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ABSTRACT 

Hester, Sarah W. M.S.A.A., Purdue University, December 2014. Distinguishing 
Harmonic Behavior of Longitudinal Resonant Combustion in a Variable Geometry 
Model Rocket Combustor. Major Professor: William E. Anderson. 
 
 

Throughout the study of high frequency combustion instability in a single 

element Continuously Variable Resonance Combustor (CVRC), the excitation of 

the fundamental longitudinal mode is closely followed by the excitation of higher 

harmonic modes. In an attempt to establish a heuristic relationship between the 

appearances of the fundamental mode and its harmonics, several unstable fixed 

geometry and variable geometry tests from the CVRC are analyzed through 

traditional Fourier-based methods and alternative signal processing methods such 

as wavelet analysis and Instantaneous Frequency (IF) Analysis from PC Signal 

Analysis. Early results led to the conclusion that traditional Fourier-based analysis 

provides believable and consistent results for the first three modes. However, 

Fourier analysis is sensitive to effects from non-sinusoidal waveforms. 

Further work using manufactured signals with both sinusoidal and steep-

fronted waveforms established that it is unclear which parts of the calculated 

harmonic signals are data artifacts and which are true signal. Supplementary 

assessment of IF Analysis and the traditional Fourier-based analysis explored the 

applicability of each method, the inherent data artifacts, and
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distinguishing behavior between the experimental data and those data artifacts. 

The results obtained from the IF Analysis provide good agreement with the 

traditional Fourier-based analysis, though one uses FIR filters and the other uses 

IIR filters. The validity of the results is sensitive to the settings chosen for these 

filters.  

It is shown that harmonic modal content exists in the CVRC, but it is also 

shown that the current results include indistinguishable Fourier artifacts. Both 

methods are sensitive to the sinusoidal assumption and cannot correctly interpret 

steep-fronted waveforms. This supplementary assessment has shown that IF 

Analysis is no worse than traditional Fourier-based analysis, but it fails to provide 

additional useful information.  

Qualitative modal behavior is distinguishable from the experimental data, 

including the sequential excitation of modes and the increasing growth rate with 

increasing mode number. However, quantitative results such as the growth rate or 

modal amplitude have been shown to be unreliable. The acoustic wave assumption 

is supported by the standing wave behavior observed in the CVRC, specifically the 

decreasing amplitude of a mode near its equivalent pressure node location and the 

relative phase between modal signals on either side of its equivalent pressure node. 

However, the shock-like wave assumption has not been completely disproved. 

Additional work needs to be done with wavelet analysis using steep-fronted wavelet 

shapes to assess the potential steep-fronted waveform. 
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CHAPTER 1. INTRODUCTION 

Combustion instability within liquid bi-propellant systems continues to be a major 

subject of study as models have yet to be developed that can accurately and 

reliably predict the combustion dynamics of any given combustor design [1,2]. 

Combustion instabilities can be very destructive in rocket engines and can lead to 

the structural failure of the engine or catastrophic damage to the payload [3]. Due 

to the complex interactions between combustion kinetics, heat transfer, fluid 

dynamics, acoustics, viscosity, and other physical phenomena, analytical models to 

date have been largely heuristic and require experimental data to validate any 

modeling effort [2,4]. Despite this, significant advances have been made in 

understanding the mechanisms producing dynamic responses in liquid combustion 

systems [3,5]. Pursuing relationships for unstable combustion continues to be 

worthwhile as further knowledge of combustion dynamics brings researchers closer 

towards the ultimate goal of a priori instability knowledge.  

1.1 Overview of Combustion Instability 

There are two primary classes of unstable combustion, specified by frequency 

ranges. Low frequency combustion instability, more commonly referred to as “chug” 

or “pogo instability”, occurs below 1000 Hz and is most often due to interactions 

between the gas residence time and bulk mode of the chamber [1,3,6]. Chug is most 
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commonly seen in gas turbine systems which have a lower speed of sound (lower 

frequency) than rocket engines, though NASA’s Apollo 13 lunar mission is a 

notorious example of pogo in rocket engines [3]. Of more interest in this study is 

high frequency combustion instability which often occurs in the 1000’s of Hz range 

and is a result of spatial-temporal coupling between unsteady heat release and 

resonant acoustic modes of the combustion chamber, hence the name “resonant 

combustion” [1,3,7]. It is also known as “screeching” for the audible high-pitched 

sound during unstable combustion. A relationship between heat release and 

pressure was first established by Sir Rayleigh in 1874, where the relative phase 

between the two fluctuating combustion characteristics would dictate whether 

pressure oscillations would be excited or damped in a system [1,3,8]. More 

specifically, if the maximum heat release is in phase with the maximum pressure, a 

circumstance exists that allows for positive growth of the pressure oscillations [1]. 

In its simplest form, Rayleigh’s criterion can be expressed as 

 න ᇱ݌ ∗ ሶܳ ்ݐ݀′
଴  (1.1)

where p’ is the fluctuating pressure and ሶܳ ′ is the fluctuating heat flux[1,3,8]. In its 

expanded form, 

 
ݐ߲߲ න 〈 ଴ܿଶߩଶ2݌ + ଶ2ݑߩ 〉 ܸ݀ + ර(ݑ݌)݀ܵ = ߛ − 1ܿଶ න〈ܳ݌〉ܸ݀௏ௌ 		௏  (1.2) 

where bracket 〈 〉 refers to a time-averaged quantity [8]. In the 150 years since 

Rayleigh’s criterion was first proposed, significant advances have been made in the 

understanding of high frequency combustion instability, yet Rayleigh’s criterion 

continues to be integral in analytical models developed [1,3,9–11]. 

Two primary resources on combustion instabilities in liquid rocket engines 

are NASA Special Publication 194 (SP-194) entitled “Liquid Propellant Rocket 
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Combustion Instability”, a 1974 compilation of current knowledge by Harrje and 

Reardon [1], and one of AIAA’s Progress in Astronautics and Aeronautics books 

entitled “Liquid Rocket Engine Combustion Instabilities”, a 1995 compilation of 

up-to date knowledge by Yang and Anderson [12] meant as an update to SP-194. 

1.1.1 Modes of Instability 

There are three modes of resonant combustion: tangential, radial, and 

longitudinal [1,3,13]. The mode(s) present is largely dictated by the internal 

geometry of the combustor and the chemical kinetics of the propellants. Tangential 

modes, where pressure oscillations travel back and forth from the combustor walls 

as illustrated in Figure 1.1a, can be the most destructive and are therefore studied 

most often [1,3,7]. The interactions between neighboring injector elements largely 

affect the occurrence of tangential modes while the frequencies of the modes seen 

depend on internal geometric features such as the diameter in a cylindrical 

combustion chamber. Less common and of less interest is the radial mode. Figure 

1.1b demonstrates the first and second radial mode, which act like ripples in a 

pond as the pressure moves outward from the combustor axis and reflects on the 

combustor walls [1,3,14]. 

The focus of this study is longitudinal modes of instability. In a closed 

combustor, pressure waves reflect off of acoustic boundaries at the injector and 

nozzle as illustrated in Figure 1.1c. Longitudinal instabilities are thought to be 

dependent on a kinetics-based characteristic time lag and internal geometries such 

as the length of the combustion chamber and/or length of the injector [1,4,13,15]. 

Previous work has shown the tendency for the frequencies of pressure oscillations 

to couple with the chamber acoustic frequencies [1,4,7]. Other factors that affect all 
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modes include the propellant combination, equivalence ratio, injector type, and 

internal speed of sound [1,12,14,16,17]. 

 

Figure 1.1 The first two modes of instability for a) tangential, b) radial, and c) 

longitudinal instability. [18] 

Any reference to a “mode” from this point forward will be to a longitudinal 

mode unless otherwise specified. Numbering of modes such as second mode or 2L 

refers to the harmonic frequency of the longitudinal mode at 2*f1, where f1 is the 

fundamental frequency. It is also important to note that 2L does not necessarily 

refer to the second natural acoustic mode of the chamber, and the fundamental 
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frequency here called 1L may couple with any mode of the chamber, such as the 

third natural acoustic mode [4]. See Ref.[4] for a detailed comparison of the excited 

frequencies observed and the calculated natural acoustic frequencies of the chamber. 

1.2 Previous Related Work 

1.2.1 Subscale Testing 

As mentioned previously, a priori knowledge of the combustion dynamics of 

a rocket engine design does not currently exist and analysis of the designed 

combustor requires thorough testing to obtain empirical values to support heuristic 

modeling efforts. As computational power has increased, recent analysis has shifted 

towards computational fluid dynamics (CFD) validated by experimental data. 

However, high fidelity modeling and full-scale testing are expensive both in terms 

of cost and time. Because of these restrictions, new designs commonly use previous 

stable engine designs as a guide, limiting the range of designs and performance 

available [1,3,4,18]. For example, Russian liquid rocket engines operate at chamber 

pressures on the order of 2000 psi or more, while equivalent American designs are 

limited to half this [4]. This makes subscale testing an attractive option so long as 

the behavior of the full-sized engine can be represented in its smaller counterpart.  

Replicating the full-scale behavior can be difficult, as most laboratory 

settings cannot run tests at the high operating chamber pressure (on the order of 

1000 psi) and mass flow rates (on the order of 1-10 kg/s), so special attention must 

be given to the scaling method used [18]. Since longitudinal modes are the sole 

interest of this study, isolating this mode class is also highly desirable. In the 

development of oxygen-rich staged combustors (ORSC), the Russians had success 
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with subscale testing campaigns by developing a single injector element to isolate 

and study longitudinal instabilities [4,14,18]. The injectors tested at that time, the 

RD-170 and RD-180, have been used as a design guide for the gas-centered swirl 

coaxial injector used in this study, discussed in Section 1.2.3 [4,18–22]. See Ref. [4] 

and [23] for a more in depth summary of historical subscale testing and the design 

processes typically used. 

The study of combustion dynamics in ORSC is especially of interest at 

American institutions due to the lack of historical experience; in the past, 

American liquid rocket engines utilized fuel-rich combustion systems while Russian 

liquid rocket engines utilized the more efficient but more difficult oxygen-rich 

combustion systems [4,14,18,24]. ORSC provide advantages in terms of weight and 

efficiency, but they are also more prone to instabilities and have more stringent 

material requirements due to the higher temperature and high pressure oxygen-rich 

environment [4,18]. 

Traditional instability modeling often includes a characteristic time lag as 

proposed by Crocco and Cheng, which for liquid propellant engines can include the 

time for droplets to form, vaporize, and mix [25,26]. In subscale testing, the length 

of the combustor is often not long enough for complete combustion of liquid 

propellants. In the case of ORSC, the oxidizer will have been through a pre-burner 

in full scale engines, so some combustion products will exist when injected into the 

main chamber and the injection temperature will be high (on the order of 1000 K) 

[18]. Subscale testing for ORSC can utilize decomposed peroxide in the study of 

staged oxygen-rich combustors as it simulates the pre-burner products of gaseous 

oxygen and water vapor at a decomposition temperature around 1200 oF (925 K). 

Earlier testing programs have shown comparable dynamic behavior using gaseous 
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propellants in place of liquid propellants as would be used in full-scale tests [16,17]. 

Both liquid and gaseous fuels may be used in subscale testing, with gaseous 

methane used in this study. Previous work by Miller [18], Smith [19], and Sisco [4] 

used liquid hydrocarbon fuel (JP-8), while work by Yu [20], Rosen [21], and 

Feldman [22] used gaseous fuels (CH4 and H2) for better comparison to CFD 

conditions. Similar single element ORSC work done by Pal et al. at Penn State 

used liquid RP-1 for direct comparison to full scale engines [27]. 

1.2.2 Variable Chamber Length 

In the 1950’s and 1960’s, Zucrow and Osborn performed subscale testing at 

Purdue University to study longitudinal combustion instabilities, specifically the 

effect changing several parameters would have on the stability of a combustor [16]. 

One of these parameters was the length of the combustion chamber, and through 

this testing they established a relationship between the length of the combustion 

chamber and the stability of the combustor, as discussed in Sec. 2.3. 

In more recent work done in 2005, Miller also studied longitudinal 

combustion instabilities utilizing a single element combustor and discretely variable 

chamber length [18]. The combustor was designed to encourage self-excited 

instabilities, with a rear-facing step at the dump plane to encourage vortex 

shedding and an oxidizer post designed to remove the minimum amount of energy, 

shown in Figure 1.2. The design focused on acoustic coupling between the oxidizer 

injector post and combustion chamber [18]. The experimental work qualitatively 

agreed with a linear model of a coupled acoustical system. Smith supplemented 

Miller’s experimental work with 1D CFD modeling, using both Euler equations and 

Reynolds Averaged Navier-Stokes (RANS) equations [19]. 
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Figure 1.2 Cross section of Miller’s variable chamber length experiment. [18] 

Miller’s work was expanded by Sisco, who continued experimental 

investigations, this time into the effect of the injector face width, while developing 

both linear and nonlinear acoustic models for comparison [4]. Of most interest are 

the models developed, which build off work done by Culick for linear acoustic 

analysis [2] and Zinn and Lores for nonlinear stability analysis utilizing a 

normalized Galerkin method (see Sec. 2.3) [28,29].  

1.2.3 Variable Oxidizer Post Length 

In the last five years, longitudinal combustion instability research has 

centered on a Continuously Variable Resonance Combustor (CVRC), a second 

generation device that builds off Miller’s work [18,20–22]. The CVRC is able to 

change the oxidizer post length during a test, as illustrated in Figure 1.3. This 

allows for the study of the coupling between the length of the oxidizer post and the 

combustion chamber length. Original experimental and analytical work was 

performed by Yu in 2009 [20], and design specifications on both the hardware and 
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equipment used in the CVRC as well as the data acquisition (DAQ) design can be 

found in Ref. [20–22]. Significant features of the CVRC include: 1) a translating 

shaft to actively vary the length of the oxidizer post by moving the sonic inlet, 2) a 

backward-facing step at the dump plane to encourage acoustically-induced vortex 

shedding and consequent instabilities, and 3) modular chamber sections to allow 

for optical study of combustion by replacing one chamber section with a quartz 

tube. 

 

Figure 1.3 Schematic of the CVRC with instrumentation locations. [20] 

Figure 1.3 and Figure 1.4 illustrate the cross section of the CVRC hardware 

and relevant instrumentation locations. Of particular interest is the location of 

high frequency pressure transducer (PT) ports, at the oxidizer manifold, the 

oxidizer post, the fuel manifold, and at 0.5 in, 1.5 in, 2.5 in, 3.5 in, 9.5 in, and 14.5 

in along the axial length of the combustion chamber. Primarily, investigations have 

been done using data from the 14.5 in location, as this corresponds to a pressure 

anti-node [20]. To test for transverse or radial instabilities, a second transducer is 

placed at the 0.5 in location at a 60o angle to the other axial ports. The geometry 
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of the combustor was chosen based on the results in Miller and Sisco’s theses, as 

self-excited instabilities are the objective of this design [4,18,20]. 

 

Figure 1.4 Cross section of the CVRC experiment. [30] 

The CVRC has been a useful validation tool for CFD and analytical models 

due to its straightforward design and isolation of longitudinal instabilities that 

arise from oxidizer post length – chamber length coupling effects [30,31]. Yu made 

comparisons between the frequency and mode shapes estimated by the Linearized 

Euler Equations (LEE) and observed from experimental pressure data at various 

axial positions along the combustor [20,32]. Yu’s linear acoustics model took into 

account mean flow effects and some entropy effects. Yu found three regions of 

stability with this combustor that represent linear and nonlinear regimes, which 

the author called stable, unstable, and marginally stable. In the transition from 

linear to nonlinear instability, the near-synchronized appearance of higher 

harmonics up to the tenth mode was observed. Furthermore, in the transition back 

to stable (linear) combustion, the harmonics disappeared sequentially from highest 
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to lowest until a two-mode system remained with 1L and 2L. Rosen, too, observed 

the sequential appearance and disappearance of harmonic modes at the transition 

regions [21].  

Rosen performed further work with LEE and the CVRC to study the 

transition region from stable to unstable combustion and vice versa [21]. With a 10 

kHz high speed camera to capture line of sight optics for the first 5 in of the 

combustion chamber, the author used CH* chemiluminescence to calculate the 

change in the center of intensity during the transition to and from stability. Rosen 

found that the center of intensity moves up to 1 in towards the injector face as the 

combustor transitions to instability and the flame front moves towards the injector. 

Coupled with high frequency pressure data and LEE results, Rosen was able to 

determine Rayleigh Index values at different oxidizer post lengths and stability 

conditions, though the validity of the calculated Rayleigh Index values are directly 

tied to the validity of the LEE model. 

Further work with the CVRC by Feldman found a correlation between 

wave resonator values and the occurrence of unstable combustion of the 

fundamental and first two harmonic modes [22]. The belief with acoustic coupling 

of the oxidizer post and the chamber is that maximum damping occurs at a ¼ 

Wave Resonator and minimum damping occurs at a ½ Wave Resonator, assuming 

no mean flow effects. Using LEE and experimental results, Feldman established 

correction factors for this axiom based on Mach number, demonstrated in Figure 

1.5.  

Feldman also used Large Eddy Simulation (LES) to model the unsteady 

heat release and fluctuating pressure to study the physical interaction between 

these two variables that sustains and propagates pressure oscillations [22]. This 
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theory is based on fundamental acoustics, assuming a traveling pressure wave and 

closed acoustic boundaries at the oxidizer inlet and sonic nozzle. The work 

presented the viability of determining empirical relationships to characterize 

longitudinal combustion instability. 

 

Figure 1.5 Wave resonator relationships for the first three longitudinal modes, 

without and with mean flow effects. [22] 

1.3 Current Study 

Ample work has been done with the CVRC, as outlined in Sec. 1.2.3, to 

establish relationships between stability behavior and combustor geometry. From 

previous studies, Sisco postulated that longitudinal instabilities seen in the CVRC 

are primarily due to a combination of acoustics (such as acoustically-induced 

vortex shedding) and mixture ratio inhomogeneity [4]. The current study focuses 

on harmonic modes in self-excited longitudinal instabilities. As will be discussed in 
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Sec. 2.3, it is unclear whether harmonics exist or if the use of them in theory is 

solely for simplification of analysis of discontinuous shock-like waves. If it can be 

shown that the modal behavior observed is real, defining a heuristic relationship 

between the excitation of the fundamental mode and higher harmonics may 

provide a better insight to supplement existing analytical and computational 

models. 

1.3.1 Motivation 

Multiple harmonics have been observed in previous CVRC testing and 

speculations have been made as to whether the excitation of harmonic frequencies 

are tied to the excitation of the fundamental frequency either in terms of the 

number of cycles, the amplitude of the fundamental oscillations, or some other 

unknown characteristic of the oscillations [20–22]. As will be discussed in Sec. 2.2, 

Lang made correlations between the ratio of the fundamental oscillation’s 

amplitude and the steady-state chamber pressure as well as the ratio of the first 

harmonic oscillation’s amplitude and the fundamental oscillation’s amplitude [33]. 

Furthermore, Lores and Zinn described a transient-process energy transfer from the 

fundamental mode to higher harmonic modes until a limit cycle behavior is reached 

[28,29]. Additionally, related uni-element ORSC experiments performed by Pal et 

al. indicate the presence of harmonics showing decreasing intensity with increasing 

modes [27]. The further study of harmonics of fundamental resonant frequencies 

may provide better insight into the behavior of instabilities after initial excitation 

and support improvements to existent models. 

As Hefner demonstrated in Ref. [1], the simultaneous study of multiple 

modes in data is non-trivial, and at the high frequencies seen, problems arise when 
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distinguishing resonant behavior of multiple modes from noise in the signal. The 

last time a similar study was performed was Bowman’s 1967 PhD Thesis entitled 

“Experimental Investigation of High Frequency Longitudinal Combustion 

Instability in Gaseous Propellant Rocket Motors” [34]. Bowman’s Fourier-based 

data processing found the presence of harmonic modes, and the author concluded 

that chemical kinetics is the driving mechanism in the specific case of high 

frequency longitudinal resonant combustion in gaseous rockets. 

1.3.1.1 Universal Behavior 

To verify that a common relative modal behavior exists in unstable CVRC 

tests and that the high-mode pressure signals are not an artifact of spectral 

analysis trying to match a rapidly changing signal (see Sec. 2.3), a few simplistic 

comparisons were made between the primary mode (1L) and each resonant mode 

up to the sixth longitudinal mode (6L). A second-order Butterworth band pass 

filter was applied to the raw pressure data around each resonant frequency. These 

filtered pressure signals were normalized by their maximum amplitude, and then 

each signal was plotted on top of the primary mode’s signal in the time domain for 

three test cases.  

At this base analysis, the lead-lag behavior of each mode with respect to the 

primary mode was recorded, looking at the two ignition events and the growth to 

limit cycle of each mode. The behavior observed was compared across two unstable 

tests to verify that observed relationships could be considered universal across 

these unstable cases. One stable test case was also analyzed and compared to 

confirm that any phenomena observed could be attributed to unstable cases and 

not just the general performance of the CVRC. 
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As seen in Figure 1.6, the onset of the second resonant mode occurs after 

the onset of the primary mode. This was seen in the signal overlays for each mode 

in all of the unstable tests considered. In the stable test, any perturbations in the 

signals occur at the same time at every mode, as illustrated in Table 1.1. This 

simple analysis quickly confirms a common behavior exists between the observed 

harmonic modes. 

 

Figure 1.6 Comparison of Mode 1 and Mode 2 pressure oscillation behavior near 

onset of instability. 

Table 1.1 Modal behavior relative to the primary mode for two unstable cases 
and one stable case. 
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1.3.2 Objective of the Study 

The objective of this study is to establish a digital signal processing (DSP) 

method to reliably and repeatedly distinguish transient behavior of fundamental 

and harmonic modes via highly sampled experimental pressure data, focused on the 

time of modal onset and growth rate of the oscillations. Two subsequent objectives 

are to determine: 1) if the observed higher harmonics are real, and 2) whether the 

excitation source of these higher modes is acoustic and/or combustion. Specific 

requirements include a time resolution on the order of 1 ms and insensitivity to 

user bias. Important parameters to be obtained for each mode include the time of 

initial oscillation growth (a.k.a. onset time), growth rate of the oscillation 

amplitude, time when limit cycle is reached, and limit cycle amplitude. 

1.3.3 Approach 

Experimental data sampled at a rate of 100 kHz using water-cooled piezo-

resistive pressure transducers are taken at several axial locations along the 

combustor length, as shown in Figure 1.4Figure 1.4 Cross section of the CVRC 

experiment. [30]. Multiple tests were performed in previous test campaigns using 

fundamentally the same combustor configuration. Fixed geometry tests (referred to 

as fixed) at stable, unstable, and marginally stable configurations as well as 

variable geometry tests (referred to as translating) are considered in this study. 

To evaluate the signal processing methods under review, one unstable fixed 

test is analyzed with each method. If the method is able to distinguish the 

individual transient behavior of the first three modes, a second fixed test and a 
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translating test are evaluated as well. A fake signal is also analyzed to check for 

bias and artifacts contributed by the data processing method. 

1.4 Outline 

Chapter 2 reviews of relevant longitudinal combustion instability theory. 

Chapter 3 presents the digital signal processing (DSP) methods assessed and 

examples of results for these methods using both experimental data and a 

manufactured signal. Initial observations from the experimental results are 

discussed. Chapter 4 uses manufactured signals with both sinusoidal and steep-

fronted waveforms to further evaluates potential DSP methods as well as potential 

and existing issues with the method(s) chosen. Chapter 5 covers observations from 

the results presented and outstanding issues are discussed. Chapter 6 summarizes 

the work done and draws conclusions from the work presented. Future tasks to 

continue this work are proposed. 
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CHAPTER 2.  LONGITUDINAL COMBUSTION INSTABILITY 
THEORIES 

2.1 Overview 

In high frequency combustion instability, frequencies of pressure oscillations 

observed during unstable combustion relate to natural acoustic modes of the 

combustion chamber [1,3,8]. There exist two schools of thought on the wave 

behavior of longitudinal instabilities: essentially acoustic or essentially shock-like. 

Even within SP-194, the seminal text on liquid rocket engine instabilities, theorized 

wave behavior changes section to section based on the contributing author(s) [1]. 

Both classifications are broken into linear and nonlinear regimes based on the 

analysis required. 

Linear analysis methods are employed when pressure oscillations 

spontaneously grow from combustion noise [1]. Characteristics of linear instability 

include continuous sinusoidal waves and pressure oscillations less than 10% of 

steady-state pressure (i.e. p’/pc<0.1). The response to finite amplitude disturbances 

(known as triggered instability or subcritical bifurcation) resulting in rapidly 

growing pressure oscillations is treated using nonlinear analysis and is thus known 

as nonlinear instability [1,2,35]. Nonlinear analysis is also required to model the 

transition from growth to limit cycle amplitude, as this behavior is attributed to 

nonlinear effects [2,29]. Additionally, the distortion of the pressure waveform as 

harmonic frequencies are excited is considered a nonlinear effect [1]. This so-called 
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nonlinear instability is characterized by pressure oscillations greater than 10% of 

steady-state pressure (i.e. p’/pc>0.1) and non-sinusoidal waves. It is possible for 

instabilities to start in a linear regime and transition to a non-linear regime, as 

demonstrated in Figure 2.1, or the instabilities may begin in the nonlinear regime 

[1,3,36].  

 

Figure 2.1 Evolution of behavior during onset of instability. [36] 

The qualitative behavior of these combustion instabilities can be closely 

approximated by an infinite series of harmonic periodic acoustic waves subject to 

linear and nonlinear analysis [1,3]. And while many believe shock behavior is 

present, some choose to represent the behavior using harmonic acoustics for ease of 

analysis and modeling [17,37]. For example, Flandro et al. strongly support the 

shock-like behavior in high amplitude longitudinal instabilities, but their model 



20 

 

assumes the steep-fronted traveling wave under consideration is composed of 

standing acoustic modes of the chamber to avoid difficulties in shock analysis 

[36,38]. 

Both acoustic and shock-like theories often incorporate the idea of a time 

lag, typically sensitive to pressure. The theory of a combustion time lag was first 

proposed by von Karman, based on early liquid engine work [3]. The idea was 

further developed by Crocco and Cheng (1956) concurrent to Zucrow and Osborn’s 

efforts at Purdue University, creating the linear sensitive time lag theory [16,25]. 

Based on empirically obtained values, they presented a model based on the 

characteristic time for the combustion to respond to perturbations. This linear n-τ 

model has been a cornerstone of many discontinuous instability models 

[17,26,28,29,39,40]. Lores and Zinn describe the interaction index n as “a measure 

of the sensitivity of the combustion process to flow oscillations” and the sensitive 

time lag τ as “representative of the time required for the unsteady combustion 

process to respond to flow perturbations” [29]. 

2.2 Acoustic Wave Theory 

Culick has established both linear and nonlinear acoustic models to study 

longitudinal instabilities in rocket engines [1,2,41]. The linear acoustic model 

fundamentally states that linearized problems should be considered as the classical 

acoustic wave problem in a closed tube, with growth and decay rates most easily 

modeled as exponential [1]. This baseline linear acoustic model assumes low 

amplitude continuous periodic waves (no shocks) and may not be suitable for 

higher amplitude and/or “strongly nonlinear” oscillations [41]. Otherwise, in 

Culick’s linear model, the combustor is treated as a simple harmonic oscillator 
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subject to nonlinear losses and gains and evaluated through traditional acoustic 

analysis. 

Combustion instabilities can be approximated using the traditional acoustic 

and fluid dynamic analyses in the classic representation of combustion dynamics 

[2,8]. The wave equation is given as 

 ߲ଶݐ߲݌ଶ − ܿଶ ߲ଶݔ݀݌ଶ = ߛ)଴ߩ − 1) ݐ߲߲ܳ  (2.1)

where c is the speed of sound and డொడ௧  is the heat release from combustion [8]. The 

wave is represented using the complex eigenvalue form, 

 ߱ = ݂ߨ2 + (2.2) ߙ݅

so that the oscillatory pressure can be represented as 

ᇱ݌  = 	 ௜ఠ௧݁̂݌ = ௜(ଶగ௙ା௜ఈ)௧ି݁̂݌ = ௜ଶగ௙௧ି݁̂݌ ∗ ݁ఈ௧ (2.3)

where ݁ି௜ଶగ௙௧ represents the periodic behavior of the wave and ݁ఈ௧ represents the 

exponential growth or decay of the oscillation amplitude [8]. Simplifying 

assumptions include linear acoustics, inviscid flow, unit area, and no body forces. 

Second order terms and higher are ignored, and pressure, density and temperature 

are represented as a mean term and oscillatory term, where 

݌  = ̅݌ + ᇱ (2.4)݌

ߩ  = ߩ̅ + ᇱ (2.5)ߩ

 ܶ = തܶ + ܶᇱ (2.6)

and mean velocity is assumed to be zero, so the velocity term is purely the 

oscillatory velocity [8]. An additional assumption is ቤ݌ᇱ̅݌ ቤ ≪ 1, ቤߩᇱߩ	ഥ ቤ ≪ 1, ቤܶᇱܶത ቤ ≪ 1 
Combined with a linearized equation of state, the conservation equations are 

linearized to yield: 
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mass conservation in 1D, 

ݐ߲′ߩ߲  + ߩ̅ ݔ߲′ݑ߲ = 0 (2.7)

momentum conservation in 1D, 

ߩ̅  ݐ߲′ݑ߲ = ݔ߲′݌߲−  (2.8)

and the acoustic energy corollary in 1D, 

 
ݐ߲߲ ቈ12 ᇱଶݑߩ̅ + 12 ଶ቉ܿߩᇱଶ̅݌ + ݔ߲߲ ሾ݌ᇱݑᇱሿ = 0 (2.9)

Then the wave equation for the pressure fluctuations in 1D becomes 

 1ܿଶ ߲ଶ݌ᇱ߲ݐଶ = ߲ଶ݌ᇱ߲ݔଶ  (2.10)

The three dimensional wave equation to describe the oscillatory pressure behavior 

with an unsteady heat source is 

 
ݐ߲߲ න 〈 ଴ܿଶߩଶ2݌ + ଶ2ݑߩ 〉 ܸ݀௏ + ර(ݑ݌)݀ܵௌ = ߛ − 1ܿଶ න〈ܳ݌〉	ܸ݀௏  (2.11)

and derivation of this result can be found in Ref. [8]. 

As evidenced above, linear acoustic analysis requires many simplifying 

assumptions. However, linear analysis can yield good approximations of the 

potential frequencies and mode shapes of the oscillatory pressure, as demonstrated 

through Purdue’s LEE model mentioned in Sec. 1.2.3 [20,32,41]. Nonlinear analysis 

is required when more interest is given to limit cycle amplitude and growth 

behavior of the mode [35,37,42]. Acoustic theory states that limit cycle amplitudes 

are reached due to nonlinear losses and/or higher order nonlinear acoustics in the 

system, which may include localized energy losses and coupling between unstable 

and stable modes [2,3,8]. It is important to note that Culick specifically states that 

his acoustic theory is largely heuristic, unlike some models presented in Sec. 2.3 
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[41]. In addition, it may provide inadequate approximations for cases with large 

amplitudes or focus on velocity coupling. For more details on Culick’s linear and 

nonlinear acoustic theories, refer to Refs. [1,2,5,8,12,41]. 

Sterling and Zukowski built off Culick’s nonlinear acoustic model with a 

heavy emphasis on the effect of Rayleigh’s criterion to model instabilities seen in 

subscale combustors [43,44]. Their work is applicable mainly to combustors whose 

instabilities can be attributed to periodic vortex shedding at the dump plane. Sisco 

previously attributed instabilities in the CVRC to acoustically-driven vortex 

shedding, so Sterling and Zukowski’s theory is applicable to the current study [4]. 

As previously discussed, Culick attributes the transition to limit cycle to nonlinear 

acoustics, though Sterling contends that this behavior is due to nonlinear 

combustion processes [2,41,43]. Specifically, vortex shedding at the dump plane 

occurring at the acoustic frequencies of the chamber induces oscillatory heat release, 

which governed by Rayleigh’s criterion can couple with the chamber pressure to 

support instabilities [43,44]. Moreover, limit cycle is reached when nonlinear 

coupling between the excited mode and subharmonic modes cause an energy loss to 

the process. In contrast to Sterling’s subharmonic coupling hypothesis, many 

papers mention coupling between the fundamental and harmonic modes of higher 

frequency [1,2,12,14,33]. 

Margolis supports the concept of coupling between the fundamental and 

higher harmonic modes [45]. In his work with model pulse combustors, Margolis 

demonstrated a resonant-like coupling between any growing mode and its first 

harmonic mode (in his application, 3*f1). The author further inferred that finite 

limit cycle amplitude is achieved though “a nonlinear resonant coupling between 
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the linearly unstable (growing) mode and the linearly stable (decaying) mode,” 

where the stable mode is a harmonic of the growing mode. 

On the interpretation of experimental data, Hefner in SP-194 equated 

longitudinal instabilities to traveling “acoustic” waves in a closed-closed cylinder 

[1]. For two sinusoidal traveling waves, amplitudes would approach zero at 

pressure nodes of an equivalent standing wave in the tube. More pertinent to this 

study, Hefner attributed the double peak seen in experimental data to the 

asymmetry of non-sinusoidal acoustic waves traveling in the cylindrical combustion 

chamber, illustrated in Figure 2.2. Unlike sine waves, the amplitudes of the 

distorted waves will never cancel out completely, leading to a high-low double peak 

between node and anti-node locations. The distance between the two peaks 

decreases as it approaches the end of the tube where a pressure anti-node exists. 

This is in direct contrast to Tsuji and Takeno’s shock theory presented in the 

following section [17]. 

 

Figure 2.2 Appearance of distorted traveling waves versus axial location. [1] 
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In his 1991 paper, Lang presented behavior of the fundamental frequency 

and the conditions that would encourage harmonics in oscillatory flames [33]. 

Working from the basis of a nonlinear system subject to a periodic excitation, Lang 

modeled the system response y as 

 
(ݔ)ݕ = ܽ଴ݔ଴ sin(߱ݐ) + ܽଵݔ଴ଶ sinଶ(߱ݐ)																																= ܽ଴ݔ଴ sin(߱ݐ) + 12ܽଵݔ଴ଶ + 12ܽଵݔ଴ଶ cos(2߱ݐ) (2.12)

where a is amplitude components of the nonlinear system, x0 is the amplitude of 

the periodic excitation, and ω is the frequency of the excitation [33]. From this, 

Lang claims that the amplitude of the harmonic frequency is directly related to 

that of the fundamental frequency. At small amplitudes, harmonics do not exist 

and the wave is sinusoidal. As the total amplitude increases, harmonics appear and 

the wave shape becomes distorted. The harmonics seen are tied through amplitude 

and phase to the fundamental frequency. The concept of threshold amplitude is 

discussed as a determinant of harmonics (and nonlinear behavior).  

 

Figure 2.3 Proposed behavior of 1L and 2L as a function of 1L cycles. [33] 
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Some of Lang’s results are shown in Figure 2.3, where the fundamental and 

first harmonic behavior are presented as normalized spectral intensity as a function 

of 1L cycles. The fundamental mode, represented in the upper curve, is normalized 

with the static chamber pressure, while the first harmonic, represented in the lower 

curve, is normalized with the amplitude of the fundamental mode. The time 

between excitation of the fundamental and first harmonic are presented in terms of 

cycles of the fundamental frequency. Lang’s acoustic nonlinear theory most closely 

relates to the theorized behavior of the CVRC modes and supports the idea that a 

heuristic relationship between the modes may exist. 

2.3 Shock-like Wave Theory 

Early experimental work such as that done by Zucrow and Osborn at Purdue 

University in 1958 [16], Tsuji and Takeno at University of Tokyo in 1965 [17], and 

Bowman at Princeton University in 1967 [34] employed simplified model 

combustors with premixed gas propellants to study the effects of chamber length, 

steady-state chamber pressure, and equivalence ratio on longitudinal oscillations. 

These separate experimental efforts yielded comparable results that a relationship 

exists between both the chamber geometry and chemical kinetics of the propellants 

with the amplitude and frequency of longitudinal pressure oscillations.  

Zucrow and Osborn specified two principle categories of longitudinal 

instabilities: “shock” type and “sinusoidal” type [16]. These categories often 

correspond to nonlinear instability and linear instability as described in Sec. 2.1, 

with the terms being used interchangeably in later literature. While shock-like 

instabilities are nonlinear, nonlinear instabilities are not necessarily shock-like. 

They characterized the shock-type oscillations as traveling detonation waves fed by 



27 

 

rapid energy addition behind the shock front from the unsteady combustion, 

leading to high amplitude self-propagating oscillations. Zucrow and Osborn 

postulated that instabilities occurred as a result of accumulated unburned and 

burned propellant near the injector end being compressed and combusted by the 

shock wave reflected from the nozzle [16]. Their experiment found a minimum 

chamber length for instabilities to occur but did not reach a maximum length limit. 

From this, it was concluded that there exists a minimum kinetically-driven time 

scale that would promote the growth of oscillations. 

 

Figure 2.4 Traveling shock behavior of 1L, 2L, and 3L (from bottom to top). [17] 



28 

 

Tsuji and Takeno also observed shock type oscillations with harmonics but 

treated the traveling shocks as standing waves since the shocks were found to 

reflect at velocity nodes of equivalent standing waves [17]. This behavior is 

illustrated in Figure 2.4 from Tsuji and Takeno’s 1965 paper, which demonstrates 

this traveling shock wave behavior and how the data from pressure transducers 

would appear at different axial locations along the combustor for, from bottom to 

top, the first (1L), second (2L), and third (3L) longitudinal modes.  

These results can be compared to the theory presented by Hefner in SP-194 

[1]. Both assume a traveling wave that would have equivalent standing wave 

characteristics. However, where Hefner states that the distorted wave shape of the 

two traveling waves cause the double peak experimentally observed, Tsuji and 

Takeno contend that the double peaks are an indication of the traveling shock 

wave reflecting from an acoustic boundary and traveling back [1,17]. 

As discussed by Harrje, shock waves with a constant period are often 

observed experimentally, but models (especially for “triggering”) avoid shock 

theory as much as possible and create linear and nonlinear periodic waves that 

qualitatively agree with experiments [1,37]. However, shock theory is incorporated 

in analytical models developed by Sirignano [46] and Mitchell, Crocco, and 

Sirignano [26]. In previous work, Sirignano derived a relationship between “β,…the 

ratio of the thermal relaxation time …to the wave travel time,” and the shock 

amplitudes and peak-to-peak amplitudes of the oscillations [46]. This work found 

that for small β values, continuous (shockless) solutions that appear as “distorted-

sinusoidal waveforms” exist, as earlier established by Crocco and Cheng, while 

shock-like solutions exist for larger β values (corresponding to shorter time lag 
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values) [25]. In later work, continuous (shockless) periodic solutions were shown to 

only be valid in close proximity to the neutral stability limit [26].  

 

Figure 2.5 Wave shapes for traveling shock-like waves. [26] 

In their 1969 paper, Mitchell et al. presented two analytical models for 

continuous (sinusoidal) and discontinuous (shock-like) solutions with and without 

Crocco’s pressure-sensitive time lag theory [26]. First, a nonlinear model for 

periodic traveling shock waves with no time lag was introduced, providing 

analytical estimations for shock velocity and shock strength. The appearance of 

these shock waves at constant location or constant time presented by Mitchell et al. 

is shown in Figure 2.5. The model anticipates the appearance of a shock 
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discontinuity followed by an exponential decay, with observed behavior changing 

based on the direction of travel. In this model, only one frequency is considered.  

 

Figure 2.6 Linear and nonlinear stability limits. [26] 

The second model presented addresses Crocco’s n-τ model, specifically 

creating a nonlinear model that supports discontinuous solutions to supplement 

Crocco’s original linear model [25,26]. Figure 2.6 demonstrates the behavior of 

these models as a function of interaction index n and extended time lag µ. 

Shockless solutions are supported near the stability limit, as earlier proved by 

Sirignano, while shock solutions are the predicted response to small perturbations 

for most other areas of the n-µ plane [26,40].  

A significant portion of shock-like theory for combustion instabilities has 

built off of the work done by Crocco’s group at Princeton University 

[25,26,37,39,40], and the idea that nonlinear and linear stability limits exist as a 
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function of n-τ to this day continues to be a critical cornerstone of combustion 

instability theory. Figure 2.7 demonstrates some of the ensuing complex analytical 

models developed from this initial work, here done by R. J. Priem in SP-194 [1].  

 

Figure 2.7 Detailed linear and nonlinear behavior. [1] 

One of the difficulties with distinguishing between shock-like behavior and 

continuous wave behavior is that shock velocities are closer to the speed of sound 

than anticipated. As explained by Bracco in SP-194, this is due to the effects of 

non-uniform axial temperature [1]. Bracco further explored this effect for both 

traveling shocks and standing acoustics in Ref. [11], working from linearized 

conservation equations. 

The contemporary opposition to Culick’s acoustic theory, Flandro et al. 

make the assertion that low amplitude standing acoustic waves grow and distort 

into shock-like disturbances [36]. Because of this traveling shock behavior, 
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unsteady combustion processes may be affected by detonation-like mechanisms, as 

earlier hypothesized by Zucrow and Osborn [16,36,38]. The main argument against 

using traditional acoustic models such as those presented by Culick is the 

assumption of irrotational acoustic waves, which may not take into account 

additional acoustic energy added by rotational processes like vortex shedding [2,36]. 

Culick’s model explicitly states that it cannot handle shock-like behavior [41]. 

Their conjectures are supported by behavior seen in solid rocket motors and work 

in the mid 1960’s by Clayton et al. at JPL on rotating detonation-like combustion 

[38,40,47,48].  In this model, nonlinear loss effects leading to limit cycle amplitude 

are entropy gain and energy loss associated with the shock front. The existence of 

harmonic content in the frequency domain is used to further support the argument 

of steep-fronted wave behavior, as the Fourier-based analysis attempts to represent 

the steep wave front. It is worth noting, though, that some of the model relies on 

the assumption that the composite steep-fronted traveling wave is made up of 

standing acoustic waves for ease of computation [36]. 

Zinn and Lores of Georgia Tech proposed the application of the Galerkin 

method for the analysis of longitudinal modes [28,29]. Their work supports analysis 

of transient AND limit cycle behavior for the change from continuous (sinusoidal)  

to discontinuous (shock-like) periodic waves, with the conclusion that most 

longitudinal instabilities result in shock-like behavior. This capability is unique, as 

generally both nonlinear and linear analyses need to be performed to separately 

model or analyze these distinct regions. This work is built off of Crocco’s linear n-τ 

model and other time lag work done at Princeton [25,26,37,39], with qualitative 

agreement between the results found and parent models, with the added ability to 

model transient behavior and more than one mode at a time. 
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2.4 Application to Current Study 

Contemporary study of longitudinal combustion instabilities in liquid rocket 

engines at Purdue University (see Ref. [4,18–22]) has integrally assumed an 

acoustics-based instability theory with traveling pressure waves that act as 

standing waves. This has led to the belief that the harmonic frequency content 

observed from experimental data analysis is authentic and tied to the behavior of 

the fundamental mode. As discussed in Sec. 1.3.1, the conclusions drawn from 

previous CVRC work has led to this current study. But as shown in Sec. 2.3, there 

is a sizable group within the combustion instability community who believe that 

for large amplitude instabilities, the harmonic frequency content observed is a 

consequence of the Fourier-based signal processing responding to a steep wave 

front as opposed to extant harmonic modes. If this can be shown to be true, the 

main objective of this study may be invalidated. Therefore, the existing theories 

and their relevance to this current study are of interest. 

The amplitude of pressure oscillations observed in the CVRC categorizes most 

of the unstable combustion as a nonlinear instability, having peak to peak 

magnitudes upwards of 45% steady state pressure. This brings in the possibility 

that shock waves may exist in the chamber and legitimizes the continued 

investigation into both the existence of harmonics and the ability to distinguish 

real harmonic signals from composite steep-fronted waves. 
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CHAPTER 3. DIGITAL SIGNAL PROCESSING METHODS 

One of the primary concerns when evaluating digital signal processing (DSP) 

techniques is how the method handles the data and what artifacts, biases, or 

irregularities the method may introduce to the results, as this directly impacts the 

reliability and repeatability of the method [49]. Other considerations include 

computational costs, time resolution, and ease of use. For detailed information on 

any of the methods discussed, see Ref. [49–52]. 

3.1 Traditional Analysis Methods for Combustion Instability 

Experimental data are often more useful in the frequency domain when 

discussing combustion instabilities. Transforming data from the time domain to the 

frequency domain can assist in identifying the spectral content (and therefore 

dominant modes) present throughout the test [49,50]. The resultant frequencies can 

then be further used to isolate the signal of each mode of interest for study of other 

instability characteristics such as amplitude and relative phase. 

3.1.1 Fourier Analysis 

The most commonly used DSP method to study instabilities at an 

experimental level is Fourier analysis. The Fourier transform assumes that a 
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complex signal can be represented by a series of sine waves of harmonic frequencies 

and various phase and amplitude, 

(ݐ)ݔ  = ܽ଴2 +෍ܯ௡ ݊ߨ2)ݏ݋ܿ ଵ݂ + ߶௡)ஶ
௡ୀଵ  (3.1)

where x is the time-dependent reconstructed signal, ௔బଶ  is the mean value of the 

signal (a.k.a. DC level), f1 is the fundamental frequency, Mn is the amplitude of the 

frequency component at nf1 (a.k.a. nth mode), and ߶௡ is the phase of the frequency 

component at nf1 [49]. A common analysis technique to transform a signal in the 

time domain into the frequency domain, the Fourier transform is only as valid as 

the assumption that the signal is made up of sinusoidal components. While several 

theories such as those presented in Sec. 2.3 refute the existence of sinusoidal waves, 

many find the Fourier method most convenient to represent the complex wave 

behavior (see Sec. 2.3). And as Zeytinoglu and Wong state, “the main motivation 

of using the Fourier method has been the need to transform the received signal into 

a spectral representation where its harmonic structure will be unveiled” [53]. 

3.1.1.1 Power Spectral Density (PSD) 

A typical analysis when studying frequency content is the Power Spectral 

Density (PSD) function, which calculates the intensity of frequencies that are 

present in a specified portion of the time-varying signal. There are three main 

methods to estimate the PSD function; only the one used by the Matlab function 

“periodogram” will be discussed, though further information on PSD analysis can 

be found in Ref. [49,50]. Matlab uses a non-parametric method that estimates the 

PSD values by the Fast Fourier Transform (FFT) of the biased autocorrelation 

sequence, given as 
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 ෠ܲ(݂) = ݐܰ∆	 อ෍ ℎ௡ݔ௡݁ି௜ଶగ௙௡ேିଵ
௡ୀ଴ อଶ , − ݐ∆12 ൏ ݂ ൑ (3.2) ݐ∆12

where Δt is the sampling interval, N is the number of points, xn is the signal being 

analyzed, and hn is the window function (in this study, a Hanning window) [50].  

Since high frequency content is the primary interest in this study, a second 

order high pass (HP) Butterworth filter at 500 Hz is applied to remove potential 

electrical noise in the signal prior to PSD analysis. As the combustion transitions 

to instability, the frequencies that are present change, so PSD analysis is applied to 

0.1 s of data once limit cycle amplitude has been reached. Figure 3.1 presents 

results of the HP filter and PSD of the unstable fixed test case under examination. 

Strong harmonics are seen up to 10L with a fundamental frequency of 1450 Hz. As 

shown by Sisco, this value corresponds closely with one of the natural acoustic 

modes of the cylindrical chamber [4]. 

 

Figure 3.1 For the unstable fixed test case, a) the HP pressure and b) PSD 

showing 1L, 2L, and 3L with a frequency resolution Δf of 6 Hz. 
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3.1.1.2 Spectrogram 

Another Fourier analysis technique, the spectrogram uses the same 

principles as the PSD function to represent the frequency content as a function of 

time. Matlab’s “spectrogram” function performs a short-time Fourier transform 

(STFT) on the data using a sliding window to provide the time-dependent Fourier 

transform results [50]. This analysis technique is especially useful when applied to 

translating tests, since the geometry of the combustor is changing over the time of 

the test. Figure 3.2 demonstrates spectrogram results for a translating test that 

starts at an oxidizer post length of 7.7 in and ends at an oxidizer post length of 3.7 

in. The color intensity is a measure of the spectral density on a logarithmic scale. 

The blue line shows the length of the oxidizer post during the test. Notice how the 

frequency content organizes as the combustion transitions to instability near Lop of 

6.1 in and returns to marginally stable combustion near Lop of 4.2 in.  

 

Figure 3.2 Spectrogram for a translating test at a) the aft end and b) the head 

end of the combustor. 
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As mentioned in Sec. 1.2.3, pressure was sampled at multiple axial locations, 

and while the PT at 14.5 in has been used in past studies, locations closer to the 

dump plane can offer additional information. For example, spectrograms of data 

taken near the injector (see Figure 3.2b) show frequency content near 12 kHz 

before and after the period of large amplitude unstable combustion, which 

corresponds to the first transverse mode (1T) of the chamber. This is not seen 

downstream at the 14.5 in location, nor in the oxidizer or fuel manifolds or inside 

the oxidizer post. It is worth noting that in the spectrograms at both locations, a 

two mode system of 1L and 2L can be seen past 12 s once the system achieves 

marginal stability, which agrees with Yu’s observations [20]. 

3.1.2 Digital Filters 

With the popularity of digital DAQ systems, digital filters become vital to 

remove system noise, exclude frequency content not of interest, and isolate a 

specific frequency range of interest. The digital filter output y(k) is related to input 

x(k) by convolution with its impulse response h(k) [50], 

(݇)ݕ  = ∑ ℎ(݈) ݇)ݔ − ݈)ஶ௟ୀିஶ (3.3)

Depending on the filter type (low pass, high pass, band pass, or band stop), 

the characteristics of the filter are defined by filter design type (i.e. Butterworth), 

cutoff frequency ωc, pass band frequencies, stop band frequencies, allowable ripple 

in the pass band Rp, allowable ripple in the stop band Rs, and filter order. An ideal 

filter acts as a “brick wall”, with a magnitude of 1 in the pass band and 0 in the 

stop band [50]. In the design of a filter, there is a trade-off between the filter order, 

the transition width, and the allowable pass band/stop band ripple [51]. The lowest 

filter order that can meet the performance requirements is most desirable due to 



39 

 

the increasing computational cost with increasing filter order [51]. Design 

considerations and filter characteristics are detailed in Ref. [49–51].  

 

Figure 3.3 Definition of non-ideal digital filter characteristics. [51] 

Some of the features of a digital filter are illustrated in Figure 3.3, where 

the pass band and stop band frequencies are normalized by the Nyquist frequency, 

fn = fs/2, where fs is the sampling frequency. A zero-phase filter, like the one in 

Figure 3.3, eliminates nonlinear phase distortion that can occur in digital filters. 

Matlab’s “filtfilt” function provides a non-causal zero-phase filter and is 

recommended to minimize or eliminate group delay (time delay of the filter as a 

function of frequency) and phase distortion [50]. 

3.1.2.1 Low/High Pass Filter 

Low and high pass filters are used to exclude frequency content above and 

below a cutoff frequency ωc, respectively [51]. A low pass filter keeps all content 

below ωc and is used to filter high frequency content such as white noise. Typical 
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characteristics of a low pass filter are illustrated in Figure 3.4. Previous 

experimental analysis by Miller utilized a low pass filter for exclusion of content 

above 25 kHz to isolate the frequency range of interest [18]. High pass filters, as 

used here, allow for the exclusion of lower frequency content such as electrical noise 

at 60 and 120 Hz. 

 

Figure 3.4 Definition of digital filter characteristics. [49] 

3.1.2.2 Band Pass Filter 

To look at a specific frequency or frequency range, a combination of low and 

high pass filters known as a band pass (BP) filter excludes content above a certain 

frequency (low pass filter) and below another frequency (high pass filter) [51]. The 

pass band is the width of the frequency range centered on the frequency of interest, 

defining the frequency content of interest. Figure 3.5 is a diagram of the 

characteristics used for the design of a digital band pass filter in Matlab. Astop1 and 

Astop2 correspond to Rs, the allowable ripple present in the stop band in dB units, in 

this study 10 dB. Apass corresponds to Rp, the allowable ripple present in the pass 

band in dB units, in this study 1 dB. The difference between Fpass1 and Fpass2 

represents the pass band width, while the difference between Fpass and Fstop defines 
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the transition width. In this study, Fpass is defined as +/- 100 Hz around the 

frequency of interest (i.e. 1L = 1450 Hz so Fpass1 = 1350 Hz and Fpass2 = 1550 Hz) 

and the transition width is 100 Hz (i.e. Fstop1 = 1250 Hz, Fstop2 = 1650 Hz). 

 

Figure 3.5 Filter characteristics used in Matlab’s FDA Toolbox. [50] 

In traditional analysis methods, band pass filters are used to decompose the 

signal into the identified Fourier components of interest. Section 4.3 discusses and 

compares several design types of digital filters, though a Butterworth filter is 

utilized for the current study based on previous analysis performed by Sisco [4]. A 

Butterworth filter is desirable when the quantitative behavior of the instability, 

such as the limit cycle amplitude, is of interest, as it has a maximally flat response 

in the pass band (i.e. negligible pass band ripple) [51]. Advantages and 

disadvantages of several filter types are further discussed in Sec. 4.3. Figure 3.6 

demonstrates the change in wave behavior perceived as a result of no filter, a high 

pass filter, and a band pass filter. 
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Figure 3.6 Comparison of a) unfiltered, b) HP filtered, and c) BP filtered 

experimental data. [21] 

3.1.3 Hilbert Transform 

The Hilbert transform decomposes an analytic signal into complex parts, 

ݔ  = ௥ݔ + ݅ ∗ ௜ (3.4)ݔ

where xr is the real part and xi is the imaginary part of the signal [50]. The 

envelope of the original signal can then be found by 

(ݐ)̂݁  = ඥݔଶ + ଶ (3.5)݅ݔ
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where x is the original data and xi is the Hilbert transformed data [50]. A built-in 

Matlab function “hilbert” provides the complex decomposition of the signal. The 

“instantaneous” amplitude, A(t), of the signal can then be found by 

(ݐ)ܣ  = |ℎ݈ܾ݅݁(3.6) |(ݔ)ݐݎ

Figure 3.7 demonstrates results from a Fourier-based Matlab routine, where the 

signal is band pass filtered around the frequency found from the PSD, then the 

Hilbert transform is applied to yield the instantaneous amplitude of the BP signal 

to decrease the number of data points under analysis. 

 

Figure 3.7 For the unstable fixed test case, a) the BP pressure of 1L and b) the 

Hilbert envelope of 1L. 

3.1.4  Statistical Noise Threshold 

As is often the case, experimental data can be difficult to process at small 

time scales on the order of 10 ms and frequencies at 1 kHz or higher that include 

system noise and ringing from high amplitude ignition events. The system noise 

appears in the BP signals, potentially obscuring the onset time of each mode, 

demonstrated in Figure 3.8. In an attempt to combat this, the standard deviation 
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of the BP signal envelope is calculated from the beginning of the data up to the 

rapid rise in oscillation amplitude. A statistical noise threshold is established, 

where 95% of the noise falls below this 2σ value. When the BP signal rises above 

the statistical threshold, it is assumed that the signal is not simply system noise. 

Onset of each mode is distinguished as the last instance when the envelope is less 

than or equal to the threshold value prior to when the limit cycle amplitude is 

reached. This statistical analysis helps to eliminate potential user bias in the 

results. 

 

Figure 3.8 System noise in BP pressure signal of 1L. 

3.1.5 Preliminary Results 

The general analytical procedure used in this Matlab routine is as follows: 

first, the raw pressure signal is run through a second order Butterworth high pass 

(HP) filter to remove low frequency noise below 150 Hz. Second, to define 

dominant frequencies in the oscillatory signal, the PSD is calculated for 0.1 s of the 

HP signal once high amplitude pressure oscillations begin. Figure 3.1 shows an 
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example of these results. Third, the raw pressure signal is run through a custom 

Butterworth band pass (BP) filter, where the pass band frequency and stop band 

frequency are specified as a 200 Hz and 400 Hz window, respectively, around the 

modal frequency, normalized by the Nyquist frequency of the signal. For ease of 

analysis, the envelope of each BP signal is found using the Matlab function 

“hilbert”, which decomposes the signal into real and imaginary parts. Figure 3.7 

demonstrates that the magnitude of the Hilbert transformed data provides a good 

approximation of the instantaneous amplitude of the input time signal [50]. 

 

Figure 3.9 For an unstable fixed test case, traditional instability analysis of a) 

1L, b) 2L, and c) 3L with d) a comparison of 1L, 2L and 3L. 
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When applied to the first three modes, the Fourier method presented in Sec. 

3.1.1 is repeatable across different test cases and test series. Figure 3.9 

demonstrates the results for the unstable fixed test that will be analyzed with 

every method reviewed. Onset time, growth rate, and goodness of fit are calculated 

for the fundamental frequency and the first two harmonic frequencies. From these 

results, it can be seen that the growth behavior of 2L and 3L are similar enough as 

to be nearly indistinguishable, with calculated onset times less than 1 ms apart. 

Additionally, the oscillation amplitude grows more rapidly for each subsequent 

mode. Assuming that a fixed energy source is exciting and sustaining the 

instability, modes with a higher frequency would traverse past the energy source 

more often and have energy added more frequently, so once the mode is excited it 

would grow faster than a mode with a lower frequency. Also, while the time of 

modal excitation is different (2 to 4 ms apart), the time each mode reaches limit 

cycle amplitude (end of rapid growth) is within 1 ms of the others. 

More interest is given to translating test cases. The modal behavior when 

the combustion transitions from stable to unstable and vice versa while the 

oxidizer post length changes is particularly interesting and unique to the CVRC. 

While the instability seen in the fixed test cases may have been triggered by 

vestigial ignition events (a subcritical bifurcation), onset of instability in 

translating tests occurs more than one second after main ignition. As opposed to 

triggered instability, the translating test results present self-excited longitudinal 

instability based on combustor geometry.  

Figure 3.10 illustrates the results from a translating test case. Growth 

behavior of each mode appears to be different than that seen in the unstable fixed 

test case in Figure 3.9. While the rate of oscillation amplitude growth is still higher 
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for each higher mode, the growth rates themselves are much less rapid than in the 

unstable fixed case in Figure 3.9. Yet for both fixed and translating cases, the time 

each mode reaches limit cycle amplitude is within 1 ms of the others. Additionally, 

the behavior of 2L and 3L are still comparable in the variable case but a 

distinguishable time difference exists between the onset and growth of each mode 

on the order of 5 ms. 

 

Figure 3.10 For a translating test case, traditional instability analysis of a) 1L, b) 

2L, and c) 3L with d) a comparison of 1L, 2L and 3L. 
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It should be noted that in the fixed case the oxidizer post length (Lop) is 

5.1 in (13 cm), a highly unstable geometric configuration as shown in previous 

testing and analysis. The translating test case transitions to unstable combustion 

at an oxidizer post length near 6.25 in (15.9 cm) as the inlet choke point translates 

from an oxidizer post length of 7.83 to 3.80 in (19.9 to 9.7 cm) over the course of 

two seconds, with unstable combustion at oxidizer post lengths from 6.25 to 4.75 in 

(15.9 to 12.1 cm). Thus, comparison of modal onset behavior would be more 

appropriate with fixed test cases at or near the geometry at onset of instability for 

the translating test case. 

A manufactured signal, similar to the ones used to validate the oscillation 

decrement results in Sec. 3.2.1, was employed to verify the reliability of results 

from this preliminary analysis. Of particular concern was whether or not the HP 

and BP filters remove relevant information from the pressure signal, as the HP-

filtered pressure data are used to find the dominant frequencies while the BP-

filtered pressure data are used to find the onset time and growth rate for each 

mode. The envelopes of BP signals filtered around frequencies identified from the 

PSD were compared to the original signals that made up the composite signal. For 

sine waves, this analysis closely represents the original signal. However, if the 

component signal(s) is a steep-fronted wave, this analysis fails to correctly capture 

the component wave behavior.  

Whether or not harmonic content exists in the manufactured signal, this 

analysis method indicated the presence of powerful harmonic frequencies for steep 

waves. Analytical models and experimental work presented in Sec. 2.2 support the 

assumption that in the case of longitudinal oscillations with harmonic modal 

content, the individual harmonic waves are continuous and can be treated as 
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sinusoidal. In this application, then, the method applied in this section appears to 

be both repeatable and believable across the three test cases analyzed. If, however, 

the individual harmonic wave behavior is discontinuous (non-sinusoidal), this 

signal processing method may need to be re-evaluated. Specifically, for a steep-

fronted wave, the question remains whether or not the artificial harmonic signal 

can be separated from the existent modal behavior. This question is further 

explored in Sec. 4.1. 

Several other observations were made in the analysis of the manufactured 

signal. In cases with and without harmonic content for a steep-fronted wave, the 

false harmonic signals did not follow a pattern with respect to the order in which 

each mode grows or the growth rate of each mode, unlike that seen in these 

preliminary results. Additionally, due to its slow roll-off property, it appears that 

the Butterworth filter fails to correctly represent the growth behavior of the modal 

oscillation for a steep-fronted wave, especially in the case of rapid growth to limit 

cycle amplitude, as seen here. This may indicate the need for different digital filter 

types to be investigated, as is done in Sec. 4.3.1. 

3.2 Alternative Digital Signal Processing Methods 

While Fourier-based analysis is most commonly used in combustion 

instability analysis, that does not necessarily mean it is the best DSP method for 

this study focused on harmonic content. As such, several alternative DSP methods 

were reviewed, including oscillation decrement, wavelet analysis, and an 

Instantaneous Frequency (IF) analysis in the PC Signal Analysis software. 
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3.2.1 Oscillation Decrement (Signal Autocorrelation) 

The oscillation decrement, previously used in Russian engine development 

and gas turbine work, is a passive method to estimate system damping using 

dynamic pressure signals [4,14]. A non-dimensional damping factor, the oscillation 

decrement, ߜ௡T, is calculated using the decay rate of the autocorrelation of the 

pressure signal. 

(߬)௡ܥ  = ݁ି఍೙ఠ෥೙ఛ ∗ cos( ෥߱௡߬) = ݁ିఋ೙ఛ ∗ cos( ෥߱௡߬) (3.7)

Cn is the autocorrelation of the pressure signal, τ is time lag, ߞ௡ is a damping 

coefficient, ෥߱௡ is the adjusted angular frequency, ߜ௡ is the damping factor, and T is 

the period of the oscillation [4]. Following past Russian subscale work, Sisco 

applied the oscillation decrement to determine when the combustor transitions to 

unstable combustion [4]. See Ref. [4] for further discussion of the oscillation 

decrement and results obtained looking at 1L. This analysis was applied to an 

unstable fixed test and the results are shown in Figure 3.11a. 

 

Figure 3.11 The oscillation decrement analysis results for a) an unstable fixed 

test case and b) 3L of a manufactured signal. 
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It can be seen from the plots in Figure 3.11a that the oscillation decrement 

analysis produces results open to misinterpretation. If the beginning of unstable 

combustion is indicated by decreasing decrement values, Figure 3.11a suggests 

onset occurs before 9.2 s for 1L, near 9.2 s for 2L, and between 9.2 to 9.205 s for 3L. 

However, without the normalized pressure data superimposed it could also have 

been concluded that onset occurs between 9.21 to 9.215 s for 1L, before 9.21 s for 

2L, and before 9.21 s for 3L. Additionally, it is unclear whether the beginning of 

instability should be interpreted from a valley or peak in the decrement value. 

Manufactured signals were fed into the same analytical code. Three 

sinusoidal signals of frequency on the same order of magnitude as the first three 

modes were created to grow non-linearly at different “onset” times. The fake 

signals were combined along with low frequency system noise at 10% of the 

amplitude of the main signal before being processed through the oscillation 

decrement code. The procedure was repeated with the three signals at the same 

onset time. In the fake signal analysis, artifacts from the lower frequencies appear 

in the results of higher harmonic frequencies. This is illustrated in Figure 3.11b, as 

the onset times of the first (at 1 ms) and second signal (at 1.05 ms) dominate the 

decrement values calculated for the third signal (at 1.1 ms). 

The fake 1L signal analysis reveals that onset is indicated by a minimum 

decrement value prior to rapid pressure amplitude growth, but for the fake 3L 

signal, onset is indicated by a maximum decrement value prior to amplitude 

growth. It is possible that either the criterion for instability changes for each mode 

or the results are only viable for the first mode. Another significant observation 

from the fake signal analysis is that for sinusoidal wave shapes, the decrement 

values tend to display a sinusoidal behavior, creating false points of high and low 
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damping. The uncertainty as to whether or not a result is from the data or an 

artifact of the analysis makes the oscillation decrement an unsuitable method for 

this application. 

3.2.2 Wavelet Transformations 

Wavelet analysis is one of the most convenient techniques in practice, as 

Matlab has an extensive Wavelet GUI and separate Wavelet Toolbox, documented 

through User Guides and reference material [50,52]. Similar to Fourier analysis, the 

general concept behind wavelet analysis takes a defined shape chosen by the user 

and attempts to fit a frequency-based hierarchical family of these shapes specified 

by scale values to a time-domain signal, transforming it into the frequency-domain 

[49,52]. Examples of typical wavelet shapes are shown in Figure 3.12. The output 

represents how well each wavelet within the family fits to the signal over time.  

 

Figure 3.12 Typical wavelet shape families. [54] 
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One of the advantages of wavelet analysis is the ability to reconstruct the 

entire signal from the decomposition. Results from an analytical technique that 

manipulates the original signal to the point where the raw data cannot be 

distinguished may need to be reconstructed in order to verify that any 

interpretations are based on the data rather than the data processing. 

 

Figure 3.13 CWT decomposition results of an unstable fixed test from Matlab’s 

Wavelet GUI.  

The outputs from the Matlab tools previously mentioned are difficult to 

interpret for novice users, as results are presented in terms of scale families as 

opposed to frequency. Figure 3.13 provides an example of the continuous wavelet 

transform (CWT) decomposition results of the unstable fixed test from Matlab. 

The decomposed signal is shown in its real and imaginary parts, accompanied by 
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the moduli and angles for the scales, each of which represents one of the frequency-

sized wavelets in the wavelet family applied [52]. Here, strong components are 

observed near scale 114 from 5500 data points to the end of the signal. This 

indicates when the frequency content organizes as resonant modes are excited, 

though the frequency and time indicated in Figure 3.13 would need to be back 

calculated based on the inputs given to the GUI and the relationship between scale 

values and frequency. 

 

Figure 3.14 For an unstable fixed test case, scalogram of formatted CWT results. 

Using a routine developed by Kittel to format the Matlab toolbox output 

into time-frequency information allows for the individual analysis of each mode, as 

a frequency range of interest (here 0.5 to 5 kHz) can be specified within the 

program [55,56]. An example of these outputs is presented in Figure 3.14, showing 

results for the first three modes. The strength of the 1L components washes out the 

results for the two harmonic modes seen, so it would be better to limit the 
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frequency range of interest around each modal frequency being studied. Here, a 

Gabor wavelet of shape factor Gs = 10 is used. 

The wavelet analysis is appealing due to its ability to track multiple 

potentially non-sinusoidal frequencies over time, but two issues remain. First, the 

user chooses the type of wavelet to be applied, making a priori knowledge of the 

wave shape very desirable for the most accurate results. Second, results are highly 

dependent on the input settings as the shape factor directly affects the time-

frequency resolution and the input settings may need to be changed on a test case 

or test series basis [55,56]. For example, changing the shape factor applied in 

Figure 3.14 could move the perceived onset of instability of a modal frequency by 

up to 20 ms. This makes comparison between tests more difficult if the same 

analysis (with the same bias) is not performed on each set of data, otherwise the 

onset information could be obscured due to user input settings. Furthermore, as 

the shape factor approaches infinity, the wavelet transform begins to act like a 

Fast Fourier Transform (FFT) [55,56]. 

It should be noted that for test environments with low signal to noise ratio, 

wavelet analysis has an advantage over traditional techniques as it can better 

distinguish signal from noise, but in the CVRC data, signal to noise ratio does not 

tend to be an issue [20–22,30,49,52,55,56]. In addition, Matlab’s Wavelet GUI 

requires substantial computational power beyond the capability of many desktop 

PC’s. However, while wavelet analysis has a basis in traditional Fourier analysis, it 

is not confined to a sine wave assumption and may be more appropriate for the 

steep-fronted waveform observed in unstable combustion pressure signals. For 

sinusoidal components waves, there does not appear to be a significant advantage 

for using wavelet analysis over the more common Fourier transforms in this 
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application. However, if it can be shown that the wave behavior is more shock-like 

and/or steep-fronted, wavelet analysis may have an advantage with the ability to 

apply steep-fronted wavelet shapes to the dynamic pressure signal. 

3.2.3 Matched Filtering 

Since the frequencies of the acoustic modes are known, a matched filter 

technique was attempted. The matched filter technique assumes that since each 

frequency occurs and reaches sinusoidal-like limit cycle behavior, each band pass 

filtered signal can be additionally filtered with something akin to a step function 

looking for a long (on the order of 1 s) sine wave with modal frequency [49]. 

However, the frequency content of the pressure signal is unorganized until the 

modes are fully excited. The transition time can be on the order of 100 ms with 

non-sinusoidal and/or nonlinear behavior during that period.  

 

Figure 3.15 Distortion of pressure waveform at onset of instability. [28] 
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As discussed by Zinn and Lores, experimental investigations have shown 

that the pressure oscillations initially appear as continuous sinusoidal waves but 

quickly distort into discontinuous shock-like waves, with this discontinuous 

behavior fully established by the time limit cycle amplitude is reached [28,29]. The 

transient and limit cycle behavior of the pressure oscillations are shown in Figure 

3.15 from their 1971 paper [28]. For a purely sinusoidal signal, such as one tested 

for reference, the matched filter technique produces useful results, but in this 

application, any output results do not provide the desired onset information. 

Additional information on the matched filter technique can be found in Ref [49]. 

3.2.4 PC Signal Analysis Software 

The program PC Signal Analysis from AI Signal Research is a dynamic 

signal processing software package designed for engineering applications such as 

turbine rotor vibration analysis or static rocket test analysis [57,58]. It has an 

extensive GUI with more specific data processing abilities than Matlab, especially 

in the case of real and noisy experimental data. However, the program works as a 

black box, and there is limited software documentation on unique capabilities such 

as the Instantaneous Frequency (IF) Tracking Analysis used in this study. Because 

of this, results from IF Analysis were exported to Matlab for any continued 

examination. 

3.2.4.1 Instantaneous Amplitude Tracking 

In the case of amplitude from IF Analysis, the program looks for the most 

“dominant” frequency near each user-specified frequency (in this case, the resonant 

modal frequencies) and calculates the amplitude of the signal as a function of time. 
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Figure 3.16 presents a comparison of the results from a) IF Analysis and b) the 

Fourier analysis presented in Sec. 3.1. As the comparison demonstrates, the results 

from the two signal processing methods are comparable, though the results from IF 

Analysis appear to be less affected by signal noise than those obtained using the 

Matlab routine. 

 

Figure 3.16 For an unstable fixed test case, instability analysis of 1L from a) PC 

Signal Analysis and b) traditional Fourier analysis. 

However, when comparing the results for 2L and 3L in Figure 3.9d and 

Figure 3.17, IF Analysis provides significantly different information than the 

Matlab routine. It may be possible that for the harmonic modes, the large 

amplitude response seen near 9.3 s is a DSP artifact from the rapid onset of 1L, 

while the true excitation for 2L begins around 9.55 s and 9.75 s for 3L. This would 

give an onset time difference on the order of 100 ms, two orders of magnitude 

larger than other DSP methods have shown. Further investigation into this 

potentially significant difference is performed in Sec. 4.2. 
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Figure 3.17 For an unstable fixed test case, amplitude from IF Analysis of 1L, 2L, 

and 3L. 

3.2.4.2 Instantaneous Frequency Tracking 

The ability to handle experimental data is a significant advantage that PC 

Signal Analysis software offers, especially in the case of the frequency tracking from 

IF Analysis, as traditional analysis methods used in Matlab such as the Hilbert 

transform are sensitive to noise from experimental data and cannot provide the 

same information without potentially large errors. It was speculated that frequency 

coherence could be an indication of the excitation of the unstable mode. To test 

this, PC Signal Analysis’s IF Analysis is applied to the signal, looking at a 200Hz 

pass band centered on the 1L frequency.  

Preliminary analysis using the IF Analysis for 1L provides the results shown 

in Figure 3.18 for the unstable fixed test. While it appears that the standard 

deviation of the frequency significantly decreases during unstable combustion, this 

does not occur until approximately 0.5 s after the onset times found using the 
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other DSP methods presented, including the amplitude results from IF Analysis in 

Sec. 3.2.4.1. Taking a closer look at the frequency coherence of 1L, 2L, and 3L, the 

IF Analysis shows identical variance in normalized frequency once limit cycle 

amplitude is reached, seen in Figure 3.18b. It is unclear as to whether or not this 

supports or refutes the existence of harmonics. 

 

Figure 3.18 For an unstable fixed test, frequency from IF Analysis of a) 1L and b) 

1L, 2L, and 3L. 

3.2.4.3 Instantaneous Phase Tracking 

Another unique ability of PC Signal Analysis is phase tracking from IF 

Analysis, shown in Figure 3.19. While the results do not provide quantitative 

information, it is interesting to note the sequential organization of phase per mode. 

From Figure 3.18, spectral organization occurs around 9.25 s for 1L, 9.5 s for 2L, 

and 9.75 s for 3L. From Figure 3.17, this corresponds to the times at which each 

mode reaches limit cycle. 
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Figure 3.19 For an unstable fixed test case, phase from IF Analysis of 1L, 2L, 

and 3L. 

3.2.4.4 Summary of Results 

Now the three main results from IF Analysis are shown for each mode of 

interest. The frequency shift at onset of instability, the amplitude of the pressure 

oscillations, and the instantaneous phase are presented in Figure 3.20 – Figure 3.22. 

From these comparisons, a correlation between these characteristics can be seen, 

though perhaps not quantified. It is also worth noting that IF Analysis results do 

not match Matlab’s Fourier analysis results as covered in Sec. 3.1.5 for 2L and 3L, 

as the point of onset for the harmonic modes does not occur immediately after the 

fundamental excitation.  

Closer inspection of the raw data shows that the steep-fronted wave 

behavior exists by 9.2 s, the onset time of 1L. Yet if the results from PC Signal 

Analysis are valid, this opens up the possibility that 1L may be nonlinearly excited, 
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causing a distortion in the continuous waveform prior to the excitation of harmonic 

modes. Then, the steep-fronted wave behavior would not be attributable to 

harmonic acoustics. 

 

Figure 3.20 Summary of IF Analysis results of 1L for an unstable fixed test case. 

 

Figure 3.21 Summary of IF Analysis results of 2L for an unstable fixed test case. 
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Figure 3.22 Summary of IF Analysis results of 3L for an unstable fixed test case. 

The results presented here are unique from the other DSP methods and may 

or may not be distinguishing the extant modal behavior from the dynamic pressure 

signal. If this is the case, then IF Analysis becomes highly desirable for this study. 

However, application of “black box” software to a research problem is difficult 

when a full understanding of the process is not readily available. If more extensive 

documentation and tutorials become available for the software and specifically its 

unique signal processing modules, this method may become the most suitable 

method for this application, but as of right now, the benefits over the Matlab 

routine previously discussed must be significant to justify the time investment 

needed for confident use. As with the Wavelet GUI, IF Analysis requires 

substantial computational power beyond the capability of many desktop PC’s. 

That, combined with the current need to export results to Matlab for further 

analysis, presents potential difficulties when applied to this research problem. 
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3.3 Initial Conclusions from DSP Review 

In the case of high frequency digital signal processing on experimental 

pressure data obtained from CVRC instability tests, several signal processing 

techniques were reviewed: Fourier transformations with Butterworth filtering, 

oscillation decrement, wavelet transformation, matched filtering, and IF Analysis 

from the software PC Signal Analysis.  

If it can be shown that the harmonic frequencies are not artifacts of the 

signal processing method, traditional Fourier analysis provides rational results up 

to the third modal frequency and offers a sufficient time resolution for this 

application when combined with band pass filters and statistical noise thresholds. 

Other methods may provide less noisy results but require substantial 

computational power. 

Oscillation decrement has proven to be unsuitable for the study of multiple 

frequencies, especially in the case of sine waves. Artifacts from lower frequencies 

appear in the results of higher frequencies, potentially obscuring relevant 

information. Time resolution is also a concern.  

Wavelet transformations offer potential advantages over traditional signal 

processing methods, but are most relevant when the data has a low signal to noise 

ratio, which is not the case in this application. It is a complex method that 

requires significant computational power, while the user-specified wavelet type and 

shape factor strongly impact the results; specifically, wavelet shape factor directly 

affects the time-frequency resolution.  

IF Analysis from the software PC Signal Analysis offers similar results with 

less sensitivity to noise near onset of each modal frequency but requires significant 
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computational power. Due to the general “black-box” nature of the software 

routines, results were exported into Matlab for further analysis. While powerful, 

the software has a steep learning curve and requires significant direct interaction 

with the company as a result of limited documentation. If it can be shown that the 

distinguishing behavior for 2L and 3L observed in Sec. 3.2.4.1 is consistent across 

several tests and/or the instantaneous phase and frequency provide relevant 

information to further study the modal relationships, IF Analysis may become the 

more attractive signal processing method. 

3.4 Initial Observations 

Preliminary results were presented in Secs. 3.1.5 and 3.2.4.4 for the onset of 

instability for the first three longitudinal modes. Initial observations discussed here 

were attained from the preliminary results from the Fourier-based Matlab routine. 

For both fixed and translating tests, the fundamental mode goes unstable first, 

followed sequentially by the second and third mode. The time difference in both 

cases is significantly smaller between the second and third mode than between the 

first and second mode, on the order of 1 ms versus 10 ms. It is possible that some 

of the harmonic behavior observed here can be attributed to Fourier artifacts from 

the steep-fronted wave. Higher modes demonstrate faster growth rates than lower 

modes which could be attributed to a fixed energy source in the longitudinal path 

traveled by the resonant modes.  

Comparison between the fixed and translating tests showed a slower growth 

rate for the translating case, though this might be due to the onset occurring at an 

oxidizer post length closer to the stability limit of the combustor while the fixed 

case is performed at a highly unstable condition. Another conceivable difference 
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between the two test cases may be the source leading to high amplitude pressure 

oscillations. In the case of the fixed test, transition to instability occurs within 5 

ms of main ignition, where the high-pressure short-duration ignition event could 

potentially act as a trigger for sustained pressure oscillations. In the case of the 

translating test, transition to instability occurs nearly 1 s into a 4 s hot fire 

duration, so self-excited oscillations are more likely to be present. 
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CHAPTER 4. COMPARISON AND ASSESSMENT OF METHODS 

The initial analysis performed and presented in Chapter 3 raised several questions, 

prompting supplementary investigation into the traditional Fourier analysis, PC 

Signal’s IF Analysis, the digital filters used, and the existence of harmonic modes. 

4.1 Steep-fronted Wave Analysis 

Traditional Fourier analysis makes the assumption that the signal under 

consideration is sinusoidal or composed of sinusoidal component signals [49]. 

However, many prevailing theories discussed in Sec. 2.3 suggest that nonlinear 

effects cause a compression of the pressure wave followed by an expansion leading 

to shock-like behavior and that this is responsible for the non-sinusoidal wave 

behavior as opposed to the excitation of harmonic frequencies. This proposed 

behavior brings in to question the validity of traditional analysis methods that are 

based on a sinusoidal assumption. Specifically, Gibb’s phenomenon states that 

When a function is approximated by a partial sum of a Fourier 

series, there will be a significant error in the vicinity of a 

discontinuity, no matter how many terms are used for the partial 

sum [49].  

If a true discontinuity exists, the Fourier analysis would indicate strong artificial 

harmonics in an attempt to represent the steep-fronted wave behavior seen. 
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4.1.1 Initial Study 

To investigate whether or not Fourier artifacts are affecting the results from 

this study, a steep-fronted wave is manufactured using an exponential growth 

followed by an exponential decay, as illustrated in Figure 4.1. The time between 

peaks corresponds to the fundamental frequency observed (on the order of 1.5 kHz), 

while the times of growth and decay are based on experimental data, here 3 ms to 

maximum amplitude and 5 ms to minimum amplitude for the fundamental 

frequency. The waveform then exponentially grows until it reaches a limit cycle. 

 

Figure 4.1 Design procedure for making steep-fronted waves. 
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This baseline study exhibited strong harmonics, shown in Figure 4.2b, for a 

single steep-fronted waveform while only the fundamental frequency was observed 

for a single sine waveform, shown in Figure 4.2a. These initial results prompted a 

more detailed investigation.  

 

Figure 4.2 PSD results from manufactured signal analysis of a) sine waveform 

and b) steep-fronted waveform, both with Δf = 6 Hz. 

4.1.2 Design 

Five waveforms were manufactured to investigate how the traditional 

analysis would present the original signal for different variations of steep waves 

and sine waves with and without harmonics. Each manufactured waveform is then 

run through the same design process, illustrated in Figure 4.3. The signal begins to 

grow exponentially at a constant onset time of 0.05 s, overshoots at tmax, before 

exponentially decaying to the limit cycle amplitude by tlimit of 0.1 s. The growth 

and decay rates, α1 and α2, are determined by the value of tmax, as shown in Figure 

4.3. In the cases presented, tmax occurs at 0.055 s for each manufactured signal. 
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This gives a growth rate of α1=183.3 [1/s] and decay rate of α2 = -10.2 [1/s] that 

are on the order of magnitude as observed experimentally. The growing and 

decaying signal is combined with a 10% noise level with high and low frequency 

content. Then the traditional analysis method put forth in Sec. 3.1 is applied to 

each manufactured signal.  

 

Figure 4.3 Design procedure of manufactured signal. 

4.1.3  Comparison of Manufactured Signal Results 

As previously described in Sec. 4.1.2, five signals were manufactured to 

investigate how the traditional analysis would interpret different variations of a 

steep wave versus a sine wave, with harmonics. The baseline waveform composed 

of a variation of steep and sine waves are processed through the same code to 
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create a signal like that shown in Figure 4.3. As best as possible, the waveforms are 

normalized and amplitude and phase differences are consistent between 1L and its 

harmonics based on empirical observations. 

Several results to pay attention to are the frequencies and powers from the 

PSD plots, the calculated amplitude of each mode, and the calculated growth rate 

of each mode. In the case of signals without harmonic components, any harmonic 

frequencies shown are exclusively DSP artifacts. Regardless, the growth rate and 

onset time for each mode should be the same, since they make up components of a 

single waveform that grows and reaches limit cycle amplitude. Table 4.1 

summarizes the design and results for the five signals. 

Table 4.1 Overview of the five manufactured signals. 

 1L Harmonics Actual α Calculated α

Signal #1 Steep N/A 183.3 [1/s] 272 [1/s] 

Signal #2 Steep 1L Steep 183.3 [1/s] 277 [1/s] 

Signal #3 Steep 2L and 3L Steep 183.3 [1/s] 272 [1/s] 

Signal #4 Steep 2L and 3L Sine 183.3 [1/s] 330 [1/s] 

Signal #5 Sine 2L – 7L Sine 183.3 [1/s] 285 [1/s] 

4.1.3.1 Signal #1 Single Steep Wave 

The common speculation is that the pressure waveform in longitudinal 

combustion instabilities is either a traveling shock-like wave (see Sec.2.3) or a 

compilation of harmonic sine waves (see Sec.2.2). A single steep wave is 

constructed based on experimental data, with an exponential rise time to 

maximum amplitude followed by an exponential fall to minimum amplitude as 
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discussed previously. The final signal with the growing waveform and system noise 

at both low and high frequencies is shown in Figure 4.4a. The traditional analysis 

presented in Sec. 3.1 is applied to the manufactured signal to yield the dominant 

frequencies as given by the PSD and the components of the signal as band pass 

filtered around the first three dominant frequencies. 

 

Figure 4.4 For a single steep-fronted wave, a) the manufactured signal and      

b) PSD showing the first three dominant modes detected, Δf = 6 Hz. 

Figure 4.4b depicts the PSD results for Signal #1 which exhibit the 

presence of strong harmonics of decreasing intensity, though no harmonics are truly 

present in the original waveform. The results from the traditional analysis can be 

seen in Figure 4.5. What is concerning about these results is not only that strong 

harmonics appear, but also that the relative amplitude for the first three 

frequencies is similar to that seen in experimental results. 

Figure 4.5a displays the components of the composite waveform, which in 

the case of Signal #1 is simply a single steep-fronted wave at 1250 Hz. Figure 4.5b, 

c, and d show the results from the traditional analysis for the first three frequencies 
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detected on the PSD in Figure 4.4b, which in this case corresponds to 1L and two 

artificial harmonic modes. All three analyses approximately show the true time of 

onset (constant at 0.05 s) and reach maximum amplitude at approximately the 

right time (in these cases, 0.055 s).  

 

Figure 4.5 For a single steep-fronted wave, a) waveform components and 

traditional analysis results of calculated b) 1L, c) 2L, and d) 3L.  
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It is also important to note that all three calculate a similar growth rate, 

since there are not multiple signals with multiple growth rates. Interestingly, 

though the signal was subject to a purely exponential growth from 0.05 s to 0.055 s, 

the analysis is unable to correctly capture this behavior and overpredicts the 

growth rate, illustrated in Table 4.1. 

4.1.3.2 Signal #2 Several Steep Waves 

The work in Sec. 4.1.3.1 legitimizes any concern that the harmonics 

observed in the CVRC to date may in fact be Fourier artifacts. However, Signal 

#1 does not accurately reflect the steep-fronted pressure oscillations seen in the 

CVRC data. Figure 4.7 is a sample of the unfiltered pressure data for reference, 

where small-amplitude peaks can be seen out of phase with the primary waveform.  

 

Figure 4.6 For several steep-fronted waves, a) the manufactured signal and      

b) PSD showing the first three dominant modes detected, Δf = 6 Hz. 

Because of this, three steep-fronted waves at the 1L frequency of 1250 Hz 

were combined, with the second and third waves having amplitudes and phases 
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based on experimental observations from the CVRC. For a 1L amplitude of 1, the 

second wave’s amplitude is then 0.35 and the third’s is 0.2. These values are later 

used in Signals #3-5 for the relative amplitudes of 2L and 3L, respectively. The 

final signal with the composite steep-fronted waves is shown in Figure 4.6a, while 

the waveform components are illustrated in Figure 4.8a for reference. 

 

Figure 4.7 Sample from an unstable fixed test of unfiltered pressure data during 

limit cycle instability. 

Compare the spectral intensities calculated for Signal #1 and Signal #2 in 

Figure 4.4 and Figure 4.6. The calculated intensity for the artificial 2L increases 

along with its apparent growth rate and amplitude, shown in Figure 4.8c. However, 

the extracted 1L and artificial 3L are largely unaffected by the additional out-of-

11.4 11.401 11.402 11.403 11.404 11.405
-50

0

50

100

Time, s

P
re

ss
u

re
, p

si



76 

 

phase steep waves. This can also be seen when comparing Figure 4.5b with Figure 

4.8b. 

 

Figure 4.8 For several steep-fronted wave, a) waveform components and 

traditional analysis results of calculated b) 1L, c) 2L, and d) 3L. 
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4.1.3.3 Signal #3 Steep 1L with Steep Harmonics 

Tsuji and Takeno in their work with longitudinal combustion instability, 

discussed in Sec. 2.3, experimentally observed a traveling shock-like wave at the 

fundamental frequency accompanied by traveling shock-like waves at harmonic 

frequencies [17]. Signal #3 works from these findings, with a steep-fronted wave at 

the 1L frequency of 1250 Hz combined with a steep-fronted wave at the 2L 

frequency of 2500 Hz and a steep-fronted wave at the 3L frequency of 3750 Hz. As 

in Signal #2, the amplitudes and phases of the 2L and 3L waves relative to the 1L 

wave are based on experimental observations from the CVRC.  

 

Figure 4.9 For a steep-fronted wave with steep-fronted harmonics, a) the 

manufactured signal and b) PSD showing the first three dominant modes detected, 

Δf = 6 Hz. 

Figure 4.9a shows the final manufactured signal and Figure 4.10a shows the 

components of the waveform for reference. Any difference in amplitude between 

Signal #3 and the other manufactured signals is due to the normalization process 
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used on each waveform, so amplitude values from other signals should not be 

directly compared here.  

 

Figure 4.10 For a steep-fronted wave with steep-fronted harmonics, a) waveform 

components and traditional analysis results of calculated b) 1L, c) 2L, and d) 3L. 

Again, looking at Figure 4.10, the traditional analysis is able to correctly 

approximate the onset time for all three modes, though the time to maximum 
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amplitude is incorrect, possibly indicating a slow response from the Butterworth 

filter. The growth rates are consistent with previous results, with the exception of 

3L, which calculates a faster modal growth. 

4.1.3.4 Signal #4 Steep 1L with Sine Harmonics 

Zinn and Lores in their work on establishing a nonlinear model for axial 

combustion instability problems raise the idea that while 1L may be discontinuous, 

this does not necessarily preclude the harmonic mode(s) from being continuous [28].  

 

Figure 4.11 For a steep-fronted wave with sine harmonics, a) manufactured 

signal and b) PSD showing the first three dominant modes detected, Δf = 6 Hz. 

Though their work largely supports the shock-like wave theory (see Sec. 2.3), 

it introduces an interesting possibility. From this, the waveform in Signal #4 was 

developed, using a steep-fronted wave at 1L frequency of 1250 Hz combined with a 

sine wave at 2L frequency of 2500 Hz and a sine wave at 3L frequency of 3750 Hz. 

Again, the amplitudes and phases of the 2L and 3L waves relative to the 1L wave 
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are based on experimental observations from the CVRC. The resultant 

manufactured wave for Signal #4 is shown in Figure 4.11a.  

 

Figure 4.12 For a steep-fronted wave with sine harmonics, a) waveform 

components and traditional analysis results of calculated b) 1L, c) 2L, and d) 3L. 

Several observations can be made from the results for Signal #4 in Figure 

4.12. First, this is the first manufactured signal in which the traditional analysis is 
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able to more accurately determine the amplitude of 3L, as shown in Figure 4.12d. 

This raises the possibility that an effect of artificial modal information may be the 

underrepresentation of higher modal amplitudes. The limit cycle amplitude of 1L 

shown in Figure 4.12b is below the expected value of 0.95, with a calculated 

growth rate nearly double the actual value. 

Finally, the amplitude of 2L shown in Figure 4.12c is nearly double the 

expected value of 0.33, which may indicate that signal components most likely 

intended for 1L or 3L have been contributed to 2L. These results are the least like 

those from experimental data overall, despite the more accurate representation of 

the contribution from 3L. 

4.1.3.5 Signal #5 Sine 1L with Sine Harmonics 

 

Figure 4.13 For a sine wave with sine harmonics, a) the manufactured signal and 

b) PSD showing the first three dominant modes detected, Δf = 6 Hz. 
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The acoustic wave theory, presented in Sec. 2.2, assumes the steep-fronted 

pressure oscillations observed during limit cycle are due to the sinusoidal harmonic 

modes that are excited. Signal #5 represents this idea, with a sinusoidal wave at 

the 1L frequency of 1250 Hz combined with sine waves up to 7L.  

 

Figure 4.14 For a sine wave with sine harmonics, a) waveform components and 

traditional analysis results of calculated b) 1L. c) 2L, and d) 3L. 
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Again, the amplitudes and phases of the 2L and 3L waves relative to the 1L 

wave are based on experimental observations from the CVRC while the higher 

harmonics are assumed to be in phase with 1L with 10% relative amplitude, as 

seen in Figure 4.14a.  

The results from the traditional analysis seen in Figure 4.14 show a good 

agreement between calculated growth rates for 1L, 2L, and 3L as expected, though 

again the calculated growth rate is much higher than the actual growth rate used 

to manufacture the composite signal. Additionally, the relative amplitudes of the 

modes agree well with experimental observations, yet that is to be expected as 

Signal #5 is best suited to Fourier-based analysis. However, the issue remains that 

the results from the traditional analysis method are markedly similar for Signal #1, 

a single steep-fronted wave, and Signal #5, a sine wave with sinusoidal harmonic 

waves. 

4.1.3.6 Summary 

Sections 4.1.3.1 to 4.1.3.5 present results from the traditional analysis 

method outlined in Sec. 3.1 for five manufactured signals. One conclusion from this 

work is that significantly different growth rates for each mode may be contributed 

to that mode’s transient behavior. If the harmonic content in experimental results 

was only an artifact of a steep-fronted 1L, the calculated growth rates would 

appear to be very similar. In addition, a pattern was observed in Sec. 3.1.5 of an 

increasing growth rate with increasing mode number. Even in the results that 

display dissimilar growth rates, such as for Signal #4, no such pattern exists in the 

manufactured signals. Furthermore, Sec. 3.1.5 also exhibits a pattern of sequential 

excitation of modes (i.e. 1L precedes 2L which precedes 3L). As depicted in Figure 
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4.15, no such pattern is seen in any of the manufactured signals analyzed. This too 

supports the idea that the transient behavior observed is not solely a product of 

Fourier analytical errors.  

 

Figure 4.15 Example of artificial harmonic behavior relative to the real signal. 

However, as mentioned in Sec. 4.1.3.5, in terms of amplitude and intensity of 

harmonic modes, the results of Signal #1, a single steep-fronted wave, are 

qualitatively indistinguishable from the results of Signal #5, a sine wave with 

sinusoidal harmonic waves. This means that while some of the qualitative 

characteristics observed from traditional analysis are authentic, this method is 

unable to properly separate extant harmonic modal behavior from DSP artifacts. 

So while the traditional Fourier-based method is useful in the study of unstable 

combustion characteristics, it alone may not fully capture the dynamic behavior in 

the experiment.  
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4.2 PC Signal Analysis, Revisited 

The IF analysis from the software package PC Signal Analysis provides initial 

results that agree with traditional analysis for the fundamental frequency but 

disagree for the harmonic frequencies, as illustrated in Sec. 3.2.4.1. From the initial 

results, it appears that a significant time lag (on the order of 100 ms) exists 

between the true onset of 1L and its subsequent harmonics. If the results from IF 

Analysis prove to be valid, this may be a viable method to distinguish DSP 

artifacts from true modal signal.  

4.2.1 Application to Experimental Data 

The discrepancy between the results from traditional analysis and the IF 

Analysis is unexpected. As previously discussed, the software PC Signal Analysis 

does not offer user guides or manuals for IF Analysis, so many settings were found 

in a trial and error method or based on previous analytical work. However, because 

of the inconsistency in calculated transient modal behavior, these settings were 

reevaluated. The IF Analysis presented here represents a Finite Impulse Response 

(FIR) filter, and the difference between results in the transient region may be due 

to filter order. To further investigate this, the unstable fixed test case is processed 

with IF Analysis again, this time with a filter order lower than the pass band 

width. The effect of the filter order is illustrated in Figure 4.16, where the original 

results from Sec. 3.2.4 are shown in Figure 4.16a and results with a lower filter 

order are shown in Figure 4.16b.  The lower filter order is better able to capture 

the transient modal behavior. This may be due to the number of data points 

needed by higher filter orders. 
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Figure 4.16 For unstable fixed test MSFC3, IF Analysis of 1L, 2L, and 3L at 

settings a) FIR order = 8193 and b) FIR order  = 599 . 

Since the results in Figure 4.16b are consistent with results from traditional 

Fourier-based analysis in Sec. 3.1.5, three other unstable fixed tests were processed 

through PC Signal’s IF Analysis to determine whether or not this behavior is 

consistent across test cases or if the original results in Sec. 3.2.4 are more accurate. 

The test cases here come from two separate test series and have slightly different 

configurations, with MSFC tests at Lop = 5.1 in and VIB tests at Lop = 5.85 in. 

All results are taken from the 14.5 in PT location.  

Figure 4.17 demonstrates that the other unstable fixed tests from the two 

test series did not show any remarkable difference between times of onset for the 

first three modes. For all unstable fixed tests considered, results from PC Signal 

Analysis’s IF Analysis are comparable to traditional analytical results when the 

FIR filter order is smaller than the pass band.  



87 

 

 

Figure 4.17 IF Analysis of 1L, 2L, and 3L for four unstable fixed tests. 

One of the considerations important for the translating tests is the pass 

band width. In the fixed test cases, the modal frequencies do not change 

significantly, so a pass band width of 200 Hz is more than sufficient. However, in 

the translating test cases, the frequencies of the higher modes change significantly 

as the internal geometry changes, as previously shown in Figure 3.2. For example, 

the 3L frequency changes from 3900 Hz up to 4400 Hz, seen in Figure 4.21. 

Because of this, the pass band width requirement increases, so results presented 
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have a 600 Hz pass band width to properly capture the modal behavior as a 

function of time and geometry. 

Further investigations into several translating tests across test series showed 

consistent behavior for translating tests as well, with an indiscernible time lag 

between the excitation of the first three modes and a noticeable time lag between 

the first three modes as each mode decays from higher mode to lower mode. Seen 

in Figure 4.18, as the internal geometry changes to an unstable condition, the 

modes are excited in rapid succession. Then, as the internal geometry transitions to 

a stable condition, the modes decay in reverse order until a marginally stable limit 

cycle behavior is reached. Once marginally stable combustion is achieved, the 

system acts more as a two-mode system with 1L and 2L, supporting Yu’s original 

findings reviewed in Sec. 1.2.3 [20].  

 

Figure 4.18 IF Analysis of 1L, 2L, and 3L for two translating tests. 

Finally, in Sec. 3.2.4.2 and 3.2.4.3, frequency and phase tracking from IF 

Analysis were explored in an attempt to find alternative indicators of the onset of 
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unstable combustion besides modal amplitude. As applied to test case MSFC3, 

there appears to be a qualitative relationship between the increasing amplitude and 

coherence of the signal at each modal frequency, with a decreasing variance in 

frequency tied to increasing oscillation amplitude. To continue investigating 

possible connections between frequency coherence and the excitation of modes, IF 

Analysis looking at the frequency, amplitude, and phase was performed on the 

translating test case MSFC2a for the first three modes. The summary of these 

results for the first three modes are shown in Figure 4.19, Figure 4.20, and Figure 

4.21 with the objective of establishing potential relationships between the 

frequency, amplitude, and/or phase within in each mode. As previously mentioned, 

the results for the translating test from IF Analysis have a 600 Hz pass band and 

FIR filter order of 599.  

 

Figure 4.19 Summary of PC Signal Analysis results of 1L for a translating test. 
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Figure 4.20 Summary of PC Signal Analysis results of 2L for a translating test. 

 

Figure 4.21 Summary of PC Signal Analysis results of 3L for a translating test. 

Again, while the results from IF Analysis appear to provide the same 

qualitative information based on frequency coherence and oscillation amplitude, 
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these results does not provide a viable quantitative method to establish the time of 

onset for each mode. Additionally, the phase tracking does not provide useful 

information for the current study. It is worth reiterating that the results obtained 

from the IF Analysis for the frequency and phase far exceed those from Matlab’s 

Hilbert function, demonstrating yet again the advantage PC Signal Analysis has 

when handling experimental data.  

4.3 Comparison of Filter Types 

The traditional analysis presented in Sec. 3.1 builds off work done by Sisco 

[4], Feldman [22], and Hardi et al. [59], utilizing a custom Butterworth filter to 

digitally separate the data into spectral components. However, as Sisco said, the 

Butterworth filter is most appropriate when the limit cycle amplitude is of most 

interest, as it has a maximally flat pass band but a slow “roll-off”, and it may not 

respond quickly enough when studying the transition region, as is done in the 

current study. To investigate the effect of filter type, three digital IIR filters and 

the results from IF Analysis are compared using both experimental data and the 

manufactured signals laid out in Sec. 4.1.3.  

4.3.1 Overview of Digital Filters 

There are two main classifications for filters: infinite impulse response (IIR) 

and finite impulse response (FIR), with FIR filters used in IF Analysis and IIR 

filters used in traditional Fourier-based analysis [51]. There are several types of IIR 

filters that are optimized for application, based on emphasis placed on the pass 

band or stop band, as previously mentioned in Sec. 3.1.2. There are several classic 

filter types, including Butterworth, Chebyshev Types I and II, and Elliptic. 
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Butterworth and Chebyshev Types I and II are compared and applied to the 

experimental data and manufactured signals to evaluate applicability in this study. 

More information on digital filter design can be found in Ref. [49–51]. 

 

Figure 4.22 User interface of Matlab’s Filter Design and Analysis toolbox. 

Matlab offers a Filter Design and Analysis (FDA) toolbox, the interface of 

which is shown in Figure 4.22. The GUI designs the lowest order filter to meet the 

input requirements. It allows for analysis of the filter response in terms 

characteristics such as group delay (time delay as a function of frequency), phase 

response, and magnitude of the filter as a function of frequency [50]. For a band 

pass IIR filter, users have the option to match exactly the pass band or the stop 
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band, though this specification appears to only affect the filter design for a 

Chebyshev Type II filter by adding a slight DC offset to the filtered data. Pass 

bands in this study have a 600 Hz width centered on the modal frequency and stop 

bands have a 100 Hz width on either side of the pass band. Allowable ripple in the 

pass band is restricted to 1 dB while allowable ripple in the stop band is restricted 

to 10 dB. For each filter design, the only input changed on the FDA tool was the 

IIR Design Method (filter type). 

4.3.1.1 Butterworth Filter 

The Butterworth filter type is frequently used, especially in the study of 

combustion instabilities, for its maximally flat response. This allows for the study 

of the quantitative behavior of each mode of interest. Sisco specifically chose a 

Butterworth-type filter to process previous experimental data as his main interest 

was limit-cycle behavior as opposed to Rosen’s more qualitative study of the 

transition region (see Sec. 1.2) [4,21]. It may not be suitable when the time-varying 

behavior of the signal is of more interest, as the Butterworth filter has a slow “roll-

off” and does not respond quickly to amplitude changes. General filter 

characteristics for the Butterworth filter type can be seen in Figure 4.23a. 

4.3.1.2 Chebyshev Filter 

The Chebyshev filter is similar to the Butterworth filter with some notable 

exceptions. The Chebyshev filter has a faster response than the Butterworth filter 

and can often use a lower filter order to achieve the same design objectives, which 

decreases the computational cost [51]. There are two types of Chebyshev filter: 

Type I minimizes the absolute difference between the ideal and actual frequency 
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response over the entire pass band by equally distributing the allowable pass band 

ripple Rp, creating a maximally flat stop band response [50]. Type II is the exact 

opposite, as it equally distributes the allowable stop band ripple Rs to create a 

maximally flat pass band response [50]. The key characteristic differences between 

a Butterworth, Chebyshev Type I, and Chebyshev Type II are qualitatively 

illustrated in Figure 4.23. In this study, the transition from pass band to stop band, 

a major characteristic difference between Butterworth and Chebyshev filters, may 

be important. 

 

Figure 4.23 Filter characteristics for a) Butterworth type and b) Chebyshev 

Types I and II. [49] 

4.3.2 Application to Manufactured Signals 

The five manufactured signals from Sec. 4.1.3 are analyzed to perform side 

by side comparisons of the three IIR filter types of interest along with the FIR-
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based IF Analysis in PC Signal Analysis. Each signal is subject to the same filter 

(or program setting); that is, the design characteristics for each filter type do not 

change between signals. The IIR filters have a 600 Hz pass band width, 100 Hz 

stop band width, 1 dB allowable ripple in the pass band, and 10 dB allowable 

ripple in the stop band. The FIR-based IF Analysis has a 600 Hz pass band width, 

599 FIR filter order, and decimation value of 32. 

The objective when comparing these filter types using the manufactured 

signals is to determine which filter(s) are able to best capture the transient 

behavior of the signal as well as the limit cycle amplitude, though the transient 

behavior is more important. Figure 4.24 and Figure 4.25 include an overlay of the 

final manufactured signal. Since some of the signals have real harmonics of non-

negligible amplitudes, the displayed amplitude for the filtered 1L results will not 

match the total amplitude of the signal. 

Figure 4.24 presents the results for Signal #1, a single steep-fronted wave. 

It appears that PC Signal Analysis’ results are the least able to capture the 

transient behavior of the signal, while the Butterworth filter and Chebyshev Type 

II filter offer comparable results both for the transient behavior and the total 

amplitude. The Chebyshev Type I filter also does a better job at reproducing the 

transient behavior than PC Signal Analysis, but the limit cycle amplitude does not 

agree with the other filter types’ results and as expected provides a lower 

amplitude value. On closer inspection, it was found that the transient behavior and 

limit cycle amplitude calculated by three of the filter options corresponds to the 

amplitude of an equivalent sine wave. 

The results for Signals #2-4 are visually indistinguishable from Signal #1. 

In all cases, the Butterworth type and Chebyshev Type II were most able to 
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capture the transient behavior of the manufactured signal, though none fully 

exemplified the transient behavior of a steep-fronted 1L. This is most likely due to 

the same reason the resultant amplitude does not reflect the original amplitude, as 

the Fourier-based methods calculate the maximum amplitude for a sine wave at 

the 1L frequency rather than the actual steep maximum. In addition, Chebyshev 

Type I results from Signals #2-4 showed a lower amplitude than the other filter 

types, and IF Analysis results were unable to accurate represent the exponential 

growth of each signal. 

 

Figure 4.24 Filter comparisons of 1L for a single steep-fronted wave. 

Results for Signal #5 seen in Figure 4.25 did not differ from the other 

manufactured signals, even though the fundamental frequency’s waveform was 

sinusoidal instead of steep-fronted. The three IIR filter types were better able to 

extract and match the 1L transient behavior, though again the FIR-based IF 

Analysis’s gradual rise to maximum amplitude obscured the true transient behavior. 
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And yet, IF Analysis along with the Butterworth type and Chebyshev Type II 

filter properly reproduced the 1L amplitude. The Chebyshev Type I filter again 

produced an inaccurately lower amplitude. 

 

Figure 4.25 Filter comparison of 1L for a sine wave with sine harmonics. 

In summary, based on application to the manufactured signals, the 

Butterworth filter type and the Chebyshev Type II filter are best able to represent 

both the transient behavior and amplitude of the mode in question, though both 

struggle when analyzing steep-fronted waves. The Chebyshev Type I filter is also 

able to represent the transient behavior of the mode but cannot properly extract 

the modal amplitude. And IF Analysis is able to represent the component 

amplitude but fails to quickly respond to the rapid amplitude change during the 

transition. 
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4.3.3 Application to Experimental Data 

While the analysis of manufactured signals aids in the characterization of 

DSP techniques, oftentimes these techniques are more or less capable when applied 

to the more erratic experimental data. This is the case with Chebyshev Type II 

filters, as will be shown. Like before, the features to focus on are the transient 

behavior and the resultant limit cycle amplitude from each filter. The results from 

Sec. 4.3.2 suggest that the Butterworth type, Chebyshev Type II, and IF Analysis 

are able to accurately represent the amplitude of the mode while the Butterworth 

type and Chebyshev Types I and II are able to capture the transient behavior of 

the mode. Two experimental cases are examined: a fixed unstable test (MSFC3) 

and a translating test (MSFC2a).  

In the fixed test case (MSFC3), the three IIR filters and FIR-based IF 

Analysis are applied for the first three modes, with results from Butterworth, 

Chebyshev Type I, and IF Analysis presented. Figure 4.26, Figure 4.27, and Figure 

4.28 show the good agreement between the traditional Fourier analysis and the IF 

Analysis. Results from IF Analysis do not appear as sensitive to the variability of 

experimental data and do not show the hard start main ignition event as the 

traditional analysis results do. In terms of limit cycle amplitude, results from IF 

Analysis and the Butterworth filter show strong agreement, while the Chebyshev 

Type I filter shows a slightly lower amplitude, especially for higher harmonic 

modes. 
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Figure 4.26 Filter comparison of 1L for an unstable fixed test case. 

 

Figure 4.27 Filter comparison of 2L for an unstable fixed test case. 
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Figure 4.28 Filter comparison of 3L for an unstable fixed test case. 

Section 4.2.1 reviewed the consistent modal behavior seen in translating test 

cases when processed through IF Analysis. This behavior agrees well with Yu’s 

previous CVRC work covered in Sec. 1.2.3, and traditional analysis methods 

(mainly digital filtering) yield similar results, the extent of which is illustrated in 

Figure 4.29 – Figure 4.31 [20]. As discussed in Sec. 4.2.1, the frequency of each 

mode changes considerably during a translating test. The pass band width of all 

filters applied, both IIR and FIR, is 600 Hz for this reason. 

In the study of 1L in a translating test, IF Analysis, Butterworth filters, 

and Chebyshev Type I filters display comparable limit cycle amplitude and 

transient behavior from stable to unstable combustion, seen in Figure 4.29. The 

growth and decay behavior presented by each filter type is indistinguishable from 

the others. The limit cycle amplitudes calculated from the Butterworth filter and 
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IF Analysis are essentially identical, though again the Chebyshev Type I filter 

underestimates this value. 

 

Figure 4.29 Filter comparison of 1L for a translating test case. 

 

Figure 4.30 Filter comparison of 2L for a translating test case. 



102 

 

 

Figure 4.31 Filter comparison of 3L for a translating test case. 

The results for 2L and 3L in Figure 4.30 and Figure 4.31 show even closer 

agreement between the IIR and FIR filters under consideration. IF Analysis again 

provides less noisy results, but the transient behavior and limit cycle amplitude are 

otherwise indistinguishable from those seen in the Butterworth and Chebyshev 

Type I results. Figure 4.30 and Figure 4.31 again suggest that IF Analysis provides 

results as good as those from the traditional analysis method but does not offer 

substantial advantages over the traditional analysis method enough to justify the 

use of IF Analysis over what is normally done. 

From the work in Sec. 4.3.2 with the manufactured signals, the Chebyshev 

Type II filter appears to be a viable candidate as it displays similar responses to 

the Butterworth type filter. However, as alluded to earlier in this section, the 

Chebyshev Type II filter does not handle experimental data well. All results from 

this filter type when applied to experimental data include a significant DC offset 
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(upwards of 50% maximum amplitude) and the variation in peak amplitude from 

cycle to cycle is unsuited to the Hilbert transformation as it presents an “envelope” 

of the signal with a standard deviation on the order of 20% amplitude.  

4.3.4 Summary of Results 

Digital filter types are more or less appropriate based on the application. In 

the current study, the main interest was accurately representing the transient 

behavior as each mode is excited with a secondary interest in limit cycle amplitude. 

For this, the Butterworth filter type, the Chebyshev Type I and II filter, and FIR-

based IF Analysis are surveyed. Section 4.3.2 determined that all of the filter types 

under consideration are sensitive to steep waves, as the filters are unable to 

accurately represent the sharp peaks of the maximum amplitude in steep-fronted 

waveforms. The three IIR filters under consideration were all shown to be sufficient 

in detecting the transient behavior of the modes, while the IF Analysis results 

inaccurately expressed a more gradual rise in amplitude. As for the eventual limit 

cycle amplitude, IF Analysis along with the Butterworth type and Chebyshev Type 

II filters consistently produced reasonable limit cycle amplitudes that matched each 

other. The Chebyshev Type I filter systematically underestimated the true value. 

Section 4.3.3 looked at the applicability to the CVRC’s experimental data for both 

an unstable fixed test case and a translating test case.  

Results were for the most part consistent with Sec. 4.3.2, with some notable 

exceptions. Results from the Chebyshev Type II filter were unusable for 

experimental data due to its sensitivity to noisy data. The IIR filters and the FIR-

based IF analysis provided indistinguishable results for the translating test case, 
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while for the fixed test case the transient behavior is the same for all filters but the 

Chebyshev Type I filter provides lower limit cycle amplitude results. 

At this time, the Butterworth type filter does not exhibit gross inaccuracies 

in representing the modal behavior when compared to other digital filter types, and 

results from this filter type are treated as reasonable preliminary results. 

Additionally, IF Analysis does not appear to provide a significant advantage over 

traditional analysis methods. Because of the “black-box” nature of the DSP 

method, lack of adequate documentation, and guess-and-check specification of 

settings, IF Analysis from the software PC Signal Analysis does not appear to be a 

better alternative to traditional Fourier-based analysis.  

4.4 Existence of Harmonics 

At this point, evidence both for and against the existence of harmonics has 

been presented. Section 4.1 has shown that distorted wave shapes may produce 

strong harmonic artifacts in Fourier-based analysis, and Sec. 4.1.3.6 has shown that 

the sequential and organized behavior of the fundamental mode and its harmonics 

cannot be attributed to Fourier artifacts alone. However, there are other 

characteristics of the experimentally observed harmonics that further support the 

idea that harmonic modes truly exist.  

4.4.1 Standing Wave Behavior 

In both acoustic wave theory and shock-like wave theory (see 

Ch.CHAPTER 2), longitudinal combustion instabilities are often treated as 

standing acoustic waves. Tsuji and Takeno justify representing shock-like waves 

with equivalent standing waves because of the shock reflections experimentally 
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observed at locations corresponding to standing wave nodes, seen in Figure 2.4 [17]. 

Hefner represents two distorted traveling acoustic waves as an equivalent standing 

wave on account the negating effect on observed amplitude for identical waves 

traveling in opposite directions, shown in Figure 2.2 [1]. Both of these works 

support the existence of harmonics, though one makes the assumption of shock-like 

1L AND shock-like harmonics. A main difference is the expectation for constant 

amplitude versus axial location from Tsuji and Takeno, while Hefner assumes the 

amplitude will depend on the axial position relative to the pressure nodes and 

antinodes [1,17]. 

Figure 4.32, Figure 4.33, and Figure 4.34 demonstrate the classical acoustic 

wave behavior of a standing wave in a closed-closed tube for the first three 

longitudinal modes. The gold stars indicate the axial location of pressure nodes for 

each longitudinal mode, the location of minimum amplitude pressure oscillations 

for the corresponding mode. For 1L, a single pressure node exists at 7.5 in along 

the axial length of the combustor (see Figure 4.32), two pressure nodes for 2L at 

3.75 in and 11.25 in (see Figure 4.33), and three pressure nodes for 3L at 2.5in, 7.5 

in, and 12.5 in (see Figure 4.34). All three modes also display a pressure antinode 

(maximum value) at either end of the combustor. Mode shape analysis from the 

LEE program has produced similar information for CVRC test cases [20,22,32]. For 

a standing acoustic wave, it is expected that pressure oscillations of a given mode 

will have low to no amplitude near one of its pressure nodes. Conversely, near a 

pressure antinode, pressure oscillations of a given mode should show a maximum 

amplitude.  
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Figure 4.32 Standing wave behavior of 1L in a closed-closed tube. 

 

Figure 4.33 Standing wave behavior of 2L in a closed-closed tube. 

 

Figure 4.34 Standing wave behavior of 3L in a closed-closed tube. 
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Figure 4.35 PSD results of an unstable fixed test case at four PT locations. 

This behavior is most noticeable in the PSD plots for an unstable test. 

Figure 4.35a and Figure 4.35d show that at axial locations corresponding to 

pressure antinodes for the first three modes, the intensities calculated correspond to 

the respective behavior in Sec. 4.1. However, at an axial location near the pressure 

node for 2L (see Figure 4.35b), the calculated intensity of that frequency decreases 

while the other two modes are unaffected. Similarly, at an axial location 

corresponding to the pressure node for 3L (which is near the 2L node), the third 

mode is nearly indistinguishable from the noise, while the intensity of the second 

mode is less than at the antinode locations (see Figure 4.35c). This variance of 
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amplitude for specific modes based on axial location is also demonstrated in Figure 

4.16. At the 3.5 in PT location, the amplitude of 2L is barely detectable. The other 

two modes are not as affected by the proximity to the 2L pressure node, and all 

three modes display significant amplitudes at the other two PT locations, which 

correspond to pressure antinodes for all three modes.  

Moreover, phase relationships between data acquired on either side of a 

pressure node can support or refute standing wave behavior. For example, in the 

case of the third longitudinal mode, a pressure node exists at the 2.5 in axial 

location. Previously shown in Figure 1.3, high frequency pressure data is recorded 

at the 1.5 in and 3.5 in axial locations on the CVRC. As these PTs are equidistant 

from the 3L pressure node, one would expect the BP filtered 3L components from 

each location to be 180o out of phase. Figure 4.36 confirms that this behavior exists 

in unstable test cases in the CVRC and supports the existence of harmonic modes 

during unstable combustion. 

 

Figure 4.36 Phase relationship of 3L BP results on the side of the 3L node. 
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4.4.2 POD/DMD Optical Analysis 

A secondary path to study the CVRC’s combustion dynamics is optical 

analysis, especially since the CVRC is able to replace the first 5 in of the 

combustor with a quartz tube for optical access. Previous work on the CVRC by 

Rosen [21], Feldman [22] and Hardi et al. [59] utilized this optical access to obtain 

OH* and CH* chemiluminescence data to study the relationship between pressure 

oscillations and heat addition for both stable and unstable test cases. Two of the 

analysis techniques applied to the optical data are Proper Orthogonal 

Decomposition (POD) and Dynamic Mode Decomposition (DMD) [59]. Both 

techniques decompose the time-varying images into modal components. POD 

modes do not necessarily correspond to the longitudinal modes under discussion 

and may in fact include several frequencies. DMD, however, is able to break down 

the optical information by frequency [59].  

In both POD and DMD results, strong harmonic frequencies are observed in 

unstable test cases. These techniques are not dependent on a sinusoidal assumption 

and it can be assumed that the harmonic content detected is not artificial. 

Unfortunately, POD and DMD are not viable options for the study of the 

transition region for the fundamental and harmonic modes, as these procedures are 

best applied during limit cycle operation. More information on POD and DMD 

analysis and results from CVRC experimental data can be found in Ref. [59]. 
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CHAPTER 5.  DISCUSSION 

5.1 Distinguishing Real Harmonic Signal from DSP Artifacts 

The primary concern with this study has been the harmonic modal behavior 

of longitudinal resonant combustion in the CVRC. However, as explained in Sec. 

4.1, if at least some of the attributes of the unstable combustion are truly 

discontinuous, the transient behavior of the harmonic modes may be obscured by 

DSP artifacts as a consequence of a non-sinusoidal 1L. From the analysis in Secs. 

4.1.3 and 4.2, it is clear that both traditional Fourier analysis methods and IF 

Analysis from the software PC Signal Analysis are sensitive to the sinusoidal 

assumption and may provide results that include DSP artifacts. In fact, most of 

the DSP methods reviewed require a continuous (sinusoidal) assumption, making 

them susceptible to the appearance of harmonic artifacts.  

Section 4.1.3 shows that qualitative behavior of the harmonic modes can be 

observed using the DSP methods reviewed including traditional Fourier analysis, 

but the objective here was to establish a relationship that is also dependent on 

quantitative information such as the number of cycles between modal excitation. 

From the current investigation, it appears that DSP artifacts obscure the 

relevant information to formulate such a relationship. One of the DSP methods not 

confined by this assumption is wavelet analysis. Though highly sensitive to user 

inputs, wavelet analysis may be less likely to display DSP artifacts if steep-fronted 
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wavelet shapes like the Daubechies wavelet are employed. Regardless, until the 

issue of DSP artifacts can be resolved, studying harmonic behavior in the CVRC 

will be ineffective. 

5.2 Comparison of Fixed vs. Translating Tests 

5.2.1 Linear vs. Nonlinear Onset 

As discussed by Yu, the onset of instability during translating tests begins 

in the linear region and transitions to the nonlinear region as the amplitude 

increases and harmonic modes are excited [20]. However, Sec. 3.1.5 introduces the 

idea that fixed tests may experience a triggering event (subcritical bifurcation) as a 

result of the short duration high amplitude ignition events. The source of pressure 

oscillations can largely affect the transient behavior of the mode(s) as it grows to 

limit cycle amplitude. As the main concern in the current study is the transient 

behavior of the fundamental and harmonic modes, significant differences at the 

onset of instability could make comparison between fixed and translating tests 

illogical as the results may be characterizing two distinctly different processes. In 

addition, unstable fixed test cases produce a wider variation in behavior than 

translating tests. While translating tests may shift to unstable combustion at 

different Lop lengths, the qualitative behavior is consistent between test cases and 

test series.  

More recent work with the CVRC strives to eliminate the hard start 

ignition events seen in most experimental data to date. If this can be achieved, the 

instabilities seen in fixed test cases may then be attributed to self-excited 
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instabilities as they are in the translating tests. Accomplishing this would make 

direct comparisons between test types more reasonable. 

5.2.2 Stability Characteristics at Onset 

Sec. 3.1.5 also touches on the physical differences at the time of instability 

onset for the fixed and translating tests, namely the difference in oxidizer post 

lengths at the time of transition from stable to unstable combustion. The internal 

geometry of the combustor can impact variables such as the characteristic time lag 

τ, and as introduced in Sec. 2.3 and illustrated in Figure 2.6 and Figure 2.7, the n 

and τ values of the combustor represent different stability regions. For example, 

near the stability limits, a change in τ could move the combustor into the linear or 

nonlinear stability region. At this time, it is believed that as the oxidizer post 

length increases, the value of τ decreases while the value of n is most likely 

unchanged [31]. So, different Lop values could create different stability 

environments in the combustor. In the results presented in Sec. 3.1.5, the oxidizer 

post length at the time of excitation was 5.1 in for the fixed test and 6.25 in for the 

translating test. Again, this opens up the possibility that the combustion starts in 

different stability regions for fixed and translating tests, and direct comparison 

between the two at this time may be unproductive. 

To date, the CVRC fixed test cases have been performed at Lop values 

corresponding to a stable configuration at 7.8 in, an unstable configuration at 5.1 

in, and a marginally stable configuration at 3.9 in. These test cases have served the 

needs of CFD model validations, but for the current study, fixed test cases at Lop 

values corresponding to the transition regions in translating tests would be much 

more relevant. If test cases at these translating transitional configurations occur, 



113 

 

direct comparison between fixed and translating test cases wouldn’t be 

unreasonable. Additionally, the limited number of unstable fixed tests could make 

side by side quantitative comparisons difficult when the differences in Lop may be 

changing the stability behavior at onset. 

5.3 Isolation of Harmonic Pressure Signal 

A key way to confirm or deny the existence of harmonic modes would be to 

isolate the harmonic pressure signal. One way to do this would be to place a 

pressure transducer at the axial location corresponding to a pressure node for the 

fundamental frequency. Section 4.4.1 identifies this location as the midpoint of the 

combustor length, in this study at the 7.5 in location. The midpoint corresponds to 

a pressure node for 1L and 3L and a pressure antinode for 2L, as previous 

illustrated in Figure 4.32 – Figure 4.34. Then, the dynamic pressure signal recorded 

at this location could be mainly attributed to a harmonic mode, in this case 2L, 

supporting the existence of harmonic modes in longitudinal combustion instabilities.  

Until the harmonic pressure component(s) can be isolated, analysis efforts 

along the lines of the current study may continue to be ineffectual, since at this 

time all PT locations are dominated by 1L. 
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CHAPTER 6. CONCLUSION 

The current study started with the intention to establish a heuristic 

relationship between the excitation of the fundamental mode and the consequent 

excitation of higher harmonic modes for longitudinal combustion instabilities in 

liquid rocket engines. During this study, sizable issues with the traditional analysis 

results became apparent (namely the existence of harmonic artifacts in Fourier-

based analyses for discontinuous waveforms), requiring a major digression from the 

original intent. Several DSP methods were tested, with Fourier-based analysis and 

IF Analysis from the software PC Signal Analysis explored in more detail. While a 

couple DSP methods have been conclusively eliminated, the remainder have the 

potential to provide relevant modal information. 

Further assessment of IF Analysis and components of the traditional Fourier-

based analysis provided mixed results. It was shown that the components used in 

the traditional analysis presented are reasonably suited to the study of modal 

behavior in combustion instabilities when compared to alternative options. 

However, deficiencies were also exposed, particularly the inability to correctly 

interpret amplitude information from sharp peaks in a waveform. Continued use of 

IF Analysis showed the sensitivity of the results to filter settings like pass band 

width and FIR filter order. What was originally thought to be a potential ability of 

IF Analysis to distinguish between DSP artifacts and real modal behavior proved  
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to be the result of non-optimal settings. The traditional Fourier-based analysis 

results closely match results from IF Analysis and bring in to question whether or 

not IF Analysis is worth using. Both methods have been shown to be very sensitive 

to the sinusoidal assumption.  

6.1 Harmonics Exist 

At the conclusion of the current study, it has been shown that harmonic 

modes do exist in the CVRC. Behavioral patterns observed in Sec. 3.1.5 were 

shown to be independent of Fourier artifacts in Sec. 4.1.3, in particular the 

sequential excitation of modes and the increasing growth rate with increasing mode 

number. An independent modal decomposition analysis of optical data from the 

CVRC further validated the existence of harmonic modes during unstable 

combustion.  

6.2 Artifacts of Harmonics Exist 

Unfortunately, at the conclusion of the current study, it has also been shown 

that artifacts from DSP methods do appear in the current results for harmonic 

modes. At this time, it is unclear how to distinguish between artifacts and real 

details of harmonic modal behavior. Until a procedure can be established to 

identify and remove the data artifacts, it cannot be stated with certainty that the 

observed harmonic behavior is a result of the combustion instability characteristics 

instead of the DSP method. 
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6.3 Evaluation of Signal Processing Methods 

A number of DSP methods for high frequency applications were tested and 

assessed in the current study. The main abilities desired from a DSP method for 

this application were a fine time resolution on the order of 1 ms, protection against 

user bias, consistency between runs, reasonable computational requirements of both 

the user and the computer, and ability to distinguish real harmonic signal 

components from noise and/or data artifacts.  

The oscillation decrement, a form of signal autocorrelation analysis, is one of 

the DSP methods eliminated during this study. Previously used by the Russian 

space agency and more recently by Sisco as an indicator of instantaneous 

combustor damping levels, application of the oscillation decrement to the 

experimental CVRC data showed an inability to handle multiple frequencies, 

especially sinusoidal waveforms [4]. Data artifacts from lower modes would appear 

in the results of higher modes, and it was unclear if the indication of instability 

onset changed for different frequencies. Additionally, the time scale required for 

comparison between modes was not available through the oscillation decrement. 

While fitting for general characterization of a combustor, the oscillation decrement 

is not a suitable DSP method when comparing modes. 

Another DSP method that was quickly eliminated from consideration was 

matched filtering. Originally pursued because of the a priori knowledge of the 

frequencies of interest, matched filtering is similar to a brick wall filter that 

searches for when the input signal matches the specified signal. However, due to 

the distortion of the waveform during the transition to unstable combustion, 

matched filtering is inappropriate for this application.  
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A recent buzzword in the aerospace community, wavelet analysis has the 

potential to provide useful information about harmonic modal behavior, especially 

in the case of discontinuous waveforms. However, this method is highly sensitive to 

user-defined wavelet characteristics such as wavelet shape and shape factor. 

Wavelet analysis requires more computational power than the other methods 

reviewed and has the steepest learning curve. Until more analysis using steep-

fronted wavelets have been performed, the appropriateness of wavelet analysis for 

the current application cannot be explicitly stated. Should future analysis provide 

similar results to those presented in the current study, wavelet analysis may not be 

worth the additional effort. However, the ability to differentiate between or 

completely eliminate data artifacts from harmonic modal behavior would justify 

the use of this DSP method. 

Traditional Fourier-based analysis was not completely disqualified in the 

current study. While it was proven that results from Fourier-based analysis include 

data artifacts, it was also shown that qualitative behavior of the harmonic modes is 

distinguishable through this DSP method. In essence, traditional Fourier-based 

analysis as has been applied to CVRC experimental data to date provides useful 

information in the study of harmonic modes, but the results should not be used 

alone. Supplemental DSP methods that could better provide quantitative 

information would be more appropriate in the current study. 

The IF Analysis from the software package PC Signal Analysis has also not 

been completely discounted. At its core a Fourier-based analysis, the IF Analysis 

provides results nearly identical to those from the traditional DSP method. 

However, IF Analysis is better able to handle experimental data and can produce 

frequency and phase information that Matlab’s routine is unable to provide. 
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Additionally, the capabilities of this signal processing software have yet to be fully 

explored. One roadblock to the continued use of this software is the lack of 

documentation and steep learning curve. Further analysis may need to be done 

before completely ruling out PC Signal Analysis as a viable method to study 

harmonic behavior, especially if it can be shown that frequency and/or phase 

information is relevant. 

6.4 Future Tasks 

The CVRC is an active experiment at Purdue University, offering the chance 

for future experimental and analytical efforts. The main tasks that would most 

benefit the continuation of the current study are the addition of a PT at the 7.5 in 

location corresponding to a 1L pressure node, the elimination of hard start ignition 

events, and the execution of fixed test cases at Lop corresponding to transition 

length in translating tests. These tasks, however, are wholly experimental and 

time-dependent on others.  

A task that can be done immediately is the continued exploration of wavelet 

analysis, testing and comparing different wavelet shapes and shape factors. A good 

comparison might look at the calculated onset times for each mode as a function of 

shape factor to see how much impact user defined settings may have on results. 

This would be a non-trivial task, and any efforts in this direction should consider 

continued use of David Kittel’s Matlab routine [55,56]. An essential portion of this 

task will involve modification of the routine to accommodate alternative wavelet 

shapes and the development of criteria to evaluate how suitable the shape(s) may 

be to this study.  
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An additional analytical task would be continued fake signal analysis, with 

the variation from the work presented in Sec. 4.1 being the staggered onset of 

harmonic modes. For example, instead of creating a composite waveform and then 

exponentially growing this waveform, individual components can each 

exponentially grow to the relative amplitude previously used and may begin at a 

different time than the 1L component. This may help to distinguish the behavior of 

extant harmonic signal if the artificial harmonics appear with the onset of 1L while 

the real modal behavior appears at known later times. Plus, direct comparisons can 

be made between the filtered results and the original component signals. And fake 

signal analysis of signals with an exponential decay could aid in the interpretation 

of translating test data. 

Finally, once real harmonic signal can be distinguished from Fourier artifacts, 

analytical efforts can work toward heuristic relationships between the onset of the 

fundamental mode and higher harmonics. 
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