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ABSTRACT

Henderson, Ryan O. MSAA, Purdue University, December 2014. Crossflow Transition
at Mach 6 on a Cone at Low Angles of Attack. Major Professor: Steven P. Schneider.

Experiments on a sharp 7◦ cone at low angles of attack were conducted at Mach

6 to understand the stationary and traveling modes of crossflow disturbances, the

interaction between them, and the development of other instabilities that can lead to

transition. Using the Boeing/AFOSRMach-6 Quiet Tunnel (BAM6QT), pressure and

temperature measurements were collected to better describe crossflow characteristics.

Noisy and quiet flow conditions were compared to understand crossflow development.

Temperature Sensitive Paint (TSP) was used to measure the global surface tem-

peratures on the model. Schmidt-Boelter (SB) gauges were used to convert the surface

temperatures to heat transfer. The global heat transfer then allowed the stationary

crossflow to be visualized and quantified in terms of heat flux. Integrating heat

fluxes azimuthally, the amplitudes of the stationary crossflow vortices were compared

against the amplitudes of the traveling waves.

PCB 132A31 and Kulite XCQ-062-15A transducers were used to measure pressure

fluctuations over a broad range of frequencies. The traveling crossflow instability,

the second-mode instability, and possibly the secondary-instability of the stationary

crossflow mode were found at certain tunnel conditions. A grouping of Kulites was

used to determine traveling wave speed and direction.

Roughness elements were added to the model to excite discrete stationary vortices.

The roughness elements provided a method to alter the strength of the stationary

vortices. This technique allowed traveling-mode amplitudes to be compared to varying

stationary-mode amplitudes.



1

1. INTRODUCTION

Vehicles designed to operate at hypersonic speeds must consider aerodynamic drag,

control authority, heat transfer, and engine performance as major components in

aircraft development [1]. Laminar-turbulent boundary-layer transition can greatly

affect each of these factors and further stress an already constrained design. As an

example, flight data from the reentry-F tests show that boundary-layer transition to

a turbulent boundary layer increased the heat transfer by 3 to 8 times above that of

the laminar case [2]. Therefore it is imperative to study transition and understand

the processes that dominate it.

A hypersonic boundary layer can transition due to a variety of flow instabilities.

Disturbances can enter the boundary layer from the freestream through receptivity

processes [3]. The disturbances grow downstream via linear instabilities, transient

growth, or through bypass mechanisms, depending on the initial amplitudes of the

disturbance. Figure 1.1, from Reshotko et al. [4] shows the paths an instability can

grow which ultimately leads to turbulence.

Understanding the mechanisms through which disturbances linearly amplify (Path

A in Figure 1.1) is a large branch of hypersonic transition research, but a field that

still needs much improvement. A hypersonic boundary layer can experience a variety

of these disturbances depending on tunnel conditions and body geometry. A simple

semi-empirical method for predicting transition from these disturbances is the eN

method. Equation 1.1 shows the formula for the eN method as

eN = A/A0 (1.1)

where A0 is the initial amplitude of where an instability begins to amplify, A is the

amplitude of an instability at a given location, and N is the natural logarithm of the
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Figure 1.1. Mechanisms of boundary-layer transition. Redrawn from
Fig. 1 of Reference [4].

amplitude ratio. This calculated value, N , can then be correlated to when transition

occurs [5].

These instabilities include the first and second Mack modes; the Görtler insta-

bility; disturbances that develop from attachment lines, entropy layers, roughness,

ablation; and crossflow [3]. The crossflow instability was of particular interest for its

strong relevance to conical geometries at angle of attack.

To study crossflow and streamwise instabilities, high-speed wind tunnels are used.

Most of these wind tunnels develop a turbulent boundary layer along the test-section

walls that radiate acoustic waves. These acoustic disturbances, also referred to as

tunnel noise, are difficult to remove. The magnitude of tunnel noise increases with

the fourth power of the Mach number [6], so facilities that operate in the supersonic

and hypersonic regime are sensitive to the noise effect.
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Purdue’s Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT) is a facility built to

maintain a laminar boundary layer to reduce noise levels in the test section. The

noise levels measured in the BAM6QT are comparable to those seen in flight [7]. For

this reason the BAM6QT has a unique ability to study flow instabilities. An example

of noise effects can be seen in the shadowgraph image of Shot 6728 from the Naval

Ordnance Lab ballistics range in Figure 1.2 [8]. A 5◦ half-angle cone near zero angle

of attack is moving through still air at Mach 4.31 from left to right. Flow on the top

surface of the cone has laminar and turbulent regions, as noted. Striations can be

seen radiating from the turbulent spots, whereas the laminar sections are free of these

disturbances. These striations are radiated from turbulent eddies that cause acoustic

noise.

Figure 1.2. Shawdowgraph of noise effects of turbulent spots on a
sharp cone at Mach 4.31. Image courtesy of Dan Reda.

This phenomenon occurs on the walls of supersonic and hypersonic wind tunnels.

If a turbulent boundary layer develops or turbulent spots appear, unwanted noise
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and flow disturbances can propagate downstream into the test section and alter the

physics of an experiment.

1.1 Objectives

Many experiments study the crossflow instability on a 7◦ half-angle cone at 6◦ an-

gle of attack as a standard for comparison among research institutions. The lack of

range in angle of attack makes insights from these experiments to a practical design

difficult. Therefore the main goal of the research project was to observe flow insta-

bilities over a range of low angles of attack on a 7◦ half-angle cone at Mach 6. The

research was carried out in three phases.

The first was to observe and quantify traveling crossflow instabilities. Various

azimuthal rays were measured over a range of Reynolds numbers. Quiet and noisy

conditions were also compared. The traveling-wave amplitudes, speeds, and propa-

gation directions were calculated from these tests.

Once the traveling wave characteristics and properties were determined, the second

phase of the research was to understand the interaction between the stationary and

traveling crossflow instabilities. Roughness elements were introduced to help vary the

strength of the stationary crossflow waves. Reynolds effects were then investigated.

The final phase of the project was added during the course of the experiments

when high-frequency disturbances were found. A possible secondary instability of the

stationary crossflow waves was thought to exist. An investigation was conducted to

determine what conditions cause these disturbances.
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2. BACKGROUND

2.1 Crossflow Instability

The crossflow instability is characterized by a three-dimensional inflected boundary-

layer velocity profile caused by geometry sweep and pressure gradients [9]. At hyper-

sonic speeds, a cone creates a conical shock around the body. At angle of attack, the

windward side of the shock will be stronger than the lee side. The difference in shock

strength creates a circumferential pressure gradient from the windward to leeward side

of the cone. Due to a pressure gradient perpendicular to the flow, low-momentum

fluid within the boundary layer is deflected in the transverse direction. The crossflow

component and basic boundary-layer profile combination results in an inflected three-

dimensional velocity profile. The schematic of a typical crossflow velocity profile is

shown in Figure 2.1.

Figure 2.1. Boundary layer, crossflow, and resultant velocity profiles.
Image from Adams [10].



6

The resultant velocity profile is inviscidly unstable and develops into co-rotating

vortices around the resultant inflection point. The trajectories of these vortices then

follow the inflection point [11]. The vortical path can be illustrated by computations

made by Gronvall et al. [12] on a 7◦ half-angle cone at 6◦ angle of attack, depicted in

Figure 2.2.

Figure 2.2. Boundary layer streamlines on a 7◦ half-angle cone at
6◦ angle of attack. With permission from author [12].

The red contours indicate the edge velocity of the boundary layer and the black

contours mark the velocity very near the cone surface. Both streamlines are deflected

towards the leeward side as a result of the pressure gradient, but the black streamlines

are more responsive due to the lower momentum near the surface.

The primary crossflow instability takes the form of either stationary or traveling

waves with respect to the surface. These modes are discussed in the subsequent

sections.
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2.1.1 Stationary Mode

The stationary mode is fixed relative to the surface and follows the edge velocity

streamlines depicted in Figure 2.2. The velocity disturbances from the transverse

and normal directions distort the mean flow and stabilize the stationary mode. At

low speed on a swept wing, the primary instability then saturates at an amplitude

of 10% to 30% of the mean flow [9]. According to Saric and Reed [13], stationary

modes are more practical to study at low speeds because they tend to dominate low-

disturbance environments, such as flight conditions. At high speeds the crossflow

mode that dominates is uncertain.

When stationary crossflow waves are present, the co-rotating vortices are observed

through various imaging techniques. At low speeds, the structure of the vortices

can be visualized using smoke and oil flow techniques. At high speeds, the high

temperature mean flow is imparted onto the surface via the crossflow vortices. The

additional heat to the surface is localized where the vortices are present and therefore

can be observed by temperature measurement techniques. Infrared thermography and

temperature sensitive paints are the primary techniques used to expose the stationary

mode. Oil flow visualization is also used at high speeds to complement temperature

techniques.

2.1.2 Traveling Mode

The traveling crossflow instability is composed of unsteady vortices oriented at a

steeper angle than the stationary counterpart, as computed by Malik et al. [14] on a

swept wing at low speeds and experimentally found by Borg et al. [15] on an elliptic

cone at Mach 6. At low speeds, linear stability theory suggests the traveling mode

has higher growth rates than the stationary mode and if the initial amplitudes are

sufficiently large, the traveling waves will become the dominant instability toward

transition [9]. Again, the traveling-mode physics at high speeds are not clear, but

low-speed knowledge helps guide the understanding of these disturbances.
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Due to the transient nature of traveling crossflow, TSP, infrared thermography,

and other similar low-frequency measurement techniques cannot be used. Instead,

high-frequency pressure sensors were found useful in detecting the traveling crossflow

pressure fluctuations, as discussed in References [15,16].

2.2 Secondary Instability of Crossflow Vortices

As stationary vortices grow along a surface and reach high amplitudes, they be-

come unstable to high-frequency disturbances. These disturbances are labeled as the

secondary instability of the stationary mode. Though the secondary instability is

not the primary cause of transition, the appearance of the disturbance is followed by

rapid destabilization of the boundary layer and then breakdown [9].

Low-speed work classifies the secondary instability into two modes depending on

which type of inflectional instability is present. Type-I modes arise from shear layers

in the spanwise direction (δU/δz). This gradient rolls the flow up into secondary

vortices on the back side of the primary vortex. Type-II modes are driven by a

wall-normal gradient (δU/δy). Theory suggests type-II modes are the most unstable,

but multiple experiments [17–19] have determined that the highest-amplitude mode is

predominantly type-I. Experiments by Swearingen and Blackwater [20] have observed

the type-I mode behavior in Görtler vortices as well.

2.3 High-Speed Second-mode Instability

According to inviscid linear stability calculations outlined by Mack [21], unstable

acoustic modes develop as disturbances in a flow for a defined spectrum of wavenum-

ber bands and their related phase speeds. These acoustic modes become important

to boundary-layer transition above Mach 3 to 4 [22]. The acoustic modes or “Mack

modes” are acoustic waves confined between the wall and the relative sonic line in

the boundary layer. The acoustic waves reflect between the two boundaries at a

supersonic phase velocity relative to the boundary-layer flow. The thickness of the
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boundary layer determines the frequency at which these waves travel [23]. Figure 2.3

shows the profile of a reflection and the effect that the waves have on the pressure

distribution inside the boundary layer.

Figure 2.3. Path of acoustic mode and property profiles in the bound-
ary layer, where U(y) is the velocity profile, and p(y) is the pressure
disturbance profile. Redrawn from Fig. 2 in reference [24].

2.4 Low-Speed Experiments

In 1935, Adolf Busemann presented the concept of wings with sweep at the fifth

Volta conference. Experiments began during World War II and continued to gain

importance when jet engines pushed airplanes to higher speeds [25]. As swept wings

were tested, researchers noticed earlier transition compared to unswept wings. The

first studies conducted to understand this problem began with Gray in 1952 [26]. Gray

used sublimation techniques to observe the location of transition. The evaporation

methods revealed streaks in the general direction of the flow. Later, the streaks were

confirmed as the stationary mode of the crossflow instability from theoretical work

by Owen and Randall [27].
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In 1985, Poll [28] made the first measurements of the traveling mode. Using hot

wires approximately 10 mil from the surface of a yawed cylinder, high-frequency dis-

turbances at 1.1 kHz and 17.5 kHz were detected within the boundary layer. Poll

stated these disturbances can exceed 20% of the local mean-flow velocity. The higher

frequency disturbances at 17.5 kHz developed from what he thought to be the inter-

mittent turbulence.

Kohama continued Poll’s investigation of the traveling mode in 1987. Using smoke

visualization and hot-wire anemometry on a swept cylinder, he found evidence of a

high-frequency secondary instability [29]. Kohama was able to visualize ring-like

vortices spiraling on the edge of the stationary vortices. From his hot-wire data

he concluded that the higher frequency fluctuations in Poll’s experiment were the

secondary instabilities of the stationary crossflow and not a product of intermittent

turbulence.

Müller and Bippes [30] investigated the receptivity of crossflow as a continuation

of the Nitschke-Kowsky and Bippes [31] experiments. By translating a swept-wing

model relative to the flow direction, the streaks were observed to be fixed relative to

the model. This led them to conclude that stationary vortices were related to surface

roughness and not to features of the freestream flow. Following these experiments,

Radeztsky et al. [32] used micrometer-sized roughness elements to influence crossflow-

dominated transition. The results showed stationary crossflow amplitudes increase

with roughness-element diameter as well as spacing. Transition onset was sensitive

to both of these parameters.

An investigation of the interaction between the stationary and traveling crossflow

was conducted by Bippes and Lerche [33] in 1997 on a swept flat plate. The stationary

mode was excited by roughness similar to Reibert’s [34] experiments. The traveling

mode was excited by varying the tunnel’s turbulence levels between 0.08% and 0.57%.

The results of the experiment showed that each crossflow mode altered the mean flow

of the boundary layer in a similar way. That is, the shape of the boundary-layer

profile has the same inflected profile, but the distortion of the inflections depend on
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the amplitudes of each type of crossflow. The authors also found that if the initial

amplitudes of the traveling modes are increased with respect to the stationary modes,

a decrease in the amplitude at which the stationary modes saturate can be seen, and

vice versa. Thus the nonlinear development and subsequent breakdown to transition

has a strong dependence on the initial amplitude of each crossflow mode.

Computational simulations were incorporated into understanding the secondary

instability. Computations on a swept Hiemenz model by Malik et al. [14] helped

corroborate the high-frequency instabilities that Poll and Kohama found. They found

that the most amplified mode of the secondary instability was the mode-I, or type-I,

mechanisms. A later computation by Koch et al. [35] on a swept plate found the

same mode to be the most amplified.

More extensive reviews of low-speed crossflow and the experiments pertaining to

the phenomenon can be found in Bippes’s review [36] and Saric et al. review [37].

2.5 High-Speed Experiments

Though high-speed experiments investigating crossflow-dominated transition are

sparse, the last 10-15 years has seen an increase in research interested in understanding

the crossflow phenomena in supersonic and hypersonic regimes.

Saric and Reed [13] used discrete roughnesses on a 73◦ swept wing at Mach 2.4 to

investigate passive control of the crossflow instability. The wing was designed to have

subsonic flow at the leading edge by sweeping the wing past the Mach angle. This

experiment used roughness elements to delay transition over a range of roughness

spacing. The authors note that the wavelengths induced by the roughness spacing

will work equally well at delaying transition in low-speed flows.

Choudhari et al. [38] used Saric and Reed’s experiment as a case study to develop

computations for a higher fidelity transition prediction approach. This work was

extended by Li and Choudhari [39] to develop computations for understanding the

secondary instability. The results of Li and Choudhari’s study showed the onset of
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the secondary instability moved forward as the initial amplitude of the stationary

mode was increased. Contrary to subsonic experiments, the results found the type-II

mode to have the highest amplitudes and growth rates.

Many of the high-speed experiments performed in recent years have used a 7◦ half-

angle cone at 6◦ angle of attack to study the crossflow instability. Swanson [40] inves-

tigated boundary-layer transition over a 7◦ half-angle cone at 6◦ angle of attack using

TSP and oil-flow visualization in the BAM6QT. Using the TSP, Swanson quantita-

tively measured the stationary mode of crossflow in both noisy and quiet conditions.

Distributed roughness effects were also investigated. Five roughness elements, 0.5 to

0.7 mil in height and 9◦ apart, were applied in a spanwise line two inches from the

nominally sharp nosetip. New crossflow vortices were observed near a ray 130◦ from

windward.

Li et al. [41] used the parabolized stability equations (PSE) for computations on

a 7◦ half-angle cone at 3◦ and 6◦ angle of attack at Mach 6 to complement Swanson’s

work in the BAM6QT [40]. Figure 2.4 depicts the flood contours of the N-factor

location and disturbance frequency of the traveling crossflow. At 3◦ angle of attack,

the traveling crossflow instability was found to have the largest N factors at the aft

end of the cone around 120-135◦ from windward. The disturbance frequencies were

between 20-60 kHz. Li et al. concluded that larger angles of attack increase the N

factors of the stationary and traveling modes. The first- and second-mode instabilities

were shown to have a minor effect from 3◦ to 6◦ angle of attack.

Muñoz et al. [16] measured the stability of a 7◦ half-angle cone at 6◦ angle of

attack at Mach 6. The experiments were conducted at the Hypersonic Ludwieg tube

Braunschweig, where noise levels were between 1 to 1.6% and the unit Reynolds

numbers were between 1.94×106/ft to 3.87×106/ft. PCB pressure sensors were used

to detect instability peaks near 20-50 kHz and 260-350 kHz at the 90◦ ray (from

windward). The lower frequency waves were thought to be first-mode waves by the

authors, but Perez et al. [42] used the linear PSE to suggest that the low-frequency

waves were related to the traveling mode of crossflow. Chris Ward’s experiments also
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(a) N-factor values

(b) disturbance frequency

Figure 2.4. Traveling crossflow contour plots at 3◦ angle of attack.
Fig. 14c from reference [41].

shows these lower frequencies to be traveling waves [43]. The higher frequency waves

at 260-350 kHz were deduced to be second-mode waves by Muñoz et al. which agree

well with LST and LPSE results from Perez et al.

Swanson’s preliminary measurements led Ward [44] to continue studying discrete

roughness effects on hypersonic boundary layers. Ward compared no roughness ele-

ments to 50-dot and 72-dot roughness elements on a 7◦ half-angle cone at 6◦ angle

of attack at a unit Reynolds number of approximately 3.20×106/ft. Ward showed

that the location of the paint edge of the TSP could alter the spacing of the vortices.

When the roughness elements were applied to the model, the vortices observed were

thought to be generated primarily from the elements. Ward later suggested that the

distributed roughness of the paint could be a more important parameter than the
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paint edge, but the roughness elements dominate vortex spacing [45]. Further ex-

periments of roughness effects were conducted by Ward to be published December

2014 [46]. The models used in Swanson’s and Ward’s experiments were used in the

author’s own experiments.

Elliptic cone models have also been used to observe the crossflow instability. Trav-

eling crossflow waves in hypersonic flow were first detected in 2000 by Poggie and

Kimmel [47] on an elliptic cone at Mach 8. Low-frequency waves between 10-20 kHz

were discovered near the yaw side of the elliptical cone. To characterize the traveling

waves, a signal analysis was performed to determine the phase velocity and angle of

the waves.

Borg et al. [15] used the BAM6QT to study the crossflow instability on an elliptical

cone. Designed as a scaled model of the HIFiRE-5 vehicle, a 2:1 elliptic cone was

fitted with Kulite XCQ-062-15A and XCE-082-15A pressure transducers between the

vertex and co-vertex of the model. Juliano [48] found that this region develops strong

stationary vortices as compared to the rest of the model. The results from Borg et al.

show the traveling mode was detected with a peak in the power spectral density at 45

kHz for quiet flow at a unit Reynolds numbers between 2.40×106/ft to 3.57×106/ft.

The experiments also revealed a destabilization effect of the traveling waves with

increasing model surface temperature. Over 6 tunnel runs, the surface temperature

was estimated to have risen 9◦F. The amplitude of the traveling waves increased with

each consecutive run. This lead to the authors hypothesizing that increased surface

temperature destabilizes traveling waves.
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3. FACILITY

3.1 Boeing/AFOSR Mach-6 Quiet Tunnel

The Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT) is the largest of three

hypersonic quiet tunnels in the world. The BAM6QT was designed as a Ludwieg tube

to provide high Reynolds numbers at a reduced operating cost. More importantly,

the tunnel was designed to operate with noise levels comparable to flight. In 2010,

Steen [49] measured the BAM6QT noise level, calculated as the ratio of fluctuating

pressure to the mean total pressure ( P ′/Po ), to be on the order of 0.01%, confirming

the tunnel environment is comparable to flight conditions.

The Ludwieg tube design includes a driver tube, converging-diverging nozzle,

diffuser, double-burst diaphragms, and vacuum tank. The schematic of Purdue’s

BAM6QT is illustrated in Figure 3.1.

Figure 3.1. Schematic of the Boeing/AFOSR Mach-6 Quiet Tunnel.

To sustain a laminar nozzle-wall boundary layer and quiet flow, four features

are required of the nozzle. First, the diverging section of the nozzle is polished to

reduce any roughness and waviness that could trip the boundary layer. Second, the
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nozzle is elongated to limit Görtler instability growth on the concave surfaces. The

third feature is a bleed-slot located 1 inch upstream of the throat of the nozzle. The

bleed-slot is connected to the vacuum tank and flow is regulated by a fast valve. The

suction from the slot bleeds off the boundary layer that develops along the contraction,

allowing a new laminar boundary layer to grow along the nozzle. The final feature

is the air filters. Before the air is pumped into the driver tube, the air is filtered to

prevent particulates from scratching the mirror finish of the nozzle. Together, the

features yield quiet flow conditions for total pressures up to 170 psia. Quiet flow

conditions can be obtained for unit Reynolds numbers up to 4.04×106/ft.

Figure 3.2 shows a schematic of noise onset in the nozzle. A model is placed

where the ideal quiet flow conditions exist, before the onset of noise and aft of where

uniform flow develops. A window insert can be installed into the nozzle for optical

access. Two inserts were created, a porthole window that features two 5-in diameter

portholes, shown in Figure 3.3, and a 14×7-in rectangular window. The rectangular

window is rated to 138 psig. Most testing was done above this pressure so the porthole

window was exclusively used. A crack was found in the plexiglass of the rectangular

window in August 2013. Since the discovery, the rectangular window has not been

used. It will be replaced in the near future.
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Figure 3.2. Schematic of BAM6QT with 7.5◦ cone model. Dimensions
are in inches [meters].

Figure 3.3. Porthole optical access with typical cone model.
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The BAM6QT is operated by slowly charging the driver tube and nozzle to a

desired stagnation pressure. Before the incoming air enters the driver tube, it is

passed through a dryer system to remove water vapor. The dew point was recorded

once a month between October to February. The dew point was between -4◦F and

5◦F during these months. The air was then filtered to remove large particulate.

Two diaphragms separate the driver tube and nozzle from the downstream end that

is connected to the vacuum tank. The gap between the diaphragms is maintained

at half the pressure of the upstream end and vacuum. To start the flow, the air

between the diaphragms is evacuated causing a larger pressure load on the upstream

diaphragm. The upstream diaphragm breaks and then the downstream diaphragm

breaks.

After the diaphragms are ruptured, a shock wave travels downstream into the

vacuum tank and an expansion wave travels upstream. After the expansion wave

passes the throat of the nozzle, Mach 6 flow begins. The expansion continues to

traverse the length of the driver tube, reflects at the end of the tube, and then

traverses back down. This process cycles many times, with the wave reflecting at the

throat and the upstream end of the driver tube. The stagnation pressure drops in

a stair-step manner after each reflection returns to the throat. During the run, the

Reynolds number remains quasi-static between each reflection [50]. The total time of

Mach 6 flow for each run is approximately 5 to 10 seconds. An increase in noise is

observed after 2 seconds of run time [49].

3.2 Reynolds Number Calculation

The unit Reynolds number per foot can be calculated at any time during a run

using the following equation:

Re/ft =
PM

µ

√
γ

RT
(3.1)
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where P is the static pressure, M is the Mach number, µ is the dynamic viscosity,

γ is the ratio of specific heats, R is the gas constant of dry air, and T is the static

temperature. All variables are freestream values. Under quiet flow conditions, the

Mach number is assumed to be 6. This assumption is within ±5% of the mean

Mach number calculated from pitot measurements [49]. Under noisy flow conditions,

the nozzle wall develops a thicker boundary layer effectively reducing the area ratio

between the test section and throat. The Mach number for noisy flow is assumed

to be 5.8, again within ±5%. The stagnation pressure is obtained from a Kulite

pressure transducer in the contraction section of the tunnel. The static pressure can

be obtained by using the isentropic relation,

P =
Po

(
1 + γ−1

2
M2
) γ
γ−1

(3.2)

The initial stagnation temperature is obtained from a thermocouple at the upstream

end of the driver tube. To calculate the static temperature of the flow during a run,

the stagnation temperature at any time during the run must be calculated. Equation

3.3 is an isentropic relation that uses the initial readings of the stagnation pressure

and temperature to determine the stagnation temperature at a given time during the

run.

To(t) = To,i

(
Po(t)

Po,i

)γ−1
γ

(3.3)

The static temperature can then be determined using an isentropic relation similar

to Equation 3.2,

T =
To

1 + γ−1
2
M2

(3.4)

The dynamic viscosity is calculated using Sutherland’s Law based on the static tem-

perature of the flow in Equation 3.5. Note the calculation is in metric units.

µ = 1.716× 105

(
T

273

)3/2(
384

T + 111

)
(3.5)
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4. MODELS

4.1 Cone Models

Two 7◦ sharp-tip cone models were built to study crossflow. Both models have a

base diameter of 4 inches and a length of 16 inches. The models each have a 6061-T6

aluminum frustum and 17-4PH-Cond-H1100 stainless steel removable nosetips. The

first cone, named the Crossflow Cone by designer Chris Ward [51], was used for the

first two tunnel entries, to study the crossflow instability on a 7◦ half-angle cone at low

angles of attack. The cone has six locations along one ray for sensors to be installed.

Four PCB 132A31 fast pressure transducers and two Schmidt-Boelter (SB) gauges

were flush-mounted to the surface of the cone along with a temperature sensitive

paint (TSP) coating for those entries. The Crossflow Cone is pictured in Figure 4.1

with sensor positions labeled. The locations of each sensor are given in Table 4.1.

Figure 4.1. Crossflow Cone with TSP coating.
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Table 4.1 Crossflow Cone sensor locations.

Position Distance from Nosetip [in] Sensor

1 5.80 PCB1

2 7.50 SB1

3 9.20 PCB2

4 10.90 PCB3

5 12.60 SB2

6 14.30 PCB4

The lack of spanwise pressure data that could be obtained per run led to the use of

a second cone model. This model will be referred to as the Ward Cone as it was also

used in Ward’s experiments that will be published at a later date [46]. A schematic

of the Ward Cone is shown in Figure 4.2, the sensor locations are found in Table 4.2

and Table 4.3. The Ward Cone features a spanwise set of sensor ports located 30◦,

60◦, and 90◦ away from Kulite Array 2 on either side of the sensor ray. Along with

spanwise sensor ports, a line of sensor ports is located on one ray. This is similar to

the Crossflow Cone, but with two Kulite arrays (smaller sensor ports that exclusively

fit Kulite pressure transducers) replacing the PCB or SB ports. In order to determine

traveling-wave properties, the Kulite ports were placed 0.10-in apart. This is less than

the wavelength of a traveling wave. At 14 inches downstream of the nosetip, near

the 120◦ ray from windward, the traveling mode has the most amplified wavenumber

of approximately 80 which translates to a wavelength of 0.13-in [52]. The pattern

of the array is not a concern when calculating traveling-wave properties, so long as

three Kulites are within proximity of each other. These Kulite sensor locations were

labeled k1 through k4 within each array. Sensors were not installed at positions 1

and 2 as well as Kulite Array 1. Dowel rods were fitted into the ports as flush as

possible.
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Figure 4.2. Ward Cone schematic.

Table 4.2 Ward Cone sensor locations. Positive degrees from sensor
ray are towards the upward direction in reference to Figure 4.2.

Position Sensor Distance from Nosetip [in] Degrees from Sensor Ray

1 - 5.80 0

2 - 7.50 0

4 SB1 10.90 0

5 PCB1 12.60 0

6a PCB2 14.30 -90

6b PCB3 14.30 -60

6c PCB4 14.30 -30

6d PCB5 14.30 30

6e PCB6 14.30 60

6f PCB7 14.30 90
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Table 4.3 Ward Cone Kulite Array sensor locations. Positive degrees
from sensor ray are towards the upward direction in reference to Fig-
ure 4.2.

Array Sensor Distance from Nosetip [in] Degrees from Sensor Ray

1 - 9.25 2.55

1 - 9.21 0

1 - 9.25 -2.25

1 - 9.21 -4.50

2 k1 14.29 2.25

2 k2 14.21 0

2 k3 14.29 -2.25

2 k4 14.37 -4.50
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4.2 Nosetip Radii

The nosetips of the Crossflow and Ward cone were measured with a Motic digital

camera attached to a microscope. The radii of the Crossflow and Ward nosetips were

measured to be 2.66 mil and 8.70 mil, respectively. Images of each nosetip are shown

in Figure 4.3 and 4.4.

Figure 4.3. Crossflow Cone nosetip.

Figure 4.4. Ward Cone nosetip.
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4.3 Model Positioning

Models are mounted on a sting on the centerline of the tunnel. It is beneficial

to rotate models with respect to the camera to view different azimuthal rays. To

achieve this, models are screwed into an angle of attack adapter, which is attached

to the sting. By adding or removing shims between the adapter and the model, the

position of the model is changed with respect to the adapter. Sensors fixed in the

model then can be rotated to different azimuthal angles. Reference marks are drawn

onto the adapter to determine azimuthal angle. The adapter is place in a rotary

stage and rotated in ten degree increments. The shimming method is accurate to

±2.5 azimuthal degrees of difference.

4.4 Roughness Elements

Roughness elements were added to the Ward Cone by two methods. The first

used nail polish to test if roughness has observable effects on stationary vortices at

low angles of attack. Nail polish was chosen as a quick and non-destructive way of

introducing roughness on the cone.

Torlon roughness inserts were designed by Chris Ward for an evenly distributed

roughness pattern. The inserts were comprised of dimples spaced around the cir-

cumference of the insert at a distance of 2 inches from the nosetip. The dimples are

formed when a pin is pressed into the Torlon. The displaced material rises above

the surface around the pin. Once the pin is removed, a crater-like roughness is left,

which is used to disturb the flow. His sixth Torlon insert consisted of 50 crater-like

indentions, equally spaced circumferentially. In Ward’s experiments, Torlon insert

#6 showed large induced vortices at 6◦ AoA [46]. Insert #6 was used here for this

reason.
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5. INSTRUMENTATION AND ANALYSIS METHODS

5.1 Oscilloscopes

Three oscilloscopes were used to digitize voltage signals from the pressure trans-

ducers, temperature sensors, camera controls, and hot films. The Tektronix DPO7054,

DPO7104, and TDS7104 Digital Phosphor Oscilloscope each have four channels that

can be AC or DC coupled. The DPO7054 and DPO7104 model can record up to

50MB per channel and the TDS7104 model up to 4MB per channel. Both types of

oscilloscopes were operated in Hi-Res mode, which records at the maximum sampling

frequency and reduces the signal to the desired sampling frequency by averaging the

collected data in real-time. This mode helps decrease the noise as well as providing

a low-pass filter to the data [53]. Hi-Res mode also increases the vertical resolution

from 8 to 12 bits by collecting data at a higher frequency than the desired sampling

frequency and averaging in real time.

5.2 Hot Films

A Senflex hot-film array is positioned on the nozzle wall to detect if the boundary

layer on the wall becomes turbulent. The array contains 35 sensors along a line

parallel with the direction of the flow. One to two of these sensors, approximately

75 to 80 inches from the throat, are typically used per run. A Bruhn-6 Constant

Temperature Anemometer controls the amount of current running through the hot

film so that the resistance across the hot film is constant. In the DC Fluctuation

mode, the output of the signal can be offset to ensure the signal can be read on the

oscilloscope. The hot films are not calibrated so they are only used qualitatively to

assess if the boundary layer has become turbulent.
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5.3 Pressure Measurements

5.3.1 Kulite Pressure Transducers

Kulite pressure transducers can measure the mean pressure of a flow or the un-

steady signal used for instability measurements. The transducers output a voltage

linearly proportional to the pressure exerted onto the sensing face. The face is a small

silicon diaphragm with a Wheatstone bridge of strain gauges embedded onto it. As

pressure is applied, the diaphragm deforms, and a change in resistance of the strain

gauges changes the voltage output.

A Kulite model XTEL-190-200A pressure transducer was used to measure the

stagnation pressure during the run. This transducer is located near the contraction

entrance where the Mach number is low and the pressure can be approximated as

the stagnation pressure. Kulite model XCQ-062-15A pressure transducers have a

higher resolution than the XTEL-190-200A, so they were installed on the Ward Cone

to detect traveling crossflow waves and other lower frequency phenomena. XCQ-

062 transducers have a resonant frequency near 300 kHz and have a flat frequency

response up to about 60 kHz [54].

According to the manufacturer, the resolution of the transducers is infinitesimal.

It is not known what the pressure resolution truly is so the resolution is assumed to

be limited by the data acquisition. For typical Kulite XCQ-062 signals the oscillo-

scopes are set to 2 V/div, 10 divisions, and operate in Hi-Res mode for 12 bits. The

sensitivities of the transducers are nominally 6 mV/psia. Custom in-house electronics

were built to operate Kulites as well as amplify the signal with a gain of 10,000. The

signals are also high-pass filtered at 800 Hz from this hardware. The resolution of the

Kulite XCQ-062 is then on the order of 0.000008 psia.

The Kulite transducers were calibrated once per week of testing. The Kulite

transducers were kept in situ and the tunnel was pumped down to 0.030-0.210 psia

for calibration. This is near the expected static pressure at the surface of a 7◦ half-

angle cone with a freestream Mach number of 6 for stagnation pressures between 30
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and 170 psia. A Paroscientific Digiquartz 740-30A was used to measure pressures for

the calibration, with an accuracy of 0.01% of the full-scale reading of 30 psia.

5.3.2 PCB Pressure Transducers

A PCB-132A31 pressure transducer is a piezoelectric crystal epoxied within a

metal cylindrical housing. The PCB-132A31 sensor is able to measure high-frequency

fluctuations. The sensors can measure above 1 MHz before reaching the sensor’s

resonant frequency, though the frequency response outside the flat 20 to 300 kHz

range is not known, as discussed by Beresh et al. [55]. According to the manufacturer,

the sensors are high-pass filtered at 11 kHz and the resolution of the sensors is 0.001

psia. The factory static calibrations were used for voltage-to-pressure conversion.

The sensors are amplified and filtered using the PCB-482A22 constant-current signal

conditioner.

PCB-132 sensors were recently discovered to detect second-mode waves by Fujii

[56]. Numerous experiments have since used these sensors for detecting the second

mode, a few are found in Refs. [57,58]. The sensors were then chosen to be installed

in both cone models for their small size, 0.3 inch length and 0.125 inch diameter,

and effectiveness to detect second-mode waves. Seven sensors were used on the Ward

Cone to compare the instabilities circumferentially on the cone.

5.3.3 Power Spectra

A power spectrum was computed for each Kulite and PCB transducer for each

run. These data are normalized by the mean pressure. The local mean pressure of

the flow is calculated from the theoretical static pressure behind an oblique shock for

a 7◦ half-angle cone at zero angle of attack. This calculation comes from the Taylor-

Maccoll equations. This is because the Kulites cannot measure this low pressure

accurately.
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When the cone is inclined relative to the freestream, the incident angle of the flow

to the cone depends on the angle of attack and the azimuthal position. The tangent-

cone method was used to calculate the local surface pressure at a given angle of attack

and azimuthal ray, to normalize the pressure fluctuations. This is done by using the

Taylor-Maccoll equations from the effective half-angle of the cone. Equation 5.1 shows

the effective angle of attack used as a function of angle of attack and azimuthal ray.

θtanc = θ + α ∗ cosφ (5.1)

where θ is the half-angle of the cone, α is the angle of attack, and φ is the azimuthal

angle. Note that the windward ray is at φ = 0.

The subscript tanc was used to denote the new effective half-angle, and in the

subsequent pressure calculations the subscript mean was replaced when the tangent-

cone calculation was used.

Both Kulite and PCB transducer signals were AC coupled and acquired at 2 MHz,

well above expected instability frequencies. Kulite sensors were digitized with a ver-

tical resolution of 2 V/div while the PCB transducers were obtained at 10 mV/div.

The power spectral density (PSD) can reveal instabilities which can appear as dis-

crete peaks within the spectra. Both types of transducers were processed using a

Blackmann window of 200 windows, 1000 samples per window, and a 50% overlap.

The frequency resolution for the PSDs as calculated to be 2.0 kHz. The total time

processed was 100 ms. This is half the amount of time it takes for the expansion wave

to travel along the driver tube and reflect back to the converging section of the nozzle.

An approximately constant stagnation pressure is observed between expansion wave

reflections so the data is processed between the reflections. The Reynolds number is

assumed to be constant over the time processed.
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5.4 Temperature Measurements

5.4.1 Thermocouples

Thermocouples were used to determine the temperatures on the model. There

are many types of thermocouples, but only two types were chosen for this research.

Type K thermocouples are composed of chromel (90% nickel and 10% chromium)

and alumel (95% nickel, 2% manganese, 2% aluminium, and 1% silcon). Type T

thermocouples are composed of copper and constantan (55% copper and 45% nickel).

Voltage is created when the sensing junction of the device experiences a temperature

that is dissimilar to the reference junction within the device. The voltage is then

referenced to the National Institute of Standards and Technology (NIST) ITS-90

database or to an appropriate curve, in order to find the temperature.

Paste-On Thermocouples

Due to the added heat that is transfered to the model after each run, a thermocou-

ple was needed to monitor the temperature of the cone’s body. An Omega SA1-K-72

self-adhesive thermocouple was used for quick install without the need for epoxy, ce-

ment, or other permanent fixtures. The Type-K sensor thermocouple was temporarily

pasted onto the base of the cone. The Type-K sensor accuracy is ± 4.0◦F or ± 0.75%

with a response time of 0.3 seconds. The thermocouple was wired to an Omega MCJ

Type-K cold junction compensator and then connected to an oscilloscope. The signal

was sampled at 500 S/s.

Schmidt-Boelter Gauge

The Medtherm Schmidt-Boelter (SB) gauge is a 0.125-in diameter sensor that

contains a thermopile, which is an array of thermocouples. The array forms a differ-

ential thermoelectric circuit. Model 8-1-0.25-48-20835TBS was used throughout the
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experiments. This model consists of a T-type thermocouple that gives a range of 0 -

1.1 BTU
ft2−s . The factory calibration for this SB gauge was 6.95 mV/ BTU

ft2−s .

Three signals can be obtained from the SB gauge. Two of the three signals are

the surface and body thermocouple signals and the third is the heat flux signal from

the thermopile. Along with the paste-on thermocouple, the body thermocouple was

used to confirm the model-body temperature. The body thermocouple was a Type

T with an accuracy of ± 1.8◦F or ± 0.75%, with a response time of 0.3 seconds. It

was sampled at the same rate as the paste-on thermocouple. The SB gauge signal

was connected to a Stanford Research Systems SR560 amplifier with the gain set to

100. The amplifier output was connected to an oscilloscope, where the signal was

sampled in Hi-Res mode at 50 kS/s with a vertical resolution of 100 mV/div. The

SB gauge was mounted flush to the surface of the temperature sensitive paint and

was primarily used to calibrate the temperature sensitive paint.

5.4.2 Temperature Sensitive Paint

Temperature sensitive paint is a luminescent mixture that is applied to a surface

to observe global temperature gradients and heat transfer. Compared to discrete

sensors, TSP is a non-intrusive technique that offers high spatial resolution [59]. TSP

is excited with the appropriate wavelength of light which causes the paint to fluoresce.

The fluorescence from the TSP is then recorded with a charged-coupled device (CCD)

camera.

TSP Photophysics

Luminescent molecules are excited by absorbing a photon of radiation. This ab-

sorption elevates the luminescent molecules to the first singlet electronic state. The

path in which the electrons return to a ground-energy state is dependent on a combi-

nation of radiationless and radiative processes [60]. From the singlet state, electrons

can radiatively return to a ground state, known as fluorescence, or vibrationally relax
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to a lower-energy triplet state and then return to a ground state by radiation transi-

tion, known as phosphorescence. The molecules that fluoresce emit longer wavelength

photons as they return to the ground state. Higher temperatures result in increased

radiationless transition and decrease the intensity of the fluorescence. The intensity

of the fluorescence can be correlated to the inverse of the temperature.

Painting Method

To reduce heat flux into the model, a layer of insulation was sprayed on the model.

Ward [51] showed that Top Flite LustreKote model airplane spray paint is currently

the best choice for insulation spray. The LustreKote brand gave a smoother finish

than the other paints and also was sprayed from a can that did not have to be thinned.

Four coats of LustreKote primer were used with four additional coats of the jet-white

color. After the final coat, the model is left to dry for 24 hours and subsequently

sanded with 200, 500, and 3000 grit sandpaper. The insulation layer reduces heat

conduction into the model and increases the TSP signal.

After the insulation layer has been sanded, the TSP is created and applied. The

mixture is made of luminescent molecules and a polymer binder that are dissolved in

a solvent. The luminophore, 99.95% Tris(2,22-bipyridine) dichlororuthenium(II) Hex-

ahydrate(Ru(bpy)), commonly called Ru(bpy), was chosen for the TSP mixture. The

Ru(bpy) particles are dissolved in ethanol. AmTech AM-500-4 Urethane Clearcoat

and AmTech AM-570-12 activator are automotive clearcoat refinishers that were cho-

sen as the polymer binder. The final mixture is then sprayed onto a model with a

pressurized spray gun. The paint is applied to the aft end of the cone and feathered

towards the upstream end. This smooths a possible step from the bare surface to the

final paint thickness. The Crossflow Cone was feathered near the nosetip while the

Ward Cone was feathered near 8-10 inches from the nosetip. The model is kept in a

ventilated room to dry for 24 hours. The model is then sanded to reduce roughness-
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induced instabilities. The insulating layer and TSP were applied by following the

directions described in Ref. [61].

TSP Apparatus

Figure 5.1 is a sketch of a typical TSP apparatus and the equipment needed. The

absorption spectra of Ru(bpy) has peaks between 250-300 nm and 450 nm. The longer

wavelength peak was chosen since light wavelengths below 400 nm would require a

specially made window. Instead, two blue light emitting diode (LED) arrays were

used to excite the Ru(bpy) peak at 464 nm. The blue LED arrays were the Innovative

Scientific Solutions Inc. (ISSI) LMA LM4 array and the ISSI LM2xLZ-465 LED array.

The latter is more powerful and requires water channels within the device to cool it.

Building water is connected to a ISSI LM2xLZ-DM pulsed driver where a HP E2620A

power supply triggers the water to be pumped into the LM2xLZ-465 LED array. The

trigger is connected to a switch that also controls the power to the other LED array,

for convenience. As the LED array excites the TSP, longer wavelength photons are

emitted through fluorescence and subsequently recorded by a CCD camera.

The Cooke Corporation PCO.1600 14-bit CCD camera was used and controlled

from a computer using CamWare software. The camera was fitted with a 50 mm focal

length lens to image the model through one porthole window. An orange filter with a

556 nm wavelength high-pass covered the lens to decrease the amount of incident light

that enters the camera, while allowing the TSP-emitted wavelengths to pass through.

The CCD camera can use 1600x1200 pixels, but was reduced to 800x600 with a 2x2

binning to reduce image noise. The camera is set to an exposure time between 8-11

ms with the camera imaging on a 30-35 Hz cycle. The exposure time and imaging

frequency are adjusted to get the maximum light intensity without saturation. The

camera was triggered from a Agilent 33220A function generator, which was triggered

from the TDS7104 oscilloscope when the diaphragms burst.
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Figure 5.1. Sketch of TSP apparatus.

With the CCD camera centered on a porthole window, the LED arrays were

arranged on either side of the camera to reduce shadowing from the rim of the porthole

windows. Due to sediment buildup in the water-cooled LED later entries only used

the LMA LM4 LED array. The camera was positioned away from the window to

image the aft part of the cone that could be imaged in one porthole. Figure 5.2 shows

the typical placement of the camera and LMA LM4 LED array.

TSP Image Post-Processing

The luminescent intensity from the TSP varies with paint thickness and the lu-

minophore distribution in the paint. To correct for these variables, three images were

required. Two reference images were needed as well as the images from the experimen-

tal run. A dark image was taken with all lights off. A wind-off image was then taken

with the blue LED lights on, but with no flow inside the tunnel. Both of these images

were collected within a minute before starting the tunnel so the model temperature

(and the TSP) would be as close to initial stagnation conditions as possible. For the
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Figure 5.2. Typical CCD camera and LED array placement.

dark and wind-off images, 20 to 30 sequential images were collected and averaged.

The wind-on images were taken while the LED lights were on and were recorded for

7-8 seconds starting when the diaphragms burst.

The dark images were subtracted from both the wind-on and wind-off images to

reduce noise. A ratio of the light intensities was then calculated to normalize the

TSP variations. Equation 5.2 is the basic formula for converting the TSP intensity

to temperature:

∆T = f

(
Ion − Idark
Ioff − Idark

)
(5.2)

The exact conversion depends on the type of TSP applied and the type of cal-

ibration used. Figure 3.13 in Reference [59] depicts experimental temperature de-

pendencies for various TSP formulations. The calibration of Ru(bpy) was linearly

fit between the ambient temperatures of 59◦F and 140◦F. After shifting the reference
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temperature from -238◦F to the pre-run model temperature (Tref with units of ◦F),

Equation 5.2 becomes the following:

∆T = (192− Tref )
(

1− Ion − Idark
Ioff − Idark

)
(5.3)

Calculating Heat Transfer from the TSP Images

The heat transfer imparted onto the model surface can be calculated from Fourier’s

law of heat conduction. This equation is simplified through a few assumptions. One-

dimensional conduction in the radial direction was assumed. Work by Ward [51]

found that the base temperature (temperature of material underneath the insulation

layer) can be assumed constant spatially and temporally at near maximum quiet

stagnation pressure in the BAM6QT. His tests showed the spatial uniformity of the

base temperature was accurate to within 4% and temporally constant over the first

10 seconds of a run with minimal temperature change. His tests, however, were

limited to runs at the maximum pressure of 140 psia due to strength limitations of

the rectangular window. With these assumptions, Fourier’s law can be modified to

Equation 5.4:

q′′ =
k

L
(∆T + Tref − Tb) (5.4)

∆T = T − Tref (5.5)

where k is the thermal conductivity of both TSP and insulating layers, L is the depth

of both layers, and Tb is the base temperature of the model.

Over each run, a calibration method was used to obtain global heat transfer from

TSP data using SB gauges. Once the diaphragms burst, an expansion fan travels

upstream and passes over the model. This causes the model to experience a sudden

decrease in heat flux. A subsequent sharp increase in heating is caused by hot gas,

upstream of the model, passing over the model just before Mach-6 flow begins. After
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the tunnel is started the heat flux tapers to an approximate steady state. The intensity

of the TSP is collected for 7-8 seconds starting when the diaphragms burst. A typical

plot of the calibration is shown in Figure 5.3.
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Figure 5.3. Typical TSP calibration using a SB gauge. E6R6, 4◦ AoA,
quiet flow, Torlon insert, SB gauge at x = 10.9-in. on the 120◦ ray.
Re = 3.68×106/ft, Po = 156.8 psia, To = 299.2◦F, Tw = 93.4◦F.

To calibrate the TSP, a square patch of TSP is chosen near the SB gauge in an

area of equal heat transfer. Knowing the heat transfer from the SB gauge, the base

temperature of the model, and the temperature gradient from the intensity of the

TSP (from Equation 5.3), a least-squares fit is used to calibrate the TSP to infer the

global heat transfer on the model. From the calibration, the
k

L
and Tb values can be

inferred. From these, the TSP image can be converted to heat transfer.

Uncertainties in Comparison-Patch Location

The square patch of TSP that is used for calibration is not always taken at the

same position, due to turbulence or stationary crossflow in the vicinity of the SB
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gauge. The TSP of Entry 3 Run 2 (E3R2) was used to compare different patch

locations to the theoretical laminar heat transfer for an axisymmetric cone. Figure

5.4 shows the heat transfer contour with the five patches chosen on the cone. The first

three patches were chosen around the SB gauge while the fourth and fifth patches

were well away from the sensor. After the patches were used to convert the TSP to

heat transfer, an axial profile was taken near the center of the image. Ten profiles,

each a pixel in width, were averaged and compared to theory on Figure 5.5. Patches

1-4 showed similar heat transfer across the distance of the cone and compared well

to theory. The most-aft patch showed a higher heat transfer than the rest.
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Figure 5.5. Axial heat flux profiles of E3R2 for calibrations from each
patch. Theoretical heat transfer and SB gauge readout at time of
process are also shown.

Another patch comparison was analyzed for a 4◦ AoA case. Figure 5.6 shows the

heat transfer contour of E4R1 with the five patches similar to the last comparison.

The fourth patch was chosen near the windward side where an increase in heat transfer

was observed. An axial profile at the 80◦ ray was created for each patch, shown on

Figure 5.7. Similar to the axisymmetric case, the patches nearest the SB gauge show

similar heat transfer profiles and agree well at the SB gauge location. The fourth and

fifth patches, however, did not have the same heat transfer levels near the SB gauge.

Patch 4 was found to have heat transfer levels 16% lower than what the SB gauge

recorded and Patch 5 was 79% higher. Since the calibration uses the patch to convert

the full TSP image to heat transfer, the difference in heat transfer is offset over the

entire profile. Therefore the comparison patch must be placed near the SB gauge to

obtain the closest match to actual conditions. Problems can occur when transition

or vortices cross over SB gauges. Temperature-difference plots are then used instead

of heat transfer contours because of inaccurate calibrations.
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5.5 Roughness Measurements

Two devices were used to measure the height of the roughnesses on the cone. The

Mitutoyo SJ-301 profilometer is a surface roughness tester with a hand-held stylus

that can be raked over a surface to measure roughness heights over discrete 0.3-in

strips. The roughness height along each strip is recorded by the profilometer and the

average and RMS profiles can be determined. The radius of the stylus is specified

by the manufacturer at 0.2 mil. The vertical resolution of the profilometer was 0.004

mil.

The second device used was a Keyence VR-3050 digital microscope. The VR-3050

is a non-contact measurement device that uses incident light to determine surface

heights. The microscope evaluates surfaces in a top-down orientation to measure

two-dimensional features with a depth component. The resolution of the VR-3050

is 0.02 mil for a field of view of 240 × 240 × 180 mil. This device was used for

demonstration purposes and only one Torlon insert was measured. The BAM6QT

group is currently exploring the purchase of a 3D digital microscope with similar

features.

To preserve roughness samples, a negative-mold technique was used. Struers

RepliSet-T3 is a fast curing two-part silicon rubber that forms a negative outline

on the surface it covers. Once hardened, the mold can be removed from the surface

and stored. By removing the mold from the surface of a model, the mold can be

placed on a flat surface to measure roughness without curvature effects from the ge-

ometry of the cone. According to Struers, the resolution of the mold is specified to

0.004 mil.

Each newly painted cone was evaluated by the profilometer to approximate the

average roughness of the paint coat. The profilometer and digital microscope quanti-

fied the Torlon and nail-polish roughnesses. The results of the roughness heights are

presented in the subsequent sections.
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6. RESULTS AT ZERO ANGLE OF ATTACK

The cone was first tested to observe the state of the boundary layer without crossflow

effects. Three unit Reynolds numbers were tested for both quiet and noisy conditions.

6.1 Tunnel Noise Effects

Using the Crossflow Cone, PCB sensors along one ray of the cone were able to

detect fluctuations near 300 kHz under quiet and noisy conditions. Figure 6.1 shows

the power spectral density (PSD) of two runs at quiet and noisy conditions near

the same Reynolds number. For axisymmetric cases, the pressure fluctuations were

divided by the mean pressure at the surface of the cone to normalize the differences in

stagnation pressure. The dotted lines show three traces of PCB sensors under noisy

flow and the solid lines show the same PCB sensors under quiet flow.

Under quiet flow conditions, no clear disturbances are observed probably because

the Reynolds number was too low. Under noisy flow conditions, a large peak was

detected around 300 kHz by the PCB sensor 9.2-in from the nosetip (x = 9.2-in).

The amplitude of the peak grows an order of magnitude by x = 10.9-in. At x = 14.3-

in an elevated broadband spectrum can be seen. This increase in noise over all

frequencies usually represents turbulence. The peak at 300 kHz has been found to be

the second-mode instability for this particular geometry, see Ref [62]. The peak also

shifts slightly to a lower frequency further downstream, as expected. As the boundary

layer thickens downstream, the second-mode frequency decreases.
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Figure 6.1. PSD of quiet results (solid) for E1R2 Re = 2.79×106/ft,
Noisy results (dotted) E1R3 Re = 2.89×106/ft, all traces from PCB
sensors.

TSP was applied for the axisymmetric cases. The first entry had flaws in the

painting and lighting of the TSP, but the data still show trends that can be compared

to the PSD. Figure 6.2 shows the quiet flow case for Re = 2.89×106/ft. A constant

radius arc can be seen towards the aft end of the cone. This is a lighting effect

caused by the blue LED reflection from the porthole window. A streak of reduced

heat flux can be seen at the last sensor location and spreading towards the upper

right-hand corner of the image. This area was a flaw in the painting method used for

this entry. The area had much less TSP applied and therefore did not give consistent

heat transfer values. Figure 6.3 shows the noisy run at a similar Reynolds number.

Both flaws can be seen in this image as well. More importantly, transition can be

seen in the image. A rise in heat transfer shows the onset of transition to a turbulent

boundary layer. The turbulent region on the cone can be compared to where the

furthest PCB sensor downstream detected increased noise across all frequencies in

Figure 6.1.
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Figure 6.2. Heat transfer contour of E1R2 0◦AoA, quiet flow, smooth
surface. Re = 2.79×106/ft, Po = 114.9 psia, To = 283.5◦F, Tw =
77.3◦F.
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Figure 6.3. Heat transfer contour of E1R3 0◦AoA, noisy flow, smooth
surface. Re = 2.89×106/ft, Po = 113.4 psia, To = 293.9◦F, Tw =
83.3◦F.
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Similar trends were found at higher stagnation pressures. Figure 6.4 shows quiet

flow spectra much like the lower Reynolds number case without visible peaks. There

are peaks near 300 kHz in the noisy flow spectra. Increasing the quiet Reynolds

number to 3.67×106/ft, Figure 6.5 begins to show second-mode peaks around 275

kHz for quiet conditions. At x = 9.2-in a second-mode peak can still be seen under

noisy flow, but further downstream at x = 10.9-in the boundary layer is transitioning

and finally at x = 14.3-in the spectra is broad and flat.
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Figure 6.4. PSD of quiet results (solid) for E1R5 Re = 3.21×106/ft,
Noisy results (dotted) E1R6 Re = 3.28×106/ft, all traces from PCB
sensors.



46

50 100 150 200 250 300 350 400 450 500
10

−12

10
−10

10
−8

10
−6

10
−4

Frequency [kHz]

P
S
D

[ (
P
′

P
m
e
a
n

) 2
/
H
z]

 

 
E1R7  Re=3.67e6/ft  0AoA  0ray  x=9.2in
E1R7  Re=3.67e6/ft  0AoA  0ray  x=10.9in
E1R7  Re=3.67e6/ft  0AoA  0ray  x=14.3in
E1R8  Re=3.57e6/ft  0AoA  0ray  x=9.2in
E1R8  Re=3.57e6/ft  0AoA  0ray  x=10.9in
E1R8  Re=3.57e6/ft  0AoA  0ray  x=14.3in
Electronic Noise

Figure 6.5. PSD of quiet results (solid) for E1R7 Re = 3.67×106/ft,
Noisy results (dotted) E1R8 Re = 3.57×106/ft, all traces from PCB
sensors.

6.2 Reynolds Number Comparison

The three Reynolds number cases were plotted together in Figure 6.6 for the

PCB sensor located 9.2-in downstream of the nosetip. Frequency was scaled by the

square root of the Reynolds number, with the characteristic length based on distance

from the nosetip, to remove boundary-layer thickness effects. The peak remains at

the same scaled frequency, as expected. The second-mode peak near 175 scaled-Hz

slightly increases in amplitude from Re = 2.89×106/ft to Re = 3.57×106/ft, but

saturates at the highest Reynolds number case. Figure 6.7 is plotted with the same

runs for the PCB sensor that is 1.7-in further downstream. The spectra shows that

an increase in Reynolds number gradually leads to breakdown of the second mode,

where the second-mode peak appears to flatten. This result has also been observed

by Berridge [63] for a 7◦ half-angle cone at zero angle of attack using the Langley

Mach-6 tunnel. A small frequency band of reduced power is seen on all three cases
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where the second mode is shown. From the electronic noise spectra, this frequency

band might be caused by an fault in the PCB sensor at that particular frequency.

Figure 6.8 compares the three Reynolds number cases under quiet flow at x = 14.3-

in. A peak near 250 kHz is detected at Re = 3.21×106/ft and then with a larger

amplitude near 265 kHz at Re = 3.67×106/ft.
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Figure 6.6. PSD of noisy spectra for runs E1R3 (blue), E1R6 (green),
and E1R8 (red), all traces from PCB sensor at x = 9.2-in.
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Figure 6.7. PSD of noisy spectra for runs E1R3 (blue), E1R6 (green),
and E1R8 (red), all traces from PCB sensor at x = 10.9-in.
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Figure 6.8. PSD of quiet spectra for runs E1R2 (blue), E1R5 (green),
and E1R7 (red), all traces from PCB sensor at x = 14.3-in.
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6.3 0◦ AoA Symmetry

To determine how symmetric the cone was relative to the flow, a run was conducted

with PCB sensors spaced 30 degrees apart azimuthally over the cone at x=14.3-in.

The sensors were expected to detect the second mode with similar magnitudes and

frequencies. Figure 6.9 shows each PCB sensor referenced from the Kulite Array 2

position, where positive and negative azimuthal rays denote either side of the Kulite

Array. The positive 90◦ position is approximately the top side of the tunnel. From

the PSD, the second-mode instability is detected between 200 and 350 kHz by all of

the sensors. Most sensors were observed to have similar magnitudes. The PCB sensor

at the -30◦ ray from the Kulite Array detected the second mode with an amplitude

nearly an order of magnitude higher than the rest of the sensors. It is unclear why

this position experiences larger disturbances, but the random roughness of TSP could

be a possible explanation. A bad factory calibration could also skew the magnitude of

the instability. An in-house PCB calibration technique is currently being investigated

by Berridge [64]. RMS values were computed for the other sensors that were similar

in power. Integrating over 200-350 kHz, the highest percent difference of these values

to the average was 43%. Table A.1 shows the percent difference of each sensor for

this test.



50

50 100 150 200 250 300 350 400 450 500
10

−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

Frequency [kHz]

P
S
D

 (
P
‘

P
m
e
a
n

)
2

/
H
z 

 

 
E3R3  Re=3.65e6/ft  0AoA  +90ray  x=14.3in
E3R3  Re=3.65e6/ft  0AoA  +60ray  x=14.3in
E3R3  Re=3.65e6/ft  0AoA  +30ray  x=14.3in
E3R3  Re=3.65e6/ft  0AoA  −30ray  x=14.3in
E3R3  Re=3.65e6/ft  0AoA  −60ray  x=14.3in
E3R3  Re=3.65e6/ft  0AoA  −90ray  x=14.3in

Figure 6.9. PSD of quiet spectra for run E3R3, all traces from PCB
sensors at x = 14.3-in. using the Ward Cone.

6.4 Second-mode Amplitudes

The second-mode disturbances detected in the 0◦ AoA tests were integrated under

each peak to approximate the magnitude of the fluctuations. The frequencies of

integration were chosen based on where the spectra showed a power content above

the noise levels. Figure 6.10 shows all runs that detected the second-mode instability.

All noisy runs showed turbulent spectra at the furthest aft PCB sensor. The second-

mode amplitudes under quiet flow were at least an order of magnitude lower than

under noisy flow. Figure 6.11 shows the same second-mode amplitudes as a function

of Rex. Under noisy flow, the spectra of the second mode appears to become broad

around Rex = 3.00× 106. Turbulent spectra is observed after this Reynolds number.
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Figure 6.10. Second-mode amplitudes as a function of distance from nosetip.
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6.5 Pate’s Correlation

The transition location was estimated for the noisy runs (E1R3, E1R6, and E1R8)

at zero angle of attack and compared to Pate’s Correlation for predicting transition on

a sharp slender cone. Pate developed an algorithm to determine the end of transition

on sharp slender cones at zero angle of attack [65]. The correlation is based on

tunnel characteristics such as: tunnel-wall skin-friction coefficient (CFII
), tunnel-wall

turbulent boundary-layer displacement thickness (δ∗), test-section circumference (C),

and aerodynamic-noise-transition correlation size parameter (c̄). The size parameter

considers a reference test-section circumference of a 12× 12-in tunnel, denoted as c1.

The transition Reynolds number is calculated as:

(Ret)cone =
48.5 (CFII

)−1.40 (c̄)√
δ∗/C

(6.1)

c̄ = 0.8 + 0.2
(c1
C

)
when

c1
C
< 1.0

c̄ = 1.0 when
c1
C
> 1.0

The skin-friction coefficent was calculated using the method of Van Driest II with a

wall temperature of 540 ◦R. The circumference of the Boeing/AFOSR Mach-6 Quiet

Tunnel is 9.5 inches in diameter. The displacement thickness was computed from

Maxwell’s correlation based on the model positioned 85 inches from the throat of the

nozzle. The transition location is then found by dividing Ret by the unit Reynolds

number at the surface of an inviscid cone.

For the three tests, the location of transition was estimated to be between the

PCB sensors at x = 10.9-in and x = 14.3-in. The further upstream PCB sensor

showed low noise, where the second mode was still observed. For this reason the

boundary layer is assumed to still be laminar. The PCB sensor further downstream

showed broadband noise and is assumed to be turbulent.

Pate’s correlation was compared to the approximate transition locations of the

experimental results in Figure 6.12. The uncertainty bars mark the PCB sensor
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locations. The aft PCB sensor determined that transition has occurred while the

upstream PCB sensor showed laminar spectra. The transition location is assumed to

be between these two sensors, but a definitive location cannot be determined.
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Figure 6.12. Comparison of Pate’s Correlation with experimental re-
sults from E1R3, E1R6, and E1R8. Uncertainty bar edges at pressure
sensor positions.
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7. STATIONARY CROSSFLOW INSTABILITY

TSP was used to detect stationary crossflow waves on each cone model. The images

presented in this section are ‘smooth surface’ models where the cone was sprayed

with a TSP layer, but no roughness elements were added. A measurement of the

TSP layer’s smoothness for each entry was compiled in Table B.1. The stationary

crossflow waves were compared by varying Reynolds numbers, angles of attack, and

azimuthal rays. Repeatability was also compared across entries.

7.1 Defining Stationary Crossflow Vortices

Most TSP images were found to have streaks of high heat transfer crossing over

the cone. Vortices cause localized mixing that promote additional heat transfer to the

surface. The streaks are believed to be vortices from the stationary crossflow mode.

As mentioned previously, stationary waves are introduced from localized roughness.

To determine if the vortices are stationary waves, the windward ray is rotated and

the positions of the streaks roll with the cone. This determines if the streaks are body

fixed from roughness on the cone and not from freestream disturbances. The author

did not have data at small rotations to show a conclusive result, but Ward [46] was

able to show the vortices are, in fact, body fixed through his experiments.

7.2 Reynolds Number Comparison

7.2.1 90◦ Ray Results

Three Reynolds numbers were tested for a smooth cone at 4◦ AoA. Figures 7.1,

7.2, and 7.3 show TSP images where the Kulite array was near the 90◦ ray from

windward. Streaks were observed toward the leeside of the cone for all Reynolds
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numbers in the upper side of the images. The red line near the center of the image

denotes the ray with multiple sensors, referred to as the sensor ray.

An azimuthal profile of the TSP images was taken at x = 12.1-in to compare

the heat flux for each Reynolds number, shown on Figure 7.4. The heat flux was

divided by the theoretical laminar values for a 7◦ half-angle cone at zero angle of

attack at the same Reynolds numbers. Similar heat transfer was found from the wind

to the 110◦ ray. To the lee of this ray, however, heat-flux peaks are observed and

as the Reynolds number is increased the heat flux from these streaks increase. At

x = 12.1-in heat-flux peaks spaced 4◦ to 6◦ apart are seen in the azimuthal profile from

the 110◦ to 135◦ ray. These peaks are the heat transfer streaks from the stationary

crossflow vortices. Figure 7.5 shows azimuthal profiles taken at x = 13.0-in where

these peaks in heat transfer have moved closer to the lee ray. The magnitude of the

heat flux at the highest Reynolds number increased by a factor of 2.
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Figure 7.1. Heat transfer contour of E4R3. 4◦AoA, quiet flow, smooth
surface, Kulites near the 90◦ ray. Re = 2.81×106/ft, Po = 118.8 psia,
To = 295.7◦F, Tw = 86.8◦F.
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Figure 7.2. Heat transfer contour of E4R2. 4◦AoA, quiet flow, smooth
surface, Kulites near the 90◦ ray. Re = 3.29×106/ft, Po = 139.9 psia,
To = 297.7◦F, Tw = 82.3◦F.
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Figure 7.3. Heat transfer contour of E4R1. 4◦AoA, quiet flow, smooth
surface, Kulites near the 90◦ ray. Re = 3.66×106/ft, Po = 156.8 psia,
To = 301.7◦F, Tw = 74.6◦F.
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Figure 7.4. Spanwise heat transfer profile of E4R3, E4R2, and E4R1
at x = 12.1-in, 4◦AoA, quiet flow, smooth surface.
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Figure 7.5. Spanwise heat transfer profile of E4R3, E4R2, and E4R1
at x = 13.0-in, 4◦AoA, quiet flow, smooth surface.
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To determine if this large increase in heat flux is attributed to the onset of transi-

tion, the PCB sensor at the 150◦ ray at x = 14.3-in was plotted for the three Reynolds

number cases, shown in Figure 7.6. As the Reynolds number increases the noise lev-

els increase across all frequencies. At the highest Reynolds number the spectra is

relatively flat over all frequencies, indicating turbulence.
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Figure 7.6. PSD of E4R3, E4R2, and E4R1. 4◦AoA, Quiet flow,
smooth surface, PCB sensor at the 150◦ ray.

7.2.2 120◦ Ray Results

Spatial resolution diminishes near the edges of the cone due to the glancing angle

for the image. To study the stationary mode at rays closer to the lee, the model was

rotated 30◦ toward the leeside with respect to the sting and the whole assembly (sting

and model) was then rotated 30◦ so the image was centered near the 120◦ ray. This

effectively moves the sensor positions 30◦ to the lee. A new windward ray is then

referenced as the 0◦ ray. Figures 7.7 and 7.8 reveal that the streaks lie between the

120◦ and 160◦ rays. A clear pattern of streaks can be seen for the higher Reynolds



59

number. The higher Reynolds number test also shows the strength of the vortices

decaying after reaching a maximum. The PCB sensor on the 150◦ ray downstream

of the growth and decay of these stationary waves show turbulent spectra. After the

decay in amplitude of the stationary waves it appears the breakdown to turbulence.
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Figure 7.7. Heat transfer contour of E5R5. 4◦AoA, quiet flow, smooth
surface, Kulites near the 120◦ ray. Re = 3.26×106/ft, Po = 140.0 psia,
To = 302.3◦F, Tw = 90.3◦F.
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Figure 7.8. Heat transfer contour of E5R6. 4◦AoA, quiet flow, smooth
surface, Kulites near the 120◦ ray. Re = 3.71×106/ft, Po = 158.0 psia,
To = 299.4◦F, Tw = 95.8◦F.

Figure 7.9 shows the azimuthal profile at x = 12.0-in. Heat-flux peaks are clearly

present at the higher Reynolds number. The peak near the 146◦ ray increases by

a factor of 4 from Re = 3.26×106/ft to Re = 3.71×106/ft. Figure 7.10 shows a

azimuthal profile at x = 13.0-in, where vortex streaks are observed for both Reynolds

numbers. The higher Reynolds number test shows streaks near the same rays as the

lower Reynolds number. The amplitudes from the lower to higher Reynolds number

increases by a factor of 4 near the 140◦ to 150◦ rays. The average peak-to-peak

spacing is approximately 8◦ for the higher Reynolds number case.
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Figure 7.9. Spanwise heat transfer profile of E5R5 and E5R6 at x =
12.0-in, 4◦AoA, quiet flow, smooth surface.
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Figure 7.10. Spanwise heat transfer profile of E5R5 and E5R6 at
x = 13.0-in, 4◦AoA, quiet flow, smooth surface.
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7.3 Angle of Attack Comparison

7.3.1 Smooth Surface Results

Three angles of attack were imaged for a smooth cone with the Kulite array at the

90◦ ray, shown in Figures 7.11, 7.12, and 7.13. As the angle of attack was increased,

the streaks became visible to the lee of the 90◦ ray. The pressure gradient increases

with angle of attack. This results in a larger crossflow component and the stationary

vortices grow in amplitude. Increased heat transfer can be seen in Figure 7.13. A low

amount of TSP was sprayed near x = 10.5-in for entry 6 so the variation in heat flux

in this region of Figures 7.11, 7.12, and 7.13 are not physical.

Distance from nosetip [in]

S
pa

nw
is

e 
re

fe
re

nc
e 

[in
]

 

 

11 12 13 14 15

−1.5

−1

−0.5

0

0.5

1

1.5

H
ea

t 
T

ra
n

sf
er

 [
B

T
U

/f
t2 −s

]

0

0.1

0.2

0.3

0.4

0.5

0.6

90o ray

Figure 7.11. Heat transfer contour of E6R12. 2◦AoA, quiet flow,
smooth surface, Kulites near the 90◦ ray. Re = 3.64×106/ft, Po =
155.7 psia, To = 304.9◦F, Tw = 79.8◦F.
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Figure 7.12. Heat transfer contour of E6R31. 3◦AoA, quiet flow,
smooth surface, Kulites near the 90◦ ray. Re = 3.58×106/ft, Po =
157.2 psia, To = 313.1◦F, Tw = 86.7◦F.

An azimuthal profile was computed for the three cases: E6R12, E6R31, and E5R1,

at x = 13.5-in to compare the heat transfer as a function of angle of attack, shown in

Figure 7.14. The 2◦ and 3◦ AoA cases show approximately the same heat transfer as

the theoretical laminar case at zero angle of attack, except to the lee of the 145◦ ray.

Near the edge of the cone the intensity of light being emitted is low due to the glancing

view, so heat flux values near the edge are not real. At 4◦ AoA heat-flux peaks are

clearly seen. Since the image was centered near the 90◦ ray, heat flux information

to the lee of the 140◦ ray suffers from low spatial resolution. No other tests had

matching conditions to compare the three angles of attack at higher rays for smooth

surface cases.



64

Distance from nosetip [in]

S
pa

nw
is

e 
re

fe
re

nc
e 

[in
]

 

 

11 12 13 14 15

−1.5

−1

−0.5

0

0.5

1

1.5

2 H
ea

t 
T

ra
n

sf
er

 [
B

T
U

/f
t2 −s

]

0

0.1

0.2

0.3

0.4

0.5

0.6

90o ray

Figure 7.13. Heat transfer contour of E5R1. 4◦AoA, quiet flow,
smooth surface, Kulites near the 90◦ ray. Re = 3.69×106/ft, Po =
157.6 psia, To = 300.3◦F, Tw = 90.4◦F.
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Figure 7.14. Spanwise heat transfer profile of E6R12, E6R31, and
E5R1 at x = 13.5-in, quiet flow, smooth surface.



65

7.3.2 Torlon-insert Roughness Results

Tests imaging closer to the lee are shown in Figures 7.15, 7.16, and 7.17. These

tests were conducted with the Torlon insert installed. The dimples indented into the

Torlon create a discrete roughness used to excite stationary waves. The effects of the

roughness are discussed in a later section. For this section, the results are presented

to show the differences in angle of attack.

No clear streaks are observed for the heat transfer contour at 2◦ AoA, but at

3◦ and 4◦ AoA vortices are seen to the lee of the 120◦ ray. The rapid growth of the

vortices is observed at the higher angles of attack. The onset of this region is located

near x = 12.5-in for 3◦ AoA near the 150◦ ray and further upstream than could be

imaged for 4◦ AoA near the same ray.

Azimuthal heat transfer profiles were taken for the three cases at x = 11.5-in and

x = 13.5-in, shown in Figures 7.18 and 7.19 respectively. At x = 11.5-in a large peak

in heat transfer was found near the 148◦ ray for the 4◦ AoA run. Further downstream

at x = 13.5-in the streak near the 148◦ ray decays and stationary waves for the

3◦ AoA run grow larger than the 4◦ AoA run to the lee of the 145◦ ray. The cause

of this appears to be due to the stationary waves forming further upstream and then

breaking down at x = 13.5-in for the 4◦ AoA run. The azimuthal ray may not be

able to resolve the exact location of the streaks to the lee of 150◦ ray, again, due to

the edge of the cone.
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Figure 7.15. Heat transfer contour of E6R17. 2◦AoA, quiet flow,
Torlon insert, Kulites near the 120◦ ray. Re = 3.60×106/ft, Po =
156.8 psia, To = 309.3◦F, Tw = 79.8◦F.
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Figure 7.16. Heat transfer contour of E6R39. 3◦AoA, quiet flow,
Torlon insert, Kulites near the 120◦ ray. Re = 3.61×106/ft, Po =
157.0 psia, To = 308.1◦F, Tw = 86.7◦F.
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Figure 7.17. Heat transfer contour of E6R4. 4◦AoA, quiet flow, Torlon
insert, Kulites near the 120◦ ray. Re = 3.62×106/ft, Po = 156.8 psia,
To = 306.2◦F, Tw = 90.4◦F.
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Figure 7.18. Spanwise heat transfer profile of E6R12, E6R31, and
E5R1 at x = 11.5-in, quiet flow, Torlon insert.
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Figure 7.19. Spanwise heat transfer profile of E6R12, E6R31, and
E5R1 at x = 13.5-in, quiet flow, Torlon insert.

The growth and breakdown of the stationary vortices were analyzed by taking

axial heat transfer profiles along vortex streaks. The vortices analyzed between the

120◦ and 180◦ rays of E6R4 are shown in Figure 7.20. The axial profiles are shown in

Figure 7.21. The profiles were averaged over each pixel in the spanwise direction. The

number of pixels averaged depend on the width of a vortex streak, where the edges

were determined when the heat flux began to show constant values below the peak

value. An example of a profile that was averaged is shown in Figure 7.22, where four

spanwise profiles was computed at distances along Vortex 2. The black line denotes

the region that was averaged. Vortex 2 and 3 show a rapid increase in heat flux and

then a decrease to a constant value. The PSD of the PCB at the 150◦ ray, just aft

of the decay of the stationary-wave amplitude, was found to have turbulent spectra.

This is most likely the result of the vortices breaking down. Vortices 4, 5, and 6 begin

increasing in heat flux further downstream near x = 12.0-in, but their development

was only imaged to x = 14.5-in.
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Figure 7.20. Heat transfer contour of E6R4 with vortex labels, quiet
flow, Torlon insert.
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Figure 7.21. Axial heat transfer profiles of vortices for E6R4, quiet
flow, Torlon insert.
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Figure 7.22. Spanwise profiles along Vortex 2.

7.4 Stationary Waves under Noisy Flow

Stationary vortices were apparently observed under noisy flow. Figure 7.23 shows

the heat transfer contour of E3R7. The plot is scaled down (0− 0.5 BTU
ft2−s) to observe

the vortices to the lee of the 90◦ ray. The transition front is seen towards the lee side

by the sudden change in heat flux. Two streaks are observed from x = 11.0-in at the

100◦ ray to the PCB sensor at x = 14.3-in at the 120◦ ray. These streaks look like

stationary crossflow waves. The streaks can be seen before and after the transition

front. No other streaks of this kind have been found while testing under noisy flow

conditions.

7.5 Repeatability between Entries

For each entry, the model being tested was given a new TSP layer in order to

obtain the highest signal from the luminescent paint. However, with a new paint

layer, the distributed roughness changes across the model. Repeatability between



71

Distance from nosetip [in]

S
pa

nw
is

e 
re

fe
re

nc
e 

[in
]

 

 

10 11 12 13 14 15

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

H
ea

t 
T

ra
n

sf
er

 [
B

T
U

/f
t2 −s

]

0

0.1

0.2

0.3

0.4

0.5

90o ray

Figure 7.23. Heat transfer contour of E3R7. 4◦AoA, noisy flow,
smooth surface, Kulites near the 90◦ ray. Re = 2.89×106/ft, Po =
114.7 psia, To = 301.2◦F, Tw = 83.4◦F.

entries was measured to determine if the distributed roughness had an effect. Entries

2, 3, 4, and 5 were compared at the matching conditions: 4◦ AoA, quiet flow, no

applied roughness, and Reynolds number of approximately 3.65×106/ft.

Heat transfer contours are shown in Figures 7.24, 7.25, 7.26, and 7.27, for entries

2, 3, 4, and 5, respectively, for smooth Crossflow and Ward cones at 4◦ AoA under

quiet flow. The RMS roughness over the surface of the TSP is compiled in Table B.1

for each entry. The images were centered near the 120◦ ray with the exception of

entry 4 where the highest azimuthal position imaged was near the 90◦ ray. Azimuthal

rays to the lee of the 120◦ ray were then difficult to compare. A rapid increase in

heat flux is seen on all entries by x = 13.0-in. The Crossflow cone was used for entry

2 so it is possible the difference in the radius of the nosetip could effect the vortex

development along the cone.
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An azimuthal heat transfer profile was taken at x = 13.5-in for each entry, shown in

Figure 7.28. Entries 2, 3, and 5 show vortices near the same azimuthal rays, but differ

in amplitude. The differences in heat transfer across each vortex suggests the random

distributed roughness does effect the repeatability between entries. It is therefore

recommended that TSP be applied only once. Concerns of TSP photodegradation

were the reason for repainting models, but this issue is currently being investigated.

Repeatability may also be possible using discrete roughnesses. Ward [46] changed the

random roughness of the TSP, but kept the same discrete roughness elements. Heat

transfer contours showed the stationary vortices were at the same location for each

TSP roughness. Ward summarizes that the discrete roughness elements dominate the

excitation of stationary vortices over the distributed roughness of the TSP.
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Figure 7.24. Heat transfer contour of E2R22. 4◦AoA, quiet flow,
smooth surface, PCBs at the 120◦ ray. Re = 3.64×106/ft, Po = 158.2
psia, To = 308.3◦F, Tw = 85.1◦F.
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Figure 7.25. Heat transfer contour of E3R16. 4◦AoA, quiet flow,
smooth surface, Kulites near the 120◦ ray. Re = 3.63×106/ft, Po =
156.1 psia, To = 302.6◦F, Tw = 94.6◦F.
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Figure 7.26. Heat transfer contour of E4R1. 4◦AoA, quiet flow,
smooth surface, Kulites near the 90◦ ray. Re = 3.65×106/ft, Po =
156.8 psia, To = 301.7◦F, Tw = 74.6◦F.
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Figure 7.27. Heat transfer contour of E5R6. 4◦AoA, quiet flow,
smooth surface, Kulites near the 120◦ ray. Re = 3.71×106/ft, Po =
158.0 psia, To = 299.4◦F, Tw = 90.4◦F.
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Figure 7.28. Spanwise heat transfer profile of entries 2, 3, 4, and 5 at
x = 13.5-in, quiet flow, smooth surface.
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8. TRAVELING CROSSFLOW INSTABILITY

Experiments conducted by the author detected instabilities between 20-80 kHz for

a 7◦ half-angle cone at low angles of attack at Mach 6. Calculations were made

to analyze the wave speed and direction of wave propagation of these disturbances,

which appear to be traveling crossflow waves. The instabilities were detected by both

PCB and Kulite sensors over a range of Reynolds numbers for quiet and noisy tunnel

configurations. Angle of attack and sensor comparisons were also analyzed.

8.1 Wave Properties

Instability wave properties can be determined with measurements from three sen-

sors in near proximity to each other, to resolve the angle and phase speed of the

waves. An axial and circumferential surface coordinate system was transformed into

a two-dimensional plane for small regions of surface curvature. The coordinate system

was then transformed by rotating the axes by the wave angle (Φ) in the direction of

the wave propagation, shown in Figure 8.1.

The Kulite sensor locations are transformed using Equations 8.1 and 8.2:

x′ = xcosΦ + ysinΦ (8.1)

y′ = −xsinΦ + ycosΦ (8.2)
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(a) Original coordinate system (x,y)

(b) Transformed coordinate system (x′,y′)

Figure 8.1. Orientation of coordinate systems for cross-spectral anal-
ysis. Drawing from Ref [15] is modified for Kulite Array 2 geometry.
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The distance between the sensors in the rotated coordinate system can then be

related to the time delay of a particular phase (τ) and its phase speed (cr), shown in

Equation 8.3:

crτab = x′b − x′a (8.3)

where a and b are the sensor positions to be analyzed. Three independent equations

can be formed from Equation 8.3 pairing between any of the four sensors, where a,

b, c, and d are any of the sensor positions, such that a 6= b and c 6= d. Equations

8.1 and 8.2 can be substituted into each of the three equations to solve for the wave

angle, shown in Equation 8.4:

tanΦ =
τcd(xb − xa)− τab(xd − xc)
τab(yd − yc)− τcd(yb − ya)

(8.4)

The phase speed is determined from the same parameters. Figure 8.2 shows the

coordinate system and the typical wave angle found in relation to Kulite Array 2.

Figure 8.2. Schematic of Kulite Array 2 and reference frame used to
determine wave orientation.
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Three Kulite signals from E3R4 were used to determine if the traveling crossflow

instability was present. The PSD of E3R4, shown in Figure 8.3, reveals a peak in the

power spectra, indicating an instability is detected from 20 to 60 kHz at x = 14.3-in

and at the 90◦ ray from windward at 4◦ AoA.
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Figure 8.3. PSD of E3R4. Quiet flow, smooth surface, Kulites k1, k2,
and k3 near the 90◦ ray.

8.1.1 Coherence

To determine if an instability is detected at multiple sensors the coherence was

calculated. The square of the magnitude of the coherence (Cxy) is a measure of

how well two signals correspond at each frequency. The coherence is a function of

the power spectral densities of each signal, PSDxx(f) and PSDyy(f), and the cross

power spectral density, PSDxy(f). Equation 8.5 shows the formula for the coherence.

Cxy(f) =
|PSDxy(f)|2

PSDxx(f) PSDyy(f)
(8.5)
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The values of the coherence range from 0 to 1, where 0 indicates the two signals

have no relation and 1 indicates that the signals are perfectly correlated. Figure

8.4 plots the magnitude-squared coherence as a function of frequency. To compare

the three sensors to each other in pairs, three combinations were plotted. A wide

peak near 50 kHz indicates that all three sensors are detecting the same waves. The

wave angles and phase speeds for this band were examined as they show the highest

agreement in coherence and power.
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Figure 8.4. Coherence between Kulite sensors for E3R4.

8.1.2 Wave Angle

The direction of the detected waves can be determined from Equation 8.4. Figure

8.5 plots the wave angle as a function of frequency. Two different sensor pairs were

compared to show agreement in wave angle across the three sensors. The wave angle

was estimated to be between -62◦ and -58◦ for frequencies between 30 and 50 kHz,

respectively. The angle of the wave was found to be negative with respect to the
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coordinate system used. This means the wave propagates from lee to wind at those

angles.
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Figure 8.5. Calculated wave angle as a function of frequency for E3R4.

8.1.3 Phase Speed

The phase speed of the detected waves are calculated by the distance the wave

travels, sensor to sensor in the direction of the wave angle, divided by the time a

particular phase travels that distance. Figure 8.6 shows a plot of the phase speed as

a function of frequency. Two different sensor pairs were compared to show agreement

in the phase speed across the three sensors. The phase speed was estimated to be

between 875 and 1455 ft/s for frequencies between 30 and 50 kHz, respectively.
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Figure 8.6. Calculated phase velocity as a function of frequency for E3R4.

8.1.4 Instability Analysis

The results from Li et al. [41] and Borg et al. [15], found traveling waves at fre-

quencies below 100 kHz at Mach 6 on an inclined 7◦ half-angle cone and an elliptical

cone, respectively. The results from the computations made by Li et al. found trav-

eling crossflow waves with the highest N-factor values near 40 kHz at 3◦ and 6◦ AoA.

The disturbances detected with the Kulites for E3R4 detected similar frequencies to

the results from Li et al. at the same ray and distance from nosetip. This suggests

that traveling crossflow waves are being measured. Additionally, Borg et al. detected

disturbances near 40 kHz on an elliptical cone where crossflow was present. They

were able to determine the disturbances were traveling waves by calculating the wave

properties and comparing to computations.

All the runs that detected traveling waves over three Kulites were compiled in

Table 8.1. A wave properties from a substantial number of runs could not be computed

because a variety of reasons. Many runs were conducted at the maximum quiet
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pressure (170 psia) where the Kulite spectra was turbulent to the lee of the 90◦ ray.

Many runs were also conducted below Re = 2.87×106/ft where no disturbances were

detected. Finally over the course of testing, Kulite sensors would fail. This resulted

in not having the required amount of sensors to perform the analysis.

Table 8.1 Traveling wave characteristics for frequencies from 30 to 50
kHz. All runs shown are at 4◦ AoA.

Entry Run Re Ray Wave Angle Phase Velocity

[−] [−] [×106/ft] [deg] [deg] [ft/s]

3 4 3.81 90 -63 to -58 875 to 1455

3 5 3.41 90 -66 to -62 817 to 1246

3 13 2.88 105 -80 to -73 1074 to 1448

3 14 3.34 105 -66 to -63 829 to 1302

3 18 2.87 120 -58 to -58 789 to 1635

4 1 3.65 90 -66 to -65 734 to 1130

4 2 3.29 90 -68 to -68 865 to 1230

4 7 3.73 90 -67 to -67 723 to 1135

4 12 3.69 60 -60 to -65 800 to 1240

8.2 Reynolds Number Comparison

A range of Reynolds numbers were compared for a smooth cone at 4◦ AoA under

quiet flow. Figure 8.7 shows the results for the Kulite at the 94.5◦ ray. The data show

a peak in the spectra between 20 and 80 kHz, apparently caused by traveling crossflow

waves. As the Reynolds number increases, the power of these waves increases.

Figure 8.8 shows the same comparison at the 124.5◦ ray. However, the highest

Reynolds number at the 124.5◦ ray shows broadband noise over all frequencies which

indicates turbulent flow at this position. The TSP image for the highest Reynolds
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number (E3R16), shown in Figure 7.25, suggests that a stationary vortex crosses

over the Kulite at the 124.5◦ ray. The second highest Reynolds number run shows a

broadening of the spectra, but a peak is still apparent near the expected traveling-

wave frequencies. A vortex streak is also seen crossing over the Kulite sensor at the

same ray. A quantitative analysis of the interaction between the stationary vortices

and the traveling-wave amplitudes will be provided in the subsequent sections.
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Figure 8.7. PSD of Reynolds number comparison for traveling-
wave frequencies. 4◦ AoA, quiet flow, smooth surface, Kulite at the
94.5◦ ray.
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E3R19  Re=2.02e6/ft  4AoA  124.5ray  x=14.3in
E3R18  Re=2.86e6/ft  4AoA  124.5ray  x=14.3in
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Figure 8.8. PSD of Reynolds number comparison for traveling-
wave frequencies. 4◦ AoA, quiet flow, smooth surface, Kulite at the
124.5◦ ray.

The PSDs for each run were integrated between 20-80 kHz to determine the RMS

fluctuations as a percent of the mean surface pressure. Figure 8.9 shows the RMS

fluctuations as a function of the Reynolds number. The amplitudes of fluctuations

increase with increasing Reynolds number and azimuthal ray from 60◦ to 124.5◦.

Reynolds numbers greater than 3.40×106/ft showed turbulent spectra for azimuthal

rays to the lee of the 105◦ ray.
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Figure 8.9. RMS fluctuations as a function of the Reynolds number
for various azimuthal rays. RMS in the 20-80 kHz band of power
spectra. 4◦ AoA, smooth surface.

8.3 Angle of Attack Comparison

Four angles of attack were compared to observe the effect on traveling-wave am-

plitudes. Figures 8.10 and 8.11 show the PSD for Kulites at the 90◦ and 120◦ ray,

respectively, for the Ward cone with the Torlon insert installed. Much like the station-

ary mode, the traveling mode of crossflow grows with increasing angle of attack. The

increase in angle of attack from 3◦ and 4◦ produces an order of magnitude increase

in the power of the traveling mode at the 90◦ and 120◦ ray.

Figure 8.12 shows the PSD for a PCB sensor at the 150◦ ray. At 3◦ AoA two

peaks are present in the PCB spectra. It is unclear whether the lower frequency peak

at 75 kHz is the traveling mode, the second mode, or the result of some interaction

between them. The higher frequency peak at 310 kHz appears to be the secondary

instability of the stationary crossflow wave, and is discussed in a later section. Above

this angle of attack the spectra becomes turbulent and large vortices are seen in the

TSP.
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E6R28  Re=3.65e6/ft  0AoA  0ray  x=14.3in
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Figure 8.10. PSD of angle of attack comparison for traveling wave
frequencies. Quiet flow, Torlon insert, Kulite at the 90◦ ray.
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E6R29  Re=3.23e6/ft  0AoA  0ray  x=14.3in
E6R19  Re=3.23e6/ft  2AoA  120ray  x=14.3in
E6R40  Re=3.23e6/ft  3AoA  120ray  x=14.3in
E6R5    Re=3.23e6/ft  4AoA  120ray  x=14.3in

Figure 8.11. PSD of angle of attack comparison for traveling wave
frequencies. Quiet flow, Torlon insert, Kulite at the 120◦ ray.
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E6R26  Re=3.23e6/ft  0AoA  0ray  x=14.3in
E6R16  Re=3.23e6/ft  2AoA  150ray  x=14.3in
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Figure 8.12. PSD of angle of attack comparison for traveling wave
frequencies. Quiet flow, Torlon insert, PCB sensor at the 150◦ ray.

All spectra that detected the traveling crossflow instability at the 60◦, 90◦, and

120◦ ray were integrated between 20-80 kHz to determine the RMS fluctuations as a

percent of the mean surface pressure, shown in Figure 8.13, 8.14, and 8.15, respec-

tively. All data was taken from Kulites in the Kulite Array 2, where x = 14.3-in. Data

from the 60◦ and 120◦ ray were taken from runs with the Torlon insert installed. The

90◦-ray data were taken from runs with no applied roughness and the Torlon insert

installed.

At the 60◦ ray, the amplitudes of the waves are below 0.3% of the mean surface

pressure for all angles of attack. The traveling crossflow instability appears to not

grow over this range of Reynolds numbers at this azimuthal angle.

At the 90◦ ray, the smooth and Torlon cases were compared along with the three

angles of attack. Runs with vortices crossing over the sensors may alter the amplitudes

of the traveling waves. The traveling-wave amplitudes at 2◦ AoA with the Torlon

insert were slightly larger than the amplitudes at 3◦ AoA below Re = 3.60×106/ft.



88

This is an unexpected result that needs more data to fully explain if this trend is

legitimate. The data at 4◦ AoA shows wave amplitudes on the order of 3 times the

amplitudes seen at 2◦ and 3◦ AoA for the smooth cases. No data at the 90◦ ray

showed signs of turbulent spectra.

At the 120◦ ray, the data at 3◦ AoA shows lower amplitudes than the data at

2◦ AoA for the two higher Reynolds number cases. This may be due to the stationary

vortices crossing over the Kulites causing a decrease in traveling-wave amplitude.

Turbulent spectra was found above Re = 3.23×106/ft for the data at 4◦ AoA.

3.54 3.56 3.58 3.6 3.62 3.64 3.66 3.68 3.7 3.72
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Re/ft × 10−6

P
′

P
ta

n
c

 

 
2 AoA  60 ray  x=14.3in
3 AoA  60 ray  x=14.3in
4 AoA  60 ray  x=14.3in

Figure 8.13. RMS fluctuations as a function of the Reynolds number
at the 60◦ ray from windward for 2◦, 3◦, and 4◦ AoA. RMS in the
20-80 kHz band of power spectra. All data taken from entry 6 with
Torlon insert installed.
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Figure 8.14. RMS fluctuations as a function of the Reynolds number
at the 90◦ ray from windward for 2◦, 3◦, and 4◦ AoA. RMS in the
20-80 kHz band of power spectra.

8.4 Tunnel Noise Comparison

The effect of tunnel noise was evaluated during entry 3. Figure 8.16 compares

E3R8 and E3R9 near the same Reynolds number with a Kulite at the 90◦ ray. A

small peak is observed in the spectra near 40 kHz under quiet flow conditions. The

low Reynolds number and the frequency of the peak suggest that the peak is the

traveling crossflow instability with low power. Under noisy flow conditions, a region

two orders of magnitude higher than the quiet flow spectra was observed between

20-60 kHz. Figure 8.17 shows quiet (blue lines) and noisy (red lines) spectra for a

PCB sensor on the 90◦ ray at x = 12.6-in, 1.7 inches upstream of the Kulite array. A

similar spectra is seen between the two sensor types between 20-60 kHz for the noisy

flow case, but the PCB sensor did not detect any traveling waves under quiet flow

conditions.
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Figure 8.15. RMS fluctuations as a function of the Reynolds number
at the 120◦ ray from windward for 2◦, 3◦, and 4◦ AoA. RMS in the
20-80 kHz band of power spectra.
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Figure 8.16. PSD for tunnel noise comparison for traveling-wave fre-
quencies. 4◦ AoA, smooth surface, Kulite at the 90◦ ray.
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Figure 8.17. PSD for tunnel noise comparison for traveling wave fre-
quencies. 4◦ AoA, smooth surface, Each sensor type at the 90◦ ray.

The spectral content between 20-60 kHz for the noisy flow results looks similar

to power spectra seen from traveling waves under quiet flow if the 40 kHz peak was

shifted near 20 kHz. The Kulite signals from noisy runs were analyzed to determine

if wave properties could be calculated. Figure 8.18 shows the wave properties from

three Kulites in Kulite Array 2 located near the 90◦ ray and x = 14.3-in. The three

signals show coherence at frequencies below 70 kHz with the highest coherence near

30 kHz. The wave angles and phase speeds between 20-60 kHz also show agreeable

trends between the sensor pairs. The calculated wave properties suggest that a wave-

like instability is present under noisy flow conditions. The frequency of the instability

under noisy flow is lower than the traveling-wave frequencies under quiet flow. The

mechanism that would shift the traveling crossflow instability is not known by the

author. The instability detected under noisy flow should be examined in future ex-

periments to determine if the instability is a modulation of the traveling waves or

another disturbance.
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Figure 8.18. Wave calculations for E4R9. (a) PSD (b) Coherence (c)
Wave angle (d) Phase velocity

8.5 Similarity between Pressure Sensors

PSD plots for the PCB 132A31 and the Kulite XCQ-062-15A transducers were

compared to understand the differences in the sensing methods and how they affect

the amplitude and frequency of the traveling mode. While testing angles of attack

during entry 6, runs were tested with the Kulite Array 2 near the 60◦, 90◦, and

120◦ ray. Rotating the sensor positions by increments of 30◦ allowed the PCB sensors

to be compared to the Kulites at the same azimuthal ray.

Figure 8.19 shows the comparison of two runs with a Kulite sensor (solid line)

and two runs with a PCB sensor (dotted line) at the 90◦ ray. Most power spectra

from PCB sensors used in these experiments showed noise levels above where Kulite

sensors detect the traveling crossflow instability. This could be due to the size of the
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sensing element in the PCB sensor. The sensing element could be averaging over a

significant portion of a wavelength of the traveling waves.
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E6R14  Re=3.60e6/ft  2AoA  90ray  x=14.3in  Kulite
E6R15  Re=3.63e6/ft  2AoA  90ray  x=14.3in  Kulite
E6R17  Re=3.60e6/ft  2AoA  90ray  x=14.3in  PCB
E6R18  Re=3.64e6/ft  2AoA  90ray  x=14.3in  PCB

Figure 8.19. PSD of PCB and Kulite sensors with similar tunnel
conditions and sensor location. 2◦ AoA, quiet flow, Torlon insert,
both sensor types at the 90◦ ray.

Figure 8.20 compares each type of sensor at the 120◦ ray at 2◦ AoA. Compar-

ing E6R14 and E6R39 at Re = 3.60×106/ft, the detected traveling-wave frequencies

agree well between the two sensors with a percent difference of 29.5% in RMS fluctu-

ations, integrated from 20-80 kHz. The differences in amplitudes could be due to the

experimental conditions between runs as well as calibration issues since the data from

the PCB sensors are reduced using factory calibrations. Figure 8.21 compares each

type of sensor at the 90◦ ray at 3◦ AoA. Comparing E6R35 and E6R45, the detected

traveling-wave frequencies agree well between the two sensors with a percent differ-

ence of 2.7% in RMS fluctuations, integrated from 20-80 kHz. Figure 8.22 compares

each type of sensor at the 120◦ ray at 3◦ AoA. Comparing E6R35 and E6R39, the
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detected traveling-wave frequencies agree well between the two sensors with a percent

difference of 2.6% in RMS fluctuations, integrated from 20-80 kHz.
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E6R14  Re=3.60e6/ft  2AoA  120ray  x=14.3in  PCB
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Figure 8.20. PSD of PCB and Kulite sensors with similar tunnel
conditions and sensor location. 2◦ AoA, quiet flow, Torlon insert,
both sensor types at the 120◦ ray.
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E6R35  Re=3.61e6/ft  3AoA  90ray  x=14.3in  Kulite
E6R36  Re=3.61e6/ft  3AoA  90ray  x=14.3in  Kulite
E6R45  Re=3.66e6/ft  3AoA  90ray  x=14.3in  PCB

Figure 8.21. PSD of PCB and Kulite sensors with similar tunnel
conditions and sensor location. 3◦ AoA, quiet flow, Torlon insert,
both sensor types at the 90◦ ray.
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Figure 8.22. PSD of PCB and Kulite sensors with similar tunnel
conditions and sensor location. 3◦ AoA, quiet flow, Torlon insert,
both sensor types at the 120◦ ray.
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9. INTERACTIONS BETWEEN STATIONARY &

TRAVELING WAVES

Low-speed experiments have shown that the saturation amplitudes of stationary and

traveling waves are dependent on their initial amplitudes. As Bippes and Lerche [33]

have shown in their experiments, increasing the initial amplitudes of the traveling

waves leads to a decrease in the saturation amplitudes of the stationary waves. Ex-

periments were conducted to determine if the same relationship holds at hypersonic

speeds as well as quantifying the interaction in terms of heat flux and RMS fluctu-

ation. The interaction between the stationary and traveling waves was observed by

modulating the growth of the stationary vortices. In order to alter the vortex posi-

tions and their growth along the cone, roughness elements were used with the Ward

cone. Roughness elements were added during entries 4 and 6. Nail polish was used

during entry 4 as a quick technique to determine if a sizable roughness could alter sta-

tionary vortices. Entry 6 used a Torlon insert near the nosetip as a more well-defined

roughness element. The RMS roughness values of the TSP layers for each entry and

nail polish applications are compiled in Table B.1, along with the dimensions of the

Torlon insert roughness elements.

9.1 Entry 4 Interactions

For the fourth tunnel entry, the Ward cone was coated with TSP and a distributed

roughness was added to the cone surface. The TSP coating was measured by the

profilometer at random locations around the cone. The average RMS roughness was

0.05 mil. The paint was feathered near the TSP edge to create a gradual slope to

the bare aluminum, but the slope of the feathered section was not measured. The

roughness insert section of the Ward cone must align flush with the nosetip on the
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upstream edge and with the main body of the model on the downstream edge. The

interface between each end is examined for steps or gaps that could have an affect on

the flow. The upstream interface had a rearward facing step of 0.3 mil in the direction

of flow. The downstream interface had a forward facing step of 0.15 mil in the same

direction.

9.1.1 E4 Roughness Application and Measurement

An initial strip of blue nail polish was added to the Ward cone during entry 4

testing. The strip was added 8.75-in from the nosetip, just forward of Kulite Array 1.

The strip covered approximately 60 degrees centered over the rays around the Kulite

positions. The width of the strip was approximately 0.1-in. More blue nail polish

was later added to connect the strip into a ring to cover all rays of the cone. Figure

9.1 shows both roughness patterns on the Ward cone.

Using the SJ-130 profilometer, the roughness ring was measured on the cone’s

surface and on the negative mold. Both surfaces are compared in Figure 9.2 at

azimuthal positions 90◦ and 270◦ from the Kulite position k3. Both profiles match well

in the region of large roughness, but deviate outside of this region. The negative-mold

technique was used for all profilometer readings to reduce the error that could occur

with measuring on a curved surface. This error would only occur when measuring

across the span of the cone. The RMS roughness of the ring was measured across the

width of the ring and averaged over multiple rays. The average RMS roughness was

2.04 mil.
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(a)

(b)

Figure 9.1. Photographs of Ward Cone during entry 4 testing with
initial nail-polish roughness strip (a) and roughness ring (b).
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Figure 9.2. Surface and negative height profile of E4 roughness ring
(a) 90◦ and (b) 270◦ from Kulite 3. Profiles from right to left were
measured in the direction of flow.
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9.1.2 E4 Roughness Effects

Global heat transfer contours for a smooth case (E4R1), a roughness strip (E4R23),

and a roughness ring (E4R29) were imaged in Figures 9.3, 9.4, and 9.5, respectively.

The smooth case shows a typical heating pattern with stationary vortices appearing

above the 120◦ ray. For Figure 9.4, the nail polish strip was between the 60◦ and

120◦ rays. Adding the roughness strip produced higher heat transfer from the vor-

tices. Results from the roughness ring show a large increase in the number of vortices

observed on the cone. These vortices are due to the additional roughness on the

wind and lee sides of the initial roughness strip exciting stationary waves at the other

azimuthal rays.
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Figure 9.3. Heat transfer contour of E4R1. 4◦AoA, quiet flow, smooth
surface, Kulites near the 90◦ ray. Re = 3.66×106/ft, Po = 156.8 psia,
To = 301.7◦F, Tw = 74.6◦F.
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Figure 9.4. Heat transfer contour of E4R23. 4◦AoA, quiet flow, E4
roughness strip, Kulites near the 90◦ ray. Re = 3.68×106/ft, Po =
157.2 psia, To = 299.6◦F, Tw = 79.9◦F.
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Figure 9.5. Heat transfer contour of E4R29. 4◦AoA, quiet flow, E4
roughness ring, Kulites near the 90◦ ray. Re = 3.66×106/ft, Po =
157.1 psia, To = 302.1◦F, Tw = 76.8◦F.
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Azimuthal cuts were taken at x = 12.5-in, x = 13.5-in, and x = 14.5-in for the

three runs as shown on Figures 9.6, 9.7, and 9.8, respectively. At x = 12.5-in peaks

in heat flux are seen near the 105◦ and the 115◦ rays for both applied roughnesses.

Further aft at x = 13.5-in, these peaks shift 5◦ to the lee and the peak at the 120◦ ray

grows in amplitude for both roughness cases. Heat-flux peaks are also seen from the

60◦ to 100◦ ray for the roughness-ring case. The furthest aft position of x = 14.5-in

shows the peaks again shift approximately 5◦ toward the lee side of the cone. From

the TSP, the vortex paths move toward the lee side of the cone. The heat-flux peaks

between the 60◦ and 120◦ rays were, on average, 50% higher than for the smooth

case. To quantify the interaction between the stationary and traveling modes, the

heat transfer from the vortices was compared to the pressure fluctuations from the

Kulites that detected traveling waves. The sensors in Kulite Array 2 are marked on

Figure 9.8 to show the azimuthal location of the sensors relative to where the vortices

cross.
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Figure 9.6. Spanwise heat transfer profile of E4R1, E4R23, and E4R29
at x = 12.5-in. 4◦AoA, quiet flow, Kulite array near the 90◦ ray.
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Figure 9.7. Spanwise heat transfer profile of E4R1, E4R23, and E4R29
at x = 13.5-in. 4◦AoA, quiet flow, Kulite array near the 90◦ ray.
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Figure 9.8. Spanwise heat transfer profile of E4R1, E4R23, and E4R29
at x = 14.5-in. 4◦AoA, quiet flow, Kulite array near the 90◦ ray.
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The heat transfer profiles of E4R29 show the vortices crossing over Kulite k4

and k1 at the 87.75◦ and 94.5◦ ray, respectively. The spectra from these sensors

was compared against sensors k2 and k3 to determine the effects of the interaction

between the stationary and traveling crossflow waves. Figure 9.9 shows the PSD of

the four sensors in Kulite Array 2 for E4R29. Kulite k4 shows a reduction in power

an order of magnitude lower than the other three Kulites. This inverse relationship

is similar to low-speed crossflow properties. Both k1 and k4 spectra were found to

have stationary waves crossing over each sensor, but a decrease in the traveling-wave

amplitude was not observed in the k1 spectrum. Instead, a disturbance near 410 kHz

was found. A discussion of this disturbance is provided in the subsequent section.
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Figure 9.9. PSD of all sensors in Kulite Array 2 for E4R29.

Kulite k4 was compared over the three roughness cases in Figure 9.10. The com-

parison reveals a reduction in the amplitude of the traveling waves when the rough-

ness ring was added. The local heat transfer grew 51% higher from the smooth to

roughness ring case and the traveling wave amplitudes decreased nearly two orders of
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magnitude. The traveling-wave amplitude is slightly smaller for the roughness strip

case with respect to the smooth case.
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E4R1    Re=3.66e6/ft  87.75ray  k4  Smooth
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Figure 9.10. PSD of E4R1 (smooth surface), E4R24 (E4 roughness
strip), and E4R29 (E4 roughness ring) at x = 14.4-in, 4◦AoA, quiet
flow, Kulite 4 at the 87.75◦ ray.

A similar comparison was made for Kulite k2 (92.25◦ ray), positioned 5◦ to the

lee of k4. At this position the sensor was not in the path of a vortex streak during

the roughness ring test (E4R29). A PSD comparison for the same three roughness

cases is shown on Figure 9.11.

Much like the comparisons at k4, the roughness-ring spectrum at k2 shows traveling-

wave power an order of magnitude lower than the smooth and roughness strip cases.

However, the roughness-ring spectrum shows a peak around 45 kHz whereas a peak

was not found for the same run at k4. A vortex streak is not seen crossing over the

k2 position for the three roughness cases. It is possible that the stationary vortices

at higher rays and upstream of the sensor are altering the flowfield to reduce the

amplitudes of the traveling waves as they pass across the cone. A schematic of the

process is shown in Figure 9.12.
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E4R1    Re=3.66e6/ft  92.25ray  k2  Smooth
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E4R29  Re=3.66e6/ft  92.25ray  k2  Roughness Ring

Figure 9.11. PSD of E4R1 (smooth surface), E4R24 (E4 roughness
strip), and E4R29 (E4 roughness ring) at x = 14.2-in, 4◦AoA, quiet
flow, Kulite 2 at the 92.25◦ ray.

Figure 9.12. Schematic of the stationary and traveling crossflow wave directions.
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9.2 Entry 6 Interactions

The sixth tunnel entry used discrete roughness elements on Torlon insert #6 near

the nosetip to induce vortices. The insert was designed to have approximately the

same roughness dimensions for all rays. The TSP coating was measured to have an

average RMS roughness of 0.10 mil.

9.2.1 E6 Roughness Application and Measurement

The dimples in the Torlon insert were first measured to approximate the roughness

shape and size. The first measurements of the dimples were taken from the dimensions

of the pin used to indent the Torlon. The diameter of the pin was 31 mil and it was

pressed into the Torlon to a depth of 24 mil. Figure 9.13 shows a photograph of the

Torlon insert with the roughnesses. A Keyence digital microscope was used by the

manufacturer to survey the indentions as a sample. A contour plot of the roughnesses

is shown on Figure 9.14 and measurements of the cross-section are shown on Figure

9.15. The average diameter of the roughnesses, measured at the rim of the indention,

was 30 mil using the digital microscope. Only two measurements were made to

calculate the depth of the indentions. The average of the two measurements was 4.94

mil. The profilometer was also used to approximate the diameter and depth of the

indentions, shown on Figure 9.16. An accurate depth was difficult to measure since

there is no method to guide the profilometer stylus exactly over the center of each

indention. The maximum depth recorded by the profilometer was 4 mil.
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Figure 9.13. Photograph of Torlon insert assembled to the Ward Cone and nosetip.

Figure 9.14. Contour of Torlon insert.
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Figure 9.15. Profile of Torlon insert using the Keyence digital micro-
scope. Measured depths of 4.74 mil (120.28 µm) and 5.14 mil (130.44
µm).
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Figure 9.16. Profile of Torlon insert using the SJ-130 profilometer.
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9.2.2 E6 Roughness Effects

The effects of the roughness-induced crossflow waves were compared to smooth

cases for 2◦, 3◦, and 4◦ angle of attack. At 2◦ angle of attack, the global heat transfer

contours are shown in Figures 9.17 and 9.18. Faint streaks are visible near the PCB

sensor at the 120◦ ray in Figure 9.18. An azimuthal profile, shown in Figure 9.19,

reveals slight differences in heat flux between the runs near the 110◦ and 120◦ rays at

x = 14.0-in .
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Figure 9.17. Heat transfer contour of E6R12. 2◦AoA, quiet flow,
smooth surface, Kulite array on the 90◦ ray. Re = 3.64x106/ft, Po =
155.7 psia, To = 300.4◦F, Tw = 79.8◦F.

As expected, the power spectra of the two cases at the 90◦ ray, Figure 9.20, shows

the traveling-wave amplitudes are nearly the same. At the 120◦ ray, runs E6R13 and

E6R14 were also compared to show similar findings to E6R12 and E6R15, shown in

Figure 9.21. The traveling-wave amplitudes for the four cases showed similar results.

A disturbance near 225 kHz was observed in both smooth cases, but not in the Torlon

insert cases. The faint streaks observed near the 120◦ ray when the Torlon insert was



111

Distance from nosetip [in]

S
pa

nw
is

e 
re

fe
re

nc
e 

[in
]

 

 

11 12 13 14 15

−1.5

−1

−0.5

0

0.5

1

1.5

H
ea

t 
T

ra
n

sf
er

 [
B

T
U

/f
t2 −s

]

0

0.1

0.2

0.3

0.4

0.5

0.6

90o ray

Figure 9.18. Heat transfer contour of E6R15. 2◦AoA, quiet flow,
Torlon insert, Kulite array on the 90◦ ray. Re = 3.63x106/ft, Po =
156.9 psia, To = 304.9◦F, Tw = 86.5◦F.

installed may be the cause of this disturbance dampening. The author believes this

disturbance to be the second-mode instability. At angles of attack closer to zero, the

crossflow component may not be as dominant, so the second-mode could still develop.

When the Torlon insert is added, stationary vortices are excited which may inhibit

the growth of the second-mode.
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Figure 9.19. Spanwise heat transfer profile of E6R12 and E6R15 at
x = 14.0-in. 2◦AoA, quiet flow, Kulite array near the 90◦ ray.

20 40 60 80 100 120 140 160 180 200
10

−11

10
−10

10
−9

10
−8

Frequency [kHz]

P
S
D

[ (
P
′

P
ta

n
c

) 2
/
H
z]

 

 
E6R12  Re=3.64e6/ft  2AoA  90ray  x=14.3in  Smooth
E6R15  Re=3.63e6/ft  2AoA  90ray  x=14.3in  Torlon

Figure 9.20. PSD of E6R12 (smooth surface) and E6R15 (Torlon
insert) for cone at 2◦AoA under quiet flow. Kulite at 90◦ ray and
x = 14.3-in.
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Figure 9.21. PSD of E6R12 E6R13 (smooth surface, solid lines) and
E6R14 E6R15 (Torlon insert, dotted lines) for cone at 2◦AoA under
quiet flow. PCB at the 120◦ ray and x = 14.3-in.

At 3◦ angle of attack, the global heat transfer contours in Figure 9.22 and Figure

9.23 show differences in the vortex streaks that appear to the lee of the 90◦ ray. For

the Torlon insert case, faint vortex streaks were observed near the 110◦ and 120◦ rays

at x = 14.3-in, while more definitive streaks are seen to the lee of the 120◦ ray. An

azimuthal profile at x = 14.0-in, Figure 9.24, was taken to quantify the differences

in heat transfer and streak paths between the two cases. One peak in heat flux was

found at the 130◦ ray for the smooth case while four peaks spaced approximately

10◦ apart were found in the Torlon insert case (105◦, 115◦, 125◦, and 133◦). The

traveling-wave amplitudes at the 90◦ and 120◦ rays were smaller when the Torlon

insert was installed, shown in Figure 9.25 and Figure 9.26.
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Figure 9.22. Heat transfer profile of E6R33. 3◦AoA, quiet flow,
smooth surface, Kulite array near the 90◦ ray. Re = 3.63x106/ft,
Po = 153.0 psia, To = 294.5◦F, Tw = 95.7◦F.
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Figure 9.23. Heat transfer profile of E6R34. 3◦AoA, quiet flow, Torlon
insert, Kulite array near the 90◦ ray. Re = 3.63x106/ft, Po = 158.5
psia, To = 310.2◦F, Tw = 82.4◦F.
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E6R33  Re=3.63e6/ft  3AoA  x=14.0in  Smooth
E6R34  Re=3.63e6/ft  3AoA  x=14.0in  Torlon

Figure 9.24. Spanwise heat transfer profile of E6R33 (smooth surface)
and E6R34 (Torlon insert) at x = 14.0-in, 3◦AoA, quiet flow.
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Figure 9.25. PSD of E6R33 (smooth surface) and E6R34 (torlon in-
sert) for cone at 3◦AoA under quiet flow. Kulite at 90◦ ray and
x = 14.3-in.
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E6R33  Re=3.63e6/ft  3AoA  120ray  x=14.3in  Smooth
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Figure 9.26. PSD of E6R33 (smooth surface) and E6R34 (torlon
insert) for cone at 3◦AoA under quiet flow. PCB at 120◦ ray and
x = 14.3-in.

Most cases at 4◦ angle of attack with the Torlon insert yielded inconclusive re-

sults. Large vortices were observed crossing over sensors of interest causing turbulent

spectra. Only two Torlon insert cases could be compared to smooth cases at 4◦ angle

of attack. Figures 9.27 and 9.28 are shown as temperature difference contours. The

heat transfer contour for E6R3 could not be computed due to a failure in a SB gauge.

A vortex is observed crossing over the Kulite sensor at the 94.5◦ ray for smooth and

Torlon cases. The Torlon case showed a larger vortex over the same position. The

traveling-wave amplitudes for this Kulite were smaller when the Torlon insert was

installed, as shown in Figure 9.29.
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Figure 9.27. Temperature difference contour of E5R1. 4◦AoA,
quiet flow, smooth surface, Kulite array near the 90◦ ray. Re =
3.69x106/ft, Po = 157.6 psia, To = 300.3◦F, Tw = 90.4◦F.
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Figure 9.28. Temperature difference contour of E6R1. 4◦AoA, quiet
flow, Torlon insert, Kulite array near the 90◦ ray. Re = 3.70x106/ft,
Po = 150.4 psia, To = 277.8◦F, Tw = 77.5◦F.
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Figure 9.29. PSD of E5R27 (smooth surface) and E6R3 (Torlon in-
sert) for cone at 4◦AoA under quiet flow. Kulite at 94.5◦ ray and
x = 14.3-in.

9.3 Interaction Analysis

An analysis was conducted to compare traveling-wave amplitudes with the local

heat flux observed near the sensor that detects the traveling waves. The traveling-

wave amplitudes for each case were obtained by integrating the spectra from 20 to 80

kHz. The results are listed in Table 9.1. The amplitude of the traveling waves shows

a decrease when roughness is added.
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Table 9.1 Smooth and added roughness effects on traveling-wave am-
plitude. PSDs integrated from 20 to 80 kHz. All runs at Re =
3.62± 0.04×106/ft.

Entry Run AoA Ray q′′/q′′laminar P ′/Ptanc Surface

[−] [−] [degree] [degree] [−] [−] [−]

4 1 4 87.75 1.56 0.013 Smooth

4 29 4 87.75 1.98 0.003 E4 Roughness ring

4 1 4 92.25 1.53 0.023 Smooth

4 29 4 92.25 1.17 0.006 E4 Roughness ring

5 1 4 94.5 - 0.021 Smooth

6 1 4 94.5 - 0.012 Torlon insert

6 33 3 90 0.84 0.004 Smooth

6 34 3 90 0.99 0.002 Torlon insert

6 33 3 120 0.97 0.022 Smooth

6 34 3 120 1.11 0.006 Torlon insert

When comparing the heat-flux values directly to the RMS fluctuations an inverse

trend can be observed, but the heat flux at the sensor may not yield the true rela-

tionship between the stationary and traveling waves. An improved analysis was used

for comparison by noting the location of the vortices relative to the sensors. Table

9.2 compares the matching smooth and rough cases and shows the percent reduction

of the traveling-wave amplitudes while describing the vortex positions. Each pair of

runs showed a reduction of at least 40% in traveling-wave amplitudes after applying

roughness. Larger reductions in the amplitudes occurred when a vortex was observed

to be within 5◦ of the pressure sensor that detected the waves.
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Table 9.2 Matching smooth and added-roughness runs to compare
traveling-wave amplitudes.

Entry Run AoA Ray Amplitude Vortex location in roughness case

[−] [−] [degree] [degree] [% Reduction] [−]

6 33 & 34 3 90 42.5 No vortex near sensor

6 33 & 34 3 120 72.0 Vortex passing over sensor

4 1 & 29 4 87.75 79.6 Vortex passing over sensor

4 1 & 29 4 92.25 75.2 Vortices at ±3◦ of sensor.

5 & 6 1 & 1 4 94.5 42.9 Larger vortex over sensor
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10. POSSIBLE SECONDARY INSTABILITY OF THE

STATIONARY CROSSFLOW VORTICES

Fluctuations were found in PCB and Kulite PSDs that were higher in frequency

than was expected for the traveling crossflow and second-mode disturbances. These

fluctuations were only found using sensors that had vortex streaks crossing over them.

These characteristics suggest they may be caused by the secondary instability of the

stationary crossflow instability.

10.1 High-frequency Instability Cases

10.1.1 Disturbances near the 60◦ and 95◦ rays at 4◦ AoA

A comparison of smooth and rough surfaces was conducted during entry 4 at

4◦ AoA. Tests E4R1 and E4R29 were compared at matching Reynolds number. The

roughness ring applied for E4R29 showed new vortex streaks (Figure 10.2) as com-

pared to the smooth case (Figure 10.1).

Axial heat transfer profiles were taken over the path a vortex streak spanned along

the cone. The profiles were averaged over each pixel in the spanwise direction. The

number of post-binned pixels averaged depended on the width of a vortex streak,

where the edges were determined when the heat flux began to show constant values

below the peak. Figure 10.3 shows axial profiles of the vortex streaks that crossed

over the pressure sensors at the 60◦ and 95◦ ray along with the a smooth case axial

profile taken on the 95◦ ray. The heat transfer was normalized by the theoretical

laminar heat transfer for a 7◦ half-angle cone at zero angle of attack.
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Figure 10.1. Heat transfer contour of E4R1. 4◦AoA, quiet flow,
smooth surface, Kulites near the 90◦ ray. Re = 3.66×106/ft, Po =
156.8 psia, To = 301.7◦F, Tw = 74.6◦F.
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Figure 10.2. Heat transfer contour of E4R29. 4◦AoA, quiet flow, E4
roughness ring, Kulites near the 90◦ ray. Re = 3.66×106/ft, Po =
157.1 psia, To = 302.1◦F, Tw = 76.8◦F.
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Figure 10.3. Axial heat transfer profile of E4R1 and E4R29.

The PCB sensor at the 60◦ ray was found to have a vortex streak above it. The

PSD of this PCB sensor over these two runs, shown in Figure 10.4, shows a 475 kHz

peak in the vortex-streak case. The rest of the frequency spectra remains the same

between the two cases. This may be a secondary instability of the stationary vortex.

A vortex was also observed to cross on the leeside edge of Kulite Array 2, ap-

proximately at the 95◦ ray in Figure 10.2. Figure 10.5 shows the spectra for three

Kulites in Kulite Array 2, along with the spectra for the PCB sensor at the 60◦ ray.

The Kulite at the 90◦ ray does not detect the disturbance, but at the 92.25◦ ray a

small peak was found near 410 kHz and at 94.5◦ the peak is two orders of magnitude

higher. Note that the frequency is higher at the ray closer to the windward ray. The

vortex position over these Kulites also suggest the high-frequency disturbances are

the secondary instability of the stationary mode of crossflow.
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Figure 10.4. PSD comparison of E4R1 (blue) with smooth surface
and E4R29 (red) with E4 roughness ring. Both spectra from PCB
sensor at x = 14.3-in. on the 60◦ ray.
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Figure 10.5. PSD of E4R29 with E4 roughness ring under quiet flow
for a cone at 4◦ AoA. Spectra of PCB and Kulite sensors where
crossflow vortices are breaking down over sensor positions.
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10.1.2 Disturbances near the 120◦ ray at 4◦ AoA

A high-frequency PSD peak was discovered for E6R2 at x = 14.3-in for 4◦ AoA on

the 120◦ ray. A vortex streak in Figure 10.6 is seen passing over the PCB sensor at the

120◦ ray. Another streak is observed passing over the Kulite array, but no disturbances

were detected. The figure is displayed as the temperature gradient referenced from

the model temperature due to a failure in a SB gauge. Figure 10.7 shows the spectra

of the PCB sensor, with a high-frequency peak near 410 kHz. Another peak near

40-50 kHz is most likely the traveling mode of the crossflow instability.
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Figure 10.6. Temperature difference contour of E6R2. 4◦AoA, quiet
flow, Torlon insert, Kulite array on the 90◦ ray. Re = 3.27×106/ft,
Po = 136.8 psia, To = 290.0◦F, Tw = 74.6◦F.
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E6R2  Re=3.27e6/ft  4AoA  120ray  x=14.3in

Figure 10.7. PSD comparison of E6R2 with Torlon insert. PCB sensor
at x = 14.3-in. on the 120◦ ray.

Another high-frequency peak was discovered for E6R5 at x = 14.3-in for 4◦ AoA

on the 120◦ ray. A faint vortex streak in Figure 10.8 is seen crossing over the Kulite

at the 120◦ ray. Figure 10.9 shows the PSD of the Kulite signal (in red) with a high-

frequency peak near 375 kHz. The narrow peak near 300 kHz is again the resonant

frequency of the sensor. Another peak near 40 kHz is likely the traveling mode of

the crossflow instability. A larger vortex streak is seen crossing over the PCB sensor

on the 150◦ ray. The PSD of this PCB sensor shows turbulent spectra without any

indication of a secondary instability. Figure 10.10 shows the axial profile of each

sensor. The profile over the 120◦ ray shows a near-constant heat flux across the

length of the cone. It is unclear if the vortex streak has saturated or is just forming.

The heat-flux profile near the 150◦ ray shows the vortex streak growing and then

saturating before crossing the PCB sensor.
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Figure 10.8. Heat transfer profile of E6R5. 4◦AoA, quiet flow, Torlon
insert, Kulites at the 120◦ ray. Re = 3.23×106/ft, Po = 138.7 psia, To
= 301.7◦F, Tw = 90.9◦F.
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Figure 10.9. PSD of E6R5 with Torlon insert for cone at 4◦AoA under
quiet flow. Kulite sensor at the 120◦ ray and x = 14.3-in.



128

10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Distance from Nosetip [in]

q"
/ q

" la
m

in
ar

 

 
E6R5  Re=3.23e6/ft  4AoA  (120ray at x=14.3in)
E6R5  Re=3.23e6/ft  4AoA  (150ray at x=14.3in)

Pressure sensors
TSP blemish

Figure 10.10. Axial heat transfer profile of E6R5 over vortex streaks
at the 120◦ and 150◦ ray from windward.

10.1.3 Disturbances near the 139.5◦, 150◦, and 165◦ ray at 3◦ AoA

At 3◦ AoA, a high-frequency peak was found for E6R38 at x = 14.3-in on the

150◦ ray at 3◦ AoA. The leeside edge of the TSP image in Figure 10.11 marks the

150◦ ray where the PCB sensor detected the high-frequency disturbance. It is difficult

to determine if a vortex streak has passed over the PCB sensor at the edge of the

TSP image, however, streaks are observed between the 120◦ and 150◦ ray, suggesting

a vortex is likely present near the 150◦ ray. The PSD of the PCB sensor that was

positioned at the 150◦ ray shows a peak near 310 kHz in Figure 10.12. Another

peak near 75 kHz was detected. Computations by Li et al. [41] show traveling-wave

frequencies with the largest N factors near 40 kHz at 3◦ angle of attack. Therefore,

it is unclear if this lower frequency disturbance is the traveling mode of the crossflow

instability, another disturbance, or a modulated case of the traveling mode caused by

other instabilities.
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Figure 10.11. Heat transfer profile of E6R38. 3◦AoA, quiet flow,
Torlon insert, Kulites at 90◦ ray. Re = 3.33×106/ft, Po = 142.1 psia,
To = 299.3◦F, Tw = 99.3◦F.
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Figure 10.12. PSD of E6R38 with Torlon insert for cone at 3◦AoA
under quiet flow. PCB sensor at the 150◦ ray and x = 14.3-in.
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The final high-frequency peaks were detected at x = 14.3-in on the 139.5◦ and

165◦ ray at 3◦ angle of attack. E6R43 was processed at four sequential times during

the run: 0.5, 1.0, 1.5, and 1.9 seconds after the diaphragms burst. The heat transfer

contours are shown for each time processed in Figures 10.13, 10.14, 10.15, and 10.16.

Vortex streaks are observed crossing over the Kulite sensor at the 139.5◦ ray and a

region of closely packed vortices crossing over the PCB sensor at the 165◦ ray. As

the Reynolds number decreases during the run, the heat transfer over the model

decreases. A decrease in the strengths of the vortex streaks were also observed.

The PSD of the PCB sensor at the 165◦ ray is shown in Figure 10.17. A large

peak is observed that is centered near 260 kHz. The frequency was normalized by

the square root of the freestream Reynolds number at x = 14.3-in. The magnitude

and frequency of this disturbance decreases as the Reynolds number decreases. This

suggests the disturbance is dependent on the boundary-layer thickness. Figure 10.18

shows the PSD of the Kulite sensor at the 139.5◦ ray where a peak near 325 kHz can

be seen. The resonant frequency conceals most of the disturbance, but a decrease

in power is observed as the Reynolds number decreases. Traveling waves are also

detected near 40 kHz.

An axial heat transfer profile was computed for each vortex streak that crossed

above the PCB and Kulite sensors. Figure 10.20 shows the axial profile of the streak

that crosses the Kulite sensor at the 139.5◦ ray. All four Reynolds number cases show

an increase in heat flux with distance from the nosetip approaching the Kulite sensor

at x = 14.3-in. As expected from the heat transfer contours, the heat flux over the

profile decreases as the Reynolds number decreases. Figure 10.19 shows the axial

profile of the streak that crosses the PCB sensor at the 165◦ ray. The same trends

are observed with the vortex streak over the 165◦ ray. The highest Reynolds number

case showed a greater increase in heat flux near the PCB sensor at x = 14.3-in.
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Figure 10.13. Heat transfer profile of E6R43. 3◦AoA, quiet flow,
Torlon insert, Kulites near the 135◦ ray. Re = 3.17×106/ft, Po =
143.6 psia, To = 327.6◦F, Tw = 84.4◦F.
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Figure 10.14. Heat transfer profile of E6R43. 3◦AoA, quiet flow,
Torlon insert, Kulites near the 135◦ ray. Re = 3.11×106/ft, Po =
138.7 psia, To = 319.8◦F, Tw = 84.4◦F.
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Figure 10.15. Heat transfer profile of E6R43. 3◦AoA, quiet flow,
Torlon insert, Kulites near the 135◦ ray. Re = 3.06×106/ft, Po =
134.3 psia, To = 312.6◦F, Tw = 84.4◦F.
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Figure 10.16. Heat transfer profile of E6R43. 3◦AoA, quiet flow,
Torlon insert, Kulites near the 135◦ ray. Re = 3.00×106/ft, Po =
129.9 psia, To = 305.3◦F, Tw = 84.4◦F.
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Figure 10.17. PSD of E6R43 over a range of Reynolds numbers with
Torlon insert for cone at 3◦AoA under quiet flow. PCB sensors at
x = 14.3-in.
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Figure 10.18. PSD of E6R43 over a range of Reynolds numbers with
Torlon insert for cone at 3◦AoA under quiet flow. Kulite sensors at
x = 14.3-in.



134

12 12.5 13 13.5 14 14.5 15
0.5

1

1.5

2

2.5

3

3.5

Distance from Nosetip [in]

q"
/ q

" la
m

in
ar

 

 
E6R43  Re=3.17e6/ft  3AoA  (165ray at x=14.3in)
E6R43  Re=3.11e6/ft  3AoA  (165ray at x=14.3in)
E6R43  Re=3.06e6/ft  3AoA  (165ray at x=14.3in)
E6R43  Re=3.00e6/ft  3AoA  (165ray at x=14.3in)

Pressure sensor

Figure 10.19. Axial heat transfer profile of E6R43. Profile along
vortex streak crossing over PCB sensor at the 165◦ ray.
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Figure 10.20. Axial heat transfer profile of E6R43. Profile along
vortex streak crossing over Kulite sensor at the 139.5◦ ray.
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10.2 Runs with Vortices over Pressure Sensors without High-Frequency

Disturbances

Most tests that revealed vortices over PCB or Kulite sensors did not detect high-

frequency disturbances. Some cases have been shown previously in this section. Four

additional tests show similar results. Figure 10.21 shows E3R5 where a vortex streak

is observed crossing the PCB sensor at x = 14.3-in on the 120◦ ray. Figure 10.22

shows E3R4 where a region of streaks are observed crossing the same PCB sensor.

Figure 10.23 shows E5R20 where vortex streaks are observed crossing a Kulite sensor

near the 124.5◦ ray and a PCB sensor on the 150◦ ray. Figure 10.24 shows the last

test, E5R21, where vortex streaks are breaking down in front of the PCB sensor on

the 150◦ ray. The PSD of the PCB sensors mentioned show turbulent spectra in

Figure 10.25. All four cases show varying levels of a vortex’s strength crossing over a

pressure sensor, but high-frequency disturbances were not measured in any case. The

secondary instability could have occured upstream in these cases.
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Figure 10.21. Heat transfer profile of E3R5. 3◦AoA, quiet flow,
smooth case, Kulites near the 90◦ ray. Re = 3.41×106/ft, Po = 139.6
psia, To = 281.8◦F, Tw = 84.4◦F.
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Figure 10.22. Heat transfer profile of E3R4. 3◦AoA, quiet flow,
smooth case, Kulites near the 90◦ ray. Re = 3.86×106/ft, Po = 157.4
psia, To = 279.2◦F, Tw = 84.4◦F.
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Figure 10.23. Heat transfer profile of E5R20. 3◦AoA, quiet flow, E5
Roughness 2, Kulites near the 120◦ ray. Re = 3.28×106/ft, Po = 139.7
psia, To = 298.3◦F, Tw = 84.4◦F.
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Figure 10.24. Heat transfer profile of E5R21. 3◦AoA, quiet flow, E5
Roughness 2, Kulites near the 120◦ ray. Re = 3.71×106/ft, Po = 157.8
psia, To = 297.8◦F, Tw = 84.4◦F.
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Figure 10.25. PSD of E3R4, E3R5, E5R20, and E5R21. Spectra taken
from PCB sensor at x = 14.3-in.

10.3 Disturbance Analysis

The data from a few tests found high-frequency disturbances in power spectra

where vortices were seen crossing a pressure sensor. The cause of the appearance in the

few cases is not known. The author speculates that the entries where the disturbances

were found, entry 4 and 6, used additional roughnesses. The disturbances are observed

where the amplitudes of the stationary waves are growing, but not after the waves

have saturated. This observation is counter to what is generally seen in past low-speed

experiments and computations. A larger collection of conditions should be tested to

understand these high-frequency disturbances.

Figure 10.26 shows the disturbance frequencies as a function of the ray angle. The

plot reveals an inverse relationship between the ray angle and disturbance frequency

for rays nearer the lee side. This could be due to the larger boundary layer thickness

approaching the lee ray. The data from each run were compiled in Table 10.1. The



139

heat flux near each pressure sensor and the RMS pressure fluctuations of the dis-

turbances were also tabulated. The Reynolds number and angle of attack were also

varied within these experiments. No clear trends could be determined from the heat

transfer and RMS pressure fluctuations.
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Figure 10.26. Disturbance frequencies as a function of the ray angle
with respect to the windward ray. All disturbances detected at x =
14.3-in.
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Table 10.1 Disturbance properties for all tests with possible secondary
instabilities. All sensors at x = 14.3-in. Asterisk denotes Kulite
sensors where the frequency response past 60 kHz is not known.

Entry Runs Re AoA Ray Frequency q′′/q′′laminar P ′/Ptanc

[−] [−] [×106/ft] [degree] [degree] [kHz] [−] [−]

4 29 3.66 4 60.0 475 1.86 0.006

4 29 3.66 4 94.5 410 1.57 0.011*

6 2 3.27 4 120.0 410 - 0.013

6 5 3.23 4 120.0 375 1.17 0.023*

6 43 3.17 3 139.5 325 1.50 0.012*

6 38 3.33 3 150.0 310 2.09 0.026

6 43 3.17 3 165.0 274 2.07 0.092

6 43 3.11 3 165.0 263 1.29 0.065

6 43 3.06 3 165.0 256 1.14 0.038

6 43 3.00 3 165.0 250 0.93 0.022
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11. CONCLUSIONS AND FUTURE WORK

11.1 Conclusions

A 7◦ half-angle cone was positioned at low angles of attack to observe crossflow

effects in a Mach 6 quiet tunnel. The stationary and traveling crossflow instabilities

were examined as well as the interaction between them. Temperature sensitive paint

was used to quantify inferred heat transfer into the model. PCB and Kulite pressure

sensors were used to detect disturbances on the surface of the model.

The cones was placed at zero angle of attack to set a baseline for comparing to

inclined positions. Under quiet flow conditions, the second-mode instability was found

to have a frequency near 275 kHz at x = 14.3-in. for Re = 3.67×106/ft. Similar tests

were performed for noisy tunnel conditions. Under noisy flow conditions, the second-

mode amplitudes were at least an order of magnitude larger than under quiet flow

and shifted to slightly higher frequencies at comparable Reynolds numbers. Pate’s

correlation, used for predicting boundary-layer transition under noisy flow, agreed

within the experiment’s uncertainty.

The stationary mode was observed as streaks of increased heat flux. The streaks

grew axially and curved to the lee of the cone. The strength of these high-heat transfer

streaks were generally larger at higher Reynolds number. Heat-flux profiles for each

entry were compared, to show the effects of the paint roughness. The proximity of

the stationary waves to pressure sensors suggests the location of the vortices has an

effect on the traveling-wave amplitudes.

The traveling crossflow mode was detected using Kulite and PCB pressure trans-

ducers. Traveling waves were found between the 90◦ and 150◦ rays at 2◦, 3◦, and

4◦ angle of attack. At x = 14.3-in the frequency of the traveling waves was between

40-50 kHz under quiet flow for unit Reynolds numbers between 1.97×106/ft and
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3.81×106/ft. The amplitude of the traveling waves increased with Reynolds number

and angle of attack. The wave angle and phase speed were calculated through cross

correlations between nearby sensors. The typical wave traveled at a 60◦ angle from lee

to wind. Typical phase speeds were near 1000 ft/s. Under noisy flow, a disturbance

was detected at 20-30 kHz for Reynolds numbers near 2.00×106/ft. Due to the low

frequency of the disturbance, the disturbance can be mistaken for noise. However,

a wave analysis shows the disturbance has similar wave angles and phase speeds as

observed from traveling waves under quiet flow. More data should be collected to

confirm this.

The interaction of the stationary and traveling modes of crossflow was quantified

by measuring the heat transfer from the stationary vortices near pressure sensors and

the amplitudes of the traveling waves. Nail-polish and Torlon-insert roughnesses were

successful in altering the vortex streaks observed under quiet flow conditions.

The secondary instability of the stationary mode was apparently discovered during

testing. A high-frequency disturbance was found between 300-500 kHz only when a

stationary vortex crossed over the sensor. The vortices that passed over the sensor

generally had little growth, suggesting the disturbances arise before the rapid growth

and saturation of the vortices. The disturbance’s frequency decreased with increasing

azimuthal angle.

11.2 Future Work

Many more experiments should be conducted to provide additional insight into

the mechanisms that govern crossflow-related laminar-to-turbulent boundary-layer

transition.

Traveling waves were analyzed at x = 14.3-in between the 90◦ and 120◦ rays.

Additional axial positions for the Kulite sensors should be tested to further define

the traveling waves. Kulite Array 1 or new ports along a ray should be used to

compare the amplitudes of the traveling waves. The growth rates of the traveling



143

mode could then be examined. A larger database of traveling-wave amplitudes as

a function of the Reynolds number and wall temperature should also be developed.

Such data might help to explain the effects that each variable has on the traveling

waves.

Additional studies of the stationary-traveling mode interaction should also be

conducted. The cases tested used Reynolds numbers that were too high to observe

traveling waves to the lee of the 120◦ ray. Lower Reynolds number cases can be tested

so the interaction can be observed closer to the lee ray.

The most important recommendation for future work is focused on the high-

frequency disturbances, which seem likely to be the secondary instability of stationary

crossflow waves. Using the Torlon insert, the vortices along the cone are fixed. PCB

sensors should be positioned in a line, azimuthally, to detect when high-frequency

disturbances appear and break down. By varying the Reynolds number, the growth

and saturation regions of the vortices can be made to pass over this PCB array. The

development of these disturbances could help define a transition Reynolds number

for crossflow-related flows.
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A. Symmetry Check

Second-mode amplitudes were computed from the PSDs of the pressure sensors for

E3R3 around the azimuth at x = 14.3-in. The spectra was integrated over 200-350

kHz, where the disturbances were found. A percent difference was then computed

from each signal’s second-mode amplitude against the mean amplitude.

Table A.1 Percent difference of second-mode amplitudes against the
mean amplitude computed at 0◦ AoA. Re = 3.65×106/ft. All data
from PCB sensors.

Ray Amplitude Difference from Mean

[deg] [P ′/Pmean] [%]

+90 .004 42.9

+60 .005 28.6

+30 .008 14.3

-30 .014 100.0

-60 .006 14.3

-90 .005 28.6
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B. Roughness Measurements

Profilometer measurements were averaged from 10 profiles taken in random areas of

each surface. The Torlon insert height was measured from the highest point near the

lip of a dimple and the lowest point within the dimple.

Table B.1 Roughness measurements of cone surface and discrete
roughness elements.

Entry Surface RMS Height

[−] [−] [mil] [mil]

All aluminum 0.05 -

All step from upstream edge of insert - 0.30

All step from downstream edge of insert - -0.15

2 TSP 0.05 -

3 TSP 0.07 -

4 TSP 0.05 -

4 E4 roughness strip/ring 2.04 -

5 TSP 0.05 -

5 E5-NP1 1.06 -

5 E5-NP2 1.96 -

6 TSP 0.10 -

6 Torlon insert - -4.94
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C. Tunnel Conditions for All Runs

Conditions presented are the values where the data was processed. The sensor ray is

the line of sensors on the same ray. Both Kulite Arrays are located on this line. The

sensor ray is typically the center of the TSP images referenced from the windward

ray at 0◦.



152

Table C.1 Run Schedule for Entry 1.

Run Po To Tw Tunnel Noise AoA Sensor Ray

[−] [psia] [◦F] [◦F] [−] [deg] [deg]

1 81.6 299.2 71.8 Quiet 0 0

2 114.9 283.5 77.3 Quiet 0 0

3 117.4 301.3 83.3 Noisy 0 0

4 102.3 294.0 89.8 Quiet 0 0

5 138.1 302.6 72.1 Quiet 0 0

6 131.0 303.1 79.5 Noisy 0 0

7 155.8 297.7 85.7 Quiet 0 0

8 145.7 313.3 79.8 Noisy 0 0

9 117.7 308.4 89.4 Noisy 0 0

10 121.3 304.4 73.5 Quiet 2 90

11 117.6 301.9 84.2 Noisy 2 90

12 157.3 297.9 84.0 Quiet 2 90

13 144.5 299.8 88.7 Noisy 2 90

14 138.2 293.6 95.3 Quiet 2 90

15 131.1 298.3 96.2 Noisy 2 90

16 156.0 306.1 79.2 Quiet 2 180

17 146.4 305.6 86.2 Noisy 2 180

18 140.7 296.2 90.1 Quiet 2 180

19 133.7 299.0 82.5 Noisy 2 180

20 133.3 298.1 80.1 Noisy 2 180

21 121.8 291.1 80.5 Quiet 2 180

22 118.6 296.8 80.8 Noisy 2 180

23 158.9 293.5 94.7 Quiet 2 120

24 148.2 298.0 93.9 Noisy 2 120
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Table C.2 Run Schedule for Entry 2.

Run Po To Tw Tunnel Noise AoA Sensor Ray

[−] [psia] [◦F] [◦F] [−] [deg] [deg]

1 122.1 308.5 58.6 Quiet 0 0

2 140.4 302.1 70.0 Quiet 0 0

3 157.3 300.5 72.1 Quiet 0 0

4 157.5 295.7 83.7 Quiet 2 0

5 140.1 291.7 90.4 Quiet 2 0

6 119.9 290.8 93.0 Quiet 2 0

7 123.5 306.1 89.3 Quiet 2 10

8 139.9 288.9 92.8 Quiet 2 10

9 155.2 288.4 94.1 Quiet 2 10

10 158.1 307.6 80.2 Quiet 2 30

11 140.3 300.0 86.6 Quiet 2 30

12 127.2 295.4 90.5 Quiet 2 30

13 121.0 294.9 84.6 Quiet 2 90

14 140.3 308.9 78.3 Quiet 2 90

15 158.0 301.9 85.1 Quiet 2 90

16 158.0 300.1 85.3 Quiet 2 180

17 139.6 295.1 91.3 Quiet 2 180

18 122.8 292.1 94.0 Quiet 2 180

19 121.5 289.5 92.5 Quiet 4 90

20 140.3 290.7 94.2 Quiet 4 90

21 157.6 288.7 96.6 Quiet 4 90

22 158.2 308.3 79.5 Quiet 4 120

23 141.3 300.2 85.7 Quiet 4 120

24 120.8 297.0 90.1 Quiet 4 120

25 157.2 297.2 89.4 Quiet 4 120
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Table C.3 Run Schedule for Entry 2 continued.

Run Po To Tw Tunnel Noise AoA Sensor Ray

[−] [psia] [◦F] [◦F] [−] [deg] [deg]

26 156.9 294.0 91.7 Quiet 4 120

27 156.8 289.8 97.1 Quiet 4 120

28 158.2 289.1 92.2 Quiet 4 130
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Table C.4 Run Schedule for Entry 3.

Run Po To Tw Tunnel Noise AoA Sensor Ray

[−] [psia] [◦F] [◦F] [−] [deg] [deg]

1 109.5 300.6 73.5 Quiet 0 0

2 137.6 295.5 79.5 Quiet 0 0

3 149.2 280.7 83.2 Quiet 0 0

4 157.4 279.2 91.8 Quiet 4 90

5 139.6 281.8 94.9 Quiet 4 90

6 119.3 301.4 77.7 Quiet 4 90

7 114.7 301.2 83.4 Noisy 4 90

8 83.1 294.9 82.4 Quiet 4 90

9 79.2 297.7 87.3 Noisy 4 90

10 83.2 297.1 91.1 Noisy 4 90

11 83.5 292.2 85.8 Quiet 4 105

12 79.0 295.1 89.1 Noisy 4 105

13 120.2 289.4 93.6 Quiet 4 105

14 139.2 289.3 94.0 Quiet 4 105

15 157.7 289.6 94.6 Quiet 4 105

16 156.1 302.6 78.2 Quiet 4 120

17 139.0 295.6 84.8 Quiet 4 120

18 120.1 291.8 89.1 Quiet 4 120

19 83.9 288.6 92.1 Quiet 4 120

20 79.1 293.1 93.5 Noisy 4 120
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Table C.5 Run Schedule for Entry 4.

Run Po To Tw Tunnel Noise AoA Sensor Ray

[−] [psia] [◦F] [◦F] [−] [deg] [deg]

1 156.8 301.7 74.6 Quiet 4 90

2 139.9 297.7 82.3 Quiet 4 90

3 118.8 295.7 86.8 Quiet 4 90

4 83.6 303.5 82.7 Quiet 4 90

5 79.4 303.7 85.8 Noisy 4 90

6 83.8 294.4 89.9 Quiet 4 90

7 157.3 294.1 89.1 Quiet 4 90

8 83.8 289.6 92.1 Quiet 4 90

9 83.4 305.2 91.8 Quiet 4 90

10 83.9 306.0 75.5 Quiet 4 60

11 138.9 302.3 80.7 Quiet 4 60

12 157.6 300.4 82.6 Quiet 4 60

13 79.4 300.9 88.2 Noisy 4 60

14 121.1 295.2 86.7 Quiet 4 60

15 84.1 292.7 89.3 Quiet 4 60

16 157.6 291.8 88.3 Quiet 4 60

17 79.4 295.8 91.3 Noisy 4 60

18 157.5 305.4 75.5 Quiet 4 60

19 120.6 303.1 95.4 Quiet 4 60

20 79.6 303.7 86.5 Noisy 4 60

21 157.3 299.3 90.8 Quiet 4 60

22 139.1 300.2 74.7 Quiet 4 60

23 157.2 299.6 79.9 Quiet 4 90

24 157.3 304.8 75.7 Quiet 4 90

25 139.0 298.1 81.0 Quiet 4 90
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Table C.6 Run Schedule for Entry 4 continued.

Run Po To Tw Tunnel Noise AoA Sensor Ray

[−] [psia] [◦F] [◦F] [−] [deg] [deg]

26 157.1 304.2 72.1 Quiet 4 90

27 139.1 301.3 77.3 Quiet 4 90

28 119.4 296.8 82.2 Quiet 4 90

29 157.1 302.1 76.8 Quiet 4 90



158

Table C.7 Run Schedule for Entry 5.

Run Po To Tw Tunnel Noise AoA Sensor Ray

[−] [psia] [◦F] [◦F] [−] [deg] [deg]

1 157.6 300.3 90.4 Quiet 4 90

2 139.7 300.3 90.6 Quiet 4 90

3 158.0 301.5 86.5 Quiet 4 120

4 158.2 301.2 87.9 Quiet 4 120

5 140.0 302.3 90.3 Quiet 4 120

6 158.0 299.4 95.8 Quiet 4 120

7 157.9 311.8 79.5 Quiet 4 120

8 139.4 303.7 87.2 Quiet 4 120

9 157.8 302.1 91.8 Quiet 4 120

10 150.5 315.5 93.0 Quiet 4 120

11 158.1 301.9 89.5 Quiet 4 90

12 139.7 297.8 94.1 Quiet 4 90

13 158.0 295.6 96.3 Quiet 4 90

14 139.6 294.1 97.6 Quiet 4 90

15 158.0 307.7 78.3 Quiet 4 90

16 139.5 302.5 86.7 Quiet 4 90

17 157.9 304.6 87.8 Quiet 4 90

18 139.5 298.2 92.2 Quiet 4 90

19 157.9 298.3 91.8 Quiet 4 120

20 139.7 298.3 93.1 Quiet 4 120

21 157.8 297.8 97.0 Quiet 4 120

22 150.5 310.5 98.7 Quiet 4 120

23 157.7 311.7 79.5 Quiet 4 120

24 139.6 304.8 87.3 Quiet 4 120

25 157.8 302.2 92.3 Quiet 4 120
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Table C.8 Run Schedule for Entry 5 continued.

Run Po To Tw Tunnel Noise AoA Sensor Ray

[−] [psia] [◦F] [◦F] [−] [deg] [deg]

26 139.6 299.3 94.7 Quiet 4 120

27 157.9 314.3 78.9 Quiet 4 90

28 139.6 306.0 86.6 Quiet 4 90

29 158.0 302.3 90.6 Quiet 4 90

30 139.4 305.1 89.7 Quiet 4 90
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Table C.9 Run Schedule for Entry 6.

Run Po To Tw Tunnel Noise AoA Sensor Ray

[−] [psia] [◦F] [◦F] [−] [deg] [deg]

1 150.4 277.8 77.5 Quiet 4 90

2 136.8 290.0 85.0 Quiet 4 90

3 149.6 286.9 82.4 Quiet 4 90

4 156.8 306.2 85.0 Quiet 4 120

5 138.7 301.7 90.9 Quiet 4 120

6 156.8 299.2 93.4 Quiet 4 120

7 170.8 316.9 86.4 Quiet 4 60

8 156.3 296.9 88.7 Quiet 4 60

9 155.4 303.4 84.2 Quiet 4 0

10 137.6 303.8 86.4 Quiet 4 0

11 155.8 299.9 89.2 Quiet 4 0

12 155.7 300.4 79.8 Quiet 2 90

13 157.2 300.8 86.5 Quiet 2 90

14 157.1 309.2 86.5 Quiet 2 90

15 156.9 304.9 92.1 Quiet 2 90

16 139.0 303.5 94.3 Quiet 2 90

17 156.8 309.3 90.3 Quiet 2 120

18 156.2 301.8 78.4 Quiet 2 120

19 138.6 301.3 85.2 Quiet 2 120

20 156.1 304.1 84.7 Quiet 2 60

21 153.4 306.1 82.0 Quiet 2 60

22 152.7 300.8 76.6 Quiet 2 0

23 135.8 298.4 84.9 Quiet 2 0

24 153.8 297.4 87.8 Quiet 2 0

25 157.1 304.8 76.0 Quiet 0 0
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Table C.10 Run Schedule for Entry 6 continued.

Run Po To Tw Tunnel Noise AoA Sensor Ray

[−] [psia] [◦F] [◦F] [−] [deg] [deg]

26 139.2 304.1 82.8 Quiet 0 0

27 157.6 303.9 86.0 Quiet 0 0

28 157.5 305.1 87.1 Quiet 0 0

29 139.1 303.8 90.7 Quiet 0 0

30 157.4 300.7 92.2 Quiet 0 0

31 157.2 313.1 86.7 Quiet 3 90

32 139.1 306.5 92.0 Quiet 3 90

33 153.0 294.5 95.7 Quiet 3 90

34 158.5 310.2 82.4 Quiet 3 90

35 157.4 302.0 89.5 Quiet 3 90

36 157.2 301.2 94.5 Quiet 3 90

37 157.0 297.7 98.3 Quiet 3 90

38 142.1 299.3 99.3 Quiet 3 90

39 157.0 308.1 91.1 Quiet 3 120

40 139.1 304.2 94.9 Quiet 3 120

41 157.3 306.8 94.5 Quiet 3 120

42 157.3 315.0 82.9 Quiet 3 135

43 143.6 327.6 84.4 Quiet 3 135

44 157.4 312.3 89.8 Quiet 3 135

45 157.6 303.6 80.1 Quiet 3 60

46 157.3 300.3 88.3 Quiet 3 60

47 157.5 309.3 86.2 Quiet 3 0

48 139.2 304.1 87.5 Quiet 3 0

49 157.3 305.7 92.3 Quiet 3 0
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D. Theoretical Heat Transfer Calculation

1 function [x,qw,St,Stanton Param] = Theoretical HT(Tref, p0, T0, Mach)

2

3 % Note:

4 % param1=ueˆ2/Hs

5 % param2=he/Hs

6 % beta=pressure gradient parameter

7 % Prw=Prandtl number at wall

8

9

10 % Test conditions for Run 6 at Purdue tunnel

11 T0 inf=T0; % Freestream total temperature, K

12 p0 inf=p0*6894.757; % Freestream total pressure, Pa

13 Tw = Tref; % Wall temperature as measured with a thermocouple, K

14

15

16 % estimate the parameters

17 [ps,Ts,rhos,Ms,p inf,T inf,rho inf]=...

18 Taylor Maccoll(T0 inf,p0 inf,Mach);

19

20 pe=ps;

21 Te=Ts;

22 rhoe=rhos;

23 Me=Ms;

24

25 gamma=1.4;

26 R=287; % J/kg-K

27

28 [mu k cp Pr rho]=air properties(Te,pe);
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29 % mu (microPa-sec), k (mW/m-K)

30 vis e=mu*10ˆ(-6); % kg/m-K

31 k e=k/1000; % W/m-K

32 cp e=cp; % J/kg-K

33

34 [mu k cp Pr rho]=air properties(Tw,pe);

35 % mu (microPa-sec), k (mW/m-K)

36 vis w=mu*10ˆ(-6); % kg/m-K

37 k w=k/1000; % W/m-K

38 cp w=cp; % J/kg-K

39

40 [mu k cp Pr rho]=air properties(T inf,p inf);

41 % mu (microPa-sec), k (mW/m-K)

42 vis inf=mu*10ˆ(-6); % kg/m-K

43 k inf=k/1000; % W/m-K

44 cp inf=cp; % J/kg-K

45

46 a=(gamma*R*Te)ˆ0.5;

47 ue=a*Me;

48

49 haw=cp e*Te+0.4*ueˆ2;

50 hw=cp w*Tw;

51

52 a inf=(gamma*R*T inf)ˆ0.5;

53 u inf=a inf*Mach;

54 Re inf=rho inf*u inf*0.4/vis inf;

55

56 rho w=pe/(R*Tw);

57

58

59 Prw=cp w*vis w/k w;

60 Hs=cp e*Te+ueˆ2/2;

61 param1=ueˆ2/Hs;

62 param2=cp e*Te/Hs;

63
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64 gw=cp w*Tw/Hs;

65 beta=0;

66

67

68 f20g10=[0.33208*2ˆ0.5;0.02]; % initial estimates

69 f2g1 = fminsearch('similarity solution fun',f20g10,[],...

70 param1,param2,beta,gw,Prw,Tw,Hs,cp w,ue);

71

72 f20=f2g1(1);

73 g10=f2g1(2);

74

75 x=[0.000:0.005:0.4]; % m

76 qw=Hs*(vis w*rho w*ue)ˆ0.5*g10*x.ˆ(-0.5)/(Prw*(2/3)ˆ0.5);

77

78

79

80

81 Stanton Param = 1/(rhoe*ue*(haw-hw));

82 St=qw*Stanton Param;

1 function [res]=similarity solution fun(x,...

2 param1,param2,beta,gw,Prw,Tw,Hs,cp w,ue)

3

4

5

6 % param1=ueˆ2/Hs

7 % param2=he/Hs

8 % beta=pressure gradient parameter

9 % Prw=Prandtl number at wall

10

11

12

13 f(1)=0;

14 f1(1)=0;
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15 %f2(1)=0.33208*2ˆ0.5;

16 f2(1)=x(1);

17

18 g(1)=gw;

19 %g1(1)=0.08;

20 g1(1)=x(2);

21 T(1)=Tw;

22 eta(1)=0;

23

24 h=0.002;

25 N=3000;

26

27 for n=1:N

28 k0=h*f1(n);

29 k1=h*(f1(n)+0.5*k0);

30 k2=h*(f1(n)+0.5*k1);

31 k3=h*(f1(n)+k2);

32 f(n+1)=f(n)+(k0+2*k1+2*k2+k3)/6;

33

34 m0=h*f2(n);

35 m1=h*(f2(n)+0.5*m0);

36 m2=h*(f2(n)+0.5*m1);

37 m3=h*(f2(n)+m2);

38 f1(n+1)=f1(n)+(m0+2*m1+2*m2+m3)/6;

39

40 a0=h*g1(n);

41 a1=h*(g1(n)+0.5*a0);

42 a2=h*(g1(n)+0.5*a1);

43 a3=h*(g1(n)+a2);

44 g(n+1)=g(n)+(a0+2*a1+2*a2+a3)/6;

45

46 n0=h*F(f(n),f1(n),f2(n),g(n),g1(n),...

47 gw,param1,param2,beta,T(n),n);

48 b0=h*G(f(n),f1(n),f2(n),g(n),g1(n),...

49 gw,param1,param2,beta,Prw,T(n),n);
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50 n1=h*F(f(n)+0.5*k0,f1(n)+0.5*m0,...

51 f2(n)+0.5*n0,g(n)+0.5*a0,g1(n)+0.5*b0,...

52 gw,param1,param2,beta,T(n),n);

53 b1=h*G(f(n)+0.5*k0,f1(n)+0.5*m0,...

54 f2(n)+0.5*n0,g(n)+0.5*a0,g1(n)+0.5*b0,...

55 gw,param1,param2,beta,Prw,T(n),n);

56 n2=h*F(f(n)+0.5*k1,f1(n)+0.5*m1,...

57 f2(n)+0.5*n1,g(n)+0.5*a1,g1(n)+0.5*b1,...

58 gw,param1,param2,beta,T(n),n);

59 b2=h*G(f(n)+0.5*k1,f1(n)+0.5*m1,...

60 f2(n)+0.5*n1,g(n)+0.5*a1,g1(n)+0.5*b1,...

61 gw,param1,param2,beta,Prw,T(n),n);

62 n3=h*F(f(n)+k2,f1(n)+m2,f2(n)+n2,...

63 g(n)+a2,g1(n)+b2,gw,param1,param2,beta,T(n),n);

64 b3=h*G(f(n)+k2,f1(n)+m2,f2(n)+n2,...

65 g(n)+a2,g1(n)+b2,gw,param1,param2,beta,Prw,T(n),n);

66 f2(n+1)=f2(n)+(n0+2*n1+2*n2+n3)/6;

67 g1(n+1)=g1(n)+(b0+2*b1+2*b2+b3)/6;

68

69 T(n+1)=(Hs/cp w)*(g(n+1)-0.5*(ue/Hs)*f1(n+1)ˆ2);

70

71 eta(n+1)=h*n;

72 end

73

74 res=abs(f1(N)-1)+abs(g(N)-1);
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