
Purdue University
Purdue e-Pubs

Open Access Theses Theses and Dissertations

Fall 2014

Joint Architecture For Reusable Vehicle-Integrated
Software (J.A.R.V.I.S)
Anthony Mark Kane
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses

Part of the Aerospace Engineering Commons, and the Computer Engineering Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Kane, Anthony Mark, "Joint Architecture For Reusable Vehicle-Integrated Software (J.A.R.V.I.S)" (2014). Open Access Theses. 338.
https://docs.lib.purdue.edu/open_access_theses/338

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F338&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F338&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F338&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F338&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F338&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F338&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses/338?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F338&utm_medium=PDF&utm_campaign=PDFCoverPages

30

 08 14

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

Department

To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement,

Publication Delay, and Certification/Disclaimer (Graduate School Form 32), this thesis/dissertation

adheres to the provisions of Purdue University’s “Policy on Integrity in Research” and the use of

copyrighted material.

Mark Anthony Kane

JOINT ARCHITECTURE FOR REUSABLE VEHICLE-INTEGRATED SOFTWARE (J.A.R.V.I.S)

Master of Science in Aeronautics and Astronautics

Inseok Hwang

Daniel A. DeLaurentis

Dengfeng Sun

Inseok Hwang

Wayne Chen 11/17/2014

i

JOINT ARCHITECTURE FOR REUSABLE VEHICLE-INTEGRATED SOFTWARE (J.A.R.V.I.S)

A Thesis

Submitted to the Faculty

of

Purdue University

by

Mark A. Kane

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Aeronautics and Astronautics

December 2014

Purdue University

West Lafayette, Indiana

ii

To my wife and children for helping to maintain my sanity.

iii

ACKNOWLEDGEMENTS

 I would like to acknowledge Dr. Inseok Hwang for allowing me the opportunity to

perform research as a distance student and for the input that he provided along the way.

I would like to thank Christopher D’Souza for his patience and time taken to help me

through the derivation of the UDU Kalman filter. The task of integrating JARVIS with the

ground control station was performed by Brian Killeen, thank you for allowing me to

focus my efforts elsewhere.

iv

TABLE OF CONTENTS

Page

LIST OF FIGURES ... viii

LIST OF ABBREVIATIONS .. x

ABSTRACT ... xi

CHAPTER 1. INTRODUCTION ... 1

1.1 Problem Overview and Motivation ... 1

1.2 Contributions of This Research ... 3

1.3 Overview……………………………………………………………………………………………….4

CHAPTER 2. ARDUPILOT CASE STUDY.. 6

2.1 High Level Overview .. 7

2.2 Architecture .. 8

2.2.1 ArduCopter Code ... 8

2.2.2 Hardware Operation .. 11

2.2.3 Subsystems ... 11

2.3 Conclusions ... 11

CHAPTER 3. J.A.R.V.I.S ... 15

3.1 Architecture .. 15

3.1.1 Subsystems ... 16

3.1.1.1 Pilot .. 16

3.1.1.2 Guidance .. 18

3.1.1.3 Navigation .. 19

3.1.1.4 Control ... 21

3.2 Libraries………………………………………………………………………………………………22

v

Page

3.2.1 Use of Classes ... 23

3.2.2 Math Enhanced .. 24

3.2.2.1 Arrays ... 24

3.2.2.2 Matrices ... 26

3.2.2.3 Time-Series Class ... 26

3.2.2.4 Linear Algebra .. 26

3.2.3 Aerospace Toolbox ... 27

3.2.3.1 Controllers ... 27

3.2.3.2 Conversions ... 28

3.2.3.3 Filters ... 28

3.2.3.4 Estimators .. 40

3.2.3.5 Hardware and Sensor Classes ... 66

3.2.4 Code Validation .. 70

3.2.4.1 Library Functions and Classes .. 71

3.2.4.2 Integrated System ... 71

CHAPTER 4. GUIDANCE .. 73

CHAPTER 5. NAVIGATION .. 75

5.1 Attitude……………………………………………………………………………………………….75

5.1.1 Simulated Results ... 77

5.1.2 Flight-Results .. 79

5.2 Inertial Estimation ... 81

5.2.1.1 Simulated Results .. 82

vi

Page

5.2.1.2 Flight-Results ... 84

5.3 Conclusion…………………………………………………………………………………………..85

CHAPTER 6. VEHICLE TESTING ... 86

6.1 Gimbaled Tri-Ducted Fan .. 86

6.1.1 Motivation……………………………………………………………………………………86

6.1.2 Vehicle Concept ... 86

6.1.3 Hover Prototype ... 87

6.1.4 Control Configuration .. 88

6.1.5 Simulated Results ... 90

6.1.6 Flight Test……………………………………………………………………………………..93

6.2 Helicopter……………………………………………………………………………………………95

6.2.1 Motivation…………..……………………………………………………………………….95

6.2.2 Frames and Notation ... 96

6.2.3 Mechanical Overview ... 97

6.2.4 LQR Control .. 98

6.2.5 Helicopter Equations of Motion ... 99

6.2.6 Linearization ... 104

6.2.6.1 Main Rotor Thrust ... 105

6.2.6.2 Main Rotor Drag .. 106

6.2.7 Flight Test……………………………………………………………………………………107

CHAPTER 7. FINAL CONCLUSIONS ... 111

7.1 Research Goals Revisited .. 111

7.2 Lessons Learned .. 112

7.3 Future Work .. 113

LIST OF REFERENCES ... 115

APPENDICES

Appendix A Library Function List .. 116

vii

Page

Appendix B Example Vehicle Configuration Files ... 121

B.1 Helicopter Configuration file: ... 121

B.2 Gimbaled Tri-Ducted Fan Configuration file: .. 126

viii

LIST OF FIGURES

Figure ...Page

Figure 1: JARVIS Block Diagram .. 15

Figure 2: Class Inheritance (www.programiz.com, 2014)... 23

Figure 3: Definitions of Various Coordinate Systems [Centinello III, 2007] 55

Figure 4: Hardware Abstraction Diagram ... 67

Figure 5: Navigation AHRS: Measurement Update Logic Flow ... 76

Figure 6: Navigation AHRS: Predict State Logic Flow .. 77

Figure 7: Attitude Error with 3-Sigma Bounds .. 78

Figure 8: Rate Error with 3-Sigma Bounds .. 78

Figure 9: Flight-Test: Attitude Estimate .. 79

Figure 10: Flight-Test: Rate Estimate .. 80

Figure 11: Navigation INRTL: Predict State Logic Flow ... 81

Figure 12: Navigation INRTL: Measurement Update Logic Flow 82

Figure 13: Geodetic Position Error with 3-sigma Bounds ... 83

Figure 14: NED Velocity Error with 3-sigma Bounds... 83

Figure 15: Estimated Translational Acceleration .. 84

Figure 16: Tri-Duct Concept and Control Effectors ... 87

Figure 17: Tri-Duct Hover Prototype... 88

ix

Figure ...Page

Figure 18: Ducted-Fan Simulation: Roll Step Response .. 91

Figure 19: Ducted-Fan Simulation: Pitch Channel .. 91

Figure 20: Ducted-Fan Simulation: Yaw Channel .. 92

Figure 21: Ducted-Fan Simulation: Roll Step Response with Larger Rate Gain 93

Figure 22: Tri-Ducted Fan Flight with Roll Disturbance .. 94

Figure 23: Body and Hub Frame Definition .. 96

Figure 24: Hub Plane, Tip-path Plane, and Main Rotor Thrust Vector 97

Figure 25: Helicopter Mechanical Overview (Munzinger) .. 97

Figure 26: Helicopter: Ground Station and Vehicle .. 107

Figure 27: Helicopter: In Flight.. 108

Figure 28: Helicopter Flight: pq Performance .. 109

Figure 29: Helicopter Flight: G-G Performance ... 109

x

LIST OF ABBREVIATIONS

CNTRL Control

DoF Degrees of Freedom

ECRV Exponentially Correlated Random Variable

GN&C Guidance, Navigation, and Control

GUID Guidance

IDE Integrated Development Environment

NAV Navigation

xi

ABSTRACT

Kane, Mark A. M.S.A.A., Purdue University, December 2014. Joint Architecture for

Reusable Vehicle-Integrated Software (J.A.R.V.I.S). Major Professor: Inseok Hwang.

An integrated software architecture for development of unmanned research

vehicles is developed. It has been created under the premise that all unmanned vehicles

require a core set of functionality that is common across platforms and that priority

should be to the readability and reusability of the code base. The architecture defines

the top-level system interfaces allowing internal algorithms to be manipulated without

affecting the rest of the system. A robust aerospace toolbox has been developed that

provides a means to rapidly prototype algorithms without the need of recreating

commonly used functions or the use of expensive, proprietary software.

1

CHAPTER 1. INTRODUCTION

1.1 Problem Overview and Motivation

When solving an engineering problem the first step that should be taken is to

research how similar problems have been solved before and then to decide how to

modify the solution to fit one’s needs. Most often the final solution chosen is the one

that has the most heritage both because it has worked in the past and it provides a

comfort level that can only be gained through experience and use. The unwillingness to

take any risk, while respectable, prevents growth. In guidance, navigation and control

(GN&C) new techniques go unused for decades due to the long development cycle of

vehicles, particularly those used in human transport. The question becomes how to gain

heritage with a new algorithm when we are always attempting to minimize risk. Or

perhaps more importantly, how does an engineer gain the experience necessary to take

an algorithm from paper and implement it for real-time use?

The conventional solution is to expend hours developing system models and then

test in a simulated environment. While simulation is invaluable in initial development it

should be considered a first-step in the development cycle as two primary failings are

inherent to computer modeling.

2

One is that the engineer does not gain necessary experience required to anticipate

problems with the integrated system and often has little knowledge of how their

portion integrates into the final vehicle. The second issue is that computer models are

simplifications of real-world dynamics and despite great efforts can be incorrect or

include simplifications that remove effects that are important to the behavior of the

system.

Prior to the large-scale computational power that is now available, full-scale

prototypes were employed at a great monetary expense that has reduced their use

today. Fortunately, due to the rapid pace of technological development, micro

unmanned vehicles, land, air, and sea, offer a low-cost method for rapid development

and testing of software and hardware. There are currently a number of commercial

auto-pilot systems available that allow for the conversion of R/C platforms into

unmanned vehicles. A few examples include the ArduPilot by DIY Drones1 and the

MicroPilot2. These platforms offer a path to test new algorithms or sensors without the

need of special permissions or infrastructure to operate.

The autopilot solutions available have been developed with the primary goal of

making the system as simple as possible for a consumer to plug-and-play and place high

priority on the telemetry systems. The accompanying software is most often closed-

source and does not allow for manipulation of the code, or code manipulation is limited.

1 Diydrones.com

2 Micropilot.com

3

Open source software solutions are tailored to a specific type of vehicle making

code modifications laborious. They also do not include a robust library toolset that lends

itself to GN&C development.

By learning from the current autonomous solutions, J.A.R.V.I.S provides a simple,

adaptable integrated software solution for rapid unmanned vehicle development and

research.

1.2 Contributions of This Research

The purpose of this research is not to develop a new algorithm or to design a

revolutionary vehicle and is instead intended to facilitate the creation and research of

these items. The problem addressed by this research is the lack of a robust integrated

architecture for use in developing unmanned vehicles for research purposes.

Development often focuses on a particular algorithm, such as a new optimal control

technique, and completely overlooks the integrated system or the infrastructure

necessary to run the algorithm.

The goal of this research is the development of core-software that can be used to

quickly build an unmanned system and also test new GN&C techniques using various

types of vehicle and hardware platforms. This goal is achieved through a software

architecture that is designed to be interchangeable as well as a library of tools similar to

those found in MatLab3 that are necessary for rapid prototyping without the added cost

of proprietary software.

3 mathworks.com

4

1.3 Overview

As mentioned previously the intent of this research is to develop a software

architecture and library set that will enable rapid algorithm prototyping and unmanned

vehicle development. In-depth derivation of equations and library functions is avoided

for brevity and can be found in the references provided.

This thesis first examines a popular solution for platform development and

outlines the reasoning behind the need for a better set of tools. This is followed by the

architecture layout and a description of the tools that are provided by the software

developed as part of this research. Chapters 4 and 5 attempt to show the ease in which

algorithms can be implemented and vehicles can be developed by utilizing JARVIS.

Before continuing to the subject matter it is first necessary to define how the terms

guidance, navigation, and control are used in the proceeding sections to avoid confusion.

Navigation refers to the determination of the current vehicle state including

attitude, position, velocity, and any number of other variables that may be desired such

as air speed. Navigation can be commonly thought of as “Where am I?”

Guidance refers to the determination of the desired path of travel and informs the

vehicle how to reach a desired target state. Guidance determines “How do I get there?”

Control refers to the actuation of effectors, such as thrusters or aero surfaces,

necessary to track the guidance commands. While the other systems are largely

unchanged between vehicle platforms control is specific to the type of actuators

available to effect a change in the vehicle state.

5

Another system that will be discussed is the Pilot system. Piloting can be

performed through external commands or autonomously. In both cases the purpose of

the pilot is to determine the desired target state; “Where do I want to go?”

6

CHAPTER 2. ARDUPILOT CASE STUDY

The ArduPilot system is an inexpensive auto-pilot solution that is gaining

popularity due to the low cost and because the code is open-source. Additionally,

the software is coded in the C++ language allowing for any custom libraries created

to be used on any platform capable of compiling and running C++ code.

The ArduPilot has a large open-source community that is actively developing

the code and capability of the system that can make it difficult to keep up with the

latest revision, for this research the code being inspected is the ArduCopter v2.8.1

retrieved from the online repository that is provided by DIY drones.

The code has been investigated for the purpose of determining the

accomplishments and deficiencies inherent to the architecture. This is not meant as

a critique of the accomplishment of the DIY Drone team or the open-source

community developing the software. It is known that a number of updates have

been released after v2.8.1 that address some of the problems that are discussed in

the proceeding sections.

The architecture developed for this research has different priorities and aims

to build on that which has already been accomplished.

7

2.1 High Level Overview

The ArduPilot hardware consists of an APM 1.0, APM 2.x, or PX4 system. The

hardware is a small form factor and contains a micro-processor, barometer

gyroscope, accelerometer, and a number of input and output pins that include those

necessary to read and control R/C equipment such as a servo. Sensors can be

expanded to include GPS and magnetic compasses.

 Software for the ArduPilot is platform dependent and includes the ArduPlane,

ArduCopter, ArduRover, and ArduBoat. As each name implies the individual

software solutions are intended for different types of vehicles such as conventional

aircraft, helicopter and multi-rotors, land-based vehicles, and watercrafts.

 For most users the setup of an unmanned vehicle using the ArduPilot system

is accomplished through use of the MissionPlanner software that is obtained from

the DIY website. Hardware options and configuration variables are set through the

GUI and the necessary software is downloaded, compiled, and then uploaded to the

vehicle. The user is not required to interact with the base code.

 Advanced users are able to modify the code by first downloading the latest

software from an online repository. It can then be modified, compiled and uploaded

using the Arduino integrated development environment (IDE).

8

2.2 Architecture

The base software architecture follows typical Arduino formats. The main code

that calls the initialization routines as well as performs the operation of the vehicle

when powered is contained in a “.pde” file of the same name as the sketch,

ArduCopter.pde in the case of the code being investigated. Logic is then separated

into other .pde file and within the libraries.

2.2.1 ArduCopter Code

There are 35 files that are specific to the ArduCopter code, library files are

used in for the other variants. File names as well as a brief description of the logic

contained within are given in Table 1.

Table 1: ArduCopter Code

ArduCopter

File Purpose

APM_Config.h Allow the user to set configuration

variables

Overwrites any previous definition

APM_Config_mavlink_hil.h Configuration file allowing the

telemetry to operate when in

“hardware-in-the-loop” mode

ArduCopter.pde Variable definitions as well as calls

all subsystems necessary to operate

the vehicle

Attitude.pde Combination of GN&C routines used

in controlling the vehicle attitude

commands.pde Common function definitions used

in commanding the vehicle

commands_logic.pde Level above commands.pde used in

commanding the vehicle

9

Table 1: Continued

commands_process.pde Top level commands used in

commanding the vehicle

config.h Default vehicle configuration file

config_channels.h Configure the vehicle channels

control_modes.pde Functions used to switch between

different control modes

defines.h Enumeration defines used to assist

in making the code readable

events.pde Functions to handle failsafe or low

battery conditions

failsafe.pde Allows checking of a software lock

flip.pde Logic to invert the vehicle

GCS.h Interface definition for ground

control protocols

GCS.pde Interface functions for ground

control protocols

GCS_Mavlink.pde Interface for ground control using

mavlink

inertia.pde Inertial integration of the

accelerometer

leds.pde Functions to change LED behavior

Log.pde Functions to read/write to memory

Limits.pde Logic to return-to-home if vehicle

goes out-of-bounds

motors.pde Arms motors

Starts the barometer

Stores the initial position

navigation.pde Calculates state errors with respect

to desired

Filters inertial velocities

Parameters.h Structure containing parameters

used by various subsystems

Parameters.pde Load and store parameters to

memory

planner.pde Access to the mission planner

radio.pde Reads the R/C input

10

Table 1: Continued

sensors.pde Functions to read the compass,

optical-flow, battery, and barometer

sensors

setup.pde Menus for setting up the vehicle via

the command line

system.pde Functions to initialize hardware

test.pde Functions to test system

functionality

UserCode.pde Empty function allowing for custom

user functionality

UserVariables.h Custom user-defined variables

System variables used throughout the system are defined globally in the

ArduCopter.pde file. There is not a consistent naming convention or unit system that

is being used; units are metric but may be given in meters, centimeters, degrees

times 100 or any number of other combinations. Choice of variable units is most

likely a result of electing to perform mathematics using integers. This is done

presumably so as to reduce computational time while maintaining accuracy and

limiting memory use. In the past compilers for ARM based processers were

notorious for producing erroneous results when using floating point variables.

11

2.2.2 Hardware Operation

The key item to note is that sensor access is asynchronous. Readings are

stored in internal sensor variables that are updated when the system detects that

the sensor is ready. This interrupts the current process. When a sensor reading is

necessary during operations the data is accessed through the stored variable and

does not actually call the sensor.

2.2.3 Subsystems

The software being investigated is not grouped into logical GN&C partitions.

It also does not appear to follow conventional definitions for GN&C. Throughout the

code navigation is most routinely used to reference methods or variables that would

typically be considered part of guidance although some routines are used to

determine the current state.

2.3 Conclusions

The ArduPilot system has a number of features that are useful in vehicle

development as well as a number of architectural choices that make code

modification and reading difficult.

12

Advantages of this system are:

• Inexpensive

The ArduPilot can be purchased for a few hundred dollars. At this price

the system is quite affordable to anyone and is less painful to replace in case

of a catastrophic failure during vehicle testing.

• Wide range of hardware capability

The hardware that is provided offers an interface to a wide variety of

sensors including GPS, accelerometers, gyroscopes, compasses, barometers,

and many more. The built in PWM generator is particularly useful since it

does not require any additional hardware when controlling R/C servos.

• Small and light-weight

All of the aforementioned capability comes in a small, light-weight, form

factor that can be flown on any number of micro aerial vehicles without

affecting performance or being too cumbersome to mount.

• Coded in C++

C++ is a cross-platform language. This allows for the development of

libraries that can be used not only on Arduino hardware but also on PCs and

other devices.

13

Disadvantages include:

• Over use of global variables

While global variables provide easy access for subsystems it is the

opinion of the author that their use is a dangerous coding practice

particularly for autonomous hardware. It is difficult to determine what is

using a global variable and were it is being manipulated. Comments within

the Arduino code indicate that it is uncertain what some of the variables are

being used for.

• Inconsistent Naming Convention and Unit Selection:

The lack of a consistent naming convention prevents a user from

being able to identify the purpose of a variable or what units are being used.

The reasoning behind the choice of units in the code commentary is often

sparse leaving the user to guess what is being used.

• Logic Grouping

Functionality is not grouped into logical subsystems and the GN&C

definitions do not follow conventional descriptions. Not having a well-defined

grouping of logic makes it difficult to determine how and where GN&C is being

performed. This makes modification of the code particularly difficult.

14

• Lack of robust mathematical library

Many GN&C systems, including those that the ArduCopter system is

intended, have multiple inputs and outputs (MIMO). These types of systems

can be conveniently represented in a state-space, or matrix, format. Some

tools have been created that handle 3x3 matrices and 3x1 vectors but are

not generic to be expanded to n-size arrays. Linear algebra routines are also

missing making implementation of GN&C algorithms time consuming and

tedious.

15

CHAPTER 3. J.A.R.V.I.S

3.1 Architecture

The premise of this architecture is that all autonomous vehicles require basic,

common, functionality that is unchanged between vehicle platforms. JARVIS

software is designed such that common logic is grouped into subsystems and these

subsystems only access each other via input and output busses. Communication

between subsystems is shown in Figure 1. Additionally all hardware functionality is

abstracted to provide a common interface. The hardware abstraction layer provides

access to the sensors and brings external information into the system as well as

sending information out of the system.

Figure 1: JARVIS Block Diagram

16

3.1.1 Subsystems

Subsystems contain common logic that is necessary to operate unmanned

systems such as guidance, navigation, and control. Additional subsystems included

are pilot, vehicle monitor, and ground control. The purpose of each is detailed below.

Separation of logic in this way allows for simple replacement of an entire subsystem

to occur without affecting the other subsystems.

The systems detailed in the proceeding sections should be thought of as an

empty box. The base classes described provide a common interface and allow the

user to populate the box to suit their purpose.

3.1.1.1 Pilot

The primary function of the Pilot subsystem is to provide a state command.

This command informs the vehicle about where it “wants” to be. Piloting consists of

three different modes:

� Manual

• Reads user input, throttle, rudder, aileron, elevator

• Control uses the commands directly and maps them to

the effectors

� Pilot-Assist

• Reads user input, throttle, rudder, aileron, elevator

• User input is modified by Guidance and Control

• Vehicle is completely stabilized by the autopilot, allows

a novice to pilot any vehicle

• Requires the state estimate from a Navigation

subsystem

17

� Autonomous

• Independent of user

• Uses a pre-defined set of waypoints or maneuvers to

perform a mission

• Requires the current state from Navigation

The base functionality and variables required for piloting are included in the

pilot class shown in Table 2.

Table 2: Pilot Base Class Description

PILOT Class

VARIABLES

Pilot_Mode Output variable indicating the desired piloting

mode

Command Output vector containing the pilot command

State_Actual Input vector containing the current state

User_Input Input vector containing the command from the

user, interpreted as a rate command

FUNCTIONS

Calculate_Command Generate a state command to be used by

Guidance

The base class provides a common interface that allows for custom

development for the underlying systems. The pilot base class will be the foundation

for future classes that can be created to perform maneuvers such as circling,

inverting, and waypoint tracking.

18

3.1.1.2 Guidance

Guidance is an often overlooked subsystem as, depending on the design, the

functionality can be included in control. The approach taken in the JARVIS

architecture is to have the pilot system provide a state command to guidance.

Guidance is then used to introduce additional information to the command and

provide an output that is used by control. For example the pilot command could be

interpreted as a desired rate. Guidance can then modify the rate with attitude

information to provide attitude control.

By using this separation states can be introduced at different levels and

allows the system to be tuned incrementally and assists in removing coupling

problems that could otherwise make control tuning comparably more difficult.

 The guidance base class is shown in Table 3.

Table 3: Guidance Base Class Description

Guidance Class

VARIABLES

Command Output vector containing the commanded

vehicle state

State_Actual Input vector containing the current state

State_Desired Input vector containing the desired state from

Pilot

Command Output vector containing the commanded

vehicle state

FUNCTIONS

Calculate_Command Generate a state command to be used by

Control

19

3.1.1.3 Navigation

Navigation is one of the most notorious, and possibly most important,

subsystems for autonomous operations simply due to the fact that without accurate

NAV information it is impossible to operate a vehicle regardless of how advanced

the supporting infrastructure is.

To assist in understanding what a NAV output is providing the variable should

be descriptive and conform to a naming convention. The variable naming convention

utilized in JARVIS is outlined in Table 4.

Table 4: NAV Variable Naming Conventions

_B Indicates that the variable is in the body frame

_NED Indicates that the variable is in the North-East-Down (NED) frame

_YPR Rotation sequence is Yaw-Pitch-Roll (3-2-1)

P Position, [X,Y,Z]’

w Angular rate

E Euler angle

Quat Attitude quaternion

T Transformation matrix

Subscript is read as TO axis system FROM axis system

T_BNED is the transformation to the body frame from the NED

frame

20

In general navigation algorithms consist of predicting the state, most often

done by propagating dynamic equations using the sensor readings, and correcting

the state with an external observation.

 For example, in the ArduCopter software the direction cosine matrix (DCM)

is propagated using the rate gyro. The gravity vector is then used to estimate the

error in Roll and Pitch. A PD controller then o augments the gyro rates in subsequent

propagation states to correct the DCM.

The class given in Table 5 will be utilized later in this thesis when

implementing an attitude estimation filter.

Table 5: Navigation Base Class

Navigation Class

VARIABLES

User Defined Variables are specific to the NAV

implementation and depend on user needs

FUNCTIONS

Predict_State Predict what the state is, typically done by

propagating dynamic equations

Correct_State Correct the state estimate using external

observations

21

3.1.1.4 Control

The purpose of the control system is to generate effector commands that will

realize the desired state. There are a wide variety of control algorithms that can be

used, some of which will be discussed later. The base functionality for control is to

take in a desired state and generate an effector command. The base class is shown

in Table 6.

Table 6: Control Base Class

Control Class

VARIABLES

Command Commands sent to the effectors

State_Desired Desired state that control is attempting to

achieve

State_Actual Current state of the vehicle

State_Error Difference between the desired and actual

state

Effector_Map Matrix that maps control commands to the

effectors

FUNCTIONS

Calculate_Command Function to generate an effector command

22

3.2 Libraries

To facilitate the implementation of various GN&C algorithms it is necessary to

have a robust library as a base to build from. There is a notable lack of tools

available for the open-source autopilot systems and while there are a wide variety of

commercial applications that provide these tools they are often cost prohibitive.

MatLab is one example of software that is popular in the field of engineering

as it provides a large suite of libraries that provide means to convert units and

coordinate systems, solve linear systems, and quickly plot results. It also includes

tools for converting models into C++ code that can be run on hardware.

MatLab however does come at a considerable monetary investment and being

proprietary does not often allow one to see the underlying algorithms. Auto-coding

software adds an additional layer that can contain mistakes or operate in

unintended ways. A simple example is if the sign returns zero or positive one when

the input has a value of zero. Code generated though an auto-coding process can

also be difficult to read and debug if necessary.

To avoid the cost overhead, a library has been developed in C++. MatLab has

been used to independently verify functionality. To facilitate conversion from one

environment to another function names and call list are as similar to the MatLab

environment as possible. For those familiar with MatLab this provides a familiar feel

when developing for JARVIS.

23

The following sections give a brief overview of the current capability of the

library and as with any tool it is in continuous development. A full list of available

functions is provided in Appendix A.

3.2.1 Use of Classes

To facilitate the reusability and readability of the code the C++ classes will be

used heavily. C++ classes contain all the variables and related functions desired for a

particular subsystem and can be used in higher-level code due to the feature of

inheritance, illustrated in Figure 2. Classes also allow for variables to be protected by

making them private ensuring that only a subset of data is visible to external

functions so that it is not changed or overwritten accidentally. The Inheritance

feature becomes very useful when creating different GN&C algorithms.

Figure 2: Class Inheritance (www.programiz.com, 2014)

24

Using templates allows a class to be used for different types of variables and

eliminates the need to recreate identical code so that it can work with both double

and floating point values for example.

3.2.2 Math Enhanced

This library has been created to provide resizable arrays as well as linear

algebra tools. It contains an array class, matrix class, linear algebra functions and

some simple signal handling.

3.2.2.1 Arrays

It is desirable to create an array of objects that can be accessed by index and

that if necessary be dynamically resized thus allowing one to loop through data in a

parameterized fashion and maintain code cleanliness. For example, if there are four

servos on the vehicle and there is a “Servo” class that provides access to basic servo

functionality and commanding, the ArduCopter code would need four “Servo”

variables. The array class declaration for the same situation is:

Array<Servo> Servos(4, 1)

This allows for each servo to be accessed from the “Servos” variable as would

be possible in MatLab with the exception that indices are base-zero to stay

consistent with the C++ language were as MatLab is base-one .

25

 The array class also contains the information on its size eliminating the need

for additional checks when performing a loop:

for(int i; i < Servos.nrows(); i++)

Servos(i).SendCommand;

To further enhance the capability the number of servos can be

parameterized as “nServos” that can be defined in the configuration file:

Array<Servo> Servos(nServos,1);

 The array class operates in two modes, the default is static sizing and the

secondary is dynamic sizing. The static size assumes that the array is a fixed size and

although it is possible to resize the variable manually, the data will not be

maintained when doing so. The dynamic sizing option allows the array to be resized

automatically, in that if one were to attempt to set an element that was outside of

the current array size, the array size would be increased while maintaining all

previous data. The dynamic size method is useful for off-line loading of data and was

implemented for use in the time-series class that is described in section 3.2.2.3.

26

3.2.2.2 Matrices

The matrix class is intended to be used for numerical computations and

inherits all of the capabilities from the array class while providing additional

capabilities, such as internal functions that zero the elements or populate the

elements so that the variable is an identity matrix. Variable declaration is done in

the same manner as the array class:

Matrix<float> A(3,3)

3.2.2.3 Time-Series Class

The time series class is intended for storing time-sequential data primarily for

use in post-processing data. This class contains two internal arrays, one that stores

the time vector, and one that stores the data. Functions are included within the class

that allow for data to be accessed by time or index.

3.2.2.4 Linear Algebra

A number of functions have been written to provide basic routines necessary

when constructing GN&C algorithms. These include matrix multiplication, addition

and scaling, QR and UD matrix decomposition. Also included is the capability to solve

linear systems and invert or orthonormalize a matrix. These functions rely on the

matrix class and have been compared against results produced by MatLab.

27

3.2.3 Aerospace Toolbox

The Aerospace toolbox has been created to provide a number of tools

necessary in unmanned vehicle development. These include routines for

transforming coordinate systems, converting units, and filtering signals. This library

also contains a quaternion class that is expected to be used for variables that

represent attitude using a quaternion. Control classes have been implemented and

can be used within the control subsystem when generating effector commands.

3.2.3.1 Controllers

The control toolbox is intended to contain a number of control classes that

can be used to generate control commands. The classes contain the variables and

functions necessary for any implementation of that particular algorithm. Examples

that are commonly seen in textbooks are state-space, positional-integral-derivative

(PID), linear quadratic regulator (LQR), and model predictive control (MPC).

The only control classes that are currently available are for PID and state

space control. Future improvements will be to add more control algorithms.

28

3.2.3.2 Conversions

One of the most common tools necessary for unmanned development is the

ability to transform coordinate systems between each other as well as convert units.

Routines have been implemented that provide basic unit conversions as well as

common transformations such as converting between the quaternion attitude

representation and the Euler-angle representation. A full list is given in Appendix A.

3.2.3.3 Filters

A number of filters have been constructed that allow for input signal filtering

as well as estimation.

3.2.3.3.1 Average

The average filter is used to average input values over a moving window. The

user defines the number of values (n) in the averaging window and updates the filter

by passing in values from the signal to be filtered (x); y is the filtered output.

=
∑
1

n

n
x

y
n

 (3.1)

29

3.2.3.3.2 High-Pass

High-pass filtering allows for high frequency content to pass through the

system while filtering out low frequencies. At initialization the user specifies the

smoothing factor ()α with a value ranging from 0 to 1. The filter is updated by

passing in the unfiltered value ()k
x and outputs the filtered value ()k

y . The previous

input and outputs are stored internally as −1k
x and −1k

y .

()α − −= + −
1 1k k k k

y y x x (3.2)

3.2.3.3.3 Low-Pass

Low-pass filtering allows for low frequency content to pass through and

removes high frequency content. As with the high pass filter the user specifies a

smoothing factor ()α at initialization. The filter is updated by passing in the

unfiltered value ()k
x and outputs the filtered value ()k

y . The previous input and

outputs are stored internally as −1k
x and −1k

y .

()α− −= + −
1 1k k k k

y y x y (3.3)

30

3.2.3.3.4 Kalman Filter

The Kalman filter is at the heart of most modern aerospace navigation

systems. Each implementation of a Kalman filter is unique due to the states that are

being estimated as well as the sensors available for measurements. Fortunately

large portions of the algorithm are reusable allowing for the development of a

library class that reduces the time and effort necessary to develop the state filter.

The Kalman filter can be computationally burdensome and, depending on the

method chosen, numerically unstable. Both qualities are undesirable and make

implementation of Kalman filters challenging. The approach chosen to address this

problem has been taken from (Holt, Greg N.; D'Souza, Christopher) and is unique in

that it is numerically stable and computationally efficient. What is given below is a

brief synopsis of how the filter is formed, for a more thorough understanding on the

derivation of the equations please refer to the references provided.

3.2.3.3.4.1 Dynamic System Model

The system is modeled as linear with white Gaussian noise. The discrete

system model is given in equation(3.4). The state vector is defined as X , F is the

state transition matrix and is calculated at each time step. G is the noise mapping

matrix, and w is the white Gaussian noise. In this section the subscript k is used to

indicate the current value and k-1 is the previous value.

1X Xk k k kF Gw−= + (3.4)

31

3.2.3.3.4.2 Measurement Model

The measurement model is also assumed to be linear with Gaussian noise.

Given a state vector that is corrupted by zero mean Gaussian noise ()v and the

sensitivity matrix ()H the measurements ()y are modeled as:

k k k ky H X v= + (3.5)

3.2.3.3.4.3 Updating Covariance

In Kalman filtering there are two primary steps, one is to perform a time

update and is also known as prediction. The second is to correct the state prediction

using measurements from external sensors. The following details the formulation

used for the covariance matrix and the base equations necessary to perform these

steps.

3.2.3.3.4.3.1 UDU Formulation of the Covariance

Matrix

In this approach to improve computational stability the covariance matrix (P)

is factorized into an upper-triangular matrix (U), that is also orthogonal, and a

diagonal matrix (D) that contains the singular values:

= T
P UDU (3.6)

32

A singular value decomposition (SVD) function is included in the library so as

to allow initialization of the filter using the standard covariance matrix.

3.2.3.3.4.3.2 Parameterization

Computational efficiency is improved by parameterizing the states. This

benefit is realized in filters with a large number of ECRVs, such as a sensor bias or

mounting error, by taking advantage of the sparseness of the corresponding

matrices.

The state vector is partitioned into “real” states ()χ and ECRVs ()p in the

following manner:

X
p

χ
=

 (3.7)

Likewise the U and D matrices are partitioned as shown in equations (3.8)

and (3.9). The subscript ()χχ indicates the portion of the matrix containing the first

order partial derivatives of the real states with respect to the real states. The

subscript ()χp indicates the first order partial derivatives of the real states with

respect to the ECRV states. The subscript ()pp indicates the first order partial

derivatives of the ECRV states with respect to the ECRV states.

33

0
p

pp

U U
U

U
χχ χ

=

 (3.8)

0

0 pp

D
D

D
χχ

=

 (3.9)

The state transition matrix partitioning is given in equation (3.10). Here M is

a diagonal matrix with each non-zero element being the inverse of the ECRV time

constant.

1 2

0

0 0 0
p pF F I F F

F F F
M M I

χχ χ χχ χ
= = =

 (3.10)

The weighting matrix is partitioned as shown in equation(3.11).

1 2

0 0 00

0 00 0pp pp

Q Q
Q Q Q

Q Q
χχ χχ

= = + = +

 (3.11)

3.2.3.3.4.3.3 Performing the Time Update

Using the modifications described in the previous sections, the time update

for the covariance matrix takes the form:

2 1 1 1 1 1 1 2 2k k k k k k

T T T T
k k k k k k kP U D U F F U D U F Q F Q− − − = = + + (3.12)

34

From equation (3.12) it is observed that the time-update can be performed using

two-steps. Here the k and k-1 subscripts have been dropped for brevity.

1. Compute the inner product. This can be done using a modified Gram-Schmidt

process (Thornton and Bierman):

1 1 1
T T TUDU FUDU F Q= + (3.13)

2. Compute the outer product. This can be accomplished with the Agee-Turner

rank-one update (Agee):

2 2 2
T TUDU FUDUF Q= + (3.14)

3.2.3.3.4.3.4 Measurement Update of Covariance

 Measurements are processed one at a time the a posteriori covariance ()+
P

given is a function of the Kalman gain ()K , the measurement partial ()H , and the

a priori covariance ()−
P . When discussing measurement updates the superscript (+)

indicates the a posteriori value and (-) indicates the a priori value.

P P KHP+ − −= − (3.15)

The optimal Kalman gain is given in equation(3.16) with R being the

measurement co-variance.

() 1T TK P H HP H R
−− −= + (3.16)

35

Using the modifications described in the preceding sections the covariance

measurement update then takes the form:

α
+ + + + − − − = = −

1T T T
P U D U U D vv U (3.17)

With the following definitions:

T Tv D U H− −= (3.18)

T THU D U H Rα − − −= + (3.19)

1 TK U vv
α

− =
 (3.20)

The Carlson rank-one update is used to solve for
+

U and +
D using the

definitions given in equations (3.21) through (3.23).

1T TUDU D vv
α

−= (3.21)

U U U+ −= (3.22)

D D+ = (3.23)

36

Because measurements are processed individually H is a row vector that

has a size of 1 by ()x pn n+ where
x

n is the number of real states and
p
n is the number

of ECRV states. This results in a scalar value for α and eliminates the need for

matrix inversions that are computationally burdensome and reduce numerical

stability.

3.2.3.3.4.4 Updating the State Estimate

As with the covariance matrix the state update consists of prediction and

correction.

3.2.3.3.4.4.1 State Time Update

The time update is often the propagation of dynamic equations, or

alternatively the integration of the inertial sensors at each time step. The time

update is specific to the filter that is being designed and does not lend itself to being

part of a generic Kalman filter class. Instead it is expected that a higher-level class

will be created that contains the logic necessary to propagate the state as well as

populate the state transition matrices necessary for performing the covariance

updates.

37

3.2.3.3.4.4.2 State Measurement Update

The state measurement is performed with the covariance update. The

Kalman filter is used to estimate the error in the state prediction ()∆x that is then

used to correct the state estimate.

Measurements are again performed one at a time with y being the

measurement and h the expected, or estimated, value.

x x K y h H x+ − − ∆ = ∆ + − − ∆ (3.24)

Substituting equation (3.20) for K:

1 Tx x U vv y h H x
α

+ − − −
 ∆ = ∆ + − − ∆

 (3.25)

For an Extended Kalman Filter the state correction is linear:

X X x+ −= +∆ (3.26)

∆x must be re-zeroed each time the state is corrected. Using the

methodology described any number of measurements can occur before the state

vector is corrected.

38

3.2.3.3.4.4.3 Measurement Rejection

One of the goals of this research is to improve the robustness of navigation

by providing a method to reject erroneous sensor measurements. Measurement

rejection is accomplished by comparing the residual ()− − ∆y h H x to a user-defined

threshold that is specified at initialization.

[]

[]

1
,

1
,

y h H x Threshold Discard

y h H x Threshold Keep

α

α

− − ∆ >

 − − ∆ <=

 (3.27)

3.2.3.3.5 Library Implementation

The logic described in the previous sections is implemented in the UDU_EKF

class. The class includes the necessary variables for running an EKF filter as well as all

the low-level logic to perform the heavy lifting for the covariance time update as

well as the state and covariance measurement updates. This class is generic to the

filter design and expects that the user will include it as part of an estimation

algorithm.

The amount of system memory used and the number of computations

required is reduced by taking advantage of the sparseness of the parameterized

matrices and storing the diagonal matrices as column vectors.

39

Table 7: UDU EKF Class Description

UDU_EKF

VARIABLES

U Post-update (nx + np)-by-(nx + np) unit upper

triangular matrix

D Post-update (nx + np)-by-1 vector of the

diagonal elements of the matrix D

PHI_x (nx)-by-(nx + np) state transition matrix

associated with the non-ECRV states

PHI_p (np)-by-1 vector of the diagonal elements of

the ECRV state-transition matrix

G_x (nx)-by-(nx) process noise mapping matrix

corresponding to non-ECRV states (matrix is

unit upper triangular)

Q_x (nx)-by-1 vector containing the diagonal terms

of the process noise covariance matrix Q_X

corresponding to non-ECRV states

Q_p (np)-by-1 vector containing the diagonal terms

of the process noise covariance matrix Q_P

corresponding to ECRV states

H 1-by-(nx + np) vector containing the partial

derivative of the measurement with respect

to the state using the current estimate

Delta_X (nx + np)-by-1 vector containing the current

estimate of the state error

40

Table 7: Continued

FUNCTIONS

Initialize(nx, np) Initialize the filter with the number of non-

ECRV and ECRV states; Expects the user to

initialize U and D afterwards.

set_Rejection_Threshold(Threshold) Set the multiple of the measurement

uncertainty used in rejecting bad

measurements

set_Underweighting(Threshold,

Coefficient)

Set the underweighting threshold and

coefficient

Covariance_Time_Update() Perform the time update of the covariance

matrix; Expects that the user has set the state

transition variables (PHI_x, PHI_p, G_x, Q_x,

Q_p) prior to calling this function

Measurement_Update(Y, h, R) Perform the measurement update of the

covariance and state error

Expects that the user has set the sensitivity

vector (H) prior to calling this function

3.2.3.4 Estimators

Estimation classes have been developed to provide capability to produce

attitude and position estimates using the aforementioned UDU_EKF class. These

classes are intended to be used in a navigation system but are otherwise

independent of the navigation architecture.

41

3.2.3.4.1 Multiplicative Extended Kalman Filter

A multiplicative extended Kalman filter (MEKF) has been implemented for

estimating attitude, body rates, as well as gyro bias. By using the UDU algorithm the

computational burden as well as the memory footprint has been reduced

significantly allowing the filter to be used real-time despite using a low-power

system.

3.2.3.4.1.1 Attitude Representation

Several different methods can be used to describe the attitude of a vehicle

including Euler angles, quaternions, and Rodrigues parameters. For a body moving in

three-dimensional space the quaternion formulation is appealing since no

singularities are present4 and the state error can be estimated by only three

variables. The quaternion representation that will be used in this thesis will be the

scalar (
0q) followed by the vector (

vq) and is how the quaternion class has been

implemented in the Aero-Toolbox library.

[]=
0

T

v
q q q (3.28)

[]=
1 2 3
, ,

T

v
q q q q (3.29)

4 A singularity occurs when the error is exactly 360 degrees. Errors this large cause additional

problems as the derivation assumes a small error and in any situation is very unlikely to occur

considering that the filter is being performed at a high rate (>30Hz).

42

Additionally quaternion must obey the following constraint:

=1T
q q (3.30)

3.2.3.4.1.2 Attitude Kinematics

The quaternion kinematics ()q are a function of the body angular rates ()ω .

The formulation as given in (Dreier) is given in equation (3.31). The variables p , q ,

and r are used to represent the angular rate about the body X, Y, and Z axis

respectively. ⊗ is used to represent quaternion multiplication.

ω
ω

= Ω = Ξ = ⊗

01 1 1

2 2 2
q

q q q (3.31)

1 2 3

0 3 2

3 0 1

2 1 0

0

0
,

0

0

q

q q qp q r

q q qp r q

q q qq r p

q q qr q p

− − −− − −
 −− Ω = Ξ =
 −−
 − − −−

 (3.32)

3.2.3.4.1.3 Sensor Modeling

Observations are used to correct the state estimate and are collected from a

variety of sensors including rate gyroscopes, accelerometers, magnetometers and

GPS.

43

The gyroscope measures body angular rates ()ω and are modeled as a

function of the true angular rates, the gyro bias ()β
g

, and zero-mean Gaussian noise

()g
n .

g gnω ω β= + + (3.33)

The accelerometer on each axis measures translational acceleration ()a in

the body reference frame and is modeled as a function of true acceleration ()a and

zero-mean Gaussian noise ()g
a .

= +
a

a a n (3.34)

3.2.3.4.1.4 Derivation of the MEKF Error Model

In an extended Kalman filter (EKF) the attitude quaternion constraint given in

equation (3.30) can be violated by the linear measurement update. This obstacle is

overcome by using the multiplicative error quaternion. This method represents the

attitude quaternion as the product of the estimated attitude ()q̂ and the deviation

from the estimate ()δq .

δ= ⊗ ˆq q q (3.35)

44

Following the procedure given in (Crassidis and Junkins) and by using the

quaternion representation given in(3.28), the error between the true and estimated

attitude quaternion is given as:

δ −= ⊗ 1
ˆq q q (3.36)

Using the chain rule, the time derivative of the error quaternion ()δq is given in

equation (3.37).

1 1ˆ ˆq q q q qδ − −= ⊗ + ⊗ (3.37)

With the definitions given in equations (3.38) and (3.39). Hereδ
0

q represents the

error in the scalar portion of the attitude quaternion and δ
v
q is the error in the

vector portion of the attitude quaternion.

0[,]T
vq q qδ δ δ= (3.38)

[]1
0, vq q q− = − (3.39)

The expressions forq, q and
1q̂ −

 are available leaving only an expression for −1
q̂ to

be determined. The estimated quaternion kinematics model is:

45

01 1 1ˆ ˆˆ ˆ ˆ
ˆ2 2 2qq q qω

ω

= Ω = Ξ = ⊗

 (3.40)

The error between the quaternion estimate and itself is the zero-quaternion:

[]1ˆ ˆ 1 0 0 0
T

q q−⊗ = (3.41)

Equation (3.41) is constant so the time derivative is equal to zero:

1 1 1ˆ ˆ ˆ ˆ ˆ ˆ 0q q q q q q
t

− − −∂ ⊗ = ⊗ + ⊗ =
∂

 (3.42)

Substituting (3.40) into(3.42) gives the following:

− −Ω ⊗ + ⊗ =1 11
ˆ ˆ ˆ ˆ ˆ 0

2
q q q q (3.43)

1q̂−
 is can then be found by substituting equations (3.41) and (3.32) into(3.43):

1 1
ˆ1

ˆ ˆ
02

q q
ω− −

= − ⊗

 (3.44)

Substituting δω ω ω≡ − ˆ along with equation(3.44) and equation (3.37) results in:

46

0 0 01 1
ˆ ˆ ˆ2 2

q q q qδ δ δ δ
ω ω δω

= ⊗ − ⊗ + ⊗

 (3.45)

That can be equivalently written as:

δ δ δ
ω δω

 = Ω − Γ + ⊗

0 01 1

ˆ ˆ2 2
q q q (3.46)

With:

0

0

0

0

p q r

p r q

q r p

r q p

− − −
 − Γ =
 −
 −

 (3.47)

Using equations (3.32) and (3.47) leads to:

0 01
ˆ ˆ2x v

q q
q

δ δ
ω δ δω

= − + ⊗

 (3.48)

The skew-symmetric cross-product matrix is defined as:

0

0

0
x

r q

r p

q p

ω
−

 = −
 −

 (3.49)

47

For the next portion of the derivation the assumption is made that the error

is small; the true quaternion is close to the estimated quaternion. This allows the

scalar
0q to be approximated as a constant that is equal to one and removed from

the system leaving only δ
v
q to be estimated. Using a first-order approximation, the

linearized model is:

1
ˆ

2v x vq qδ ω δ δω= − + (3.50)

0 0qδ = (3.51)

The estimated angular velocity ()ω is given as a function of the measured angular

velocity and the estimated gyro bias ()β̂
g

 :

ˆˆ gω ω β= − (3.52)

Using equations (3.33) and(3.52), and treating the gyro bias as a constant, equation

(3.50) takes the form given in equation (3.53) with β∆
g

 representing the error in the

gyro bias.

δ ω δ β= − + +1
ˆ ()

2
v x v g g
q q n (3.53)

48

Then assuming a small angle
δαδ ≈
2

v
q :

δα ω δα β= − − +()
x g

n (3.54)

[]δα δφ δθ δϕ= T

 (3.55)

3.2.3.4.1.4.1 EKF Error Model

The state estimated by the MEKF is δα and the error in the gyro bias ()δβ
g

.

δα δβ ∆ = ˆ() () ()
T

T T

g
x t t t (3.56)

The continuous-time derivative of the state error ()∆x̂ is modeled as a

function of the state-transition matrix ()F computed at time (t), the noise mapping

matrix ()G and Gaussian noise ()w .

∆ = ∆ +ˆ ˆ ˆ() ((),) () ()x t F x t t x G t w t (3.57)

The Gaussian noise comes from noise in the gyroscope measurements ()g
n and the

accelerometer measurements ()
a

n .

49

 = ()
T

T T

g a
w t n n (3.58)

The state transition matrix is a function of the skew-symmetric cross product matrix

generated using the estimated body rates ()ω̂ ()
x
t and the gyro time constant

()τ
gyro

.

3 3

3 3 3 3

ˆ ()

ˆ 1((),)
0

x x

x x
gyro

t I
x

F x t t
Ix

ω

τ

− −
∂ = = ∂

 (3.59)

The noise mapping matrix and weight matrix (Q(t)) are assumed to be constant.

σ
σ

−
= =

2

3 3 3 3 3 3 3 3

2

3 3 3 3 3 3 3 3

0 0
() , ()

0 0

x x g x x

x x x a x

I I
G t Q t

I I
 (3.60)

3.2.3.4.1.5 Modification for Use with the UDU EKF Algorithm

Equations(3.58), (3.59), and (3.60) are not parameterized and are in the

continuous time form. To use the UDU algorithm constructed for the library, the

system needs to be converted into a discrete time form. Assuming a small time step

()dt allows for the following approximation to be made:

[]∆ = ∆ + ∆ = ∆ + ∆ +ˆ ˆ ˆ ˆ ˆ ˆ(,) ()x x xdt x F x t x Gw t dt (3.61)

50

χχ χ
∆ = + ∆ +

0
ˆ ˆ ()

00

p

pp

F FI
x dt x Gw t dt

FI
 (3.62)

Using the nomenclature from the UD_EKF class:

pPHI F dt I F dtχ χχ χ = + (3.63)

pPHI , is diagonal and can be discretized directly by taking the exponential of the

diagonal terms multiplied by the time delta.

3 3
p gyro

dt

F

p xPHI e I eτ= = (3.64)

Lastly:

3 3x xG I dt= (3.65)

3.2.3.4.1.6 Attitude Observations

Although the accelerometers measure the translational state, they can be

used to observe pitch and roll through the gravity vector. The gravity vector as

measured by the accelerometers is represented by a rotation of the NED gravity

vector to the body frame using the NED-to-body transformation matrix ()B
NEDT .

51

[]0 0 1
TB

NED ay T n= + (3.66)

ˆ ba is the expected acceleration in the body frame and is found using the current

estimate of the attitude ()−
ˆ
k

q .

[]ˆ ˆ ˆ() () 0 0 1
TB

b k NED ka q T q− −= (3.67)

 The sensitivity matrix for the acceleration measurements is then:

−

−
∂ = = − ∂∆

 −

3 2

3 1

2 1

ˆ ˆ0 0 0 0

ˆ ˆˆ() 0 0 0 0

ˆ ˆ 0 0 0 0

b b

k k b b

b b

a a
y

H x a a
x

a a

 (3.68)

The accelerometer is unable to observe the yaw angle and instead needs to

be corrected by use of a magnetometer, or GPS that provides a ground heading. In

these cases the sensors measure the yaw angle directly and can be used to calculate

North in the body frame (ˆ
bN) to be used with equation(3.68) in the update:

[]
cos() sin() 0

ˆ sin() cos() 0 () 1 0 0

0 0 1

T

b sensorN q n

ψ ψ
ψ ψ

−
 = +

 (3.69)

52

3.2.3.4.1.7 Updating the State Estimate

The state estimate is updated using the estimate of the state error obtained

through the measurement updates.

 The gyro bias update is linear:

ˆ ˆ ˆ
k k kβ β β+ − += + (3.70)

The quaternion update is multiplicative:

1
ˆ ˆ1

ˆ
2

k k
k

q q
δα

+ −
+

 = ⊗

 (3.71)

3.2.3.4.1.8 Implementation

Utilizing the UDU_EKF library class and the MEKF derivation given in the

previous section an attitude and heading reference system (AHRS) has been

constructed:

53

Table 8: AHRS_MEKF Class

AHRS_MEKF

VARIABLES

Gyro_Variance Variance of the gyro measurements

Gyro_Bias_Variance Variance of the gyro bias

Gyro_Time_Constant Time constant of the gyro

Filter UDU_EKF declaration used for Kalman filtering

FUNCTIONS

Initialize(Gyro_Variance,

Gyro_Bias_Variance,

Gyro_Time_Constant)

Initialize the estimator

Inputs are the gyro sensor parameters

aClear() Clear all allocated memory

Filter is no longer valid

Clear_Workspace() Clear workspace memory to save memory

Maintains filter states

Initialize_Workspace() Initialize workspace variables

Propogate (Quat_BI, w_B, dt) Propagate the attitude quaternion and

covariance

Inputs are the attitude quaternion, the estimate

of body rates, and the time-step

calcLinSys(w_B, dt) Calculate the discrete-time system matrices

used by the UDU filter (PHI_x, PHI_p, Q_x, Q_p,

G_x)

Measurement_Update(Measured,

Expected, Variance)

Update the state error estimate using a

measurement

Update_Estimate(Quat_BI,

Gyro_Bias)

Update the estimate of the attitude quaternion

and the gyro bias

3.2.3.4.2 Inertial Extended Kalman Filter

Estimation of position and velocity is required to be able to traverse from one

location to the next. The primary sensor used to determine position and velocity is

GPS. The purpose of the filter to provide reasonable estimates of the state when

there is a loss of the GPS signal, or when there is interference that results in

erroneous GPS readings.

54

 As with attitude estimation a Kalman filter will be used to provide the

translational state estimates. It is possible to develop a filter that contains both the

attitude and translational states however both are being kept separate for this thesis.

The purpose behind the decoupling of the attitude and positional states is two-fold.

One reason that will be discussed later is that the APM hardware does not have

enough system RAM to be able to cope with the full state filter so by implementing

them separately some of the states can still be filtered depending on what is desired.

The second is that including both in the same filter can cause coupling issues that

are difficult to tune.

3.2.3.4.2.1 Coordinate Systems

GPS provides coordinates in latitude, longitude, and are in the Earth-

Centered-Earth-Fixed (ECEF) reference frame. The ECEF is not as intuitive and

instead the North-East-Down (NED) reference frame is used in the filter.

55

Figure 3: Definitions of Various Coordinate Systems [Centinello III, 2007]

3.2.3.4.2.2 Translational Kinematics

Equations for translational kinematics are taken from (Centinello III). In the

equations given below h represents altitude, λ is the latitude given in radians, and

Φ is the longitude also in radians. Velocities are in the NED reference frame. The

continuous time state derivatives are given in equations (3.72) through (3.77). In the

following sections the subscripts N, E, and D are used to indicate that the variables

are with respect to the North (N), East (E), or Down (D) axis. ω
e

 is the rotational rate

of the earth. Unless otherwise indicated velocity is represented by (v) and

acceleration by (a).

56

λ

λ =
+
N
v

R h
 (3.72)

() λΦ

Φ =
+ cos

E
v

R h
 (3.73)

=−
D

h v (3.74)

() ()λ

ω λ
λΦ

= − + + + + +

2 sin
E N D

N e E N

v v v
v v a

R h cos R h
 (3.75)

() ()λ

ω λ ω λ
λΦ

= − + + + + + +

2 sin 2 cos
E E D

E e N e D E

v v v
v v v a

R h cos R h
 (3.76)

λ

ω λ
Φ

= − − − + +
+ +

2 2

2 cos
E N

D e E D

v v
v v g a

R h R h
 (3.77)

 The X ()λR and Z ()ΦR location on the Earth’s surface are found using the

current latitude as well as the Earth’s semi-major axis ()a and eccentricity ()e .

()
()

λ
λ

−
=

−

2

3
2 2 2

1

1 sin

a e

R

e

 (3.78)

57

()λ
Φ =

−
1

2 2 2
1 sin

a
R

e

 (3.79)

Gravity ()g is modeled in the NED frame using equation (3.80). The model

constants are given in Table 9.

() ()λ λ λ= + − − − +2 2 2 2
1 sin sin 2 sing A B C D E h Fh (3.80)

Table 9: Gravity Model Constants

Constant Value

A 32.185 (English) or 9.81 (Metric)

B 5.3024e-3

C 5.8e-6

D 3.0877e-6

E 4.4e-9

F 7.72e-14

3.2.3.4.2.3 Sensor Modeling

The GPS pseudo-range ()ρ
i

 is defined as the norm of the radius vector,

taken in the ECEF reference frame, between the user ()E
r and the individual

satellite ()E

i
R with a clock bias ()β

c
.

58

ρ β= − + + =, 1,2,...,
E E

i i c
R r v i n (3.81)

Accelerometer measurements ()a are with respect to the body frame and

are modeled as a function of true body acceleration ()a , the accelerometer bias

()β
a

 and Gaussian noise ()
a
n .

β η= + +
a a

a a (3.82)

3.2.3.4.2.4 EKF Model

The state ()X and state error ()∆X vectors are given in equations (3.83)

and (3.84). The (^) accent is used to indicate the estimated values.

λ β β β = Φ x y z

T

N E D a a a
X h v v v (3.83)

λ β β β ∆ = ∆ ∆Φ ∆ ∆ ∆ ∆ ∆ ∆ ∆ x y z

T

N E D a a a
X h v v v (3.84)

The continuous-time derivative of the state error ()∆x̂ is modeled as a

function of the state-transition matrix ()F computed at time (t), the noise mapping

matrix ()G and Gaussian noise ()w .

59

∆ = ∆ +ˆ ˆ ˆ() ((),) () ()x t F x t t x G t w t (3.85)

The state transition matrix is defined as:

β
β
β

 ∂ ∂
 ∂ ∂
 ∂ ∂ ∂=

∂ ∂ ∂
 ∂

∂

3 3

3 3 3 3

0

0 0

x

NED

NED NED NED

NED a

a

x x

a

P P

P V

V V V
F

P V
 (3.86)

With the first-order partial derivatives given as:

() ()

() ()

λ

λ λλ
λ λ λ λ

λ
Φ

ΦΦ Φ

∂ − − ∂+ +
 ∂∂ = − + − ∂ ∂ ++ +

2 2

2 2

0

sec sec tan sec
0

0 0 0

N N

E E E

Rv v

R h R h

v R v vP

P R hR h R h

 (3.87)

()
λ λ

λ λ
Φ∂ =

∂ −

2

3
2 2 2

sin cos

1 sin

R ae

e

 (3.88)

()
()

λ
λ λ

λ λ

−∂ =
∂ −

2

5
2 2 2

3 1 sin cos

1 sin

a eR

e

 (3.89)

60

λ

λ
Φ

 +

∂ = ∂ +

−

1
0 0

sec
0 0

0 0 1

NED

R h

P

V R h
 (3.90)

∂ = ∂

11 13

21 23

31 33

0

0

0

NED

Y Y

V
Y Y

P
Y Y

 (3.91)

() ()
λ

λ

λ λ ω λ
λ λ

Φ

Φ Φ

∂∂= − + − −
+ ∂ ∂+ +

2 2 2

11 2 2

sec tan
2 cos

E E N D

e E

Rv v R v v
Y v

R h R h R h

 (3.92)

() ()λ

λ

Φ

= −
+ +

2

13 2 2

tan
E N D
v v v

Y

R h R h

 (3.93)

() ()
λ λ ω λ ω λ

λ λ
Φ Φ

Φ Φ Φ

∂ ∂= − − + − −
+ ∂ ∂+ +

2

21 2 2

v sec v tan
2 cos 2 sin

E N E N E D

e N e D

v v R v v R
Y v v

R h R h R h

 (3.94)

()
λ

Φ

 += −
+

23 2

tan
N D

E

v v
Y v

R h

 (3.95)

() ()
λ

λ

ω λ
λ λ λ

Φ

Φ

∂∂ ∂= + + +
∂ ∂ ∂+ +

2 2

31 2 2
2 sin

E N

e E

Rv R v g
Y v

R h R h
 (3.96)

61

() ()λΦ

∂= + +
∂+ +

2 2

33 2 2

E N
v v g

Y
hR h R h

 (3.97)

() ()λ λ λ λ λ λ
λ

∂ = − +
∂

2 sin cos 4 sin2 cos2 2 sin cos
g

A B C E h (3.98)

λ∂ = − + +
∂

2
sin 2

g
D E F

h
 (3.99)

λ λ

λ

λ ω λ

λ λω λ ω λ

ω λ

Φ

Φ Φ Φ

Φ

− + + + +

 ∂ += + + ∂ + + +

− − − + +

2 tan
2 sin

tan tan
2 sin 2 cos

2 2
2 cos 0

D E N

e

NED E D N E

e e

NED

N E

e

v v v

R h R h R h

V v v v v

V R h R h R h

v v

R h R h

 (3.100)

β
∂ = −
∂ 3 3

NED

x

a

V
I (3.101)

β
β τ

∂ = −
∂ 3 3

1
a

x

a a

I (3.102)

The noise mapping matrix and weight matrix (Q) are constant:

β

σ
σ

 = − =

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

0 0 0 0 0

0 , 0 0

0 0 0
a

x x x x x

x x x a x x

x x x x x

G I Q I

I I

 (3.103)

62

3.2.3.4.2.5 Modification for Use with the UDU EKF Algorithm

As with the MEKF derivation equations in the preceding section need to be

discretized and parameterized for use with the available UDU algorithm. Assuming a

small time step ()dt allows for the following approximation to be made:

[]∆ = + = ∆ + ∆ +ˆ ˆ ˆ ˆ ˆ ˆ(,) ()x x xdt x F x t x Gw t dt (3.104)

χχ χ
∆ = + ∆ +

0
ˆ ˆ ()

00

p

pp

F FI
x dt x Gw t dt

FI
 (3.105)

Using the nomenclature from the UDU_EKF class:

 (3.106)

β

∂ ∂ + ∂ ∂
 =
 ∂ ∂ ∂+ ∂ ∂ ∂

3 3 3 3

3 3

0
x x

NED

X

NED NED NED

x

NED a

P P
dt I dt

P V
PHI

V V V
dt dt I dt

P V

 (3.107)

, is diagonal and can be discretized directly by taking the exponential of the

diagonal terms multiplied by the time delta. τ
a

 represents the accelerometer time

constant.

x xx xpPHI F dt I F dt = +

pPHI

63

τ=
3 3

a

dt

p x
PHI I e (3.108)

Lastly:

= −

3 3 3 3

3 3 3 3

0 0

0

x x

x

x x

G
I dt

 (3.109)

3.2.3.4.2.6 Inertial Observations

GPS is the primary sensor that is used to correct the translational state and

provides direct measurements of latitude, longitude, and altitude. Additionally it

also provides a ground speed ()V and the ground course ()ψ that can be used to

correct the velocities. Using the state defined in (3.83) the sensitivity matrix for

updating latitude:

[]
λ

∂= =
∂

1 0 0 0 0 0 0 0 0
Latitude

X
H (3.110)

Longitude:

[]∂= =
∂Φ

0 1 0 0 0 0 0 0 0
Longitude

X
H (3.111)

Altitude:

[]∂= =
∂

0 0 1 0 0 0 0 0 0
Altitude

X
H

h
 (3.112)

64

The sensitivity matrix for updating NED velocities using the velocity magnitude is:

 ∂= = ∂
_

0 0 0 0 0 0
N E D

Ground Speed

NED NED NED

V V VX
H

V V V V

 (3.113)

Updating NED velocities using the ground course:

ψ

 −∂ = =
 ∂

+ +

_ 2 2

2

2 2

1
0 0 0 0 0 0 0

1 1

E

Ground Course

E E

N N

N N

VX
H

V V
V V

V V

 (3.114)

3.2.3.4.2.7 Updating the State Estimate

The state estimate is updated using the estimate of the state error generated

by the measurement updates. After updating the state the estimate of the error is

reset to zero:

+ −= + ∆ˆ ˆ ˆX X x (3.115)

3.2.3.4.2.8 Implementation

Utilizing the UDU_EKF library class and the EKF derivation given in the

previous section a translational filter has been constructed:

65

Table 10: INRTL_Geod_EKF Class

INRTL_EKF

VARIABLES

Accel_Variance Variance of the accelerometer measurements

Accel_Bias_Variance Variance of the accelerometer bias

Accel_Time_Constant Time constant of the accelerometer

Filter UDU_EKF declaration used for Kalman filtering

FUNCTIONS

Initialize(Accel_Variance,

Accel_Bias_Variance,

Accel_Time_Constant)

Initialize the estimator

Inputs are the accelerometer sensor parameters

Clear() Clear all allocated memory

Filter is no longer valid

Clear_Workspace() Clear workspace memory to save memory

Maintains filter states

Initialize_Workspace() Initialize workspace variables

Propogate (Latitude, Longitude,

Altitude, V_NED, Accel_Bias, a_B,

Quat_BNED, dt)

Propagate the state and covariance. Inputs are

the current state, a time step, and the attitude

quaternion.

calcLinSys(Latitude, Altitude,

V_NED, dt)

Calculate the discrete-time system matrices used

by the UDU filter (PHI_x, PHI_p, Q_x, Q_p, G_x)

Geod_Update(Lat_Measured,

Lat_Epected, Lat_Variance,

Lon_Measured, Lon_Expected,

Lon_Variance)

Update the latitude and longitude error

estimates

Altitude_Update(Alt_Measured,

Alt_Expected, Variance)

Update the altitude error estimate using a

measurement.

Vmag_Update(Vmag_Measured,

V_NED, Variance)

Update the V_NED error estimate using a

measurement of the velocity magnitude.

Update_Estimate(Latitude,

Longitude, Altitude, V_NED)

Update the estimate of the translational state

and the accelerometer bias

66

3.2.3.5 Hardware and Sensor Classes

Hardware is what allows software to interact with the external world and can

come in a seemingly infinite number of configurations. Even when hardware is

intended for the same purpose, reading acceleration for example, it often is

accessed quite differently between manufacturers and requires custom drivers.

To facilitate interaction between software and hardware, the hardware

interface must be abstracted. This is accomplished in JARVIS by creating a base class

for each sensor. These classes are then used to create sensor-specific classes that

are then incorporated into a master Hardware class. This operates under the

assumption that between different sensors of the same classification the only

model-specific code relates to initialization and reading of the sensor. This allows for

all hardware functionality to be accessed through the Hardware class and prevents

the need for any software changes when using different hardware platforms.

3.2.3.5.1 Hardware

The hardware class is made up of the sensor classes and can contain any

additional functionality necessary to initialize the platform.

67

Figure 4: Hardware Abstraction Diagram

3.2.3.5.2 Accelerometer

Table 11: Accelerometer Base Class

Accelerometer_Class

VARIABLES

Enabled Flag to indicate if the sensor is enabled

Healthy Flag to indicate the sensor health

Initialized Flag to indicate if the sensor has been

initialized

Reading Array containing the sensor reading

FUNCTIONS

getReading() Return the last sensor reading

getCalibration() Return the calibration values

setCalibration(Calibration) Set the calibrated values

setOrientation(Psi, Theta, Phi) Set the orientation of the sensor with respect

to the body axis

Calibrate() Called after the sensor is initialized

Calibrates the output

68

3.2.3.5.3 Gyroscope

Table 12: Gyro Base Class

Gyro_Class

VARIABLES

Enabled Flag to indicate if the sensor is enabled

Healthy Flag to indicate the sensor health

Initialized Flag to indicate if the sensor has been

initialized

Reading Array containing the sensor reading

FUNCTIONS

getReading() Return the last sensor reading

getCalibration() Return the calibration values

setCalibration(Calibration) Set the calibrated values

setOrientation(Psi, Theta, Phi) Set the orientation of the sensor with respect

to the body axis

Calibrate() Called after the sensor is initialized

Calibrates the output

3.2.3.5.4 Compass

Table 13: Compass Base Class

Compass_Class

VARIABLES

Enabled Flag to indicate if the sensor is enabled

Healthy Flag to indicate the sensor health

Initialized Flag to indicate if the sensor has been

initialized

Reading Array containing the sensor reading

FUNCTIONS

getReading() Return the last sensor reading

getCalibration() Return the calibration values

setCalibration(Calibration) Set the calibrated values

setOrientation(Psi, Theta, Phi) Set the orientation of the sensor with respect

to the body axis.

Calibrate() Called after the sensor is initialized

Calibrates the output

69

3.2.3.5.5 Baro

Table 14: Baro Base Class

Baro_Class

VARIABLES

Enabled Flag to indicate if the sensor is enabled

Healthy Flag to indicate the sensor health

Initialized Flag to indicate if the sensor has been

initialized

Ground_Pressure Initial pressure reading at the ground, altitude

is calculated as above-ground-level (AGL)

Ground_Temperature Initial temperature reading at the ground

Pressure Pressure reading

Temperature Temperature reading

Altitude Calculated altitude

FUNCTIONS

getAltitude() Calculate and return the altitude

getPressure() Return the pressure reading

getTemperature() Return the temperature reading

Calibrate() Called after the sensor is initialized

Calibrates the output

70

3.2.3.5.6 GPS

Currently the GPS library is nearly unchanged from the one provided with the

ArduCopter software. A base class has been created although is currently unused.

Table 15: GPS Base Class

GPS_Class

VARIABLES

Enabled Flag to indicate if the sensor is enabled

Healthy Flag to indicate the sensor health

Initialized Flag to indicate if the sensor has been

initialized

New_Data Flag to indicate that new data is available

GPS_Lock Flag to indicate that the GPS has a lock

Latitude Latitude reading

Longitude Longitude reading

Altitude Altitude reading

Ground_Speed Ground speed reading

Ground_Course Ground course reading

FUNCTIONS

N/A N/A

3.2.4 Code Validation

With the complexity of an integrated system and the number of required

library functions used it is important to be able to validate the outputs of the

functions independently as well as the integrated system.

71

3.2.4.1 Library Functions and Classes

Each function or class was first prototyped in the MatLab environment. Once

prototyped the new item was called and the output compared to any existing

MatLab function. For items without a MatLab counterpart outputs were compared

to any number of other sources including hand calculations and online calculators.

The prototype was then converted into the C++ language and added to the

library. A test program is then written that calls the library function and prints the

output to the screen or a file. This output is then compared to the output of the

original prototype.

Once the code had been verified off-line it was considered ready to be used

on the flight hardware. Functionality on hardware was validated by creation of a unit

test program, or by use of debug print statements.

3.2.4.2 Integrated System

Even with the library functions performing as intended the integrated system

can present unknown irregularities. Testing of the integrated system is performed

using the MatLab implementation of JARVIS, by compiling the JARVIS code on an x86

PC, or by running it on the hardware. A makefile has been created that allows JARVIS

to be compiled easily on a Unix-based system or on Windows using Cygwin5.

5
 A large collection of GNU and Open Source tools which provide functionality similar to a

Linux distribution on Windows (cygwin.com)

72

A simulation has been constructed for the off-line (x86/MatLab) code that

allows the software to be driven through either logged sensor data, or by using a 6-

DoF simulation with the sensors being modeled. The ability to reprocess logged data

is powerful as it allows the user to log a minimal set of data while being able to fully

reconstruct the internal signals when analyzing vehicle performance.

73

CHAPTER 4. GUIDANCE

The Guidance method currently being employed is a linear guidance algorithm.

Here the pilot command is interpreted as a rate command that is augmented by

guidance. Guidance generates a delta command from a gain matrix and a state ()X

error.

Note that with the system architecture chosen Guidance should not augment the

rate command with rate errors, instead only with positional errors. It is intended that

control will interpret the guidance command as a rate command and compute the rate

error internally.

The linear Guidance routine is implemented as follows:

= −
Error Desired Actual

X X X (4.1)

=
Command Error

X KX (4.2)

= +
_Command Pilot Command Command

X X X (4.3)

74

The Guidance gain matrix can be set to zero allowing for direct tuning of the rate

controller. Afterwards the states can be introduced incrementally by adjusting elements

in the Guidance gain matrix.

75

CHAPTER 5. NAVIGATION

Navigation is divided into subsystems that follow the architecture outlined in

section 3.1.1.3. Each subsystem is responsible for producing estimates of desired states

such as the attitude and position. Dividing navigation in this manner allows for

individual tuning of the estimators as well as the expansion or contraction of the states

being estimated with little additional work. Currently an attitude and translational

navigation system have been created. Future iterations will include an atmosphere-

relative navigation system.

5.1 Attitude

Attitude navigation is built upon the AHRS_MEKF class. The measurement updates

occur at 2Hz and follow the logic flow shown in Figure 5.

76

Figure 5: Navigation AHRS: Measurement Update Logic Flow

77

State prediction is called at 50Hz and follows the logic flow shown in Figure 6.

Figure 6: Navigation AHRS: Predict State Logic Flow

5.1.1 Simulated Results

The first set of results was generated in MatLab using modeled sensor data for a

stationary rigid body. The AHRS class performs as intended and provides reasonably

accurate estimates of the attitude and rates that are within the 3-sigma boundaries.

78

Figure 7: Attitude Error with 3-Sigma Bounds

Figure 8: Rate Error with 3-Sigma Bounds

0 10 20 30 40 50 60

-10

0

10

Attitude Errors with 3-Sigma Bounds

Max Error = 0.832513 deg

Time (s)
ψ

 (d
eg

)

0 10 20 30 40 50 60
-10

0

10 Max Error = 0.074907 deg

Time (s)

θ
(d

eg
)

0 10 20 30 40 50 60

-10
0

10 Max Error = 0.067533 deg

Time (s)

φ
(d

eg
)

0 10 20 30 40 50 60

-2
0

2

Rate Errors with 3-Sigma Bounds

Time (s)

ω
x (d

eg
/s

)

Max Error = 0.355252 deg/s

0 10 20 30 40 50 60

-2

0

2

Time (s)

ω
y (d

eg
/s

ec
)

Max Error = 0.380415 deg/s

0 10 20 30 40 50 60

-2
0

2

Time (s)

ω
z (d

eg
/s

)

Max Error = 0.442954 deg/s

79

5.1.2 Flight-Results

The figures below were generated from logged flight data. Gyroscope,

accelerometer, and compass sensors were used in the filter. Unfortunately a rate table

or similar device was not available preventing truth data to be collected. Instead the

hardware was rotated by hand 360 degrees about each axis individually starting with

the Z-body axis.

Figure 9: Flight-Test: Attitude Estimate

0 20 40 60 80 100 120
-200

0

200

Time (s)

φ
(d

eg
)

Attitude

0 20 40 60 80 100 120
-100

0

100

Time (s)

θ
(d

eg
)

0 20 40 60 80 100 120
-200

0

200

Time (s)

ψ
 (d

eg
)

80

Figure 10: Flight-Test: Rate Estimate

The attitude estimate appears to be accurate and behaves as desired. This result,

paired with the simulated results, provides evidence that the system is working as

intended and is well-behaved. During this test the ArduPilot was able to output a new

state estimate and control command at a rate of approximately 30Hz, this is impressive

considering the software is operating on a 16MHz processor with only 8 kilobytes of

system RAM.

0 20 40 60 80 100 120
-100

0

100

Time (s)
ω

x (d
eg

/s
) Body Angular Rates

0 20 40 60 80 100 120
-50

0

50

Time (s)

ω
y (d

eg
/s

)

0 20 40 60 80 100 120
-50

0

50

Time (s)

ω
z (d

eg
/s

)

81

5.2 Inertial Estimation

The navigation subsystem responsible for producing estimates of position and

velocity is built using the INRTL_Geod_EKF class. State prediction is performed at 50Hz

and measurement updates at 1Hz. Logic flow is shown in Figure 11 and Figure 12.

Figure 11: Navigation INRTL: Predict State Logic Flow

82

Figure 12: Navigation INRTL: Measurement Update Logic Flow

5.2.1.1 Simulated Results

JARVIS is tested in a MatLab simulation environment. The initial state includes

velocities in the North and East direction, the only external force acting on the body is

that due to gravity. In this test the filter is able to converge within the 3-Sigma bounds

for position, velocity, and acceleration within sixty seconds.

83

Figure 13: Geodetic Position Error with 3-sigma Bounds

Figure 14: NED Velocity Error with 3-sigma Bounds

0 20 40 60 80 100 120
-1

0

1
x 10

-3

Time (s)
La

t (
de

g)

Position Error with 3-Sigma Bounds

0 20 40 60 80 100 120
-1

0

1
x 10

-3

Time (s)

Lo
n

(d
eg

)

0 20 40 60 80 100 120
-10

0

10

Time (s)

A
lti

tu
de

 (f
t)

0 20 40 60 80 100 120
-10

0

10

Time (s)

V
N
 (f

t/s
)

 NED Velocity Error with 3-Sigma Bounds

0 20 40 60 80 100 120
-10

0

10

Time (s)

V
E
 (f

t/s
)

0 20 40 60 80 100 120
-10

0

10

Time (s)

V
D

 (f
t/s

)

84

Figure 15: Estimated Translational Acceleration

5.2.1.2 Flight-Results

Flight results are currently unavailable. The C++ code has been unit tested and

verified for functionality, however the ArduPilot system is unable to operate with both

the AHRS and INRTL navigation subsystems. This primary issue is that the on-board

processer does not contain enough RAM and the ArduPilot hardware locks when

performing the measurement updates. Efforts were made to remove any variables not

absolutely necessary for operation as well as clearing any workspace variables between

measurement update and state estimation algorithm calls.

0 20 40 60 80 100 120
-5

0

5

Time (s)

a x (f
t/s

)

Body Translational Acceleration

Truth

Estimate

0 20 40 60 80 100 120
-5

0

5

Time (s)

a y (f
t/s

)

Truth
Estimate

0 20 40 60 80 100 120
-100

0

100

Time (s)

a z (f
t/s

)

Truth

Estimate

85

5.3 Conclusion

While it is disappointing that this entire state cannot be filtered using the classes

created on the ArduPilot hardware it does show the capability of JARVIS in adding and

removing functionality.

The filter is performing as expected in the simulated results and once a more

powerful platform is selected the inertial navigation subsystem can easily be inserted

back into the system.

86

CHAPTER 6. VEHICLE TESTING

6.1 Gimbaled Tri-Ducted Fan

6.1.1 Motivation

Historically the idea of building a vertical take-off and landing (VTOL) aircraft

came about due to the desire to create a single stage to orbit (SSTO). The VTOL was the

first concept contrived which was deemed able to demonstrate the benefits of an SSTO.

With the recent advances in technology and UAV capabilities there is renewed interest

in developing a highly maneuverable UAV. The success of the Osprey program, along

with a fondness for futuristic aircraft found in science fiction films, it was conceived to

build a tri-tilt turbine VTOL aircraft. It is the desire to make such a vehicle reality that

drove the development of JARVIS.

6.1.2 Vehicle Concept

The concept of this vehicle is to have three micro-turbine engines that are

gimbaled about a single axis so as to provide thrust vectoring illustrated in Figure 16.

The configuration is similar to the Osprey tilt-rotor aircraft that is deployed by the

United States military.

87

Figure 16: Tri-Duct Concept and Control Effectors

6.1.3 Hover Prototype

A test bed was designed and fabricated for the purpose of testing vertical flight

and hover. Due to the minimal thrust capability of the power plants used for the test

bed it was deemed necessary to position them in the form of an equilateral triangle.

This configuration allows for each ducted-fan to make an equal contribution towards

lifting the vehicle.

The frame is of aluminum construction and lift is provided by three electric

56mm ducted fans that are gimbaled. Thrust direction is controlled by three digital

servos. The ArduPilot 1.0 board provides the sensor array and on-board processing used

to generate the navigated state and control commands.

TBE

TRE TLE

88

 The ducted-fans are located 11 inches from the center and separated by 120

degrees and the platform stands 2 ¾ inches from the ground.

Figure 17: Tri-Duct Hover Prototype

6.1.4 Control Configuration

The goal of the controller in this iteration is to provide attitude stabilization and

allow a person to pilot the vehicle externally with commands sent through an R/C

transmitter. The state vector ()X to be controlled consists of roll ()φ , pitch ()θ , and

yaw ()ϕ :

[]φ θ ϕ= T
X (6.1)

Control output ()U is the engine throttle and moments about the body axis

(), ,
x y z

M M M :

89

 =
T

x y z
U Throttle M M M (6.2)

PID control was the method selected to generate commands although any form

of controller could be selected. Control commands are then realized through the engine

thrust and gimbal angles as given in Figure 16. The control output-to-effector map is:

−

=

−

1.0 0.5 0.0 0.0

1.0 0.0 1.0 0.0

1.0 0.5 0.0 0.0

0.0 0.0 0.0 0.5

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.5

Effector

U
T (6.3)

The output to the effectors is then:

[]θ θ θ= =T Effector

Effector RE BE LE RE BE LE U
U T T T T U (6.4)

90

6.1.5 Simulated Results

A simple model for the vehicles was developed to work within the MatLab rigid

body simulation that was used previously to demonstrate JARVIS navigation

performance. Future work will be to increase the fidelity of the simulation and tune the

models to match the physical dynamics of the system. The simulation is only intended to

demonstrate proper functionality of JARVIS and provide an initial control configuration

as the intent of this research is not simulation development or control tuning.

The model produces body forces and moments using the effector commands

output from JARVIS that and are then fed into the rigid body dynamics. Currently the

motor and servo models contain zero error due to effector delay or hardware mounting.

A two percent Gaussian dispersion was applied to each thruster individually so that the

output thrust magnitude is not ideal. The simulated software and flight software

operate identically as that was one of the goals when developing JARVIS.

As the current hardware is unable to filter the translational state the initial goal is

to provide attitude stabilization to the system. This would then allow a pilot to manually

direct the position. A simulation run was performed that suppresses control for the

initial 15 seconds to allow navigation to converge after which a twenty degree step

input is applied in the roll channel.

Channel response is shown in Figure 18, Figure 19, and Figure 20. In these

simulations position is ignored.

91

Figure 18: Ducted-Fan Simulation: Roll Step Response

Figure 19: Ducted-Fan Simulation: Pitch Channel

0 18 36 54 72 90 108 126 144 162 180
-27

-13.5

0

13.5

27

System Time (s)

Φ
 (d

eg
)

0 18 36 54 72 90 108 126 144 162 180
-5

-2.5

0

2.5

5

System Time (s)

p
(d

eg
/s

)

0 18 36 54 72 90 108 126 144 162 180
-5

-2.5

0

2.5

5

U
 (d

eg
/s

)
0 18 36 54 72 90 108 126 144 162 180

-3

-1.5

0

1.5

3

System Time (s)

Θ
(d

eg
)

0 18 36 54 72 90 108 126 144 162 180
-1

-0.5

0

0.5

1

System Time (s)

q
(d

eg
/s

)

0 18 36 54 72 90 108 126 144 162 180
-1

-0.5

0

0.5

1

U
 (d

eg
/s

)

92

Figure 20: Ducted-Fan Simulation: Yaw Channel

 The state controller is able to maneuver the vehicle to the desired roll angle

while keeping both pitch and yaw errors within two degrees. There is a small overshoot

seen in the roll channel so as a verification check the roll rate gain was increased so as

to over-damp the system. As expected the overshoot was eliminated as shown in Figure

21.

0 18 36 54 72 90 108 126 144 162 180
-2

-1

0

1

2

System Time (s)

Ψ
 (d

eg
)

0 18 36 54 72 90 108 126 144 162 180
-1

-0.5

0

0.5

1

System Time (s)

r (
de

g/
s)

0 18 36 54 72 90 108 126 144 162 180
-1

-0.5

0

0.5

1

U
 (d

eg
/s

)

93

Figure 21: Ducted-Fan Simulation: Roll Step Response with Larger Rate Gain

6.1.6 Flight Test

JARVIS was uploaded to the ArduPilot using the configuration found during the

simulation runs. During flight the vehicle is able to move in six degrees of freedom and

initial attempts to pilot the vehicle with attitude control proved to be marginally

successful.

A secondary approach was taken that restricted all motion except about the roll

axis to allow for testing of roll control. For this test after navigation convergence an

external disturbance was applied about the roll axis. The roll channel for this test is

shown in Figure 22.

0 18 36 54 72 90 108 126 144 162 180
-22

-11

0

11

22

System Time (s)

Φ
 (d

eg
)

0 18 36 54 72 90 108 126 144 162 180
-3

-1.5

0

1.5

3

System Time (s)

p
(d

eg
/s

)

0 18 36 54 72 90 108 126 144 162 180
-3

-1.5

0

1.5

3

U
 (d

eg
/s

)

94

Figure 22: Tri-Ducted Fan Flight with Roll Disturbance

 JARVIS is able to stabilize the roll channel using the gains found during simulation.

The dynamic response is much quicker than what was shown in simulation. While this is

not unexpected it does go to show how simulated dynamics may not match dynamics

seen in flight. Further tuning is necessary before the platform performs as intended.

69 70 71 72 73 74 75 76 77 78 79
-36

-18

0

18

36

System Time (s)

Φ
 (d

eg
)

69 70 71 72 73 74 75 76 77 78 79
-127

-63.5

0

63.5

127

System Time (s)

p
(d

eg
/s

)

69 70 71 72 73 74 75 76 77 78 79
-127

-63.5

0

63.5

127

U
 (d

eg
/s

)

95

6.2 Helicopter

6.2.1 Motivation

Radio-controlled helicopters have been around for quite some time and have

improved significantly within the past decade. Electric models are simple to use and

with the latest battery technology the larger variants can handle payloads of

approximately 10 pounds.

3D helicopters are able to translate in all directions, fly upside down, and can

hover. This allows for robust testing GN&C algorithms and sensors in both single and

multi-vehicle configurations. Unfortunately these vehicles are difficult to pilot and

require hours of training and practice to become proficient in their operation. Using

JARVIS the goal is to remove this barrier and provide a stable platform that is simple to

pilot. For the purposes of this research moving to a helicopter will demonstrate the

robustness of JARVIS in its ability to operate any number of vehicles with updates to the

configuration file being the only modifications necessary.

96

6.2.2 Frames and Notation

The helicopter is considered to be a rigid body that is able to freely move in 6-

DoF space. The inertial-fixed frame that will be used is a right-hand North-East-Down

(NED) frame where the earth is assumed to be flat.

The body-fixed frame is centered at the body center of mass with X-positive towards the

nose, Y-positive to the right, and Z-positive down, shown in Figure 23.

Figure 23: Body and Hub Frame Definition

Hub Plane

Body

97

 Figure 24: Hub Plane, Tip-path Plane, and Main Rotor Thrust Vector

The hub plane originates at the center of the main rotor hub and is aligned with

the body axis. The Tip-path plane is the plane that traces the path of the tip of the main

rotor blade as it rotates and is centered at the hub. The main rotor thrust vector is

normal to the tip-path plane with the origin at the center of the hub.

6.2.3 Mechanical Overview

Figure 25: Helicopter Mechanical Overview (Munzinger)

latΘ
lonΘ

Hub Plane (HP) Tip-path plane (TPP)

Control Rotor

Main Rotor

Swash Plate

Main Rotor Thrust

98

The primary components for a helicopter hub assembly are the swash plate, the

main rotor itself, and the control rotor. Control inputs enter the main rotor system

through the swash plate. Linkages connected to servos are moved up and down

changing the “pitch,” “roll,” and z-axis location of the swash plate. The position of the

swash plate dictates what the pitch angle of the blade is as it travels around the hub

thus changing the main rotor force vector magnitude and direction providing

maneuverability. The control rotor is used to damp vehicle dynamics and is not

controlled directly. The control rotor is becoming obsolete and is being replaced with

direct-flight-control (DFC) systems that use 3-axis gyroscopes to electronically damp the

dynamics.

6.2.4 LQR Control

A traditional helicopter has five control inputs that can be commanded by the pilot,

these are:

• Lateral δ
MR

lat : Increases main rotor blade pitch on right or left side of helicopter

causing the helicopter to rotate about the x-body axis (roll)

• Longitudinal δ
MR

lon : Increases main rotor blade pitch in front or back causing

the helicopter to rotate about the y-body axis (pitch)

• Collective δ
MR

col : Increases or decreases main rotor blade pitch uniformly

causing the helicopter to move up or down along the z-body axis

99

• Rudder δ
TR

col : Increases or decreases tail rotor blade pitch uniformly causing

the helicopter to rotate about the z-body axis

• Main rotor speed Ω
MR

: Typically this is held to a constant value

For R/C helicopters the main rotor speed is held constant by a governor and the yaw

rate is damped out by an onboard gyroscope. This leaves three control inputs for the

controller to use to maintain hover:

[]δ δ δ=
MR MR MR

U col lat lon (6.5)

The state to be controlled is roll ()φ , pitch ()θ , roll rate ()p and pitch rate ()q :

[]φ θ=X p q (6.6)

6.2.5 Helicopter Equations of Motion

The 6-DoF equations of motion are given in (Dreier). The positional derivative is a

function of body velocity ()b
V and the transformation from the earth frame to the body

frame ()B

E
T :

 =
T

B

e E b
P T V (6.7)

100

The angular acceleration of the inertial angles is a function of the current attitude and

the body rates ()ω :

θ
α φ φ θ ω

φ φ θ

−
 =
 −

1 0 sin()

1 cos() sin()cos()

0 sin() cos()cos()

E
 (6.8)

The angular acceleration in the body frame is a function of the moments acting on the

body ()M and the body inertia matrix ()
n
I :

[]ω ω ω−= − ×1
()

n n
I M I (6.9)

The translational acceleration in the body frame is a function of the forces acting on the

body ()F with
b

M being a square matrix with the vehicle mass on the diagonal:

[]ω−= − ×1
()

b
V M F mV (6.10)

The only external force and moments that will be modeled are generated by

gravity, the main rotor, and the tail rotor. As the helicopter is in hover it is assumed that

there is no wind velocity and the forces induced by the fuselage are negligible.

The main rotor generates a thrust and introduces the following force and

moment contributions to the kinematic equations:

101

[]= −0 0
THP

MR TPP MR
F T T (6.11)

HP

TPP
T is the rotation matrix from the tip-path plane to the hub plane and is a function of

lateral and longitudinal control. The moment generated by the main rotor is:

[] []= + ×0 0
T THP

MR TPP MR hub hub hub MR
M T Q x y z M (6.12)

MR
Q is the torque generated by the main rotor drag,

hub
x ,

hub
y , and

hub
z are the moment

arms measured from the body center of mass to the rotor hub in the x, y and z axis

directions. Necessary equations to compute rotor thrust are given by (Munzinger):

ρΩ= −
2

()
4

MR

MR blade i

R aBc
T w v (6.13)

Main rotor thrust given by equation (6.13) is a function of the velocity at the

blade (
blade

w), atmospheric density (ρ), main rotor rotational speed (Ω
MR

), the number

of blades (B), the airfoil lift-curve slope (a), the blade radius (R), the mean blade chord

length (c) and the velocity generated by the blade (induced velocity
i
v).

102

Induced velocity is found by:

ρπ
 = + −

2 2
2 2

2

2

ˆ ˆ

2 2 2
i

v T v
v

R
 (6.14)

With:

θ θ = + Ω

2 3
_

3 4
blade r MR coll twist

w w R (6.15)

()= + + −
r lat s lon

w w flap i u flap v (6.16)

= + + −2 2 2ˆ (2)
r i

v u v w w v (6.17)

Main rotor torque ()MR
Q is the ratio of main rotor power ()MR

P over the rotational

speed ()Ω
MR

 :

=
Ω
MR

MR

MR

P
Q (6.18)

= + + +
MR pr i pa c
P P P P P (6.19)

103

Because the helicopter is in hover, climb power (
c
P) and fuselage parasite drag power

(
pa
P) can be neglected. This leaves only the blade profile power ()pr

P and induced

power ()iP :

ρ= Ω Ω + +,0 2 2 2
(() 4.6())

2 4

D

pr MR MR

c bcR
P R u v (6.20)

Induced power is given by:

=
i MR i
P T v (6.21)

The equations shown above are the most relevant to what is discussed in the

proceeding sections and have been implemented in MATLAB to provide a means for

non-linear 6-DoF simulation of a helicopter. More in-depth modeling information can be

found in (Munzinger).

104

6.2.6 Linearization

For continuous-time LQR the system needs to be in a linearized form:

X AX BU= + (6.22)

Where A is the state transition matrix and U is the control matrix.

,
X X

A B
X U

∂ ∂= =
∂ ∂

 (6.23)

The equilibrium state ()
e

X for the system described in hover is:

[]0 0 0 0
T

eX = (6.24)

The control positions at equilibrium ()e
U are:

_ _ _e col e lat e lon eU = Θ Θ Θ (6.25)

105

Control is dependent on the helicopter parameters such as mass, rotor radius,

airfoil, and chord length. For a helicopter in hover the main rotor thrust must cancel the

force of gravity. Control is also highly coupled, for example when changing the lateral

control to cancel a rolling moment less thrust will be in the vertical direction and the

collective must be increased to prevent the altitude from changing.

To simplify the trimming process a function that calculates the forces and

moments acting on a designated helicopter at a given state using the non-linear

equations has been created. This function is then used to generate a performance index

that is minimized using available tools in MATLAB. This provides a means to compute

the equilibrium control quickly for any set of conditions and helicopter specifications.

6.2.6.1 Main Rotor Thrust

When attempting to linearize thrust, the problem arises that the main rotor

thrust is a function of the induced velocity and induced velocity is a function of thrust.

An implicit relationship is born that is fourth order in the general case and has no simple

algebraic solution (Dreier). To circumvent this problem linearized main rotor thrust

()MRlin
T will be assumed to take the form:

= Θ +
MRlin linTMR col linTMR
T m b (6.26)

106

linTMRm is the rate of change in thrust due to the collective ()Θ
col

 and is determined

using small perturbation theory; here δ is the amount of perturbation:

_ _() ()

2
MR col e MR col e

linTMR

T T
m

δ δ
δ

Θ + − Θ −
= (6.27)

6.2.6.2 Main Rotor Drag

Main rotor drag is also difficult to find an analytic solution for because it is a

function of thrust. As with thrust the linearization is performed using small perturbation

theory.

MRlin linQMR col linQMRQ m b= Θ + (6.28)

_ _() ()

2
MR col e MR col e

linQMR

Q Q
m

δ δ
δ

Θ + − Θ −
= (6.29)

107

6.2.7 Flight Test

The platform used for testing is the T-Rex 700E with a fly-bar (control rotor). The

ArduPilot 1.0 hardware is mounted in the front of the helicopter and all of the radio

signals with the exception of the throttle-cutoff are being passed through the flight

computer. These signals are then able to be manipulated by JARVIS and are output to

the tail gyro that is included with the system. In this configuration the autopilot is able

to control all effectors available while allowing the pilot to kill the power as a failsafe.

A windows-based laptop is used in conjunction with the MissionPlanner software

to provide real-time telemetry. Sensor data, NAV states, and pilot input are recorded on

the ArduPilot flash memory for reconstruction post-flight.

Figure 26: Helicopter: Ground Station and Vehicle

108

For testing the autopilot system the helicopter was flown manually by an

experienced pilot. Once brought to altitude and in a stable hover the pilot activated the

pilot-assist mode, if instability occurred control was changed back to manual and the

vehicle was recovered.

Figure 27: Helicopter: In Flight

The flight control was first configured with a gain matrix produced using the LQR

method described in the preceding sections, gains were then tuned by hand to achieve

the results shown in Figure 28 and Figure 29. The time-window shown in the figures is

during the period that the auto-pilot is active.

109

Figure 28: Helicopter Flight: pq Performance

Figure 29: Helicopter Flight: G-G Performance

70 80 90 100 110 120 130 140 150 160
-10

0

10

20

30

Time (s)

p
(d

eg
/s

)

NAV

Command

70 80 90 100 110 120 130 140 150 160
-20

-10

0

10

20

Time (s)

q
(d

eg
/s

)

NAV

Command

70 80 90 100 110 120 130 140 150 160
-5

0

5

10

15

Time (s)

Φ
 (d

eg
)

70 80 90 100 110 120 130 140 150 160
-20

-10

0

10

20

Time (s)

Θ
 (d

eg
)

110

 Control was able to stabilize the rates and provide marginal attitude stabilization.

Attitude control suffered from a steady state error that is due to an offset in the

accelerometer readings. During these flight tests the sensors were automatically

calibrated after system power-up. The accelerometer calibration process assumes that

the vehicle is level and that gravity is positive down. Unfortunately the ground that the

helicopter was resting on was not level and resulted in approximately a five degree

offset in the roll channel and negative two degree offset in the pitch channel. With

these errors, and without positional control, the vehicle was unable to maintain a hover

state.

111

CHAPTER 7. FINAL CONCLUSIONS

7.1 Research Goals Revisited

The problem addressed by this research is the lack of a robust integrated

architecture and library that can be used in developing unmanned vehicles, particularly

for research purposes in a low-cost environment. The result of this research is a

software architecture that is simple to follow and library code base that is nearly

platform independent, in that it can operate on any hardware capable of compiling C++

code. The code created has been done so with readability and reusability in mind.

JARVIS currently operates in the MatLab environment, on ArduPilot hardware, and on

x86 PC’s.

A library was created that provides necessary functionality in developing aerospace

systems. This functionality includes coordinate transformations, unit conversions, matrix

capability as well as linear algebra tools. Using the base architecture and library it was

then demonstrated that GN&C algorithms could be easily taken from text and

implemented in code for real-time use.

112

By abstracting the GN&C subsystems and pursuing an object-oriented approach the

code is fully interchangeable. Entire subsystems can be replaced without affecting the

rest of the system. This allows for rapid testing of new algorithms as well as comparison

between algorithms. The added benefit to this method is that new code can be reused

in later projects and provides the user more tools for development.

JARVIS is common across vehicle platforms only requiring modification to the

configuration file to enable operation on a new platform. This eliminates duplication of

code. When the same autopilot hardware is used the configuration file between

vehicles is nearly identical. Two configuration file examples are provided in Appendix B.

7.2 Lessons Learned

“Models are not perfect.” Inherently all engineers know, or should know, that this

statement is true. Unfortunately hands-on experience is not always available and

because GN&C development is most often done in simulation and on paper it is easy to

be lulled into a false sense of security that because something works in simulation it

should work on a physical vehicle. The modeling used to simulate the vehicles in this

thesis was known to be very simplified and was not expected to produce the correct

response. However, it was enlightening to experience the difference between the

simulated result and the real-world result. The creation of JARVIS was to enable one to

gain this experience so the work was very rewarding.

113

Hardware provides a number of limitations that may not be immediately

considered. When developing a GN&C algorithm for real-time use it is not uncommon to

spend a considerable amount of time optimizing the algorithm for speed. The limitation

encountered during development of the navigation subsystem used here was the RAM

available on the system. While the ArduPilot provided enough memory for the program

and was able to cope with the processing requirements there was not enough system

RAM for the program to operate. This resulted in the system locking up and it was not

immediately apparent what was causing the issue.

 Code development and validation is time consuming. While not a revolutionary

thought this underscores the importance of writing the code to be readable and

reusable. When the code is designed in parts and can be built upon itself, by use of

classes and inheritance, and time spent on future development can be greatly reduced.

7.3 Future Work

In its current state JARVIS provides a powerful tool that can be used to create an

unmanned vehicle. The current barrier to running more advanced algorithms is the

ArduPilot platform and requires a move to more powerful autopilot hardware. The

move to a different platform should be straight forward and only involve writing the

low-level drivers to access sensors and output R/C signals.

114

This research was concerned with the development of JARVIS so as to facilitate

the creation of unmanned vehicles. As such time spent actually developing and testing a

fully-functional unmanned vehicle has been limited. Work on the platforms used in this

research will continue with the final goal being that the vehicles are fully autonomous.

 LIST OF REFERENCES

115

LIST OF REFERENCES

Agee, William S. Triangular Decomposition of a Positive Definite Matrix Plus a Symmetric Dyad

with Applications to Kalman Filtering. Springfield: National Technical Information Service,

1972.

Centinello III, Frank J. "Analysis of the NED and ECEF Covariance Propagation for the

Navigational Extended Kalman Filter." International Astronautical Congress. 2007.

Crassidis, John L. and John L. Junkins. Optimal Estimation of Dynamic Systems. Chapman &

Hall/CRC, 2004.

Dreier, Mark E. Introduction to Helicopter and Tiltrotor Flight Simulation. AIAA, 2007.

Holt, Greg N.; D'Souza, Christopher. "Orion Absolute Navigation System Progress and

Challenges." AIAA GNC Conference. Minneapolis, 2012. 17.

Munzinger, Christian. "Development of a Real-Time Flight Simulator for an Experimental Model

Helicopter." 1998.

Thornton, C. L. and G. J. Bierman. Gram-Schmidt Algorithms for Covariance Propagation.

Pasadena, 1975.

116

APPENDICES

116

Appendix A Library Function List

Math Enhanced

Function Purpose

saturate Saturate variable X when above or below input values

sign
Return the sign of variable X

0 is assumed to be positive

round Round a value to the nearest integer value

Array Class

Function Purpose

Array<T> Construct an array with variable type T

Array<T>(m,n) Construct an array with variable type T and size m by n

Initialize Initialize an array

Clear Clear allocated memory for an array variable

Resize

Resize an array variable

By default old values are lost, if the array is made to be dynamic

the values are kept

ExpandSize Increase the size of an array

ContractSize Reduce the size of an array

makeDynamic
Allows for dynamic reallocation of the array size. Memory is kept

when resizing dimensions

makeStatic
Fixes the size of the matrix

If resized memory is lost

isInitialized Return the initialization status of the variable

nRows Return the number of rows in the array

nCols Return the number of columns in the array

(m,n) Access element (m,n) in the array

getData(m,n) Access element (m,n) in the array

(Index) Treat the array as a column vector and access element at (Index)

getRow(R,m) Copy row m to vector R

getCol(C,n) Copy row n to vector C

assignRow(m, B, mb) Copy row mb from matrix B to row m

assignCol(n, B, nb) Copy column nb from matrix B to column n

= Assign matrix A = B

setData(m,n, Val) Set the value of (m,n)

copy Copy matrix B to current matrix

117

transpose Transpose the current matrix

== Compare two matrices, return true if A==B

!= Compare two matricies, return true if A != B

Matrix Class

Function Purpose

Matrix<T> Construct a matrix variable of type T

Matrix<T>(m,n)
Construct a matrix variable of type T and size m-by-n

Initial data is set to 0

Clear De-allocate memory used for the matrix

Resize
Resize a matrix

Data is not maintained

Matrix_Initialized Returns initialization status of matrix

nrows Returns the number of rows

ncols Returns the number of columns

(m,n) Access to data located at (m,n)

getData(m,n) Return data located at (m,n)

setData(m,n, Val) Set the value of (m,n)

(index)
Access data located at index treating the matrix as a single

column

trace Return the trace of the matrix

getRow(R,m) Copy row m to vector R

getCol(C,n) Copy row n to vector C

assignRow(m,B,mb) Copy row mb from matrix B to row m

assignCol(n,B,nb) Copy column nb from matrix B to column n

= Assign matrix A = B

Diag Create a diagonal matrix using values from an input vector

Diag
Create a diagonal matrix using a string containing the diagonal

values

copy Copy matrix B to current matrix

transpose Transpose the current matrix

zeros Set all values in a matrix to 0

ones Set all values in a matrix to 1

nans Set all values in a matrix to NaN

eye Set a matrix to identity

== Compare two matrices, return true if A==B

!= Compare two matricies, return true if A != B

prints Prints the matrix to the terminal

118

Linear Algebra

Function Purpose

mmult Multiply two matrices

mscale Store a scaled matrix

madd Add or subtract matrices

mQR Perform QR decomposition on matrix A

mLU Perform LU decomposition on matrix A

LUSolve Use LU decomposition to solve Ax=b when b is a vector

LUSolve
Solve Ax=b when b is a vector and LU decomposition

has already been performed

mLUSolve Solve AX=B when B is a matrix

mdet3x3 Return the determinant of a 3-by-3 matrix

mdet Return the determinant of a n-by-n matrix

minv3x3 Invert a 3-by-3 matrix

minv Invert a n-by-n matrix

dot Return the dot product of two vectors

cross3 Compute the cross product of two vectors

vnorm Return the magnitude of a vector

vunit Unitize a vector

orthagonalize Orthogonalize a matrix

UDU
Decompose a such that A = U*D*U’, D is stored as a

vector

119

Conversions

Function Purpose

quat2DCM Convert from attitude quaternion to attitude

DCM

quat2axis_angle Convert from attitude quaternion to Euler axis-

angle representation

dcm2quat Convert from DCM to attitude quaternion

dcm2angle Convert from DCM to Euler angles following a

specified rotation sequence

angle2dcm Convert from Euler angles to DCM using a

specified rotation sequence

angle2quat Convert from Euler angles to attitude quaternion

geodetic2ecef Convert position from geodetic frame to ECEF

frame

geodetic2ned Convert position from geodetic position to

topodetic NED frame

rad2deg Convert angle from radians to degrees

deg2rad Convert angle from degrees to radians

ft2m Convert from feet to meters

m2ft Convert from meters to feet

C2F Convert from Celsius to Fahrenheit

C2K Convert from Celsius to Kelvin

F2C Convert from Fahrenheit to Celsius

F2K Convert from Fahrenheit to Kelvin

Psf2Pa Convert from pounds per feet squared to Pascal

Pa2Psf Convert from Pascal to pounds per feet squared

juliandate Convert Gregorian date to Julian date

juliandate2GMST Convert Julian date to Greenwich mean sidereal

time

juliandate2GAST Convert Julian date to Greenwich Apparent

Sidereal Time

Estimators

Function Purpose

AHRS_MEKF Generic MEKF attitude filter used to estimate

attitude and angular rates

INRTL_EKF EKF used to estimate inertial position

120

Filters

Function Purpose

UDU_EKF Generic Kalman filter using the UDU formulation,

Rank1_Update, and Modified Grahm-Schmidt

Orthogonalization.

Constants

Constant Purpose

pi Provide common definition of pi: 3.14159265

Gravitational_Accel Provide a common definition of gravity:

32.1740486 ft/s

TimeSeries Class

Function Purpose

TimeSeries<T> Declare TimeSeries variable TS

addNewData(Time, Data) Add new data point at a specified time

getNumPoints() Return the number of data points available

getTime(Index) Return the time using an input index

getIndexFromTime(Time) Return the index that the input time occurs

getDataFromTime(Time) Return the data at a particular time

Attitude

Function Purpose

DCMKin Calculate the time derivative of the direction

cosine matrix

quatmult Multiply two attitude quaternions

quatkin Calculate the time derivative of the attitude

quaternion

121

Appendix B Example Vehicle Configuration Files

B.1 Helicopter Configuration file:

/*==

==============

HW Configuratio

==

=============*

// Hardware Type,

#define Selected_Hardware Hardware_APM1

// Memory Storage

#define Selected_DataFlash DataFlash_APM1

// Sensor Selection

#define Selected_GPS GPS

// Hardware Options

#define CompassEnable false // Flag to enable sensor

#define CompassTiltCompensation false // Flag tilt-compensate

compass

#define AccelerometerEnable true // Flag to enable sensor

#define GyroEnable true // Flag to enable sensor

#define BaroEnable false // Flag to enable sensor

#define GPSEnable true // Flag to enable sensor

// Mounting APM1, RH 0:0:0 X - Pins Forward Z-Down (Sensors Up)

#define HW_Yaw PI // Yaw angle of hardware

mounting

#define HW_Pitch 0.0 // Pitch angle of hardware mounting

#define HW_Roll -PI/2 // Roll angle of hardware

mounting

#define Compass_Yaw PI/2 // Yaw angle of compass

mounting

#define Compass_Pitch 0.0 // Pitch angle of compass

mounting

#define Compass_Roll -PI/2 // Yaw angle of compass mounting

// RC Inputs

122

#define RC_In_Reversing "[1, 1, 1, 1, 0, 1, 0, 0]" // Reverse signal from

input pins

#define RC_In_nDirs "[2, 2, 1, 2, 2, 2, 1, 2]" // Number of directions

input travels

#define RC_In_Joy_Pins "[5, 3, 1, 0]" // Joystick inputs

#define Pin_APMode 6 // Pin for switching piloting mode

// RC Outputs

#define RC_Out_Reversing "[0, 0, 0, 1, 0, 1, 0, 1]" // Reverse RC direction

#define RC_Out_nDirs "[2, 2, 2, 2, 2, 2, 1, 2]" // Number of

directions that RC can travel

// RC maximum PW

#define RC_Out_End_Max "[2100, 2100, 2100, 2100, 2100, 2100, 2100, 2100]"

// RC minimum PW

#define RC_Out_End_Min "[900, 900, 900, 900, 900, 900, 900, 900]"

// RC trim point

#define RC_Out_Sub_Trim "[1500, 1500, 1500, 1500, 1500, 1500, 1500, 1500]"

#define nEffectors 4 // Number of control

effectors/servos

#define Effector_Out_Pins "[0, 5, 1, 3]" // Output pins for the

effectors'

/*==

==============

COM Parameters

==

============*/

#define Selected_GCS GCS_MAVLink_MP

#define GCS_Port Serial3 // Wireless Radio

#define GCS_Baud 57600

/*==

==============

PILOT Parameters

==

============*/

#define Selected_PILOT Pilot_RC_Attitude_Assist

/*==

==============

123

Guidance Parameters

==

============*/

#define Selected_GUID Guidance_Linear // Select guidance

type

// Guidance type-specific variables:

#define GUID_nStates 3 // Number states [PHI THETA PSI]'

#define GUID_nCommands 4 // Number of states to command

// Map desired state

#define GUID_State_Desired State_Desired(0) = 0.0;\

 State_Desired(1) = 0.0;\

 State_Desired(2) = 0.0;\

// Map actual state

#define GUID_State_Actual State_Actual(0) = NAV->E_YPR(2);\

 State_Actual(1) = NAV->E_YPR(1);\

 State_Actual(2) = NAV->E_YPR(0);

// Guidance gain matrix: State_Commanded = Pilot_Command +

K_guid*(Position_Desired - Positon_Actual)

// K_guid*(Position_Desired - Positon_Actual) modifies the pilot command (rates) to

include positional information

#define GUID_Linear_K "[0.0, 0.0, 0.0;\

 0.05, 0.0, 0.0;\

 0.0, 0.05, 0.0;\

 0.0, 0.0, 0.0]"

/*==

==============

Control Parameters

==

============*/

#define Selected_CNTRL Control_StateSpace // Select controller

type

// Croller type-specific variables

#define CNTRL_nControls 4 // Number of control

variables

#define CNTRL_nStates 3 // Number of input states [p,

q, r]

124

// Maximum rate of change of control input (Udot)

#define CNTRL_Udot_Saturation "[10.0, 5.0, 5.0, 10.0]"

// Map from control command to actuator output: Effector_Out = Effector_Map*U

#define CNTRL_Effector_Map "[1.0, -0.5, 0.5, 0.0;\

 1.0, 0.5, 0.5, 0.0;\

 1.0, 0.0, -1.0, 0.0;\

 0.0, 0.0, 0.0, 1.0]"

// Map desired state

#define CNTRL_State_Desired State_Desired(0) = GUID->Command(1);\

 State_Desired(1) = GUID->Command(2);\

 State_Desired(2) = GUID->Command(3);

// Map actual state

#define CNTRL_State_Actual State_Actual(0) = NAV->w_B(0);\

 State_Actual(1) = NAV->w_B(1);\

 State_Actual(2) = NAV->w_B(2);

// Control gain matrix: U = U_e + K_control*(State_Commanded - State_Actual)

#define CNTRL_Linear_K "[0.00000, 0.00000, 0.00000;\

 0.1000, 0.00000, 0.00000;\

 0.00000, 0.15000, 0.00000;\

 0.00000, 0.00000, 0.00000]"

/*==

==============

NAV Parameters

==

============*/

//------------------------------------Attitude--*/

#define Selected_NAV_Attitude Navigation_Attitude_MEKF

// NAV attitude type-specific variables

#define NAV_Attitude_MEKF_dt 0.02 // Expected dt

#define NAV_Attitude_MEKF_Sigma_a 0.1 // Accelerometer

variance

#define NAV_Attitude_MEKF_Sigma_g (1.0*PI/180.0) // Gyro

variance

#define NAV_Attitude_MEKF_Sigma_gb ((1.0/60.0)*PI/180.0) // Gyro bias variance

#define NAV_Attitude_MEKF_Sigma_c 20.0*PI/180.0 // Compass variance

125

#define NAV_Attitude_MEKF_Gyro_Tau 343.78 // Gyro time

constant

#define NAV_Attitude_MEKF_Residual_Threshold 3 // multiple of the

//measurement uncertainty

used //in rejecting bad

measurements

#define NAV_Attitude_MEKF_Underweighting_Threshold 200

#define NAV_Attitude_MEKF_Underweighting_Coeff 0

//------------------------------------Inertial--*/

#define Selected_NAV_INRTL Navigation_Inertial_EKF

// NAV inertial type-specific variables

#define NAV_Inertial_EKF_Sigma_a NAV_Attitude_MEKF_Sigma_a

#define NAV_Inertial_EKF_Sigma_ab 0.001

#define NAV_Inertial_EKF_Accel_Tau 3600.0

#define NAV_Inertial_EKF_Sigma_baro 1.0

#define NAV_Inertial_EKF_Sigma_GPS_Alt 0.5

#define NAV_Inertial_EKF_Sigma_GPS_Vmag 0.01

#define NAV_Inertial_EKF_Residual_Threshold 3

#define NAV_Inertial_EKF_Underweighting_Threshold 200

#define NAV_Inertial_EKF_Underweighting_Coeff 0

/*==

==============

LOGGING

==

============*/

#define Selected_LOG Log_APM

#define LogEnable true

126

B.2 Gimbaled Tri-Ducted Fan Configuration file:

/*==

==============

HW Configuration

==

=============*

// Hardware Type,

#define Selected_Hardware Hardware_APM1

// Memory Storage

#define Selected_DataFlash DataFlash_APM1

// Sensor Selection

#define Selected_GPS GPS

// Hardware Options

#define CompassEnable true // Flag to enable sensor

#define CompassTiltCompensation false // Flag tilt-compensate

compass

#define AccelerometerEnable true // Flag to enable sensor

#define GyroEnable true // Flag to enable sensor

#define BaroEnable false // Flag to enable sensor

#define GPSEnable true // Flag to enable sensor

// Mounting APM1, RH 0:0:0 X - Pins Forward Z-Down (Sensors Up)

#define HW_Yaw 0.0 // Yaw angle of hardware

mounting

#define HW_Pitch 0.0 // Pitch angle of hardware mounting

#define HW_Roll 0.0 // Roll angle of hardware

mounting

#define Compass_Yaw PI/2 // Yaw angle of compass

mounting

#define Compass_Pitch 0.0 // Pitch angle of compass

mounting

#define Compass_Roll 0.0 // Yaw angle of compass mounting

// RC Inputs

#define RC_In_Reversing "[0, 1, 1, 0, 0, 0, 1, 0]" // Reverse signal from

input pins

#define RC_In_nDirs "[2, 2, 1, 2, 2, 2, 1, 2]" // Number of directions

input travels

127

#define RC_In_Joy_Pins "[2, 3, 1, 0]" // Joystick inputs

#define Pin_APMode 6 // Pin for switching piloting mode

// RC Outputs

#define RC_Out_Reversing "[0, 1, 0, 0, 0, 0, 0, 0]" // Reverse RC direction

#define RC_Out_nDirs "[2, 2, 1, 2, 2, 2, 1, 2]" // Number of

directions that RC can travel

// RC maximum PW

#define RC_Out_End_Max "[2100, 1735, 2100, 2100, 1689, 2100, 2100, 1689]"

// RC minimum PW

#define RC_Out_End_Min "[900, 1310, 900, 900, 1265, 900, 900, 1265]"

// RC trim point

#define RC_Out_Sub_Trim "[1500, 1537, 1500, 1500, 1520, 1500, 1500, 1436]"

#define nEffectors 6 // Number of control

effectors/servos

#define Effector_Out_Pins "[6, 3, 0, 7, 4, 1]" // Output pins for the

effectors'

/*==

==============

COM Parameters

==

============*/

#define Selected_GCS GCS_MAVLink_MP

#define GCS_Port Serial3 // Wireless Radio

#define GCS_Baud 57600

#define GCS_nParameters 9 // # of COM-configurable

params

/*==

==============

PILOT Parameters

==

============*/

#define Selected_PILOT Pilot_RC_Attitude_Assist

/*==

==============

Guidance Parameters

128

==

============*/

#define Selected_GUID Guidance_Linear // Select guidance

type

// Guidance type-specific variables:

#define GUID_nStates 3 // Number states [PHI THETA PSI]'

#define GUID_nCommands 4 // Number of states to command

// Map desired state

#define GUID_State_Desired State_Desired(0) = 0.0;\

 State_Desired(1) = 0.0;\

 State_Desired(2) = 0.0;\

// Map actual state

#define GUID_State_Actual State_Actual(0) = NAV->E_YPR(2);\

 State_Actual(1) = NAV->E_YPR(1);\

 State_Actual(2) = NAV->E_YPR(0);

// Guidance gain matrix: State_Commanded = Pilot_Command +

K_guid*(Position_Desired - Positon_Actual)

// K_guid*(Position_Desired - Positon_Actual) modifies the pilot command (rates) to

include positional information

#define GUID_Linear_K "[0.0, 0.0, 0.0;\

 0.0, 0.0, 0.0;\

 0.0, 0.0, 0.0;\

 0.0, 0.0, 0.0]"

/*==

==============

Control Parameters

==

============*/

#define Selected_CNTRL Control_PID // Select controller type

// Controller-type specific variables

#define CNTRL_nControls 4 // Number of control

variables#define CNTRL_nStates 4 // Number of

input states

// Maximum rate of change of control input (Udot)

#define CNTRL_Udot_Saturation "[10.0, 5.0, 5.0, 10.0]"

129

// Map from control command to actuator output: Effector_Out = Effector_Map*U

#define CNTRL_Effector_Map "[1.0, -0.5, 0.0, 0.00;\

 1.0, 0.0, -1.0, 0.00;\

 1.0, 0.5, 0.0, 0.0;\

 0.0, 0.0, 0.0, 0.5;\

 0.0, 0.0, 0.0, 0.0;\

 0.0, 0.0, 0.0, -0.5]"

// Set Equillibrium Control

#define CNTRL_U_e U_e(0) = 0.5;\

 U_e(1) = 0.0;\

 U_e(2) = 0.0;\

 U_e(3) = 0.0;\

// Map desired state

#define CNTRL_State_Desired State_Desired = GUID->Command;

// Map actual state

#define CNTRL_State_Actual State_Actual(0) = 0.5;\

 State_Actual(1) = NAV->E_YPR(2);\

 State_Actual(2) = NAV->E_YPR(1);\

 State_Actual(3) = NAV->w_B(2);\

// Control gains

#define CNTRL_Kp "[0.500; 0.005; 0.005; 0.000] "

#define CNTRL_Ki "[0.000; 0.000; 0.000; 0.0000] "

#define CNTRL_Kd "[0.000; 0.005; 0.005; 0.5000] "

/*==

==============

NAV Parameters

==

============*/

//------------------------------------Attitude--*/

#define Selected_NAV_Attitude Navigation_Attitude_MEKF

// NAV attitude type-specific variables

#define NAV_Attitude_MEKF_dt 0.02 // Expected dt

#define NAV_Attitude_MEKF_Sigma_a 0.1 // Accelerometer

variance

#define NAV_Attitude_MEKF_Sigma_g (1.0*PI/180.0) // Gyro

variance

130

#define NAV_Attitude_MEKF_Sigma_gb ((1.0/60.0)*PI/180.0) // Gyro bias variance

#define NAV_Attitude_MEKF_Sigma_c 20.0*PI/180.0 // Compass variance

#define NAV_Attitude_MEKF_Gyro_Tau 343.78 // Gyro time

constant

#define NAV_Attitude_MEKF_Residual_Threshold 3 // multiple of the

//measurement uncertainty

used //in rejecting bad

measurements

#define NAV_Attitude_MEKF_Underweighting_Threshold 200

#define NAV_Attitude_MEKF_Underweighting_Coeff 0

//------------------------------------Inertial--*/

#define Selected_NAV_INRTL Navigation_Inertial_EKF

// NAV inertial type-specific variables

#define NAV_Inertial_EKF_Sigma_a NAV_Attitude_MEKF_Sigma_a

#define NAV_Inertial_EKF_Sigma_ab 0.001

#define NAV_Inertial_EKF_Accel_Tau 3600.0

#define NAV_Inertial_EKF_Sigma_baro 1.0

#define NAV_Inertial_EKF_Sigma_GPS_Alt 0.5

#define NAV_Inertial_EKF_Sigma_GPS_Vmag 0.01

#define NAV_Inertial_EKF_Residual_Threshold 3

#define NAV_Inertial_EKF_Underweighting_Threshold 200

#define NAV_Inertial_EKF_Underweighting_Coeff 0

/*==

==============

LOGGING

==

============*/

#define Selected_LOG Log_APM

#define LogEnable true

	Purdue University
	Purdue e-Pubs
	Fall 2014

	Joint Architecture For Reusable Vehicle-Integrated Software (J.A.R.V.I.S)
	Anthony Mark Kane
	Recommended Citation

