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ABSTRACT 

Kane, Mark A. M.S.A.A., Purdue University, December 2014. Joint Architecture for 

Reusable Vehicle-Integrated Software (J.A.R.V.I.S). Major Professor: Inseok Hwang. 

 

 

An integrated software architecture for development of unmanned research 

vehicles is developed. It has been created under the premise that all unmanned vehicles 

require a core set of functionality that is common across platforms and that priority 

should be to the readability and reusability of the code base. The architecture defines 

the top-level system interfaces allowing internal algorithms to be manipulated without 

affecting the rest of the system.  A robust aerospace toolbox has been developed that 

provides a means to rapidly prototype algorithms without the need of recreating 

commonly used functions or the use of expensive, proprietary software.  
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CHAPTER 1. INTRODUCTION 

1.1 Problem Overview and Motivation 

When solving an engineering problem the first step that should be taken is to 

research how similar problems have been solved before and then to decide how to 

modify the solution to fit one’s needs. Most often the final solution chosen is the one 

that has the most heritage both because it has worked in the past and it provides a 

comfort level that can only be gained through experience and use. The unwillingness to 

take any risk, while respectable, prevents growth. In guidance, navigation and control 

(GN&C) new techniques go unused for decades due to the long development cycle of 

vehicles, particularly those used in human transport. The question becomes how to gain 

heritage with a new algorithm when we are always attempting to minimize risk. Or 

perhaps more importantly, how does an engineer gain the experience necessary to take 

an algorithm from paper and implement it for real-time use? 

The conventional solution is to expend hours developing system models and then 

test in a simulated environment. While simulation is invaluable in initial development it 

should be considered a first-step in the development cycle as two primary failings are 

inherent to computer modeling.
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One is that the engineer does not gain necessary experience required to anticipate 

problems with the integrated system and often has little knowledge of how their 

portion integrates into the final vehicle. The second issue is that computer models are 

simplifications of real-world dynamics and despite great efforts can be incorrect or 

include simplifications that remove effects that are important to the behavior of the 

system.  

Prior to the large-scale computational power that is now available, full-scale 

prototypes were employed at a great monetary expense that has reduced their use 

today. Fortunately, due to the rapid pace of technological development, micro 

unmanned vehicles, land, air, and sea, offer a low-cost method for rapid development 

and testing of software and hardware. There are currently a number of commercial 

auto-pilot systems available that allow for the conversion of R/C platforms into 

unmanned vehicles. A few examples include the ArduPilot by DIY Drones1 and the 

MicroPilot2.  These platforms offer a path to test new algorithms or sensors without the 

need of special permissions or infrastructure to operate.  

The autopilot solutions available have been developed with the primary goal of 

making the system as simple as possible for a consumer to plug-and-play and place high 

priority on the telemetry systems. The accompanying software is most often closed-

source and does not allow for manipulation of the code, or code manipulation is limited.  

                                                           
1 Diydrones.com 

2 Micropilot.com 
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Open source software solutions are tailored to a specific type of vehicle making 

code modifications laborious. They also do not include a robust library toolset that lends 

itself to GN&C development.   

By learning from the current autonomous solutions, J.A.R.V.I.S provides a simple, 

adaptable integrated software solution for rapid unmanned vehicle development and 

research. 

1.2 Contributions of This Research 

The purpose of this research is not to develop a new algorithm or to design a 

revolutionary vehicle and is instead intended to facilitate the creation and research of 

these items. The problem addressed by this research is the lack of a robust integrated 

architecture for use in developing unmanned vehicles for research purposes. 

Development often focuses on a particular algorithm, such as a new optimal control 

technique, and completely overlooks the integrated system or the infrastructure 

necessary to run the algorithm.  

The goal of this research is the development of core-software that can be used to 

quickly build an unmanned system and also test new GN&C techniques using various 

types of vehicle and hardware platforms. This goal is achieved through a software 

architecture that is designed to be interchangeable as well as a library of tools similar to 

those found in MatLab3 that are necessary for rapid prototyping without the added cost 

of proprietary software.  

                                                           
3 mathworks.com 
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1.3 Overview 

As mentioned previously the intent of this research is to develop a software 

architecture and library set that will enable rapid algorithm prototyping and unmanned 

vehicle development. In-depth derivation of equations and library functions is avoided 

for brevity and can be found in the references provided. 

This thesis first examines a popular solution for platform development and 

outlines the reasoning behind the need for a better set of tools. This is followed by the 

architecture layout and a description of the tools that are provided by the software 

developed as part of this research.  Chapters 4 and 5 attempt to show the ease in which 

algorithms can be implemented and vehicles can be developed by utilizing JARVIS. 

Before continuing to the subject matter it is first necessary to define how the terms 

guidance, navigation, and control are used in the proceeding sections to avoid confusion. 

Navigation refers to the determination of the current vehicle state including 

attitude, position, velocity, and any number of other variables that may be desired such 

as air speed. Navigation can be commonly thought of as “Where am I?” 

Guidance refers to the determination of the desired path of travel and informs the 

vehicle how to reach a desired target state. Guidance determines “How do I get there?” 

Control refers to the actuation of effectors, such as thrusters or aero surfaces, 

necessary to track the guidance commands. While the other systems are largely 

unchanged between vehicle platforms control is specific to the type of actuators 

available to effect a change in the vehicle state.  
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Another system that will be discussed is the Pilot system. Piloting can be 

performed through external commands or autonomously. In both cases the purpose of 

the pilot is to determine the desired target state; “Where do I want to go?” 
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CHAPTER 2. ARDUPILOT CASE STUDY 

The ArduPilot system is an inexpensive auto-pilot solution that is gaining 

popularity due to the low cost and because the code is open-source. Additionally, 

the software is coded in the C++ language allowing for any custom libraries created 

to be used on any platform capable of compiling and running C++ code.  

The ArduPilot has a large open-source community that is actively developing 

the code and capability of the system that can make it difficult to keep up with the 

latest revision, for this research the code being inspected is the ArduCopter v2.8.1 

retrieved from the online repository that is provided by DIY drones. 

The code has been investigated for the purpose of determining the 

accomplishments and deficiencies inherent to the architecture. This is not meant as 

a critique of the accomplishment of the DIY Drone team or the open-source 

community developing the software. It is known that a number of updates have 

been released after v2.8.1 that address some of the problems that are discussed in 

the proceeding sections. 

The architecture developed for this research has different priorities and aims 

to build on that which has already been accomplished.
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2.1 High Level Overview 

The ArduPilot hardware consists of an APM 1.0, APM 2.x, or PX4 system. The 

hardware is a small form factor and contains a micro-processor, barometer 

gyroscope, accelerometer, and a number of input and output pins that include those 

necessary to read and control R/C equipment such as a servo. Sensors can be 

expanded to include GPS and magnetic compasses. 

 Software for the ArduPilot is platform dependent and includes the ArduPlane, 

ArduCopter, ArduRover, and ArduBoat.  As each name implies the individual 

software solutions are intended for different types of vehicles such as conventional 

aircraft, helicopter and multi-rotors, land-based vehicles, and watercrafts. 

 For most users the setup of an unmanned vehicle using the ArduPilot system 

is accomplished through use of the MissionPlanner software that is obtained from 

the DIY website.  Hardware options and configuration variables are set through the 

GUI and the necessary software is downloaded, compiled, and then uploaded to the 

vehicle. The user is not required to interact with the base code. 

 Advanced users are able to modify the code by first downloading the latest 

software from an online repository. It can then be modified, compiled and uploaded 

using the Arduino integrated development environment (IDE). 
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2.2 Architecture 

The base software architecture follows typical Arduino formats. The main code 

that calls the initialization routines as well as performs the operation of the vehicle 

when powered is contained in a “.pde” file of the same name as the sketch, 

ArduCopter.pde in the case of the code being investigated. Logic is then separated 

into other .pde file and within the libraries.  

 

2.2.1 ArduCopter Code 

There are 35 files that are specific to the ArduCopter code, library files are 

used in for the other variants. File names as well as a brief description of the logic 

contained within are given in Table 1.  

 

Table 1: ArduCopter Code 

ArduCopter 

File Purpose 

APM_Config.h Allow the user to set configuration 

variables 

Overwrites any previous definition 

APM_Config_mavlink_hil.h Configuration file allowing the 

telemetry to operate when in 

“hardware-in-the-loop” mode 

ArduCopter.pde Variable definitions as well as calls 

all subsystems necessary to operate 

the vehicle 

Attitude.pde Combination of GN&C routines used 

in controlling the vehicle attitude  

commands.pde Common function definitions used 

in commanding the vehicle 

commands_logic.pde Level above commands.pde used in 

commanding the vehicle 
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Table 1: Continued 

commands_process.pde Top level commands used in 

commanding the vehicle 

config.h Default vehicle configuration file 

config_channels.h Configure the vehicle channels 

control_modes.pde Functions used to switch between 

different control modes 

defines.h Enumeration defines used to assist 

in making the code readable 

events.pde Functions to handle failsafe or low 

battery conditions 

failsafe.pde Allows checking of a software lock 

flip.pde Logic to invert the vehicle 

GCS.h Interface definition for ground 

control protocols 

GCS.pde Interface functions for ground 

control protocols 

 

GCS_Mavlink.pde Interface for ground control using 

mavlink 

inertia.pde Inertial integration of the 

accelerometer 

leds.pde Functions to change LED behavior 

Log.pde Functions to read/write to memory 

Limits.pde Logic to return-to-home if vehicle 

goes out-of-bounds 

motors.pde Arms motors 

Starts the barometer  

Stores the initial position 

navigation.pde Calculates state errors with respect 

to desired 

Filters inertial velocities 

Parameters.h Structure containing parameters 

used by various subsystems 

Parameters.pde Load and store parameters to 

memory 

planner.pde Access to the mission planner 

radio.pde Reads the R/C input 
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Table 1: Continued 

sensors.pde Functions to read the compass, 

optical-flow, battery, and barometer 

sensors 

setup.pde Menus for setting up the vehicle via 

the command line 

system.pde Functions to initialize hardware 

 

test.pde Functions to test system 

functionality 

UserCode.pde Empty function allowing for custom 

user functionality 

UserVariables.h Custom user-defined variables 

 

System variables used throughout the system are defined globally in the 

ArduCopter.pde file. There is not a consistent naming convention or unit system that 

is being used; units are metric but may be given in meters, centimeters, degrees 

times 100 or any number of other combinations. Choice of variable units is most 

likely a result of electing to perform mathematics using integers.  This is done 

presumably so as to reduce computational time while maintaining accuracy and 

limiting memory use.  In the past compilers for ARM based processers were 

notorious for producing erroneous results when using floating point variables.  
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2.2.2 Hardware Operation 

The key item to note is that sensor access is asynchronous. Readings are 

stored in internal sensor variables that are updated when the system detects that 

the sensor is ready. This interrupts the current process. When a sensor reading is 

necessary during operations the data is accessed through the stored variable and 

does not actually call the sensor.  

 

2.2.3 Subsystems 

The software being investigated is not grouped into logical GN&C partitions. 

It also does not appear to follow conventional definitions for GN&C. Throughout the 

code navigation is most routinely used to reference methods or variables that would 

typically be considered part of guidance although some routines are used to 

determine the current state. 

 

2.3 Conclusions 

The ArduPilot system has a number of features that are useful in vehicle 

development as well as a number of architectural choices that make code 

modification and reading difficult. 
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Advantages of this system are: 

• Inexpensive 

The ArduPilot can be purchased for a few hundred dollars. At this price 

the system is quite affordable to anyone and is less painful to replace in case 

of a catastrophic failure during vehicle testing. 

• Wide range of hardware capability 

The hardware that is provided offers an interface to a wide variety of 

sensors including GPS, accelerometers, gyroscopes, compasses, barometers, 

and many more. The built in PWM generator is particularly useful since it 

does not require any additional hardware when controlling R/C servos. 

 

• Small and light-weight 

All of the aforementioned capability comes in a small, light-weight, form 

factor that can be flown on any number of micro aerial vehicles without 

affecting performance or being too cumbersome to mount. 

• Coded in C++  

C++ is a cross-platform language. This allows for the development of 

libraries that can be used not only on Arduino hardware but also on PCs and 

other devices. 
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Disadvantages include: 

• Over use of global variables 

While global variables provide easy access for subsystems it is the 

opinion of the author that their use is a dangerous coding practice 

particularly for autonomous hardware. It is difficult to determine what is 

using a global variable and were it is being manipulated. Comments within 

the Arduino code indicate that it is uncertain what some of the variables are 

being used for. 

• Inconsistent Naming Convention and Unit Selection: 

The lack of a consistent naming convention prevents a user from 

being able to identify the purpose of a variable or what units are being used. 

The reasoning behind the choice of units in the code commentary is often 

sparse leaving the user to guess what is being used. 

• Logic Grouping 

Functionality is not grouped into logical subsystems and the GN&C 

definitions do not follow conventional descriptions. Not having a well-defined 

grouping of logic makes it difficult to determine how and where GN&C is being 

performed. This makes modification of the code particularly difficult. 
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• Lack of robust mathematical library 

Many GN&C systems, including those that the ArduCopter system is 

intended, have multiple inputs and outputs (MIMO). These types of systems 

can be conveniently represented in a state-space, or matrix, format. Some 

tools have been created that handle 3x3 matrices and 3x1 vectors but are 

not generic to be expanded to n-size arrays. Linear algebra routines are also 

missing making implementation of GN&C algorithms time consuming and 

tedious. 
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CHAPTER 3. J.A.R.V.I.S 

 

3.1 Architecture 

The premise of this architecture is that all autonomous vehicles require basic, 

common, functionality that is unchanged between vehicle platforms. JARVIS 

software is designed such that common logic is grouped into subsystems and these 

subsystems only access each other via input and output busses. Communication 

between subsystems is shown in Figure 1. Additionally all hardware functionality is 

abstracted to provide a common interface. The hardware abstraction layer provides 

access to the sensors and brings external information into the system as well as 

sending information out of the system. 

 

 

Figure 1: JARVIS Block Diagram
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3.1.1 Subsystems 

Subsystems contain common logic that is necessary to operate unmanned 

systems such as guidance, navigation, and control. Additional subsystems included 

are pilot, vehicle monitor, and ground control. The purpose of each is detailed below. 

Separation of logic in this way allows for simple replacement of an entire subsystem 

to occur without affecting the other subsystems.  

The systems detailed in the proceeding sections should be thought of as an 

empty box. The base classes described provide a common interface and allow the 

user to populate the box to suit their purpose. 

 

3.1.1.1 Pilot 

The primary function of the Pilot subsystem is to provide a state command. 

This command informs the vehicle about where it “wants” to be. Piloting consists of 

three different modes: 

� Manual 

• Reads user input, throttle, rudder, aileron, elevator 

• Control uses the commands directly and maps them to 

the effectors 

� Pilot-Assist 

• Reads user input, throttle, rudder, aileron, elevator 

•  User input is modified by Guidance and Control 

• Vehicle is completely stabilized by the autopilot, allows 

a novice to pilot any vehicle 

• Requires the state estimate from a Navigation 

subsystem 
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� Autonomous 

• Independent of user 

• Uses a pre-defined set of waypoints or maneuvers to 

perform a mission 

• Requires the current state from Navigation  

 

The base functionality and variables required for piloting are included in the 

pilot class shown in Table 2. 

 

Table 2: Pilot Base Class Description 

PILOT Class 

VARIABLES 

Pilot_Mode Output variable indicating the desired piloting 

mode 

Command Output vector containing the pilot command 

State_Actual Input vector containing the current state 

User_Input Input vector containing the command from the 

user, interpreted as a rate command 

FUNCTIONS 

Calculate_Command Generate a state command to be used by 

Guidance 

 

 

The base class provides a common interface that allows for custom 

development for the underlying systems. The pilot base class will be the foundation 

for future classes that can be created to perform maneuvers such as circling, 

inverting, and waypoint tracking. 

  



18 

 

 

3.1.1.2 Guidance 

Guidance is an often overlooked subsystem as, depending on the design, the 

functionality can be included in control. The approach taken in the JARVIS 

architecture is to have the pilot system provide a state command to guidance. 

Guidance is then used to introduce additional information to the command and 

provide an output that is used by control. For example the pilot command could be 

interpreted as a desired rate. Guidance can then modify the rate with attitude 

information to provide attitude control. 

By using this separation states can be introduced at different levels and 

allows the system to be tuned incrementally and assists in removing coupling 

problems that could otherwise make control tuning comparably more difficult. 

 The guidance base class is shown in Table 3. 

 

Table 3: Guidance Base Class Description 

Guidance Class 

VARIABLES 

Command Output vector containing the commanded 

vehicle state 

State_Actual Input vector containing the current state 

State_Desired Input vector containing the desired state from 

Pilot 

Command Output vector containing the commanded 

vehicle state 

FUNCTIONS 

Calculate_Command Generate a state command to be used by 

Control 
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3.1.1.3 Navigation 

Navigation is one of the most notorious, and possibly most important, 

subsystems for autonomous operations simply due to the fact that without accurate 

NAV information it is impossible to operate a vehicle regardless of how advanced 

the supporting infrastructure is. 

To assist in understanding what a NAV output is providing the variable should 

be descriptive and conform to a naming convention. The variable naming convention 

utilized in JARVIS is outlined in Table 4.  

 

Table 4: NAV Variable Naming Conventions 

_B Indicates that the variable is in the body frame 

_NED Indicates that the variable is in the North-East-Down (NED) frame 

_YPR Rotation sequence is Yaw-Pitch-Roll (3-2-1)  

P Position, [X,Y,Z]’ 

w Angular rate 

E Euler angle 

Quat Attitude quaternion 

T Transformation matrix 

Subscript is read as TO axis system FROM axis system 

T_BNED is the transformation to the body frame from the NED 

frame 
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In general navigation algorithms consist of predicting the state, most often 

done by propagating dynamic equations using the sensor readings, and correcting 

the state with an external observation. 

 For example, in the ArduCopter software the direction cosine matrix (DCM) 

is propagated using the rate gyro. The gravity vector is then used to estimate the 

error in Roll and Pitch. A PD controller then o augments the gyro rates in subsequent 

propagation states to correct the DCM.  

The class given in Table 5 will be utilized later in this thesis when 

implementing an attitude estimation filter. 

 

Table 5: Navigation Base Class 

Navigation Class 

VARIABLES 

User Defined Variables are specific to the NAV 

implementation and depend on user needs 

FUNCTIONS 

Predict_State Predict what the state is, typically done by 

propagating dynamic equations 

Correct_State Correct the state estimate using external 

observations 
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3.1.1.4 Control 

The purpose of the control system is to generate effector commands that will 

realize the desired state. There are a wide variety of control algorithms that can be 

used, some of which will be discussed later. The base functionality for control is to 

take in a desired state and generate an effector command. The base class is shown 

in Table 6. 

 

Table 6: Control Base Class 

Control Class 

VARIABLES 

Command Commands sent to the effectors 

State_Desired Desired state that control is attempting to 

achieve 

State_Actual Current state of the vehicle 

State_Error Difference between the desired and actual 

state 

Effector_Map Matrix that maps control commands to the 

effectors 

FUNCTIONS 

Calculate_Command Function to generate an effector command 
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3.2 Libraries 

To facilitate the implementation of various GN&C algorithms it is necessary to 

have a robust library as a base to build from. There is a notable lack of tools 

available for the open-source autopilot systems and while there are a wide variety of 

commercial applications that provide these tools they are often cost prohibitive.  

MatLab is one example of software that is popular in the field of engineering 

as it provides a large suite of libraries that provide means to convert units and 

coordinate systems, solve linear systems, and quickly plot results. It also includes 

tools for converting models into C++ code that can be run on hardware.  

MatLab however does come at a considerable monetary investment and being 

proprietary does not often allow one to see the underlying algorithms. Auto-coding 

software adds an additional layer that can contain mistakes or operate in 

unintended ways. A simple example is if the sign returns zero or positive one when 

the input has a value of zero. Code generated though an auto-coding process can 

also be difficult to read and debug if necessary. 

To avoid the cost overhead, a library has been developed in C++. MatLab has 

been used to independently verify functionality. To facilitate conversion from one 

environment to another function names and call list are as similar to the MatLab 

environment as possible. For those familiar with MatLab this provides a familiar feel 

when developing for JARVIS. 
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The following sections give a brief overview of the current capability of the 

library and as with any tool it is in continuous development. A full list of available 

functions is provided in Appendix A. 

 

3.2.1 Use of Classes 

To facilitate the reusability and readability of the code the C++ classes will be 

used heavily. C++ classes contain all the variables and related functions desired for a 

particular subsystem and can be used in higher-level code due to the feature of 

inheritance, illustrated in Figure 2. Classes also allow for variables to be protected by 

making them private ensuring that only a subset of data is visible to external 

functions so that it is not changed or overwritten accidentally. The Inheritance 

feature becomes very useful when creating different GN&C algorithms. 

 

 

Figure 2: Class Inheritance (www.programiz.com, 2014) 
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Using templates allows a class to be used for different types of variables and 

eliminates the need to recreate identical code so that it can work with both double 

and floating point values for example.  

 

3.2.2 Math Enhanced 

This library has been created to provide resizable arrays as well as linear 

algebra tools. It contains an array class, matrix class, linear algebra functions and 

some simple signal handling. 

 

3.2.2.1 Arrays 

It is desirable to create an array of objects that can be accessed by index and 

that if necessary be dynamically resized thus allowing one to loop through data in a 

parameterized fashion and maintain code cleanliness. For example, if there are four 

servos on the vehicle and there is a “Servo” class that provides access to basic servo 

functionality and commanding, the ArduCopter code would need four “Servo” 

variables. The array class declaration for the same situation is: 

 

Array<Servo> Servos(4, 1) 

 

This allows for each servo to be accessed from the “Servos” variable as would 

be possible in MatLab with the exception that indices are base-zero to stay 

consistent with the C++ language were as MatLab is base-one . 
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 The array class also contains the information on its size eliminating the need 

for additional checks when performing a loop: 

 

for(int i; i < Servos.nrows(); i++) 

Servos(i).SendCommand; 

 

To further enhance the capability the number of servos can be 

parameterized as “nServos” that can be defined in the configuration file: 

 

Array<Servo> Servos(nServos,1); 

 

 The array class operates in two modes, the default is static sizing and the 

secondary is dynamic sizing. The static size assumes that the array is a fixed size and 

although it is possible to resize the variable manually, the data will not be 

maintained when doing so. The dynamic sizing option allows the array to be resized 

automatically, in that if one were to attempt to set an element that was outside of 

the current array size, the array size would be increased while maintaining all 

previous data. The dynamic size method is useful for off-line loading of data and was 

implemented for use in the time-series class that is described in section 3.2.2.3. 
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3.2.2.2 Matrices 

The matrix class is intended to be used for numerical computations and 

inherits all of the capabilities from the array class while providing additional 

capabilities, such as internal functions that zero the elements or populate the 

elements so that the variable is an identity matrix. Variable declaration is done in 

the same manner as the array class: 

 

Matrix<float> A(3,3) 

3.2.2.3 Time-Series Class 

The time series class is intended for storing time-sequential data primarily for 

use in post-processing data. This class contains two internal arrays, one that stores 

the time vector, and one that stores the data. Functions are included within the class 

that allow for data to be accessed by time or index. 

 

3.2.2.4 Linear Algebra 

A number of functions have been written to provide basic routines necessary 

when constructing GN&C algorithms. These include matrix multiplication, addition 

and scaling, QR and UD matrix decomposition. Also included is the capability to solve 

linear systems and invert or orthonormalize a matrix. These functions rely on the 

matrix class and have been compared against results produced by MatLab. 
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3.2.3 Aerospace Toolbox 

The Aerospace toolbox has been created to provide a number of tools 

necessary in unmanned vehicle development. These include routines for 

transforming coordinate systems, converting units, and filtering signals. This library 

also contains a quaternion class that is expected to be used for variables that 

represent attitude using a quaternion. Control classes have been implemented and 

can be used within the control subsystem when generating effector commands.  

 

3.2.3.1 Controllers 

The control toolbox is intended to contain a number of control classes that 

can be used to generate control commands. The classes contain the variables and 

functions necessary for any implementation of that particular algorithm. Examples 

that are commonly seen in textbooks are state-space, positional-integral-derivative 

(PID), linear quadratic regulator (LQR), and model predictive control (MPC). 

The only control classes that are currently available are for PID and state 

space control. Future improvements will be to add more control algorithms. 
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3.2.3.2 Conversions 

One of the most common tools necessary for unmanned development is the 

ability to transform coordinate systems between each other as well as convert units. 

Routines have been implemented that provide basic unit conversions as well as 

common transformations such as converting between the quaternion attitude 

representation and the Euler-angle representation. A full list is given in Appendix A. 

 

3.2.3.3 Filters 

A number of filters have been constructed that allow for input signal filtering 

as well as estimation. 

 

3.2.3.3.1 Average 

The average filter is used to average input values over a moving window. The 

user defines the number of values (n) in the averaging window and updates the filter 

by passing in values from the signal to be filtered (x); y is the filtered output. 

 

=
∑
1

n

n
x

y
n

  (3.1) 
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3.2.3.3.2 High-Pass 

High-pass filtering allows for high frequency content to pass through the 

system while filtering out low frequencies. At initialization the user specifies the 

smoothing factor ( )α  with a value ranging from 0 to 1. The filter is updated by 

passing in the unfiltered value ( )k
x  and outputs the filtered value ( )k

y . The previous 

input and outputs are stored internally as −1k
x  and −1k

y . 

 

( )α − −= + −
1 1k k k k

y y x x                         (3.2) 

 

3.2.3.3.3 Low-Pass 

Low-pass filtering allows for low frequency content to pass through and 

removes high frequency content. As with the high pass filter the user specifies a 

smoothing factor ( )α at initialization. The filter is updated by passing in the 

unfiltered value ( )k
x  and outputs the filtered value ( )k

y . The previous input and 

outputs are stored internally as −1k
x  and −1k

y . 

 

( )α− −= + −
1 1k k k k

y y x y               (3.3) 
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3.2.3.3.4 Kalman Filter 

The Kalman filter is at the heart of most modern aerospace navigation 

systems. Each implementation of a Kalman filter is unique due to the states that are 

being estimated as well as the sensors available for measurements. Fortunately 

large portions of the algorithm are reusable allowing for the development of a 

library class that reduces the time and effort necessary to develop the state filter.  

The Kalman filter can be computationally burdensome and, depending on the 

method chosen, numerically unstable. Both qualities are undesirable and make 

implementation of Kalman filters challenging. The approach chosen to address this 

problem has been taken from (Holt, Greg N.; D'Souza, Christopher) and is unique in 

that it is numerically stable and computationally efficient. What is given below is a 

brief synopsis of how the filter is formed, for a more thorough understanding on the 

derivation of the equations please refer to the references provided. 

 

3.2.3.3.4.1 Dynamic System Model  

The system is modeled as linear with white Gaussian noise. The discrete 

system model is given in equation(3.4). The state vector is defined as X , F  is the 

state transition matrix and is calculated at each time step. G is the noise mapping 

matrix, and w  is the white Gaussian noise. In this section the subscript k is used to 

indicate the current value and k-1 is the previous value. 

1X Xk k k kF Gw−= +                              (3.4) 
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3.2.3.3.4.2 Measurement Model  

The measurement model is also assumed to be linear with Gaussian noise. 

Given a state vector that is corrupted by zero mean Gaussian noise ( )v  and the 

sensitivity matrix ( )H  the measurements ( )y are modeled as: 

 

k k k ky H X v= +      (3.5) 

 

3.2.3.3.4.3 Updating Covariance 

In Kalman filtering there are two primary steps, one is to perform a time 

update and is also known as prediction. The second is to correct the state prediction 

using measurements from external sensors. The following details the formulation 

used for the covariance matrix and the base equations necessary to perform these 

steps. 

 

3.2.3.3.4.3.1 UDU Formulation of the Covariance 

Matrix 

In this approach to improve computational stability the covariance matrix (P) 

is factorized into an upper-triangular matrix (U), that is also orthogonal, and a 

diagonal matrix (D) that contains the singular values: 

 

= T
P UDU   (3.6) 
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A singular value decomposition (SVD) function is included in the library so as 

to allow initialization of the filter using the standard covariance matrix.  

 

3.2.3.3.4.3.2 Parameterization 

Computational efficiency is improved by parameterizing the states. This 

benefit is realized in filters with a large number of ECRVs, such as a sensor bias or 

mounting error, by taking advantage of the sparseness of the corresponding 

matrices. 

The state vector is partitioned into “real” states ( )χ  and ECRVs ( )p  in the 

following manner: 

 

X
p

χ 
=  
 

  (3.7) 

 

Likewise the U and D matrices are partitioned as shown in equations (3.8) 

and (3.9). The subscript ( )χχ  indicates the portion of the matrix containing the first 

order partial derivatives of the real states with respect to the real states. The 

subscript ( )χp  indicates the first order partial derivatives of the real states with 

respect to the ECRV states. The subscript ( )pp  indicates the first order partial 

derivatives of the ECRV states with respect to the ECRV states. 
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0
p

pp

U U
U

U
χχ χ 

=  
 

  (3.8) 

 

0

0 pp

D
D

D
χχ 

=  
 

  (3.9) 

 

The state transition matrix partitioning is given in equation (3.10). Here M is 

a diagonal matrix with each non-zero element being the inverse of the ECRV time 

constant. 

 

1 2

0

0 0 0
p pF F I F F

F F F
M M I

χχ χ χχ χ     
= = =     
     

                     (3.10) 

 

The weighting matrix is partitioned as shown in equation(3.11). 

 

1 2

0 0 00

0 00 0pp pp

Q Q
Q Q Q

Q Q
χχ χχ    

= = + = +    
    

            (3.11) 

 

3.2.3.3.4.3.3 Performing the Time Update 

Using the modifications described in the previous sections, the time update 

for the covariance matrix takes the form: 

 

2 1 1 1 1 1 1 2 2k k k k k k

T T T T
k k k k k k kP U D U F F U D U F Q F Q− − − = = + +          (3.12) 
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From equation (3.12) it is observed that the time-update can be performed using 

two-steps. Here the k and k-1 subscripts have been dropped for brevity. 

1. Compute the inner product. This can be done using a modified Gram-Schmidt 

process (Thornton and Bierman): 

 

1 1 1
T T TUDU FUDU F Q= +                       (3.13) 

 

2. Compute the outer product. This can be accomplished with the Agee-Turner 

rank-one update (Agee): 

 

2 2 2
T TUDU FUDUF Q= +                     (3.14) 

 

3.2.3.3.4.3.4 Measurement Update of Covariance 

 Measurements are processed one at a time the a posteriori covariance ( )+
P  

given is a function of the Kalman gain ( )K , the measurement partial ( )H , and the      

a priori covariance ( )−
P . When discussing measurement updates the superscript (+) 

indicates the a posteriori value and (-) indicates the a priori value. 

 

P P KHP+ − −= −                              (3.15) 

 

The optimal Kalman gain is given in equation(3.16) with R  being the 

measurement co-variance. 

( ) 1T TK P H HP H R
−− −= +                              (3.16) 
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Using the modifications described in the preceding sections the covariance 

measurement update then takes the form: 

 

α
+ + + + − − − = = −  

1T T T
P U D U U D vv U                    (3.17) 

 

With the following definitions: 

 

T Tv D U H− −=   (3.18) 

 

T THU D U H Rα − − −= +              (3.19) 

 

1 TK U vv
α

−  =   
           (3.20) 

 

The Carlson rank-one update is used to solve for 
+

U and +
D  using the 

definitions given in equations (3.21) through (3.23). 

 

1T TUDU D vv
α

−=            (3.21) 

 

U U U+ −=            (3.22) 

 

D D+ =            (3.23) 
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Because measurements are processed individually H  is a row vector that 

has a size of 1 by ( )x pn n+ where 
x

n is the number of real states and 
p
n  is the number 

of ECRV states. This results in a scalar value for α  and eliminates the need for 

matrix inversions that are computationally burdensome and reduce numerical 

stability. 

 

3.2.3.3.4.4 Updating the State Estimate 

As with the covariance matrix the state update consists of prediction and 

correction. 

 

3.2.3.3.4.4.1 State Time Update 

The time update is often the propagation of dynamic equations, or 

alternatively the integration of the inertial sensors at each time step. The time 

update is specific to the filter that is being designed and does not lend itself to being 

part of a generic Kalman filter class. Instead it is expected that a higher-level class 

will be created that contains the logic necessary to propagate the state as well as 

populate the state transition matrices necessary for performing the covariance 

updates. 
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3.2.3.3.4.4.2 State Measurement Update 

The state measurement is performed with the covariance update. The 

Kalman filter is used to estimate the error in the state prediction ( )∆x  that is then 

used to correct the state estimate. 

Measurements are again performed one at a time with y being the 

measurement and h the expected, or estimated, value.   

 

x x K y h H x+ − − ∆ = ∆ + − − ∆                                            (3.24) 

 

Substituting equation (3.20) for K: 

 

1 Tx x U vv y h H x
α

+ − − − 
 ∆ = ∆ + − − ∆   

                           (3.25) 

 

For an Extended Kalman Filter the state correction is linear: 

 

X X x+ −= +∆                                                      (3.26) 

 

∆x  must be re-zeroed each time the state is corrected. Using the 

methodology described any number of measurements can occur before the state 

vector is corrected. 
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3.2.3.3.4.4.3 Measurement Rejection 

One of the goals of this research is to improve the robustness of navigation 

by providing a method to reject erroneous sensor measurements. Measurement 

rejection is accomplished by comparing the residual ( )− − ∆y h H x  to a user-defined 

threshold that is specified at initialization. 

 

[ ]

[ ]

1
,

1
,

y h H x Threshold Discard

y h H x Threshold Keep

α

α


− − ∆ >



 − − ∆ <=


                               (3.27) 

 

3.2.3.3.5 Library Implementation 

The logic described in the previous sections is implemented in the UDU_EKF 

class. The class includes the necessary variables for running an EKF filter as well as all 

the low-level logic to perform the heavy lifting for the covariance time update as 

well as the state and covariance measurement updates. This class is generic to the 

filter design and expects that the user will include it as part of an estimation 

algorithm.  

The amount of system memory used and the number of computations 

required is reduced by taking advantage of the sparseness of the parameterized 

matrices and storing the diagonal matrices as column vectors. 
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Table 7: UDU EKF Class Description 

UDU_EKF 

VARIABLES 

U Post-update (nx + np)-by-( nx + np) unit upper 

triangular matrix 

D Post-update (nx + np)-by-1 vector of the 

diagonal elements of the matrix D 

PHI_x (nx)-by-( nx + np) state transition matrix 

associated with the non-ECRV states 

PHI_p (np)-by-1 vector of the diagonal elements of 

the ECRV state-transition matrix 

G_x (nx)-by-(nx) process noise mapping matrix 

corresponding to non-ECRV states (matrix is 

unit upper triangular) 

Q_x (nx)-by-1 vector containing the diagonal terms 

of the process noise covariance matrix Q_X 

corresponding to non-ECRV states 

Q_p (np)-by-1 vector containing the diagonal terms 

of the process noise covariance matrix Q_P 

corresponding to ECRV states 

H 1-by-( nx + np) vector containing the partial 

derivative of the measurement with respect 

to the state using the current estimate 

Delta_X (nx + np)-by-1 vector containing the current 

estimate of the state error 
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Table 7: Continued 

FUNCTIONS 

Initialize(nx, np) Initialize the filter with the number of non-

ECRV and ECRV states; Expects the user to 

initialize U and D afterwards. 

set_Rejection_Threshold(Threshold) Set the multiple of the measurement 

uncertainty used in rejecting bad 

measurements 

 

set_Underweighting(Threshold, 

Coefficient) 

Set the underweighting threshold and 

coefficient 

Covariance_Time_Update() Perform the time update of the covariance 

matrix; Expects that the user has set the state 

transition variables (PHI_x, PHI_p, G_x, Q_x, 

Q_p) prior to calling this function 

Measurement_Update(Y, h, R) Perform the measurement update of the 

covariance and state error 

Expects that the user has set the sensitivity 

vector (H) prior to calling this function 

 

3.2.3.4 Estimators 

Estimation classes have been developed to provide capability to produce 

attitude and position estimates using the aforementioned UDU_EKF class. These 

classes are intended to be used in a navigation system but are otherwise 

independent of the navigation architecture. 
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3.2.3.4.1 Multiplicative Extended Kalman Filter 

A multiplicative extended Kalman filter (MEKF) has been implemented for 

estimating attitude, body rates, as well as gyro bias. By using the UDU algorithm the 

computational burden as well as the memory footprint has been reduced 

significantly allowing the filter to be used real-time despite using a low-power 

system. 

 

3.2.3.4.1.1 Attitude Representation 

Several different methods can be used to describe the attitude of a vehicle 

including Euler angles, quaternions, and Rodrigues parameters. For a body moving in 

three-dimensional space the quaternion formulation is appealing since no 

singularities are present4 and the state error can be estimated by only three 

variables. The quaternion representation that will be used in this thesis will be the 

scalar (
0q ) followed by the vector (

vq ) and is how the quaternion class has been 

implemented in the Aero-Toolbox library. 

 

[ ]=
0

T

v
q q q  (3.28) 

 

[ ]=
1 2 3
, ,

T

v
q q q q       (3.29) 

 

                                                           
4 A singularity occurs when the error is exactly 360 degrees. Errors this large cause additional 

problems as the derivation assumes a small error and in any situation is very unlikely to occur 

considering that the filter is being performed at a high rate (>30Hz). 
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Additionally quaternion must obey the following constraint: 

 

=1T
q q  (3.30) 

 

3.2.3.4.1.2 Attitude Kinematics 

The quaternion kinematics ( )q  are a function of the body angular rates ( )ω .  

The formulation as given in (Dreier) is given in equation (3.31). The variables p  , q  , 

and r   are used to represent the angular rate about the body X, Y, and Z axis 

respectively. ⊗  is used to represent quaternion multiplication. 

 

ω
ω
 

= Ω = Ξ = ⊗ 
 

01 1 1

2 2 2
q

q q q                                        (3.31) 

 

1 2 3

0 3 2

3 0 1

2 1 0

0

0
,

0

0

q

q q qp q r

q q qp r q

q q qq r p

q q qr q p

− − −− − −   
   −−   Ω = Ξ =
   −−
   − − −−   

                              (3.32) 

 

3.2.3.4.1.3 Sensor Modeling 

Observations are used to correct the state estimate and are collected from a 

variety of sensors including rate gyroscopes, accelerometers, magnetometers and 

GPS.  
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The gyroscope measures body angular rates ( )ω  and are modeled as a 

function of the true angular rates, the gyro bias ( )β
g

, and zero-mean Gaussian noise 

( )g
n .    

 

g gnω ω β= + +         (3.33) 

 

The accelerometer on each axis measures translational acceleration ( )a  in 

the body reference frame and is modeled as a function of true acceleration ( )a  and 

zero-mean Gaussian noise ( )g
a . 

 

= +
a

a a n     (3.34) 

 

3.2.3.4.1.4 Derivation of the MEKF Error Model 

In an extended Kalman filter (EKF) the attitude quaternion constraint given in 

equation (3.30) can be violated by the linear measurement update. This obstacle is 

overcome by using the multiplicative error quaternion. This method represents the 

attitude quaternion as the product of the estimated attitude ( )q̂  and the deviation 

from the estimate ( )δq . 

 

δ= ⊗ ˆq q q  (3.35) 
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Following the procedure given in (Crassidis and Junkins) and by using the 

quaternion representation given in(3.28), the error between the true and estimated 

attitude quaternion is given as: 

 

δ −= ⊗ 1
ˆq q q  (3.36) 

 

Using the chain rule, the time derivative of the error quaternion ( )δq  is given in 

equation (3.37). 

 

1 1ˆ ˆq q q q qδ − −= ⊗ + ⊗         (3.37) 

 

With the definitions given in equations (3.38) and (3.39).  Hereδ
0

q  represents the 

error in the scalar portion of the attitude quaternion and δ
v
q  is the error in the 

vector portion of the attitude quaternion. 

 

0[ , ]T
vq q qδ δ δ=     (3.38) 

 

[ ]1
0, vq q q− = −   (3.39) 

 

The expressions forq, q and 
1q̂ −

 are available leaving only an expression for −1
q̂  to 

be determined. The estimated quaternion kinematics model is: 
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01 1 1ˆ ˆˆ ˆ ˆ
ˆ2 2 2qq q qω

ω
 

= Ω = Ξ = ⊗ 
 

                      (3.40) 

 

The error between the quaternion estimate and itself is the zero-quaternion: 

 

[ ]1ˆ ˆ 1 0 0 0
T

q q−⊗ =             (3.41) 

 

Equation (3.41) is constant so the time derivative is equal to zero: 

 

1 1 1ˆ ˆ ˆ ˆ ˆ ˆ 0q q q q q q
t

− − −∂ ⊗ = ⊗ + ⊗ =
∂

                             (3.42) 

 

Substituting (3.40) into(3.42) gives the following: 

 

− −Ω ⊗ + ⊗ =1 11
ˆ ˆ ˆ ˆ ˆ 0

2
q q q q                (3.43) 

 

1q̂−
 is can then be found by substituting equations (3.41) and (3.32) into(3.43): 

 

1 1
ˆ1

ˆ ˆ
02

q q
ω− −  

= − ⊗  
 

                (3.44) 

 

Substituting δω ω ω≡ − ˆ  along with equation(3.44) and equation (3.37) results in: 
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0 0 01 1
ˆ ˆ ˆ2 2

q q q qδ δ δ δ
ω ω δω

      
= ⊗ − ⊗ + ⊗      

      
                         (3.45) 

 

That can be equivalently written as: 

 

δ δ δ
ω δω

     = Ω − Γ + ⊗    
     

0 01 1

ˆ ˆ2 2
q q q                                  (3.46) 

With: 

 

0

0

0

0

p q r

p r q

q r p

r q p

− − − 
 − Γ =
 −
 − 

                                                (3.47) 

 

Using equations (3.32) and (3.47) leads to: 

 

0 01
ˆ ˆ2x v

q q
q

δ δ
ω δ δω
   

= − + ⊗   
  

                                     (3.48) 

 

The skew-symmetric cross-product matrix is defined as:  

 

0

0

0
x

r q

r p

q p

ω
− 

 = − 
 − 

                                                  (3.49) 

 

 



47 

 

 

For the next portion of the derivation the assumption is made that the error 

is small; the true quaternion is close to the estimated quaternion. This allows the 

scalar
0q  to be approximated as a constant that is equal to one and removed from 

the system leaving only δ
v
q  to be estimated. Using a first-order approximation, the 

linearized model is:  

 

1
ˆ

2v x vq qδ ω δ δω= − +                                              (3.50) 

 

0 0qδ =                                                          (3.51) 

 

The estimated angular velocity ( )ω  is given as a function of the measured angular 

velocity and the estimated gyro bias ( )β̂
g

 : 

 

ˆˆ gω ω β= −                                                          (3.52) 

 

Using equations (3.33) and(3.52), and treating the gyro bias as a constant, equation 

(3.50) takes the form given in equation (3.53) with β∆
g

 representing the error in the 

gyro bias. 

 

δ ω δ β= − + +1
ˆ ( )

2
v x v g g
q q n  (3.53) 
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Then assuming a small angle
δαδ ≈
2

v
q : 

 

δα ω δα β= − − +( )
x g

n  (3.54) 

 

[ ]δα δφ δθ δϕ= T

 (3.55) 

 

3.2.3.4.1.4.1 EKF Error Model 

The state estimated by the MEKF is δα  and the error in the gyro bias ( )δβ
g

.  

 

δα δβ ∆ =  ˆ( ) ( ) ( )
T

T T

g
x t t t   (3.56) 

 

The continuous-time derivative of the state error ( )∆x̂  is modeled as a 

function of the state-transition matrix ( )F  computed at time (t), the noise mapping 

matrix ( )G  and Gaussian noise ( )w .  

 

∆ = ∆ +ˆ ˆ ˆ( ) ( ( ), ) ( ) ( )x t F x t t x G t w t                                  (3.57) 

 

The Gaussian noise comes from noise in the gyroscope measurements ( )g
n  and the 

accelerometer measurements ( )
a

n .  
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 =  ( )
T

T T

g a
w t n n                     (3.58) 

 

The state transition matrix is a function of the skew-symmetric cross product matrix 

generated using the estimated body rates ( )ω̂ ( )
x
t  and the gyro time constant 

( )τ
gyro

.  

 

3 3

3 3 3 3

ˆ ( )

ˆ 1( ( ), )
0

x x

x x
gyro

t I
x

F x t t
Ix

ω

τ

− − 
∂  = =  ∂

  

                                     (3.59) 

 

The noise mapping matrix and weight matrix (Q(t)) are assumed to be constant.  

 

σ
σ

−   
= =   
   

2

3 3 3 3 3 3 3 3

2

3 3 3 3 3 3 3 3

0 0
( ) , ( )

0 0

x x g x x

x x x a x

I I
G t Q t

I I
                          (3.60) 

 

3.2.3.4.1.5 Modification for Use with the UDU EKF Algorithm 

Equations(3.58), (3.59), and (3.60) are not parameterized and are in the 

continuous time form. To use the UDU algorithm constructed for the library, the 

system needs to be converted into a discrete time form. Assuming a small time step 

( )dt  allows for the following approximation to be made: 

 

[ ]∆ = ∆ + ∆ = ∆ + ∆ +ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( )x x xdt x F x t x Gw t dt                              (3.61) 
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χχ χ   
∆ = + ∆ +   

     

0
ˆ ˆ ( )

00

p

pp

F FI
x dt x Gw t dt

FI
                      (3.62) 

 

Using the nomenclature from the UD_EKF class: 

 

pPHI F dt I F dtχ χχ χ = +                                        (3.63) 

 

pPHI , is diagonal and can be discretized directly by taking the exponential of the 

diagonal terms multiplied by the time delta. 

 

3 3
p gyro

dt

F

p xPHI e I eτ= =                                              (3.64) 

 

Lastly: 

 

3 3x xG I dt=   (3.65) 

 

3.2.3.4.1.6 Attitude Observations 

Although the accelerometers measure the translational state, they can be 

used to observe pitch and roll through the gravity vector. The gravity vector as 

measured by the accelerometers is represented by a rotation of the NED gravity 

vector to the body frame using the NED-to-body transformation matrix ( )B
NEDT . 
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[ ]0 0 1
TB

NED ay T n= +                                (3.66) 

 

ˆ ba is the expected acceleration in the body frame and is found using the current 

estimate of the attitude ( )−
ˆ
k

q . 

 

[ ]ˆ ˆ ˆ( ) ( ) 0 0 1
TB

b k NED ka q T q− −=                                        (3.67) 

 

 The sensitivity matrix for the acceleration measurements is then: 

 

−

− 
∂  = = − ∂∆

 − 

3 2

3 1

2 1

ˆ ˆ0 0 0 0

ˆ ˆˆ( ) 0 0 0 0

ˆ ˆ 0 0 0 0

b b

k k b b

b b

a a
y

H x a a
x

a a

                        (3.68) 

 

The accelerometer is unable to observe the yaw angle and instead needs to 

be corrected by use of a magnetometer, or GPS that provides a ground heading. In 

these cases the sensors measure the yaw angle directly and can be used to calculate 

North in the body frame ( ˆ
bN ) to be used with equation(3.68) in the update: 

 

[ ]
cos( ) sin( ) 0

ˆ sin( ) cos( ) 0 ( ) 1 0 0

0 0 1

T

b sensorN q n

ψ ψ
ψ ψ

− 
 = + 
  

        (3.69) 

 



52 

 

 

3.2.3.4.1.7 Updating the State Estimate 

The state estimate is updated using the estimate of the state error obtained 

through the measurement updates. 

 The gyro bias update is linear: 

 

ˆ ˆ ˆ
k k kβ β β+ − += +  (3.70) 

 

The quaternion update is multiplicative: 

 

1
ˆ ˆ1

ˆ
2

k k
k

q q
δα

+ −
+

 
 = ⊗
 
 

 (3.71) 

 

3.2.3.4.1.8 Implementation 

Utilizing the UDU_EKF library class and the MEKF derivation given in the 

previous section an attitude and heading reference system (AHRS) has been 

constructed:  
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Table 8: AHRS_MEKF Class 

AHRS_MEKF 

VARIABLES 

Gyro_Variance Variance of the gyro measurements 

Gyro_Bias_Variance Variance of the gyro bias 

Gyro_Time_Constant Time constant of the gyro 

Filter UDU_EKF declaration used for Kalman filtering 

FUNCTIONS 

Initialize(Gyro_Variance, 

Gyro_Bias_Variance, 

Gyro_Time_Constant) 

Initialize the estimator 

Inputs are the gyro sensor parameters 

aClear() Clear all allocated memory 

Filter is no longer valid 

Clear_Workspace() Clear workspace memory to save memory 

Maintains filter states 

Initialize_Workspace() Initialize workspace variables 

Propogate (Quat_BI, w_B, dt) Propagate the attitude quaternion and 

covariance 

Inputs are the attitude quaternion, the estimate 

of body rates, and the time-step 

calcLinSys(w_B, dt) Calculate the discrete-time system matrices 

used by the UDU filter (PHI_x, PHI_p, Q_x, Q_p, 

G_x) 

Measurement_Update(Measured, 

Expected, Variance) 

Update the state error estimate using a 

measurement 

Update_Estimate(Quat_BI, 

Gyro_Bias) 

Update the estimate of the attitude quaternion 

and the gyro bias 

 

3.2.3.4.2 Inertial Extended Kalman Filter 

Estimation of position and velocity is required to be able to traverse from one 

location to the next. The primary sensor used to determine position and velocity is 

GPS. The purpose of the filter to provide reasonable estimates of the state when 

there is a loss of the GPS signal, or when there is interference that results in 

erroneous GPS readings.  
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 As with attitude estimation a Kalman filter will be used to provide the 

translational state estimates. It is possible to develop a filter that contains both the 

attitude and translational states however both are being kept separate for this thesis. 

The purpose behind the decoupling of the attitude and positional states is two-fold. 

One reason that will be discussed later is that the APM hardware does not have 

enough system RAM to be able to cope with the full state filter so by implementing 

them separately some of the states can still be filtered depending on what is desired. 

The second is that including both in the same filter can cause coupling issues that 

are difficult to tune.  

 

3.2.3.4.2.1 Coordinate Systems 

GPS provides coordinates in latitude, longitude, and are in the Earth-

Centered-Earth-Fixed (ECEF) reference frame. The ECEF is not as intuitive and 

instead the North-East-Down (NED) reference frame is used in the filter. 
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Figure 3: Definitions of Various Coordinate Systems [Centinello III, 2007] 

 

3.2.3.4.2.2 Translational Kinematics 

Equations for translational kinematics are taken from (Centinello III). In the 

equations given below h represents altitude, λ  is the latitude given in radians, and 

Φ  is the longitude also in radians. Velocities are in the NED reference frame. The 

continuous time state derivatives are given in equations (3.72) through (3.77). In the 

following sections the subscripts N, E, and D are used to indicate that the variables 

are with respect to the North (N), East (E), or Down (D) axis. ω
e

 is the rotational rate 

of the earth. Unless otherwise indicated velocity is represented by (v) and 

acceleration by (a). 
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λ

λ =
+
N
v

R h
 (3.72) 

 

( ) λΦ

Φ =
+ cos

E
v

R h
                (3.73) 

 

=−
D

h v                                                                (3.74) 

 

( ) ( )λ

ω λ
λΦ

 
= − + + + + + 

2 sin
E N D

N e E N

v v v
v v a

R h cos R h
                    (3.75) 

 

( ) ( )λ

ω λ ω λ
λΦ

 
= − + + + + + + 

2 sin 2 cos
E E D

E e N e D E

v v v
v v v a

R h cos R h
    (3.76) 

 

λ

ω λ
Φ

= − − − + +
+ +

2 2

2 cos
E N

D e E D

v v
v v g a

R h R h
                       (3.77) 

 

 The X ( )λR  and Z ( )ΦR   location on the Earth’s surface are found using the 

current latitude as well as the Earth’s semi-major axis ( )a  and eccentricity ( )e . 

 

( )
( )

λ
λ

−
=

−

2

3
2 2 2

1

1 sin

a e

R

e

  (3.78) 
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( )λ
Φ =

−
1

2 2 2
1 sin

a
R

e

  (3.79) 

 

Gravity ( )g  is modeled in the NED frame using equation (3.80). The model 

constants are given in Table 9. 

 

( ) ( )λ λ λ= + − − − +2 2 2 2
1 sin sin 2 sing A B C D E h Fh                   (3.80) 

 

Table 9: Gravity Model Constants 

Constant Value 

A 32.185 (English) or 9.81 (Metric) 

B 5.3024e-3 

C 5.8e-6 

D 3.0877e-6 

E 4.4e-9 

F 7.72e-14 

 

3.2.3.4.2.3 Sensor Modeling 

The GPS pseudo-range ( )ρ
i

 is defined as the norm of the radius vector, 

taken in the ECEF reference frame, between the user ( )E
r   and the individual 

satellite ( )E

i
R  with a clock bias ( )β

c
. 
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ρ β= − + + =, 1,2,...,
E E

i i c
R r v i n                                      (3.81) 

 

Accelerometer measurements ( )a   are with respect to the body frame and 

are modeled as a function of true body acceleration ( )a , the accelerometer bias 

( )β
a

 and Gaussian noise ( )
a
n .   

 

β η= + +
a a

a a   (3.82) 

 

3.2.3.4.2.4 EKF Model 

The state ( )X   and state error ( )∆X  vectors are given in equations (3.83) 

and (3.84). The (^) accent is used to indicate the estimated values.  

 

λ β β β = Φ x y z

T

N E D a a a
X h v v v                  (3.83) 

 

λ β β β ∆ = ∆ ∆Φ ∆ ∆ ∆ ∆ ∆ ∆ ∆ x y z

T

N E D a a a
X h v v v      (3.84) 

  

The continuous-time derivative of the state error ( )∆x̂  is modeled as a 

function of the state-transition matrix ( )F  computed at time (t), the noise mapping 

matrix ( )G  and Gaussian noise ( )w .  
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∆ = ∆ +ˆ ˆ ˆ( ) ( ( ), ) ( ) ( )x t F x t t x G t w t   (3.85) 

 

The state transition matrix is defined as: 

 

β
β
β

 ∂ ∂
 ∂ ∂ 
 ∂ ∂ ∂=  

∂ ∂ ∂ 
 ∂
 

∂  

3 3

3 3 3 3

0

0 0

x

NED

NED NED NED

NED a

a

x x

a

P P

P V

V V V
F

P V
  (3.86) 

 

With the first-order partial derivatives given as: 

 

( ) ( )

( ) ( )

λ

λ λλ
λ λ λ λ

λ
Φ

ΦΦ Φ

∂ − − ∂+ + 
 ∂∂ = − + − ∂ ∂ ++ + 
 
 
  

2 2

2 2

0

sec sec tan sec
0

0 0 0

N N

E E E

Rv v

R h R h

v R v vP

P R hR h R h

               (3.87) 

 

( )
λ λ

λ λ
Φ∂ =

∂ −

2

3
2 2 2

sin cos

1 sin

R ae

e

  (3.88) 

 

( )
( )

λ
λ λ

λ λ

−∂ =
∂ −

2

5
2 2 2

3 1 sin cos

1 sin

a eR

e

  (3.89) 
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λ

λ
Φ

 
 +
 

∂  =  ∂ +
 

− 
 
 

1
0 0

sec
0 0

0 0 1

NED

R h

P

V R h
                                         (3.90) 

 

 
∂  =  ∂

  

11 13

21 23

31 33

0

0

0

NED

Y Y

V
Y Y

P
Y Y

                                              (3.91) 

 

( ) ( )
λ

λ

λ λ ω λ
λ λ

Φ

Φ Φ

∂∂= − + − −
+ ∂ ∂+ +

2 2 2

11 2 2

sec tan
2 cos

E E N D

e E

Rv v R v v
Y v

R h R h R h

         (3.92) 

 

( ) ( )λ

λ

Φ

= −
+ +

2

13 2 2

tan
E N D
v v v

Y

R h R h

  (3.93) 

 

( ) ( )
λ λ ω λ ω λ

λ λ
Φ Φ

Φ Φ Φ

∂ ∂= − − + − −
+ ∂ ∂+ +

2

21 2 2

v sec v tan
2 cos 2 sin

E N E N E D

e N e D

v v R v v R
Y v v

R h R h R h

 (3.94) 

 

( )
λ

Φ

 += −  
+  

23 2

tan
N D

E

v v
Y v

R h

  (3.95) 

 

( ) ( )
λ

λ

ω λ
λ λ λ

Φ

Φ

∂∂ ∂= + + +
∂ ∂ ∂+ +

2 2

31 2 2
2 sin

E N

e E

Rv R v g
Y v

R h R h
          (3.96) 
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( ) ( )λΦ

∂= + +
∂+ +

2 2

33 2 2

E N
v v g

Y
hR h R h

  (3.97) 

 

( ) ( )λ λ λ λ λ λ
λ

∂ = − +
∂

2 sin cos 4 sin2 cos2 2 sin cos
g

A B C E h          (3.98) 

 

λ∂ = − + +
∂

2
sin 2

g
D E F

h
  (3.99) 

 

λ λ

λ

λ ω λ

λ λω λ ω λ

ω λ

Φ

Φ Φ Φ

Φ

 
− + + + + 

 ∂ += + + ∂ + + + 
 

− − − + + 

2 tan
2 sin

tan tan
2 sin 2 cos

2 2
2 cos 0

D E N

e

NED E D N E

e e

NED

N E

e

v v v

R h R h R h

V v v v v

V R h R h R h

v v

R h R h

   (3.100) 

 

β
∂ = −
∂ 3 3

NED

x

a

V
I     (3.101) 

 

β
β τ

∂ = −
∂ 3 3

1
a

x

a a

I   (3.102) 

 

The noise mapping matrix and weight matrix (Q) are constant: 

 

β

σ
σ

  
  = − =   
     

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

0 0 0 0 0

0 , 0 0

0 0 0
a

x x x x x

x x x a x x

x x x x x

G I Q I

I I

                     (3.103) 
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3.2.3.4.2.5 Modification for Use with the UDU EKF Algorithm 

As with the MEKF derivation equations in the preceding section need to be 

discretized and parameterized for use with the available UDU algorithm. Assuming a 

small time step ( )dt   allows for the following approximation to be made: 

 

 

[ ]∆ = + = ∆ + ∆ +ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( )x x xdt x F x t x Gw t dt                              (3.104) 

 

χχ χ   
∆ = + ∆ +   

     

0
ˆ ˆ ( )

00

p

pp

F FI
x dt x Gw t dt

FI
                      (3.105) 

 

Using the nomenclature from the UDU_EKF class: 

 

                                              (3.106) 

 

β

∂ ∂ + ∂ ∂
 =
 ∂ ∂ ∂+ ∂ ∂ ∂ 

3 3 3 3

3 3

0
x x

NED

X

NED NED NED

x

NED a

P P
dt I dt

P V
PHI

V V V
dt dt I dt

P V

                              (3.107) 

 

, is diagonal and can be discretized directly by taking the exponential of the 

diagonal terms multiplied by the time delta. τ
a

 represents the accelerometer time 

constant. 

  

x xx xpPHI F dt I F dt = + 

pPHI
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τ=
3 3

a

dt

p x
PHI I e   (3.108) 

Lastly: 

 
=  − 

3 3 3 3

3 3 3 3

0 0

0

x x

x

x x

G
I dt

  (3.109) 

 

3.2.3.4.2.6 Inertial Observations 

GPS is the primary sensor that is used to correct the translational state and 

provides direct measurements of latitude, longitude, and altitude. Additionally it 

also provides a ground speed ( )V  and the ground course ( )ψ   that can be used to 

correct the velocities. Using the state defined in (3.83) the sensitivity matrix for 

updating latitude: 

 

[ ]
λ

∂= =
∂

1 0 0 0 0 0 0 0 0
Latitude

X
H                                    (3.110) 

 

Longitude: 

 

[ ]∂= =
∂Φ

0 1 0 0 0 0 0 0 0
Longitude

X
H                               (3.111) 

Altitude: 

 

[ ]∂= =
∂

0 0 1 0 0 0 0 0 0
Altitude

X
H

h
                                 (3.112) 
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The sensitivity matrix for updating NED velocities using the velocity magnitude is: 

 

 ∂= =  ∂  
_

0 0 0 0 0 0
N E D

Ground Speed

NED NED NED

V V VX
H

V V V V

              (3.113) 

 

Updating NED velocities using the ground course: 

 

ψ

 
 −∂  = =
 ∂    

+ +    
     

_ 2 2

2

2 2

1
0 0 0 0 0 0 0

1 1

E

Ground Course

E E

N N

N N

VX
H

V V
V V

V V

   (3.114) 

 

3.2.3.4.2.7 Updating the State Estimate 

The state estimate is updated using the estimate of the state error generated 

by the measurement updates. After updating the state the estimate of the error is 

reset to zero: 

 

+ −= + ∆ˆ ˆ ˆX X x   (3.115) 

 

3.2.3.4.2.8 Implementation 

Utilizing the UDU_EKF library class and the EKF derivation given in the 

previous section a translational filter has been constructed:  
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Table 10: INRTL_Geod_EKF Class 

INRTL_EKF 

VARIABLES 

Accel_Variance Variance of the accelerometer measurements 

Accel_Bias_Variance Variance of the accelerometer bias 

Accel_Time_Constant Time constant of the accelerometer 

Filter UDU_EKF declaration used for Kalman filtering 

FUNCTIONS 

Initialize(Accel_Variance, 

Accel_Bias_Variance, 

Accel_Time_Constant) 

Initialize the estimator 

Inputs are the accelerometer sensor parameters 

Clear() Clear all allocated memory 

Filter is no longer valid 

Clear_Workspace() Clear workspace memory to save memory 

Maintains filter states 

Initialize_Workspace() Initialize workspace variables 

Propogate (Latitude, Longitude, 

Altitude, V_NED, Accel_Bias, a_B, 

Quat_BNED, dt) 

Propagate the state and covariance. Inputs are 

the current state, a time step, and the attitude 

quaternion. 

 

calcLinSys(Latitude, Altitude, 

V_NED, dt) 

Calculate the discrete-time system matrices used 

by the UDU filter (PHI_x, PHI_p, Q_x, Q_p, G_x) 

Geod_Update(Lat_Measured, 

Lat_Epected, Lat_Variance, 

Lon_Measured, Lon_Expected, 

Lon_Variance) 

Update the latitude and longitude error 

estimates 

Altitude_Update(Alt_Measured, 

Alt_Expected, Variance) 

Update the altitude error estimate using a 

measurement. 

Vmag_Update(Vmag_Measured, 

V_NED, Variance) 

Update the V_NED error estimate using a 

measurement of the velocity magnitude. 

Update_Estimate(Latitude, 

Longitude, Altitude, V_NED) 

Update the estimate of the translational state 

and the accelerometer bias 
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3.2.3.5 Hardware and Sensor Classes 

Hardware is what allows software to interact with the external world and can 

come in a seemingly infinite number of configurations. Even when hardware is 

intended for the same purpose, reading acceleration for example, it often is 

accessed quite differently between manufacturers and requires custom drivers.  

To facilitate interaction between software and hardware, the hardware 

interface must be abstracted. This is accomplished in JARVIS by creating a base class 

for each sensor. These classes are then used to create sensor-specific classes that 

are then incorporated into a master Hardware class. This operates under the 

assumption that between different sensors of the same classification the only 

model-specific code relates to initialization and reading of the sensor. This allows for 

all hardware functionality to be accessed through the Hardware class and prevents 

the need for any software changes when using different hardware platforms. 

 

3.2.3.5.1 Hardware 

The hardware class is made up of the sensor classes and can contain any 

additional functionality necessary to initialize the platform. 
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Figure 4: Hardware Abstraction Diagram 

3.2.3.5.2 Accelerometer 

Table 11: Accelerometer Base Class 

Accelerometer_Class 

VARIABLES 

Enabled Flag to indicate if the sensor is enabled 

Healthy Flag to indicate the sensor health 

Initialized Flag to indicate if the sensor has been 

initialized 

Reading Array containing the sensor reading 

FUNCTIONS 

getReading() Return the last sensor reading 

getCalibration() Return the calibration values 

setCalibration(Calibration) Set the calibrated values 

setOrientation(Psi, Theta, Phi) Set the orientation of the sensor with respect 

to the body axis 

Calibrate() Called after the sensor is initialized 

Calibrates the output 
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3.2.3.5.3 Gyroscope 

Table 12: Gyro Base Class 

Gyro_Class 

VARIABLES 

Enabled Flag to indicate if the sensor is enabled 

Healthy Flag to indicate the sensor health 

Initialized Flag to indicate if the sensor has been 

initialized 

Reading Array containing the sensor reading 

FUNCTIONS 

getReading() Return the last sensor reading 

getCalibration() Return the calibration values 

setCalibration(Calibration) Set the calibrated values 

setOrientation(Psi, Theta, Phi) Set the orientation of the sensor with respect 

to the body axis 

Calibrate() Called after the sensor is initialized 

Calibrates the output 

 

3.2.3.5.4 Compass 

Table 13: Compass Base Class 

Compass_Class 

VARIABLES 

Enabled Flag to indicate if the sensor is enabled 

Healthy Flag to indicate the sensor health 

Initialized Flag to indicate if the sensor has been 

initialized 

Reading Array containing the sensor reading 

FUNCTIONS 

getReading() Return the last sensor reading 

getCalibration() Return the calibration values 

setCalibration(Calibration) Set the calibrated values 

setOrientation(Psi, Theta, Phi) Set the orientation of the sensor with respect 

to the body axis. 

Calibrate() Called after the sensor is initialized 

Calibrates the output 
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3.2.3.5.5 Baro 

Table 14: Baro Base Class 

Baro_Class 

VARIABLES 

Enabled Flag to indicate if the sensor is enabled 

Healthy Flag to indicate the sensor health 

Initialized Flag to indicate if the sensor has been 

initialized 

Ground_Pressure Initial pressure reading at the ground, altitude 

is calculated as above-ground-level (AGL) 

Ground_Temperature Initial temperature reading at the ground 

Pressure Pressure reading 

Temperature Temperature reading 

Altitude Calculated altitude 

FUNCTIONS 

getAltitude() Calculate and return the altitude 

getPressure() Return the pressure reading 

getTemperature() Return the temperature reading 

Calibrate() Called after the sensor is initialized 

Calibrates the output 
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3.2.3.5.6 GPS 

Currently the GPS library is nearly unchanged from the one provided with the 

ArduCopter software. A base class has been created although is currently unused. 

 

Table 15: GPS Base Class 

GPS_Class 

VARIABLES 

Enabled Flag to indicate if the sensor is enabled 

Healthy Flag to indicate the sensor health 

 

Initialized Flag to indicate if the sensor has been 

initialized 

New_Data Flag to indicate that new data is available 

GPS_Lock Flag to indicate that the GPS has a lock 

Latitude Latitude reading 

Longitude Longitude reading 

Altitude Altitude reading 

Ground_Speed Ground speed reading 

Ground_Course Ground course reading 

FUNCTIONS 

N/A N/A 

 

3.2.4 Code Validation 

With the complexity of an integrated system and the number of required 

library functions used it is important to be able to validate the outputs of the 

functions independently as well as the integrated system.  
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3.2.4.1 Library Functions and Classes 

Each function or class was first prototyped in the MatLab environment. Once 

prototyped the new item was called and the output compared to any existing 

MatLab function. For items without a MatLab counterpart outputs were compared 

to any number of other sources including hand calculations and online calculators. 

The prototype was then converted into the C++ language and added to the 

library. A test program is then written that calls the library function and prints the 

output to the screen or a file. This output is then compared to the output of the 

original prototype.  

Once the code had been verified off-line it was considered ready to be used 

on the flight hardware. Functionality on hardware was validated by creation of a unit 

test program, or by use of debug print statements. 

 

3.2.4.2 Integrated System 

Even with the library functions performing as intended the integrated system 

can present unknown irregularities. Testing of the integrated system is performed 

using the MatLab implementation of JARVIS, by compiling the JARVIS code on an x86 

PC, or by running it on the hardware. A makefile has been created that allows JARVIS 

to be compiled easily on a Unix-based system or on Windows using Cygwin5.  

  

                                                           
5
 A large collection of GNU and Open Source tools which provide functionality similar to a 

Linux distribution on Windows (cygwin.com) 
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A simulation has been constructed for the off-line (x86/MatLab) code that 

allows the software to be driven through either logged sensor data, or by using a 6-

DoF simulation with the sensors being modeled. The ability to reprocess logged data 

is powerful as it allows the user to log a minimal set of data while being able to fully 

reconstruct the internal signals when analyzing vehicle performance. 
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CHAPTER 4. GUIDANCE 

The Guidance method currently being employed is a linear guidance algorithm. 

Here the pilot command is interpreted as a rate command that is augmented by 

guidance. Guidance generates a delta command from a gain matrix and a state ( )X  

error.  

Note that with the system architecture chosen Guidance should not augment the 

rate command with rate errors, instead only with positional errors. It is intended that 

control will interpret the guidance command as a rate command and compute the rate 

error internally.  

The linear Guidance routine is implemented as follows:

 

= −
Error Desired Actual

X X X                                      (4.1) 

 

=
Command Error

X KX                             (4.2) 

  

= +
_Command Pilot Command Command

X X X                                           (4.3) 

 



74 

 

The Guidance gain matrix can be set to zero allowing for direct tuning of the rate 

controller. Afterwards the states can be introduced incrementally by adjusting elements 

in the Guidance gain matrix.  
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CHAPTER 5. NAVIGATION 

Navigation is divided into subsystems that follow the architecture outlined in 

section 3.1.1.3. Each subsystem is responsible for producing estimates of desired states 

such as the attitude and position. Dividing navigation in this manner allows for 

individual tuning of the estimators as well as the expansion or contraction of the states 

being estimated with little additional work. Currently an attitude and translational 

navigation system have been created. Future iterations will include an atmosphere-

relative navigation system.  

 

5.1  Attitude 

Attitude navigation is built upon the AHRS_MEKF class. The measurement updates 

occur at 2Hz and follow the logic flow shown in Figure 5.
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Figure 5: Navigation AHRS: Measurement Update Logic Flow 
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State prediction is called at 50Hz and follows the logic flow shown in Figure 6.  

 

 

Figure 6: Navigation AHRS: Predict State Logic Flow 

 

5.1.1 Simulated Results 

The first set of results was generated in MatLab using modeled sensor data for a 

stationary rigid body. The AHRS class performs as intended and provides reasonably 

accurate estimates of the attitude and rates that are within the 3-sigma boundaries.  
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Figure 7: Attitude Error with 3-Sigma Bounds 

 

Figure 8: Rate Error with 3-Sigma Bounds 
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5.1.2 Flight-Results 

The figures below were generated from logged flight data. Gyroscope, 

accelerometer, and compass sensors were used in the filter. Unfortunately a rate table 

or similar device was not available preventing truth data to be collected. Instead the 

hardware was rotated by hand 360 degrees about each axis individually starting with 

the Z-body axis.  

 

 

Figure 9: Flight-Test: Attitude Estimate 
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Figure 10: Flight-Test: Rate Estimate 

 

The attitude estimate appears to be accurate and behaves as desired. This result, 

paired with the simulated results, provides evidence that the system is working as 

intended and is well-behaved. During this test the ArduPilot was able to output a new 

state estimate and control command at a rate of approximately 30Hz, this is impressive 

considering the software is operating on a 16MHz processor with only 8 kilobytes of 

system RAM.  
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5.2 Inertial Estimation 

The navigation subsystem responsible for producing estimates of position and 

velocity is built using the INRTL_Geod_EKF class. State prediction is performed at 50Hz 

and measurement updates at 1Hz. Logic flow is shown in Figure 11 and Figure 12. 

 

 

Figure 11: Navigation INRTL: Predict State Logic Flow 
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Figure 12: Navigation INRTL: Measurement Update Logic Flow 

 

5.2.1.1 Simulated Results 

JARVIS is tested in a MatLab simulation environment. The initial state includes 

velocities in the North and East direction, the only external force acting on the body is 

that due to gravity.  In this test the filter is able to converge within the 3-Sigma bounds 

for position, velocity, and acceleration within sixty seconds. 
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Figure 13: Geodetic Position Error with 3-sigma Bounds 

 

 

Figure 14: NED Velocity Error with 3-sigma Bounds 
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Figure 15: Estimated Translational Acceleration 

 

5.2.1.2 Flight-Results 

Flight results are currently unavailable. The C++ code has been unit tested and 

verified for functionality, however the ArduPilot system is unable to operate with both 

the AHRS and INRTL navigation subsystems. This primary issue is that the on-board 

processer does not contain enough RAM and the ArduPilot hardware locks when 

performing the measurement updates. Efforts were made to remove any variables not 

absolutely necessary for operation as well as clearing any workspace variables between 

measurement update and state estimation algorithm calls. 
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5.3 Conclusion 

While it is disappointing that this entire state cannot be filtered using the classes 

created on the ArduPilot hardware it does show the capability of JARVIS in adding and 

removing functionality.  

The filter is performing as expected in the simulated results and once a more 

powerful platform is selected the inertial navigation subsystem can easily be inserted 

back into the system. 
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CHAPTER 6. VEHICLE TESTING 

6.1 Gimbaled Tri-Ducted Fan 

6.1.1 Motivation 

Historically the idea of building a vertical take-off and landing (VTOL) aircraft 

came about due to the desire to create a single stage to orbit (SSTO).  The VTOL was the 

first concept contrived which was deemed able to demonstrate the benefits of an SSTO.   

With the recent advances in technology and UAV capabilities there is renewed interest 

in developing a highly maneuverable UAV. The success of the Osprey program, along 

with a fondness for futuristic aircraft found in science fiction films, it was conceived to 

build a tri-tilt turbine VTOL aircraft. It is the desire to make such a vehicle reality that 

drove the development of JARVIS. 

 

6.1.2 Vehicle Concept 

The concept of this vehicle is to have three micro-turbine engines that are 

gimbaled about a single axis so as to provide thrust vectoring illustrated in Figure 16. 

The configuration is similar to the Osprey tilt-rotor aircraft that is deployed by the 

United States military. 
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Figure 16: Tri-Duct Concept and Control Effectors 

 

6.1.3 Hover Prototype 

A test bed was designed and fabricated for the purpose of testing vertical flight 

and hover.  Due to the minimal thrust capability of the power plants used for the test 

bed it was deemed necessary to position them in the form of an equilateral triangle.  

This configuration allows for each ducted-fan to make an equal contribution towards 

lifting the vehicle.  

The frame is of aluminum construction and lift is provided by three electric 

56mm ducted fans that are gimbaled. Thrust direction is controlled by three digital 

servos. The ArduPilot 1.0 board provides the sensor array and on-board processing used 

to generate the navigated state and control commands. 
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 The ducted-fans are located 11 inches from the center and separated by 120 

degrees and the platform stands 2 ¾ inches from the ground.  

 

 

Figure 17: Tri-Duct Hover Prototype 

 

6.1.4 Control Configuration 

The goal of the controller in this iteration is to provide attitude stabilization and 

allow a person to pilot the vehicle externally with commands sent through an R/C 

transmitter. The state vector ( )X  to be controlled consists of roll ( )φ  , pitch ( )θ  , and 

yaw ( )ϕ : 

 

[ ]φ θ ϕ= T
X                      (6.1) 

 

Control output ( )U   is the engine throttle and moments about the body axis

( ), ,
x y z

M M M : 
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 =  
T

x y z
U Throttle M M M                                                 (6.2) 

 

PID control was the method selected to generate commands although any form 

of controller could be selected. Control commands are then realized through the engine 

thrust and gimbal angles as given in Figure 16. The control output-to-effector map is: 

 

− 
 
 
 

=  
 
 
 

−  

1.0 0.5 0.0 0.0

1.0 0.0 1.0 0.0

1.0 0.5 0.0 0.0

0.0 0.0 0.0 0.5

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.5

Effector

U
T                                               (6.3) 

 

The output to the effectors is then: 

 

[ ]θ θ θ= =T Effector

Effector RE BE LE RE BE LE U
U T T T T U                      (6.4) 
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6.1.5 Simulated Results 

A simple model for the vehicles was developed to work within the MatLab rigid 

body simulation that was used previously to demonstrate JARVIS navigation 

performance. Future work will be to increase the fidelity of the simulation and tune the 

models to match the physical dynamics of the system. The simulation is only intended to 

demonstrate proper functionality of JARVIS and provide an initial control configuration 

as the intent of this research is not simulation development or control tuning. 

The model produces body forces and moments using the effector commands 

output from JARVIS that and are then fed into the rigid body dynamics. Currently the 

motor and servo models contain zero error due to effector delay or hardware mounting. 

A two percent Gaussian dispersion was applied to each thruster individually so that the 

output thrust magnitude is not ideal. The simulated software and flight software 

operate identically as that was one of the goals when developing JARVIS. 

As the current hardware is unable to filter the translational state the initial goal is 

to provide attitude stabilization to the system. This would then allow a pilot to manually 

direct the position. A simulation run was performed that suppresses control for the 

initial 15 seconds to allow navigation to converge after which a twenty degree step 

input is applied in the roll channel.  

Channel response is shown in Figure 18, Figure 19, and Figure 20. In these 

simulations position is ignored. 
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Figure 18: Ducted-Fan Simulation: Roll Step Response 

 

Figure 19: Ducted-Fan Simulation: Pitch Channel 
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Figure 20: Ducted-Fan Simulation: Yaw Channel 
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Figure 21: Ducted-Fan Simulation: Roll Step Response with Larger Rate Gain 

 

6.1.6 Flight Test 

JARVIS was uploaded to the ArduPilot using the configuration found during the 

simulation runs. During flight the vehicle is able to move in six degrees of freedom and 

initial attempts to pilot the vehicle with attitude control proved to be marginally 

successful. 
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Figure 22: Tri-Ducted Fan Flight with Roll Disturbance 

 

 JARVIS is able to stabilize the roll channel using the gains found during simulation. 

The dynamic response is much quicker than what was shown in simulation. While this is 
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6.2 Helicopter 

6.2.1 Motivation 

Radio-controlled helicopters have been around for quite some time and have 

improved significantly within the past decade. Electric models are simple to use and 

with the latest battery technology the larger variants can handle payloads of 

approximately 10 pounds.  

3D helicopters are able to translate in all directions, fly upside down, and can 

hover. This allows for robust testing GN&C algorithms and sensors in both single and 

multi-vehicle configurations. Unfortunately these vehicles are difficult to pilot and 

require hours of training and practice to become proficient in their operation. Using 

JARVIS the goal is to remove this barrier and provide a stable platform that is simple to 

pilot. For the purposes of this research moving to a helicopter will demonstrate the 

robustness of JARVIS in its ability to operate any number of vehicles with updates to the 

configuration file being the only modifications necessary. 
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6.2.2 Frames and Notation 

The helicopter is considered to be a rigid body that is able to freely move in 6-

DoF space. The inertial-fixed frame that will be used is a right-hand North-East-Down 

(NED) frame where the earth is assumed to be flat. 

 

The body-fixed frame is centered at the body center of mass with X-positive towards the 

nose, Y-positive to the right, and Z-positive down, shown in Figure 23. 

 

 

Figure 23: Body and Hub Frame Definition 
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               Figure 24: Hub Plane, Tip-path Plane, and Main Rotor Thrust Vector 

 

The hub plane originates at the center of the main rotor hub and is aligned with 

the body axis. The Tip-path plane is the plane that traces the path of the tip of the main 

rotor blade as it rotates and is centered at the hub. The main rotor thrust vector is 

normal to the tip-path plane with the origin at the center of the hub.  

 

6.2.3 Mechanical Overview 

 

 

Figure 25: Helicopter Mechanical Overview (Munzinger) 
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The primary components for a helicopter hub assembly are the swash plate, the 

main rotor itself, and the control rotor. Control inputs enter the main rotor system 

through the swash plate. Linkages connected to servos are moved up and down 

changing the “pitch,”  “roll,” and z-axis location of the swash plate. The position of the 

swash plate dictates what the pitch angle of the blade is as it travels around the hub 

thus changing the main rotor force vector magnitude and direction providing 

maneuverability. The control rotor is used to damp vehicle dynamics and is not 

controlled directly. The control rotor is becoming obsolete and is being replaced with 

direct-flight-control (DFC) systems that use 3-axis gyroscopes to electronically damp the 

dynamics. 

 

6.2.4 LQR Control 

A traditional helicopter has five control inputs that can be commanded by the pilot, 

these are: 

• Lateral δ
MR

lat : Increases main rotor blade pitch on right or left side of helicopter 

causing the helicopter to rotate about the x-body axis (roll) 

• Longitudinal δ
MR

lon : Increases main rotor blade pitch in front or back causing 

the helicopter to rotate about the y-body axis (pitch) 

• Collective δ
MR

col : Increases or decreases main rotor blade pitch uniformly 

causing the helicopter to move up or down along the z-body axis 



99 

 

• Rudder δ
TR

col : Increases or decreases tail rotor blade pitch uniformly causing 

the helicopter to rotate about the z-body axis 

• Main rotor speed Ω
MR

: Typically this is held to a constant value  

 

For R/C helicopters the main rotor speed is held constant by a governor and the yaw 

rate is damped out by an onboard gyroscope. This leaves three control inputs for the 

controller to use to maintain hover: 

 

[ ]δ δ δ=
MR MR MR

U col lat lon                                         (6.5) 

 

The state to be controlled is roll ( )φ  , pitch ( )θ  , roll rate ( )p  and pitch rate ( )q : 

 

[ ]φ θ=X p q             (6.6) 

 

6.2.5 Helicopter Equations of Motion 

 

The 6-DoF equations of motion are given in (Dreier). The positional derivative is a 

function of body velocity ( )b
V  and the transformation from the earth frame to the body 

frame ( )B

E
T : 

 

 =  
T

B

e E b
P T V  (6.7) 
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The angular acceleration of the inertial angles is a function of the current attitude and 

the body rates ( )ω : 

 

θ
α φ φ θ ω

φ φ θ

− 
 =  
 − 

1 0 sin( )

1 cos( ) sin( )cos( )

0 sin( ) cos( )cos( )

E
                                                  (6.8) 

 

The angular acceleration in the body frame is a function of the moments acting on the 

body ( )M  and the body inertia matrix ( )
n
I : 

 

[ ]ω ω ω−= − ×1
( )

n n
I M I                            (6.9) 

 

The translational acceleration in the body frame is a function of the forces acting on the 

body ( )F  with 
b

M being a square matrix with the vehicle mass on the diagonal: 

 

[ ]ω−= − ×1
( )

b
V M F mV                             (6.10) 

 

The only external force and moments that will be modeled are generated by 

gravity, the main rotor, and the tail rotor. As the helicopter is in hover it is assumed that 

there is no wind velocity and the forces induced by the fuselage are negligible.  

The main rotor generates a thrust and introduces the following force and 

moment contributions to the kinematic equations: 
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[ ]= −0 0
THP

MR TPP MR
F T T              (6.11) 

 

HP

TPP
T  is the rotation matrix from the tip-path plane to the hub plane and is a function of 

lateral and longitudinal control. The moment generated by the main rotor is: 

 

[ ] [ ]= + ×0 0
T THP

MR TPP MR hub hub hub MR
M T Q x y z M                        (6.12) 

 

MR
Q is the torque generated by the main rotor drag, 

hub
x , 

hub
y , and 

hub
z are the moment 

arms measured from the body center of mass to the rotor hub in the x, y and z axis 

directions. Necessary equations to compute rotor thrust are given by (Munzinger): 

 

ρΩ= −
2

( )
4

MR

MR blade i

R aBc
T w v                                             (6.13) 

 

Main rotor thrust given by equation (6.13) is a function of the velocity at the 

blade (
blade

w ), atmospheric density ( ρ ), main rotor rotational speed ( Ω
MR

), the number 

of blades (B ), the airfoil lift-curve slope (a ), the blade radius (R ), the mean blade chord 

length ( c ) and the velocity generated by the blade (induced velocity 
i
v ). 
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Induced velocity is found by: 

 

ρπ
   = + −   

  

2 2
2 2

2

2

ˆ ˆ

2 2 2
i

v T v
v

R
                                     (6.14) 

 

With: 

 

θ θ = + Ω  
 

2 3
_

3 4
blade r MR coll twist

w w R                                                 (6.15) 

 

( )= + + −
r lat s lon

w w flap i u flap v                                         (6.16) 

 

= + + −2 2 2ˆ ( 2 )
r i

v u v w w v                     (6.17) 

 

Main rotor torque ( )MR
Q  is the ratio of main rotor power ( )MR

P   over the rotational 

speed ( )Ω
MR

 : 

 

=
Ω
MR

MR

MR

P
Q  (6.18) 

 

= + + +
MR pr i pa c
P P P P P                         (6.19) 
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Because the helicopter is in hover, climb power (
c
P ) and fuselage parasite drag power 

(
pa
P ) can be neglected. This leaves only the blade profile power ( )pr

P  and induced 

power ( )iP : 

 

ρ= Ω Ω + +,0 2 2 2
(( ) 4.6( ))

2 4

D

pr MR MR

c bcR
P R u v                                    (6.20) 

 

Induced power is given by: 

 

=
i MR i
P T v  (6.21) 

 

The equations shown above are the most relevant to what is discussed in the 

proceeding sections and have been implemented in MATLAB to provide a means for 

non-linear 6-DoF simulation of a helicopter. More in-depth modeling information can be 

found in (Munzinger). 
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6.2.6 Linearization 

For continuous-time LQR the system needs to be in a linearized form: 

 

X AX BU= +                     (6.22) 

 

Where A is the state transition matrix and U is the control matrix. 

 

,
X X

A B
X U

∂ ∂= =
∂ ∂

                    (6.23) 

 

The equilibrium state ( )
e

X  for the system described in hover is: 

 

[ ]0 0 0 0
T

eX =                    (6.24) 

 

The control positions at equilibrium ( )e
U  are: 

 

_ _ _e col e lat e lon eU  = Θ Θ Θ                                           (6.25) 
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Control is dependent on the helicopter parameters such as mass, rotor radius, 

airfoil, and chord length. For a helicopter in hover the main rotor thrust must cancel the 

force of gravity. Control is also highly coupled, for example when changing the lateral 

control to cancel a rolling moment less thrust will be in the vertical direction and the 

collective must be increased to prevent the altitude from changing.  

To simplify the trimming process a function that calculates the forces and 

moments acting on a designated helicopter at a given state using the non-linear 

equations has been created. This function is then used to generate a performance index 

that is minimized using available tools in MATLAB. This provides a means to compute 

the equilibrium control quickly for any set of conditions and helicopter specifications.  

 

6.2.6.1 Main Rotor Thrust 

When attempting to linearize thrust, the problem arises that the main rotor 

thrust is a function of the induced velocity and induced velocity is a function of thrust. 

An implicit relationship is born that is fourth order in the general case and has no simple 

algebraic solution (Dreier). To circumvent this problem linearized main rotor thrust 

( )MRlin
T  will be assumed to take the form: 

 

= Θ +
MRlin linTMR col linTMR
T m b                 (6.26) 
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linTMRm is the rate of change in thrust due to the collective ( )Θ
col

  and is determined 

using small perturbation theory; here δ  is the amount of perturbation: 

 

_ _( ) ( )

2
MR col e MR col e

linTMR

T T
m

δ δ
δ

Θ + − Θ −
=                                      (6.27) 

 

6.2.6.2 Main Rotor Drag 

Main rotor drag is also difficult to find an analytic solution for because it is a 

function of thrust. As with thrust the linearization is performed using small perturbation 

theory. 

 

MRlin linQMR col linQMRQ m b= Θ +               (6.28) 

 

_ _( ) ( )

2
MR col e MR col e

linQMR

Q Q
m

δ δ
δ

Θ + − Θ −
=                              (6.29) 
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6.2.7 Flight Test 

The platform used for testing is the T-Rex 700E with a fly-bar (control rotor). The 

ArduPilot 1.0 hardware is mounted in the front of the helicopter and all of the radio 

signals with the exception of the throttle-cutoff are being passed through the flight 

computer. These signals are then able to be manipulated by JARVIS and are output to 

the tail gyro that is included with the system. In this configuration the autopilot is able 

to control all effectors available while allowing the pilot to kill the power as a failsafe.  

A windows-based laptop is used in conjunction with the MissionPlanner software 

to provide real-time telemetry.  Sensor data, NAV states, and pilot input are recorded on 

the ArduPilot flash memory for reconstruction post-flight.  

 

 

Figure 26: Helicopter: Ground Station and Vehicle 
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For testing the autopilot system the helicopter was flown manually by an 

experienced pilot. Once brought to altitude and in a stable hover the pilot activated the 

pilot-assist mode, if instability occurred control was changed back to manual and the 

vehicle was recovered.  

 

 

Figure 27: Helicopter: In Flight 

 

The flight control was first configured with a gain matrix produced using the LQR 

method described in the preceding sections, gains were then tuned by hand to achieve 

the results shown in Figure 28 and Figure 29. The time-window shown in the figures is 

during the period that the auto-pilot is active. 
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Figure 28: Helicopter Flight: pq Performance 

 

 

Figure 29: Helicopter Flight: G-G Performance 
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 Control was able to stabilize the rates and provide marginal attitude stabilization. 

Attitude control suffered from a steady state error that is due to an offset in the 

accelerometer readings. During these flight tests the sensors were automatically 

calibrated after system power-up. The accelerometer calibration process assumes that 

the vehicle is level and that gravity is positive down. Unfortunately the ground that the 

helicopter was resting on was not level and resulted in approximately a five degree 

offset in the roll channel and negative two degree offset in the pitch channel. With 

these errors, and without positional control, the vehicle was unable to maintain a hover 

state. 
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CHAPTER 7. FINAL CONCLUSIONS 

7.1 Research Goals Revisited 

The problem addressed by this research is the lack of a robust integrated 

architecture and library that can be used in developing unmanned vehicles, particularly 

for research purposes in a low-cost environment. The result of this research is a 

software architecture that is simple to follow and library code base that is nearly 

platform independent, in that it can operate on any hardware capable of compiling C++ 

code. The code created has been done so with readability and reusability in mind. 

JARVIS currently operates in the MatLab environment, on ArduPilot hardware, and on 

x86 PC’s. 

A library was created that provides necessary functionality in developing aerospace 

systems. This functionality includes coordinate transformations, unit conversions, matrix 

capability as well as linear algebra tools. Using the base architecture and library it was 

then demonstrated that GN&C algorithms could be easily taken from text and 

implemented in code for real-time use. 
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By abstracting the GN&C subsystems and pursuing an object-oriented approach the 

code is fully interchangeable. Entire subsystems can be replaced without affecting the 

rest of the system. This allows for rapid testing of new algorithms as well as comparison 

between algorithms. The added benefit to this method is that new code can be reused 

in later projects and provides the user more tools for development. 

JARVIS is common across vehicle platforms only requiring modification to the 

configuration file to enable operation on a new platform. This eliminates duplication of 

code. When the same autopilot hardware is used the configuration file between 

vehicles is nearly identical. Two configuration file examples are provided in Appendix B.  

 

7.2 Lessons Learned 

“Models are not perfect.” Inherently all engineers know, or should know, that this 

statement is true. Unfortunately hands-on experience is not always available and 

because GN&C development is most often done in simulation and on paper it is easy to 

be lulled into a false sense of security that because something works in simulation it 

should work on a physical vehicle. The modeling used to simulate the vehicles in this 

thesis was known to be very simplified and was not expected to produce the correct 

response. However, it was enlightening to experience the difference between the 

simulated result and the real-world result. The creation of JARVIS was to enable one to 

gain this experience so the work was very rewarding. 
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Hardware provides a number of limitations that may not be immediately 

considered. When developing a GN&C algorithm for real-time use it is not uncommon to 

spend a considerable amount of time optimizing the algorithm for speed. The limitation 

encountered during development of the navigation subsystem used here was the RAM 

available on the system. While the ArduPilot provided enough memory for the program 

and was able to cope with the processing requirements there was not enough system 

RAM for the program to operate. This resulted in the system locking up and it was not 

immediately apparent what was causing the issue. 

 Code development and validation is time consuming. While not a revolutionary 

thought this underscores the importance of writing the code to be readable and 

reusable. When the code is designed in parts and can be built upon itself, by use of 

classes and inheritance, and time spent on future development can be greatly reduced. 

 

7.3 Future Work 

In its current state JARVIS provides a powerful tool that can be used to create an 

unmanned vehicle. The current barrier to running more advanced algorithms is the 

ArduPilot platform and requires a move to more powerful autopilot hardware. The 

move to a different platform should be straight forward and only involve writing the 

low-level drivers to access sensors and output R/C signals.  
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This research was concerned with the development of JARVIS so as to facilitate 

the creation of unmanned vehicles. As such time spent actually developing and testing a 

fully-functional unmanned vehicle has been limited. Work on the platforms used in this 

research will continue with the final goal being that the vehicles are fully autonomous.   
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Appendix A Library Function List 

Math Enhanced 

Function Purpose 

saturate Saturate variable X when above or below input values 

sign 
Return the sign of variable X 

0 is assumed to be positive 

round Round a value to the nearest integer value 

 

Array Class 

Function Purpose 

Array<T> Construct an array with variable type T 

Array<T>(m,n) Construct an array with variable type T and size m by n 

Initialize Initialize an array 

Clear Clear allocated memory for an array variable 

Resize 

Resize an array variable 

By default old values are lost, if the array is made to be dynamic 

the values are kept 

ExpandSize Increase the size of an array 

ContractSize Reduce the size of an array 

makeDynamic 
Allows for dynamic reallocation of the array size. Memory is kept 

when resizing dimensions 

makeStatic 
Fixes the size of the matrix 

If resized memory is lost 

isInitialized Return the initialization status of the variable 

nRows Return the number of rows in the array 

nCols Return the number of columns in the array 

(m,n) Access element (m,n) in the array 

getData(m,n) Access element (m,n) in the array 

(Index) Treat the array as a column vector and access element at (Index) 

getRow(R,m) Copy row m to vector R 

getCol(C,n) Copy row n to vector C 

assignRow(m, B, mb) Copy row mb from matrix B to row m 

assignCol(n, B, nb) Copy column nb from matrix B to column n 

= Assign matrix A = B 

setData(m,n, Val) Set the value of (m,n) 

copy Copy matrix B to current matrix 
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transpose Transpose the current matrix 

== Compare two matrices, return true if A==B 

!= Compare two matricies, return true if A != B 

 

Matrix Class 

Function Purpose 

Matrix<T> Construct a matrix variable of type T 

Matrix<T>(m,n) 
Construct a matrix variable of type T and size m-by-n 

Initial data is set to 0 

Clear De-allocate memory used for the matrix 

Resize 
Resize a matrix 

Data is not maintained 

Matrix_Initialized Returns initialization status of matrix 

nrows Returns the number of rows 

ncols Returns the number of columns 

(m,n) Access to data located at (m,n) 

getData(m,n) Return data located at (m,n) 

setData(m,n, Val) Set the value of (m,n) 

(index) 
Access data located at index treating the matrix as a single 

column  

trace Return the trace of the matrix 

getRow(R,m) Copy row m to vector R 

getCol(C,n) Copy row n to vector C 

assignRow(m,B,mb) Copy row mb from matrix B to row m 

assignCol(n,B,nb) Copy column nb from matrix B to column n 

= Assign matrix A = B 

Diag Create a diagonal matrix using values from an input vector 

Diag 
Create a diagonal matrix using a string containing the diagonal 

values 

copy Copy matrix B to current matrix 

transpose Transpose the current matrix 

zeros Set all values in a matrix to 0 

ones Set all values in a matrix to 1 

nans Set all values in a matrix to NaN 

eye Set a matrix to identity 

== Compare two matrices, return true if A==B 

!= Compare two matricies, return true if A != B 

prints Prints the matrix to the terminal 
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Linear Algebra 

Function Purpose 

mmult Multiply two matrices  

mscale Store a scaled matrix 

madd Add or subtract matrices 

mQR Perform QR decomposition on matrix A  

mLU Perform LU decomposition on matrix A  

LUSolve Use LU decomposition to solve Ax=b when b is a vector 

LUSolve 
Solve Ax=b when b is a vector and LU decomposition 

has already been performed 

mLUSolve Solve AX=B when B is a matrix 

mdet3x3 Return the determinant of a 3-by-3 matrix 

mdet Return the determinant of a n-by-n matrix 

minv3x3 Invert a 3-by-3 matrix 

minv Invert a n-by-n matrix 

dot Return the dot product of two vectors 

cross3 Compute the cross product of two vectors 

vnorm Return the magnitude of a vector 

vunit Unitize a vector 

orthagonalize Orthogonalize a matrix 

UDU 
Decompose a such that A = U*D*U’, D is stored as a 

vector 
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Conversions 

Function Purpose 

quat2DCM Convert from attitude quaternion to attitude 

DCM 

quat2axis_angle Convert from attitude quaternion to Euler axis-

angle representation 

dcm2quat Convert from DCM to attitude quaternion 

dcm2angle Convert from DCM to Euler angles following a 

specified rotation sequence 

angle2dcm Convert from Euler angles to DCM using a 

specified rotation sequence 

angle2quat Convert from Euler angles to attitude quaternion 

geodetic2ecef Convert position from geodetic frame to ECEF 

frame 

geodetic2ned Convert position from geodetic position to 

topodetic NED frame 

rad2deg Convert angle from radians to degrees 

deg2rad Convert angle from degrees to radians 

ft2m Convert from feet to meters 

m2ft Convert from meters to feet 

C2F Convert from Celsius to Fahrenheit 

C2K Convert from Celsius to Kelvin 

F2C Convert from Fahrenheit to Celsius 

F2K  Convert from Fahrenheit to Kelvin 

Psf2Pa Convert from pounds per feet squared to Pascal 

Pa2Psf Convert from Pascal to pounds per feet squared 

juliandate Convert Gregorian date to Julian date 

juliandate2GMST Convert Julian date to Greenwich mean sidereal 

time 

juliandate2GAST Convert Julian date to Greenwich Apparent 

Sidereal Time 

 

Estimators 

Function Purpose 

AHRS_MEKF Generic MEKF attitude filter used to estimate 

attitude and angular rates 

INRTL_EKF EKF used to estimate inertial position 
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Filters 

Function Purpose 

UDU_EKF Generic Kalman filter using the UDU formulation, 

Rank1_Update, and Modified Grahm-Schmidt 

Orthogonalization.  

 

Constants 

Constant Purpose 

pi Provide common definition of pi: 3.14159265 

Gravitational_Accel Provide a common definition of gravity: 

32.1740486 ft/s 

 

TimeSeries Class 

Function Purpose 

TimeSeries<T> Declare TimeSeries variable TS 

addNewData(Time, Data) Add new data point at a specified time 

getNumPoints() Return the number of data points available 

getTime(Index) Return the time using an input index 

getIndexFromTime(Time) Return the index that the input time occurs 

getDataFromTime(Time) Return the data at a particular time 

 

Attitude 

Function Purpose 

DCMKin Calculate the time derivative of the direction 

cosine matrix 

quatmult Multiply two attitude quaternions 

quatkin Calculate the time derivative of the attitude 

quaternion 
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Appendix B Example Vehicle Configuration Files 

B.1 Helicopter Configuration file: 

/*======================================================================

============== 

HW Configuratio

========================================================================

=============* 

// Hardware Type, 

#define Selected_Hardware  Hardware_APM1 

 

// Memory Storage 

#define Selected_DataFlash  DataFlash_APM1 

 

// Sensor Selection 

#define Selected_GPS  GPS 

 

// Hardware Options 

#define CompassEnable   false   // Flag to enable sensor 

#define CompassTiltCompensation  false    // Flag tilt-compensate 

compass  

#define AccelerometerEnable  true    // Flag to enable sensor 

#define GyroEnable   true    // Flag to enable sensor 

#define BaroEnable   false   // Flag to enable sensor 

#define GPSEnable   true   // Flag to enable sensor 

 

// Mounting APM1, RH 0:0:0 X - Pins Forward Z-Down (Sensors Up) 

#define HW_Yaw   PI    // Yaw angle of hardware 

mounting 

#define HW_Pitch  0.0    // Pitch angle of hardware mounting 

#define HW_Roll   -PI/2   // Roll angle of hardware 

mounting  

 

#define Compass_Yaw  PI/2    // Yaw angle of compass 

mounting 

#define Compass_Pitch  0.0    // Pitch angle of compass 

mounting 

#define Compass_Roll  -PI/2   // Yaw angle of compass mounting 

 

// RC Inputs  
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#define RC_In_Reversing  "[1, 1, 1, 1, 0, 1, 0, 0]"  // Reverse signal from 

input pins 

#define RC_In_nDirs  "[2, 2, 1, 2, 2, 2, 1, 2]"  // Number of directions 

input travels 

#define RC_In_Joy_Pins  "[5, 3, 1, 0]"   // Joystick inputs  

#define Pin_APMode  6    // Pin  for switching piloting mode  

 

// RC Outputs 

#define RC_Out_Reversing "[0, 0, 0, 1, 0, 1, 0, 1]" // Reverse RC direction 

#define RC_Out_nDirs  "[2, 2, 2, 2, 2, 2, 1, 2]"   // Number of 

directions that RC can travel 

// RC maximum PW 

#define RC_Out_End_Max  "[2100, 2100, 2100, 2100, 2100, 2100, 2100, 2100]" 

  

// RC minimum PW  

#define RC_Out_End_Min  "[900, 900, 900,  900, 900, 900, 900, 900]"   

// RC trim point  

#define RC_Out_Sub_Trim  "[1500, 1500, 1500, 1500, 1500, 1500, 1500, 1500]" 

  

 

#define nEffectors   4   // Number of control 

effectors/servos  

#define Effector_Out_Pins  "[0, 5, 1, 3]"   // Output pins for the 

effectors'  

 

/*======================================================================

============== 

COM Parameters 

========================================================================

============*/ 

#define Selected_GCS   GCS_MAVLink_MP  

#define GCS_Port   Serial3   // Wireless Radio 

#define GCS_Baud   57600 

 

/*======================================================================

============== 

PILOT Parameters 

========================================================================

============*/ 

#define Selected_PILOT   Pilot_RC_Attitude_Assist 

            

/*======================================================================

============== 
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Guidance Parameters 

========================================================================

============*/ 

#define Selected_GUID   Guidance_Linear   // Select guidance 

type 

 

// Guidance type-specific variables:        

     

#define GUID_nStates  3   // Number states [PHI THETA PSI]' 

#define GUID_nCommands 4   // Number of states to command  

 

// Map desired state 

#define GUID_State_Desired State_Desired(0)  = 0.0;\ 

    State_Desired(1)  = 0.0;\ 

    State_Desired(2)  = 0.0;\ 

          

// Map actual state 

#define GUID_State_Actual State_Actual(0)  = NAV->E_YPR(2);\ 

    State_Actual(1)  = NAV->E_YPR(1);\ 

    State_Actual(2)  = NAV->E_YPR(0); 

 

// Guidance gain matrix: State_Commanded = Pilot_Command +  

K_guid*(Position_Desired - Positon_Actual)  

// K_guid*(Position_Desired - Positon_Actual) modifies the pilot command (rates) to 

include positional information 

#define GUID_Linear_K   "[ 0.0, 0.0, 0.0;\ 

        0.05, 0.0, 0.0;\ 

        0.0, 0.05, 0.0;\ 

        0.0, 0.0, 0.0]" 

 

/*======================================================================

============== 

Control Parameters 

========================================================================

============*/ 

#define Selected_CNTRL  Control_StateSpace  // Select controller 

type  

 

// Croller type-specific variables  

#define CNTRL_nControls  4    // Number of control 

variables  

#define CNTRL_nStates  3   // Number of input states [p, 

q, r] 
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// Maximum rate of change of control input (Udot) 

#define CNTRL_Udot_Saturation "[10.0, 5.0, 5.0, 10.0]"     

     

  

// Map from control command to actuator output: Effector_Out = Effector_Map*U 

  

#define CNTRL_Effector_Map "[  1.0, -0.5,  0.5, 0.0;\ 

         1.0,  0.5, 0.5, 0.0;\ 

        1.0,  0.0, -1.0, 0.0;\ 

        0.0,  0.0,  0.0, 1.0 ]"  

 

// Map desired state 

#define CNTRL_State_Desired State_Desired(0)  = GUID->Command(1);\ 

    State_Desired(1)  = GUID->Command(2);\ 

    State_Desired(2)  = GUID->Command(3); 

          

// Map actual state 

#define CNTRL_State_Actual State_Actual(0)  = NAV->w_B(0);\ 

    State_Actual(1)  = NAV->w_B(1);\ 

    State_Actual(2)  = NAV->w_B(2); 

  

// Control gain matrix: U = U_e + K_control*(State_Commanded - State_Actual) 

#define CNTRL_Linear_K  "[  0.00000,   0.00000,  0.00000;\ 

         0.1000,   0.00000,  0.00000;\ 

         0.00000,   0.15000,  0.00000;\ 

     0.00000,   0.00000,  0.00000 ]"  

 

/*======================================================================

============== 

NAV Parameters 

========================================================================

============*/ 

//------------------------------------Attitude------------------------------------------------------------*/ 

#define Selected_NAV_Attitude  Navigation_Attitude_MEKF 

// NAV attitude type-specific variables 

#define NAV_Attitude_MEKF_dt  0.02    // Expected dt 

#define NAV_Attitude_MEKF_Sigma_a 0.1    // Accelerometer 

variance 

#define NAV_Attitude_MEKF_Sigma_g (1.0*PI/180.0)   // Gyro 

variance 

#define NAV_Attitude_MEKF_Sigma_gb ((1.0/60.0)*PI/180.0)  // Gyro bias variance 

#define NAV_Attitude_MEKF_Sigma_c 20.0*PI/180.0   // Compass variance 
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#define NAV_Attitude_MEKF_Gyro_Tau 343.78    // Gyro time 

constant 

#define NAV_Attitude_MEKF_Residual_Threshold  3 // multiple of the 

//measurement uncertainty 

used //in rejecting bad 

measurements 

#define NAV_Attitude_MEKF_Underweighting_Threshold 200     

  

#define NAV_Attitude_MEKF_Underweighting_Coeff  0 

 

//------------------------------------Inertial------------------------------------------------------------*/ 

#define Selected_NAV_INRTL   Navigation_Inertial_EKF 

 

// NAV inertial type-specific variables 

#define NAV_Inertial_EKF_Sigma_a   NAV_Attitude_MEKF_Sigma_a   

#define NAV_Inertial_EKF_Sigma_ab   0.001 

#define NAV_Inertial_EKF_Accel_Tau   3600.0 

#define NAV_Inertial_EKF_Sigma_baro   1.0 

#define NAV_Inertial_EKF_Sigma_GPS_Alt   0.5 

#define NAV_Inertial_EKF_Sigma_GPS_Vmag   0.01 

#define NAV_Inertial_EKF_Residual_Threshold 3      

  

#define NAV_Inertial_EKF_Underweighting_Threshold 200      

       

#define NAV_Inertial_EKF_Underweighting_Coeff  0 

 

/*======================================================================

============== 

LOGGING 

========================================================================

============*/ 

#define Selected_LOG    Log_APM 

#define LogEnable    true 

  



126 

 

 

B.2 Gimbaled Tri-Ducted Fan Configuration file: 

/*======================================================================

============== 

HW Configuration 

========================================================================

=============* 

// Hardware Type, 

#define Selected_Hardware  Hardware_APM1 

 

// Memory Storage 

#define Selected_DataFlash  DataFlash_APM1 

 

// Sensor Selection 

#define Selected_GPS  GPS 

 

// Hardware Options 

#define CompassEnable   true   // Flag to enable sensor 

#define CompassTiltCompensation  false    // Flag tilt-compensate 

compass  

#define AccelerometerEnable  true    // Flag to enable sensor 

#define GyroEnable   true    // Flag to enable sensor 

#define BaroEnable   false   // Flag to enable sensor 

#define GPSEnable   true   // Flag to enable sensor 

 

// Mounting APM1, RH 0:0:0 X - Pins Forward Z-Down (Sensors Up) 

#define HW_Yaw   0.0    // Yaw angle of hardware 

mounting 

#define HW_Pitch  0.0    // Pitch angle of hardware mounting 

#define HW_Roll   0.0   // Roll angle of hardware 

mounting  

 

#define Compass_Yaw  PI/2    // Yaw angle of compass 

mounting 

#define Compass_Pitch  0.0    // Pitch angle of compass 

mounting 

#define Compass_Roll  0.0   // Yaw angle of compass mounting 

 

// RC Inputs  

#define RC_In_Reversing  "[0, 1, 1, 0, 0, 0, 1, 0]"  // Reverse signal from 

input pins 

#define RC_In_nDirs  "[2, 2, 1, 2, 2, 2, 1, 2]"  // Number of directions 

input travels 
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#define RC_In_Joy_Pins  "[2, 3, 1, 0]"   // Joystick inputs  

#define Pin_APMode  6    // Pin  for switching piloting mode  

 

// RC Outputs 

#define RC_Out_Reversing "[0, 1, 0, 0, 0, 0, 0, 0]" // Reverse RC direction 

#define RC_Out_nDirs  "[2, 2, 1, 2, 2, 2, 1, 2]"   // Number of 

directions that RC can travel 

// RC maximum PW 

#define RC_Out_End_Max  "[2100, 1735, 2100, 2100, 1689, 2100, 2100, 1689]" 

  

// RC minimum PW  

#define RC_Out_End_Min  "[900, 1310, 900, 900, 1265, 900, 900, 1265]"   

// RC trim point  

#define RC_Out_Sub_Trim  "[1500, 1537, 1500, 1500, 1520, 1500, 1500, 1436]" 

  

 

#define nEffectors   6   // Number of control 

effectors/servos  

#define Effector_Out_Pins  "[6, 3, 0, 7, 4, 1]"   // Output pins for the 

effectors'  

 

/*======================================================================

============== 

COM Parameters 

========================================================================

============*/ 

#define Selected_GCS   GCS_MAVLink_MP  

#define GCS_Port   Serial3   // Wireless Radio 

#define GCS_Baud   57600 

#define GCS_nParameters  9    // # of COM-configurable 

params 

 

/*======================================================================

============== 

PILOT Parameters 

========================================================================

============*/ 

#define Selected_PILOT   Pilot_RC_Attitude_Assist 

            

/*======================================================================

============== 

Guidance Parameters 
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========================================================================

============*/ 

#define Selected_GUID   Guidance_Linear   // Select guidance 

type 

 

// Guidance type-specific variables:        

     

#define GUID_nStates  3   // Number states [PHI THETA PSI]' 

#define GUID_nCommands 4   // Number of states to command  

 

// Map desired state 

#define GUID_State_Desired State_Desired(0)  = 0.0;\ 

    State_Desired(1)  = 0.0;\ 

    State_Desired(2)  = 0.0;\ 

          

// Map actual state 

#define GUID_State_Actual State_Actual(0)  = NAV->E_YPR(2);\ 

    State_Actual(1)  = NAV->E_YPR(1);\ 

    State_Actual(2)  = NAV->E_YPR(0); 

 

// Guidance gain matrix: State_Commanded = Pilot_Command +  

K_guid*(Position_Desired - Positon_Actual)  

// K_guid*(Position_Desired - Positon_Actual) modifies the pilot command (rates) to 

include positional information 

#define GUID_Linear_K   "[ 0.0, 0.0, 0.0;\ 

       0.0, 0.0, 0.0;\ 

       0.0, 0.0, 0.0;\ 

       0.0, 0.0, 0.0]" 

 

/*======================================================================

============== 

Control Parameters 

========================================================================

============*/ 

#define Selected_CNTRL  Control_PID  // Select controller type  

 

// Controller-type specific variables  

#define CNTRL_nControls  4   // Number of control 

variables#define CNTRL_nStates   4   // Number of 

input states 

 

// Maximum rate of change of control input (Udot) 

#define CNTRL_Udot_Saturation "[10.0, 5.0, 5.0, 10.0]"   
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// Map from control command to actuator output: Effector_Out = Effector_Map*U 

  

#define CNTRL_Effector_Map "[ 1.0, -0.5,  0.0,  0.00;\ 

        1.0,  0.0,  -1.0, 0.00;\ 

        1.0,  0.5,  0.0,  0.0;\ 

        0.0,  0.0,  0.0,  0.5;\ 

        0.0,  0.0,  0.0,  0.0;\ 

        0.0,  0.0,  0.0,  -0.5 ]"  

 

// Set Equillibrium Control 

#define CNTRL_U_e  U_e(0) = 0.5;\ 

    U_e(1) = 0.0;\ 

    U_e(2) = 0.0;\ 

    U_e(3) = 0.0;\ 

 

// Map desired state 

#define CNTRL_State_Desired State_Desired = GUID->Command; 

          

// Map actual state 

#define CNTRL_State_Actual State_Actual(0)  = 0.5;\ 

    State_Actual(1)  = NAV->E_YPR(2);\ 

    State_Actual(2)  = NAV->E_YPR(1);\ 

    State_Actual(3)  = NAV->w_B(2);\ 

  

// Control gains 

#define CNTRL_Kp    "[0.500;  0.005;  0.005;  0.000] " 

#define CNTRL_Ki    "[0.000;  0.000;  0.000;  0.0000] " 

#define CNTRL_Kd     "[0.000;  0.005;  0.005;  0.5000] " 

 

/*======================================================================

============== 

NAV Parameters 

========================================================================

============*/ 

//------------------------------------Attitude------------------------------------------------------------*/ 

#define Selected_NAV_Attitude  Navigation_Attitude_MEKF 

// NAV attitude type-specific variables 

#define NAV_Attitude_MEKF_dt  0.02    // Expected dt 

#define NAV_Attitude_MEKF_Sigma_a 0.1    // Accelerometer 

variance 

#define NAV_Attitude_MEKF_Sigma_g (1.0*PI/180.0)   // Gyro 

variance 
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#define NAV_Attitude_MEKF_Sigma_gb ((1.0/60.0)*PI/180.0)  // Gyro bias variance 

#define NAV_Attitude_MEKF_Sigma_c 20.0*PI/180.0   // Compass variance 

#define NAV_Attitude_MEKF_Gyro_Tau 343.78    // Gyro time 

constant 

#define NAV_Attitude_MEKF_Residual_Threshold  3 // multiple of the 

//measurement uncertainty 

used //in rejecting bad 

measurements 

#define NAV_Attitude_MEKF_Underweighting_Threshold 200     

  

#define NAV_Attitude_MEKF_Underweighting_Coeff  0 

 

//------------------------------------Inertial------------------------------------------------------------*/ 

#define Selected_NAV_INRTL   Navigation_Inertial_EKF 

 

// NAV inertial type-specific variables 

#define NAV_Inertial_EKF_Sigma_a   NAV_Attitude_MEKF_Sigma_a   

#define NAV_Inertial_EKF_Sigma_ab   0.001 

#define NAV_Inertial_EKF_Accel_Tau   3600.0 

#define NAV_Inertial_EKF_Sigma_baro   1.0 

#define NAV_Inertial_EKF_Sigma_GPS_Alt   0.5 

#define NAV_Inertial_EKF_Sigma_GPS_Vmag   0.01 

#define NAV_Inertial_EKF_Residual_Threshold 3      

  

#define NAV_Inertial_EKF_Underweighting_Threshold 200      

       

#define NAV_Inertial_EKF_Underweighting_Coeff  0 

 

/*======================================================================

============== 

LOGGING 

========================================================================

============*/ 

#define Selected_LOG    Log_APM 

#define LogEnable    true 
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