM geotiff so that the
georeferencing data is identical and write the new band data to this file

 org.gdal.gdal.Driver rdriver = gdal.GetDriverByName("GTiff");

 Dataset catchmentRaster = rdriver.Create(fileOutPath, rasterData[0].length,
rasterData.length);

 catchmentRaster.AddBand(gdalconst.GDT_UInt16);

 catchmentRaster.WriteRaster(0, 0, catchmentRaster.getRasterXSize(),
catchmentRaster.getRasterYSize(), catchmentRaster.getRasterXSize(),
catchmentRaster.getRasterYSize(), gdalconstConstants.GDT_Int32, array, new
int[]{1}, 0, 0, 0);

 //TODO Test if this does anything useful

 catchmentRaster.FlushCache();

 demRaster.delete();

 catchmentRaster.delete();

 demRaster = null;

165

1
6

5

 catchmentRaster = null;

 }

 public static void polygonize(String rasterFilePath, int[][] rasterData, String
fileOutPath) {

 gdal.AllRegister();

 ogr.RegisterAll();

 Dataset demRaster = gdal.Open(rasterFilePath);

 // Transform from 2D array to 1D array

 int[] array = new int[rasterData.length * rasterData[0].length];

 int i = 0;

 for (int r = 0; r < rasterData.length; r++) {

 for (int c = 0; c < rasterData[0].length; c++) {

 array[i] = rasterData[r][rasterData[0].length - c - 1];

 i++;

 }

 }

 //mask the outer rows

 int[] mask = new int[rasterData.length * rasterData[0].length];

 i = 0;

 for (int r = 0; r < rasterData.length; r++) {

 for (int c = 0; c < rasterData[0].length; c++) {

 if ((r == 0) || (r == rasterData.length - 1) || (c == 0) || (c ==
rasterData[0].length - 1)) {

 mask[i] = 0;

 i++;

 } else {

 mask[i] = 1;

 }

166

1
6

6

 }

 }

 //Create a new file that is a copy of the DEM geotiff so that the
georeferencing data is identical and write the new band data to this file

 org.gdal.gdal.Driver rdriver = gdal.GetDriverByName("GTiff");

 Dataset catchmentRaster = rdriver.CreateCopy(fileOutPath, demRaster);

 catchmentRaster.WriteRaster(0, 0, catchmentRaster.getRasterXSize(),
catchmentRaster.getRasterYSize(), catchmentRaster.getRasterXSize(),
catchmentRaster.getRasterYSize(), gdalconstConstants.GDT_Int32, array, new
int[]{1}, 0, 0, 0);

 catchmentRaster.AddBand(gdalconst.GDT_UInt16);

 catchmentRaster.WriteRaster(0, 0, catchmentRaster.getRasterXSize(),
catchmentRaster.getRasterYSize(), catchmentRaster.getRasterXSize(),
catchmentRaster.getRasterYSize(), gdalconstConstants.GDT_Int32, mask, new
int[]{2}, 0, 0, 0);

 catchmentRaster.FlushCache();

 // When creating this new datasource, the file must not already exist.

 Driver shpDriver = ogr.GetDriverByName("ESRI Shapefile");

 org.gdal.ogr.DataSource catchmentVector =
shpDriver.CreateDataSource(fileOutPath+".shp");

 SpatialReference srs = new
SpatialReference(catchmentRaster.GetProjection());

 Layer catchmentLayer = catchmentVector.CreateLayer("NewLayer", srs);

 gdal.Polygonize(catchmentRaster.GetRasterBand(1),
catchmentRaster.GetRasterBand(2), catchmentLayer, 0);

 SpatialReference wgs = new SpatialReference("GEOGCS[\"WGS
84\",DATUM[\"WGS_1984\",SPHEROID[\"WGS
84\",6378137,298.257223563,AUTHORITY[\"EPSG\",\"7030\"]],AUTHORITY[\"E
PSG\",\"6326\"]],PRIMEM[\"Greenwich\",0,AUTHORITY[\"EPSG\",\"8901\"]],UNIT
[\"degree\",0.01745329251994328,AUTHORITY[\"EPSG\",\"9122\"]],AUTHORITY
[\"EPSG\",\"4326\"]]");

 FeatureDefn outFeatureDef = catchmentLayer.GetLayerDefn();

 // for each polygon

167

1
6

7

 float epsilon = (float) Math.sqrt(2*Math.pow(cellSize, 2))/2;

 for (int i1 = catchmentLayer.GetFeatureCount()-1; i1 > -1; i1--) {

 Feature inFeature = catchmentLayer.GetNextFeature();

 Geometry geometry = inFeature.GetGeometryRef();

 Geometry geom = geometry.Simplify(epsilon);

 Log.w("geometry null", Boolean.toString(geom == null));

 inFeature.SetGeometryDirectly(geom);

 }

 for (int i1 = 0; i1 < catchmentLayer.GetFeatureCount(); i1++) {

 Feature inFeature = catchmentLayer.GetNextFeature();

 Geometry geometry = inFeature.GetGeometryRef();

 Log.w("error check", gdal.GetLastErrorMsg());

 geometry.TransformTo(wgs);

 List<LatLng> list = new ArrayList<LatLng>();

 for (int j = 0; j < geometry.GetGeometryRef(0).GetPointCount(); j++) {

 list.add(new LatLng(geometry.GetGeometryRef(0).GetPoint(j)[1],
geometry.GetGeometryRef(0).GetPoint(j)[0]));

 }

 ATKPolygon poly = new ATKPolygon("test", list);

 MainActivity.map.addPolygon(poly);

 poly.viewOptions.setFillColor(Color.TRANSPARENT);

 poly.viewOptions.setStrokeColor(Color.RED);

 }

 catchmentVector.SyncToDisk();

 demRaster.delete();

 catchmentRaster.delete();

 catchmentVector.delete();

 catchmentLayer.delete();

 demRaster = null;

 catchmentRaster = null;

168

1
6

8

 catchmentVector = null;

 catchmentLayer = null;

 }

}

FlowDirectionCell Class

package org.waterapps.watershed;

import java.util.ArrayList;

import android.graphics.Point;

public class FlowDirectionCell {

 Point childPoint;

 ArrayList<Point> parentList = null;

// // Constructor method

 public FlowDirectionCell(Point inputChildPoint) {

 childPoint = inputChildPoint;

 }

 public void setParentList(ArrayList<Point> inputParentList) {

 if (parentList != null) {

 parentList.clear();

 }

 parentList = inputParentList;

 }

}

	Purdue University
	Purdue e-Pubs
	Fall 2014

	Watershed Delineation in the Field: A New Approach for Mobile Applications Using LiDAR Elevation Data
	Samuel Adam Noel
	Recommended Citation

