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ABSTRACT 

Hammoud, Nadine M. M.S., Purdue University, December 2014. The Impact of an 

Omega-3 Enriched Diet on Hyperactivity and Biochemistry in an Animal Model for 

Attention-Deficit/Hyperactivity Disorder. Major Professor: John Burgess. 

 

 

Attention-deficit/hyperactivity disorder (ADHD) is the most diagnosed behavioral 

disorder in children. It affects around 5% of children worldwide and 11% of children in 

the United States, with rates increasing. Pharmaceutical treatments, such as 

amphetamines and methylphenidates, are not effective for everyone and are known to 

have unwanted side effects. While the etiology of the disorder is not yet fully understood, 

there are clear genetic and environmental components. Nutritional insufficiencies have 

recently become a popular environmental risk factor under investigation. Essential fatty 

acids (EFA), omega-3 polyunsaturated fatty acids (PUFA) in particular, are needed for 

proper brain development and function. Our lab has found lower proportions of omega-3 

PUFA in the phospholipids and red blood cell membranes of about 40% of the children 

and adults with ADHD. Other research groups have subsequently confirmed similar 

findings. It is not yet known why a subgroup of the ADHD population seem to display 

EFA insufficiency, or if supplementation can reliably prevent or alleviate symptoms of 

the disorder. However, multiple human and animal studies have reported a reduction in 

ADHD-symptoms with omega-3 PUFA supplementation. Thus, we hypothesized that an 

omega-3 PUFA enriched diet would reduce the ADHD symptom of hyperactivity,
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modulate dopamine and serotonin turnover, and increase omega-3 PUFA proportion in 

plasma and brain phospholipids in the Spontaneously Hypertensive Rat (SHR) animal 

model for ADHD. Additionally, we explored the relationship between oxidative stress, 

EFA status, and ADHD behavior with the prediction that SHR will display greater 

oxidative stress than the control strain, Wistar Kyota Rat (WKY). In order to develop a 

protocol that elucidates the behavioral differences between the two rat strains, we 

conducted a pilot study on various behavioral tests on the WKY and SHR while on 

standard rat chow. Results from our preliminary data led us to use the open field test as a 

measure of hyperactivity. In our intervention study, the omega-3 enriched diet (omega-3 

diet) had no impact on measures of hyperactivity. However, our intervention successfully 

increased omega-3 PUFA proportions in plasma and brain phospholipid membranes. 

WKY had a higher proportion of eicosapentaenoic acid (EPA) in both plasma and brain 

than SHR, and SHR had a higher proportion of docosahexaenoic acid in plasma for both 

diets. Results of the liver total glutathione (GSH) analysis suggested that the omega-3 

diet reduced oxidative stress, but that the SHR had lower oxidative stress than the WKY. 

SHR on the omega-3 diet had a lower concentration of dopamine in the neostriatum than 

SHR on the omega-6 dominant diet, and both rat strains on the omega-3 diet had lower 

serotonin concentration. Consistent with the lack of impact on behavior, dopamine and 

serotonin turnover were not modulated by diet. However, dopamine turnover in the SHR 

was lower than that in the WKY. In summary, our dietary intervention did not impact 

behavior, which was consistent with the lack of impact on neurotransmission, despite the 

alteration in phospholipid proportions. Future studies should focus on determining the 

most effective dose, EPA/DHA ratio, and time period for an omega-3 PUFA intervention.



1 

 

1
 

CHAPTER 1. INTRODUCTION 

1.1 Objectives and Organization 

The overall goal was to examine the possible impact of an omega-3 enriched diet 

on Attention-deficit/hyperactivity disorder (ADHD) behavior, particularly as it relates to 

neurotransmission, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) 

proportion in plasma and brain and oxidative stress. The specific hypothesis that was 

tested is that a higher plasma and brain phospholipid proportion of EPA and DHA, 

obtained from diet, can reduce hyperactivity, improve dopamine and serotonin utilization, 

and reduce oxidative stress.  

The specific objectives were to: 

1. Evaluate the behavioral effects of an omega-3 enriched diet on hyperactivity in 

comparison to an omega-6 dominant diet in an animal model.  

2. Examine biochemical markers in the animal brain, plasma, and liver to determine 

the relationship between behavior, neurotransmission, oxidative stress, and brain 

and plasma phospholipid composition, along with any impact of diet or strain.  

This thesis covers topics regarding the relationship between ADHD, essential fatty 

acids (EFAs), and oxidative stress in 4 chapters. Chapter 1 is a literature review that 

covers general background ADHD information, the relationship between essential fatty 

acids and brain function and behavior, and studies reporting the impact of omega-3 
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supplementation on ADHD behavior. It will also include a review of omega-3 

polyunsaturated essential fatty acids, oxidative stress, and the history of the validated 

animal model for ADHD. Chapter 2 is a supplemental chapter detailing a pilot study used 

to validate behavioral differences between the SHR and WKY, and behavioral tests. 

Chapter 3 describes the design and results of our animal study on the impact of an 

omega-3 enriched diet on behavior, neurotransmission, essential fatty acid proportion, 

and oxidative stress. Chapter 4 will conclude with a summary of the work, conclusions, 

and future directions.  

 

1.2 Attention-Deficit/Hyperactivity Disorder 

Attention-deficit/hyperactivity disorder is the most commonly diagnosed 

behavioral disorder in children. Diagnosis is based off of criteria set by the Diagnostic 

and Statistical Manual of Mental Disorders (5
th

 edition) (DSM-V), which is a 

classification and diagnostic tool used by psychologists and researchers. According to the 

DSM-V, ADHD is characterized by symptoms of inattention, hyperactivity, and 

impulsiveness. Manifestations of these symptoms include: frequent daydreaming, 

interrupting others, inability to remain seated, and/or not listening when spoken to. 

Children under the age of 17 must exhibit at  least 6 of the 9 inattentive and/or 

hyperactive and impulsive symptoms, while adults need only to display 5 or more 

symptoms
1
. This is a change from the previous criteria reported in the DSM-IV, in order 

to reflect the reduction of symptoms that commonly occurs with age
2
. Furthermore, there 

must be clear evidence that the symptoms interfere with, or reduce, the quality of social, 
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academic, or occupational functioning. Finally, more accountable causes of the 

symptoms must be ruled out before reaching a diagnosis.  

ADHD is divided into three subtypes: Combined presentation, Predominantly 

Inattentive presentation, and Predominantly Hyperactive-Impulsive presentation. In 

Combined presentation, the individual displays symptoms of inattention, hyperactivity, 

and impulsiveness. In the Inattentive or Hyperactive-Impulsive presentation, the 

individual primarily displays symptoms of inattention or both hyperactivity and 

impulsiveness. The clinician must also specify whether the client’s ADHD is mild, 

moderate, or severe, which is determined by the number of symptoms presented
1
.  

ADHD is commonly co-morbid with other psychological disorders. In reviews of 

ADHD diagnosis, symptoms, and treatment, 25-75% of teens with ADHD are reported to 

meet the criteria for oppositional defiant or conduct disorder. Depression and anxiety are 

two other common co-morbid disorders with 48% and 36% receiving the additional 

diagnosis, respectively
3,4

. ADHD is also commonly co-morbid with other disorders such 

as tic disorders, Obsessive Compulsive Disorder, and sleep difficulties
4
.  

 

1.2.1 Demographics 

As previously stated, ADHD is the most common behavioral disorder in children. 

It affects around 5% of children (ages 4-17) worldwide, and up to 11% of children in the 

United States (US)
5
. The percentage of children with an ADHD diagnosis has been 

increasing yearly, with rates at 7.8% in 2003, 9.5% in 2007 and rising to 11% in 2011
6
. 

This is an average increase of 5%/year from 2003-2011
7
. Males are three times more 
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likely to have an ADHD diagnosis than females. ADHD diagnosis also varies by state, 

with the highest rates in the Midwest and some states on the East Coast
6
. 

 

1.2.2 Neurobiology 

There are multiple theories regarding the physiology of ADHD, and dopamine 

(DA) neurotransmission abnormalities are heavily implicated in most of them. Dopamine 

is a catecholamine neurotransmitter, a chemical messenger in the brain, which plays an 

essential role in attention, motivation, learning, and memory. Major dopamine pathways 

run through the striatum and the frontal cortex regions of the brain – areas implicated in 

ADHD. Dopamine is primarily produced in the substantia nigra or the ventral tegmental 

area (VTA), both of which are located in the midbrain (Figure 1). Consequently, these 

areas are often analyzed when researching dopamine. Projections from these neurons go 

to the striatum, the nucleus accumbens, and the prefrontal cortex in addition to other 

areas of the brain. Dopamine exerts an effect by binding to cell-surface receptors.  
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Figure 1: Dopaminergic Pathways 

There are 5 types of dopamine receptors (D1-D5), which all function as G-protein 

receptors. However, D2 and D4 are currently the main dopamine receptors of interest in 

ADHD research
8,9

. A simplified model of how dopamine is controlled at the synaptic 

level could be described by: (1) pre-synaptic cell firing releases dopamine into the 

synaptic cleft; (2) dopamine then reversibly binds to dopamine receptors on the post 

synaptic cell; (3) dopamine is either reabsorbed by dopamine transporters and degraded 

into homovanillic acid (HVA) or is recycled for further use (see Figure 2)
9
. Of note, 

dopamine is a precursor to norepinephrine, which is also crucial for short-term memory 

and attention. 
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Figure 2:  Dopamine Metabolism 

Among the multiple theories that have been proposed for the cause of ADHD 

behavior, it is generally agreed upon that the cause involves disturbances in the 

dopaminergic pathway. Some points of contingency stem from whether these 

disturbances result in a hyperdopaminergic state, hypodopaminergic state, or if there are 

alternative consequences. Currently, one of the most supported theories is that those with 

ADHD have a dopamine deficit, meaning they have low dopamine production or 
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response for reasons not fully understood
9
. Multiple neurobiological studies have been 

conducted to decipher the cause of the proposed dopamine deficit. Castellanos et al.
9
 

investigated whether there are size abnormalities in dopamine-modulated areas of the 

brain. The researchers measured brain volumes of 152 children and adolescents with 

ADHD and compared the sizes to healthy controls using magnetic resonance images. The 

researchers found that brain regions with high dopamine receptors were significantly 

smaller in the ADHD group than the control. Their longitudinal growth curves suggested 

that this decrease in volume occurs early in development, as fundamental developmental 

processes appeared to be healthy
10

. Another area to investigate is dopamine function. 

Volkow et al.
11

 measured dopamine receptor availability and dopamine release in ADHD 

adults using positron emission tomography. The researchers found that dopamine 

receptor availability in the left caudate was significantly lower in subjects with ADHD (p 

< 0.04), and showed a trend in the right caudate (p < 0.07). In addition to lower dopamine 

receptor availability, the ADHD subjects were reported to have lower dopamine release 

as well
11

. 

In congruence with the hypodopaminergic theory, there is also evidence that 

patients with ADHD have low dopamine response. Wigal et al.
12

 tested ten untreated 

children with ADHD versus eight age-matched controls by having them undergo two 

separate exercise sessions. Exercise is known to elicit a dopamine and norepinephrine 

response and peripheral nervous system activity is correlated with brain activity. They 

found that the children with ADHD had significantly lower plasma norepinephrine at all-

time points and significantly lower dopamine at the peak of the exercise compared to 

controls. However, it is yet to be determined whether the lack of dopamine response is 
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due to a systematic dopamine deficit or to less stimulation of the adrenals in response to 

exercise
12

. Nonetheless, the results provide further support that ADHD symptoms may be 

a result of a hypodopaminergic state. 

 

1.2.3 Treatment 

ADHD is normally treated with the use of amphetamines (ex. Adderall) or 

methylphenidates (ex. Ritalin). Both treatments either indirectly or directly increase the 

amount of dopamine in the synapse. Amphetamines cause an increase in dopamine 

release. Methylphenidates, on the other hand, block dopamine reabsorption by blocking 

the dopamine active transporter (DAT). Blocking reabsorption increases the amount of 

dopamine in the synapse, which allows dopamine to repeatedly bind to dopamine 

receptors
13

. However, stimulants may act in other additional ways that help reduce 

hyperactivity. While stimulant medication can alleviate symptoms, it is only effective for 

around 70% of adolescents
4
. Common side effects include upset stomach, headache, 

decreased sleep, and decreased appetite. Recently, non-stimulant atomoxetine has been 

approved for ADHD treatment. Atomoxetine is a selective inhibitor of the presynaptic 

noradrenaline transporter with low affinity for serotonin (5-HT) and dopamine transporter 

receptors
14

. Preliminary evidence suggests that atomoxetine may be beneficial for ADHD 

that is co-morbid with anxiety and depression, two common co-morbid disorders
15

.  

 

1.2.4 Etiology 

The etiology of ADHD is not yet known, but there are clear genetic and 

environmental components. Based on many twin and adoption studies, the estimated 
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heritability of ADHD is almost 80% and this rate has not changed since 1973
16

. Parents 

of adopted children with ADHD are less likely to have the disorder than biologically 

related relatives
17

. Thus, genetics seems to play an important role in initiating ADHD.  
 

There are a few genetic studies that have identified genes with polymorphisms that 

are associated with ADHD
18

. The most frequently implicated genetic factors are the 

dopamine D4 receptor (DRD4) and the dopamine transporter gene (DAT1). Both these 

genes play important roles in the dopaminergic system. DRD4 has been frequently 

analyzed due to its prevalence in the frontal-subcortical networks. Dopamine, along with 

norepinephrine, are potent agonists for this receptor
19

. Many researchers have assayed a 

tandem repeat polymorphism in exon III of DRD4 because it has been shown that the 7-

repeat allele variant results in a low response to dopamine. In fact, a significant 

association between the 7-repeat allele and ADHD in both case-control and family 

studies has been reported
20,21

. However, other studies found no overall association of any 

allele with ADHD
22

. Tyrosine hydroxylase, which plays a role in DA synthesis by 

catalyzing the conversion of tyrosine to dihydroxy-phenylalanine, was also investigated 

for its role in ADHD. However, studies have shown no association between 

polymorphisms in the TH gene and ADHD
23,24,25,26

.  There are many studies investigating 

abnormalities in the dopamine transporter gene as a potential instigator of ADHD. DAT 

is responsible for the reuptake DA, a preliminary step to its degradation. A polymorphism 

consisting of an allele containing a 10-repeat allele of a 40-base pair variable number of 

tandem repeats (VNTR) located at the 3’ untranslated, non-coding end has been primarily 

investigated. The association of ADHD with this polymorphism was first proposed by 

Cook et al.
27

, who conducted a study including 119 children with ADHD and found an 
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association between this polymorphism and response to treatment. This has later been 

confirmed by multiple other studies
27,28

. Furthermore, Dougherty et al.
29

 measured striatal 

DA transporter activity and found that activity was elevated by 70% in ADHD adults. 

Higher DA transporter activity could result in higher dopamine degradation. On the other 

hand, the results of studies assessing DAT density in ADHD individuals have not been 

consistent
30

. While there is some promising evidence supporting genetic factors, no 

single gene polymorphism has enough support to be considered the sole cause of ADHD. 

Thus environmental factors are also researched. 

 

1.3 Environmental Risk Factors and ADHD 

Environmental factors have become an increasingly popular focus in ADHD 

research. When assessing ADHD risk, environment factors are commonly classified as 

prenatal, perinatal, and postnatal
31

. Multiple meta-analyses and reviews have assessed 

common environmental factors for positive correlation with ADHD risk. The risk factors 

that will be discussed in this review include: cigarette and alcohol exposure, lead 

exposure, and nutritional insufficiencies.  

 

1.3.1 Maternal Smoking 

Maternal smoking during pregnancy is significantly associated with increased 

ADHD risk in the offspring
32

. Braun et al.
33

 obtained data from the National Health and 

Nutrition Examination Survey from 1999-2002. Among 4,704 children aged 4-15 years 

old, 4.2% had ADHD and took stimulant medication. Using multivariable analysis, they 

found that prenatal tobacco exposure [odds ratio (OR) = 2.5;95% confidence interval (CI), 
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1.2-5.2] was significantly associated with ADHD, however, postnatal maternal smoking 

was not. The researchers suggest that prenatal exposure to tobacco could account for up 

to 270,000 excess cases of ADHD 
33

.  

 

1.3.2 Prenatal Alcohol Exposure 

The risk of prenatal exposure to alcohol seems to be dependent on severity and 

duration of alcohol consumption, thus the research has not been uniform
31

. However, in a 

retrospective, case-control study conducted by Mick et al.
34

 it was reported that those 

exposed to alcohol in utero were 2.5 times more likely to have ADHD, independent of 

nicotine exposure. The researchers concluded that alcohol is a risk factor of ADHD. In 

addition, Knopik et al.
35

 reported that offspring of twins with a history of alcohol abuse 

were significantly more likely to develop ADHD than offspring of nonalcoholic controls.  

 

1.3.3 Lead Exposure 

In addition to evaluating maternal smoking as a risk factor, Braun et al.
33

 

investigated the risk of lead exposure. Using the same data obtained from the National 

Health and Nutrition Examination Survey, the researchers found higher blood lead 

concentrations in mothers that have children with ADHD, which could account for 

290,000 excess cases of ADHD in the US. This number is equal to the excess number 

resulting from tobacco exposure. Studies involving lead screening of children with 

ADHD report positive correlations between mean blood lead level and ADHD
36

. Other 

studies report variable results, but enough evidence supports that prenatal exposure to 

lead is a risk factor
31

.  
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1.3.4 Nutritional Insufficiencies  

Low nutrient status has been associated with a number of disorders. For example, 

lack of vitamin C can cause the rare disease scurvy, while vitamin D deficiency can lead 

to a disorder of the bone, known as rickets. Nutritional insufficiencies may also impact 

behavioral disorders, and have been investigated within ADHD research.  

A relatively new risk factor associated with ADHD is vitamin D insufficiency. 

The US Endocrine Society characterizes vitamin D deficiency as vitamin D levels less 

than 20ng/ml, and insufficiency as vitamin D between 21-29ng/mol. Low vitamin D is a 

major health concern that occurs in both low sunshine and abundant sunshine areas
37

. Not 

only can insufficiency result from low sun exposure, but also from poor vitamin D status 

during pregnancy
37,38

. Vitamin D is implicated as an essential component of normal brain 

development as it enhances neuroprotection and modulates anti-inflammatory 

mechanisms
39,40

. Recently, vitamin D insufficiency has been investigated for its impact 

on ADHD risk. Bener et al.
41

 measured serum levels of vitamin D in 1331 children 

displaying symptoms of ADHD or healthy controls. The researchers found that vitamin D 

insufficiency was significantly greater in the children with ADHD and that these children 

were more likely to have severe vitamin D deficiency
41

. This is one of the first 

investigations into the correlation between vitamin D insufficiency and ADHD and it is a 

risk factor that should be investigated further
42

. 

Essential fatty acid insufficiency is another nutritional factor that is currently 

being researched. Essential fatty acids are so named because they cannot be synthesized 

in the body, and thus need to be consumed in the diet. There are two polyunsaturated 

fatty acid types of interest: omega-3 polyunsaturated fatty acids (PUFAs) and omega-6 
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polyunsaturated fatty acids. Inadequate intake, or excessive breakdown and excretion, 

could result in a number of abnormal symptoms manifesting in the hair and skin, or 

excessive thirst and urination
43

. Omega-3 PUFAs eicosapentaenoic acid (EPA) and 

docosahexaenoic acid (DHA) have been a popular topic in ADHD research due to their 

known role in brain development and behavior. A study conducted in our lab on children 

with ADHD and age-matched controls, identified a subgroup of children with ADHD 

displaying symptoms of EFA deficiency and presenting with low proportions of omega-3 

and omega-6 fatty acids in the blood
44

.  In fact, about 40% of subjects had significantly 

lower plasma omega-3 and omega-6 PUFAs than both healthy controls and those with 

ADHD not displaying EFA symptoms. Chen et al.
45

 investigated dietary intake and blood 

phospholipid levels in children with ADHD and also found that those with ADHD had 

significantly lower levels of arachidonic acid (AA), an omega-6 fatty acid, and DHA, 

despite similar diets to controls. Another study reported a similar finding
46

. Interestingly, 

a recent meta-analysis on the correlation between common environmental risk factors and 

ADHD reported a significant correlation between babies that were formula fed and those 

that developed ADHD
47

. According to the authors, this finding was consistent with 

previous studies and the results may be due to the greater amounts of essential fatty acids 

found in breast milk. Up until 2001, commercial formula did not contain omega-3 fatty 

acids
48

. The next section will discuss essential fatty acid biology, intake, and their 

relationship with brain development and behavior in detail. 
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1.4 Essential Fatty Acids and Brain 

1.4.1 Essential Fatty Acid Background and Synthesis 

Essential fatty acids are fatty acids that are required for biological processes but 

need to be ingested from the diet. Alpha-linolenic acid (ALA) and linoleic acid (LA) are 

two fatty acids that are known to be essential for humans. They are also the precursors to 

omega-3 and omega-6 long-chain polyunsaturated fatty acids. The two main families of 

EFAs are the omega-6 family and the omega-3 family and they are named based on the 

location of the first double bond closest to the terminal (omega) end of the fatty acid 

(Figure 3).  

 

Figure 3: Omega-6 and Omega-3 Fatty Acids 

 

Both ALA and LA contain 18-carbon long fatty acid tails. Through a series of 

desaturation and elongation enzymatic steps, arachidonic acid (AA) or EPA and DHA are 

synthesized, respectively. The two families share the same enzymes as illustrated in their 

synthesis pathway diagram (Figure 4).  
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Figure 4: Essential Fatty Acid Metabolism 

 

1.4.2 Essential Fatty Acids in the Western Diet 

Omega-3 PUFAs are very low in the typical Western Diet. On average, the ratio of 

omega-6 EFAs to omega-3 EFAs is 15:1
49

. Most omega-6 EFAs come from meat such as 

red meat and poultry, which are two common foods in the western diet. They are also 

found in corn and soy. On the other hand, omega-3 PUFAs are primarily found in fatty 

fish such as salmon and sardines. ALA is found in flax seed and chia seeds, but the 
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conversion to EPA and DHA is small
49,50

. An international board of lipid experts 

recommended a ratio of 2:1 as most ideal
51

, but 4:1 is also recommended and more 

attainable
52,53

. The acceptable intake of omega-3 EFAs is 1.6g/day for men and 1.1g/day 

for women. The FDA advises that 3g/day of EPA + DHA can be ingested safely, with up 

to all 2g from supplements
54

. 

 

1.4.3 Essential Fatty Acid Status 

Essential fatty acid status is determined by the quantity of EFAs and their products in 

cells and tissues, and is usually measured via plasma analysis. Status is impacted by 

dietary intake, metabolism, absorption, and degradation. Deficiency can be caused by one 

of two ways: primary deficiency or secondary deficiency. Primary deficiency results from 

inadequate dietary intake while secondary deficiency is the result of something internal, 

such as competition for the metabolic enzymes, or an increased degradation rate. One 

such factor than can increase PUFA degradation rate is oxidation from exposure to free 

radicals. An accumulation of free radicals can cause macromolecule damage. When the 

damage is sufficient to destroy cells and tissue, the occurrence is referred to as oxidative 

stress. Oxidative stress will be discussed in more detail in a later section. Insufficiency of 

one type of fatty acid can also occur when the intake of one family of fatty acid 

dominates the other, as the same enzymes are used for both the omega-6 and omega-3 

PUFA synthesis pathway (i.e. too much omega-6 intake could result in lower omega-3 

PUFA synthesis). Furthermore, long chain PUFA synthesis is not 100%. For the omega-3 

family, conversion from ALA to EPA and DHA is as low as 5-15%
55,56

.  
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1.4.4 Brain Fatty Acid Composition 

The brain is one of the fattiest organs in the body, second only to adipose tissue. 

Thus, lipids are crucial for brain development and function
57

. Almost 66% of the brain’s 

weight is due to phospholipids, 35% of which are omega-3 PUFAs. Of all the fat in the 

brain, DHA makes up 10-20% and is the highest omega-3 found in the brain
57

. The most 

dramatic brain development occurs prenatally and during the first few years of life. 

Consequently, this is when adequate availability of EPA and DHA is most important. 

DHA delivery to the central nervous system is most efficient during times of 

synaptogenesis, which occurs most rapidly during early brain development
58

. Many 

studies confirm that DHA is essential for optimal brain development and function
59,60

.  

Studies conducted by Jumpsen et al.
52,53

 demonstrated that a ratio of 4:1 was optimal for 

frontal cortex, hippocampus, and cerebellum development in growing rats. The 

researchers reported that even a small change in the ratio impaired the rate of 

development
52,53

. Furthermore, a reduced amount of DHA is compensated by an 

increased amount of docosapentaenoic acid (DPA) (22:5n-6), which reduces membrane 

fluidity
61

. 

 

1.4.5 Oxidative Stress and Essential Fatty Acids 

Fatty acids, especially those with multiple double bonds, are prone oxidation in 

elevated states of oxidative stress. Oxidative stress is the imbalance of the biological 

system's antioxidant defense and the manifestation of reactive oxygen species. A 

disturbance in the normal redox state in cells can result in the production of peroxides or 

free radicals, which can damage the DNA, carbohydrates, lipids, and proteins
62

. Free 
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radicals are species that contain one or more unpaired electrons. Normal oxidative 

metabolism results in a constant stream of oxygen derived free radicals, which are more 

reactive than ground state oxygen and are thus named reactive oxygen species (ROS). 

ROS can include radicals (i.e. hydroxyl radical) and non-radicals that easily degrade to 

radicals (i.e. hydrogen peroxide), while the antioxidant defense system includes both 

dietary and endogenously produced antioxidants such as carotenoids, tocopherols, and 

thiols
62

.  

The upregulation of antioxidant genes is one of the major mechanisms by which 

cells protect themselves against oxidative stress
63

. Intracellular thiol groups act as 

antioxidants by scavenging free radicals through enzymatic reactions
62

. Reduced 

glutathione (GSH) is one of the most abundant and important intracellular thiols in cells
63

. 

Therefore cells tightly regulate the synthesis, export, and utilization of GSH. GSH elicits 

its antioxidant effect by removing potentially toxic electrophiles and metals, which 

protects cells from toxic oxygen products
64

. GSH also exhibits control in membrane 

transport
65

. In fact, it is able to protect biological membranes against lipid peroxidation as 

it prevents damage in a lipid environment
62

. However, its ability to protect membranes is 

enzymatically mediated, and therefore dependent on, vitamin E.   

Vitamin E, which encompasses a small group of tocopherols, is a major lipid-

soluble antioxidant. It is primarily responsible for protecting biological membranes by 

protecting membrane PUFAs from lipid peroxidation. The amount of vitamin E in 

membranes often indicates the susceptibility of low-density lipoproteins, whole organs, 

or microsomal membranes to oxidative damage
62,66,67

. Tocopherols scavenge peroxyl 

radicals without reacting in chain-propagating steps, thereby protecting lipids. 
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1.4.6 Essential Fatty Acids and Neural Function 

As discussed previously, ADHD symptoms are thought to result from 

disturbances in the dopaminergic system. Therefore, the areas of neural function that will 

be discussed in this review are either directly or non-directly related to neurotransmission: 

membrane fluidity, neurotransmitter activity, and neuron health.  

 

1.4.6.1 Membrane Fluidity 

Omega-3 PUFAs are thought to influence neural function in a variety of ways. 

One of the most known ways is by increasing membrane fluidity. The membrane fluidity 

index is primarily influenced by the percentage and composition of membrane PUFA and 

membrane cholesterol content. Neuronal membranes are made up of a phospholipid 

bilayer, which incorporates phospholipids from fatty acids in the diet.  Saturated fatty 

acids have a hydrocarbon tail with the maximum amount of hydrogen atoms possible. An 

unsaturated fatty acid has a hydrocarbon tail with one or more carbon-carbon double 

bonds instead of hydrogen. These double bonds cause kinks in the tail, which contribute 

to membrane fluidity. Therefore, higher PUFA content results in a more fluid membrane. 

On the other hand, cholesterol is needed to maintain rigidity despite high temperatures. 

Interestingly, omega-3 fatty acids can actually displace cholesterol in the membrane and 

thereby reduce its amount, while omega-6 fatty acids only redistribute membrane 

cholesterol
68

. A number of research studies have shown that changing the level of EFAs 

in the diet will affect the fatty acid profile in the neuronal membrane, therefore these 

changes can be induced via dietary intervention
69

.  
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Maintaining proper membrane fluidity is important for healthy neural processes. 

A rigid membrane, or low membrane fluidity index, will affect receptor function, ion 

channel activity, and neurotransmitter release such as dopamine
68

. When nerve cell 

membranes are fluid, neurotransmitter receptors are better able to recognize and bind the 

appropriate neurotransmitters. Since dopamine is a neurotransmitter that is heavily 

implicated in ADHD behavior, improving membrane fluidity could alleviate symptoms.  

Oxidative stress can also increase cholesterol levels in the brain, thereby 

decreasing membrane fluidity and affecting neurotransmission
70–72

. In young rats, 

oxidative stress was found to raise levels of brain cholesterol to that of aged rats
70

. The 

increase of free radicals in states of heightened oxidative stress can decrease membrane 

fluidity as well
73,74

. Some researchers have successfully corrected the harmful impact of 

oxidative stress on membranes using PUFA supplementation
75–78

. Treatment with omega-

3 PUFA can also restore a long-lasting increase in synaptic efficacy following stimulation 

of afferent fibers in aged rats.  

 

1.4.6.2 Neurotransmission 

Na
+
, K

+
-ATPase couples ATP hydrolysis for the active transport of 3 Na

+
 ions out 

of the cell in exchange for 2 K
+
 ions into the cell. This process is integral in 

neurotransmission and signaling
79

. Na
+
, K

+
-ATPase activity allows for rapid 

repolarization of the neuron, an action needed for repetitive firing. Na
+
 and K

+
 exchange, 

mediated by Na
+
, K

+
-ATPase, plays an active role in normal action potential conduction

80
. 

Bourre et al.
81

 investigated the impact of an alpha-linolenic acid deficient diet on Na
+
, 
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K
+
-ATPase activity in nerve endings. The researchers fed Wistar rats an ALA-deficient 

diet (1.8% sunflower oil) or an ALA-adequate diet (1.9% soybean oil) for two 

generations. The third generation males were used for behavioral experiments and 

physiological analysis. The deficient diet successfully resulted in reduced amounts of 

DHA, and increased amounts of DPA, in brain cells and organelles compared to control. 

The researchers found that the nerve terminal Na
+
, K

+
-ATPase activity in rats fed the 

ALA-deficient diet was reduced to 60% of the control group. In addition, those rats on 

the deficient diet performed significantly worse on the shuttle box test for learning 

capacity.  

Dopamine and serotonin (5-HT) are implicated in many neurological disorders
82

.  

In a study conducted by Delion et al.
83

 rats were fed an ALA-deficient diet over several 

generations and the dopaminergic and serotoninergic systems were analyzed in the 

frontal cortex, striatum, and cerebellum. The rats on the deficient diet had a 40-75% 

lower level of frontal cortex endogenous dopamine. There was also an 18-46% increase 

in serotonin 5-HT
2
 receptor density but without a change in endogenous serotonin levels. 

The increase in 5-HT
2
 receptor density could be due to the decrease in D2 dopaminergic 

receptor density which also occurred, as the two are thought to be interlinked
83

. Many 

other studies have shown this effect of PUFA deficiency on dopamine and serotonin
84

. In 

a study where piglets were fed an AA and DHA-deficient diet, dopamine and serotonin 

concentration decreased in the frontal cortex
85

. Similar studies feeding rats an n-3 PUFA-

deficient diet also reported a reduction in the dopaminergic vesicle pool and inadequate 

storage of newly synthesized dopamine
86,87

. On the other hand, a study on rats given fish 
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oil reported a 40% increase in dopamine concentrations in the frontal cortex and greater 

binding to D2 receptors
84

. 

 

1.4.6.3 Neurons 

It is widely accepted that DHA plays a crucial role in brain development, 

especially during periods of dramatic growth. Cao et al.
88

 demonstrates this fact by 

testing the effect of DHA on neurite outgrowth and viability in growing cortical 

neurons
88

. The researchers prepared cortical neurons from fetal Sprague-Dawley rat pups. 

Cells were divided into DHA-treated or control groups. Different concentrations of DHA 

were added to the neurobasal medium after plating. The researchers found that the DHA-

treated group had significantly more neurite outgrowth and accelerated neurite elongation 

than controls
88

. Interestingly, only a narrow concentration range of DHA had a desired 

effect on neurite growth while high concentrations were actually neurotoxic to the 

cortical cells. This is in agreement with other studies that report that high-dose DHA 

supplementation can lead to higher peroxidation and oxidative stress, but these side 

effects can be reduced with antioxidant vitamin E intake
89–91

. These findings support that 

there may be an optimal intake of DHA to receive the best results. 

 

1.4.7 Impact of an Essential Fatty Acid Deficit on Learning and Behavior 

Several studies have shown that omega-3 PUFA deficiency can lead to functional 

and learning deficits, similar to ADHD-associated problems. Rats on an ALA-deficient 

diet exhibited 187% higher locomotor activity in a novel environment than control rats 
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over the course of 2 hours
92

. Of note, this increase in activity was seen after 15 minutes 

until the end of the testing period. The diet was successful in decreasing brain DHA by 

80%, which was accompanied by a 575% increase in brain DPA. The alterations in 

locomotor activity observed are also consistent for the potential role that omega-3 PUFA, 

such as low DHA, can play in the development of ADHD. The researchers also had a 

remedial diet group where rats that were previously deficient were supplemented with 

DHA at weaning, a growth period that is developmentally similar to a full-term infant
93

. 

The supplementation, however, did not have an effect on locomotor activity
92

.    

Omega-3 PUFA deficiency has been shown to have a detrimental impact on 

learning ability in multiple studies. Mice fed an ALA-deficient or ALA-adequate diet for 

multiple generations demonstrated significantly decreased spatial learning and memory in 

comparison to controls
94,95

. In one such study, previously deficient 3
rd

 generation mice 

were supplemented with omega-3 PUFA from egg yolk or pig brain for two months prior 

to testing in an elevated plus maze. The supplemented mice performed just as well as the 

control mice, and all groups performed better than the ALA-deficient group
95

, further 

demonstrating that omega-3 PUFA supplementation can, in fact, reverse the negative 

effects of omega-3 PUFA deficiency.  

 

1.5 Essential Fatty Acid Intervention Studies 

1.5.1 Human Intervention Studies 

Several human omega-3 intervention studies have investigated the potential for 

omega-3 supplements to alleviate ADHD symptoms. A meta-analysis reviewing 10 trials 

involving 669 children total concluded that omega-3 supplementation was modestly 
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effective in alleviating ADHD symptoms
96

. Bloch and Qawasmi
96

 also note that 

supplementation with high EPA was most effective, and that while the impact is only 

moderate in comparison to standard pharmaceutical treatments, it is often preferred due 

to the benign nature of omega-3 supplements
96

. Milte et al.
97

 conducted a recent study 

with the aim to evaluate whether a supplement with high DHA or high EPA is more 

effective in treating ADHD. The 12-month randomized controlled three-way crossover 

trial was conducted in children aged 6 to 13. Children were given one of three treatment 

conditions: EPA-DHA-LA, DHA-LA-EPA, or LA-EPA-DHA. Each supplement was 

taken for 4 months, with the omega-6 linoleic acid (LA) used for comparison. No 

washout period was included because erythrocyte PUFA levels are thought to return to 

baseline after 16 weeks
98

.  Mean changes in erythrocyte fatty acids reflected what was 

expected with each treatment, with EPA and DHA increasing the most after the EPA or 

DHA treatment, respectively. However, mean EPA and DHA did not return completely 

to baseline after LA, hinting that the washout period was not fully effective. While 

conclusion statements could not be made in regards to which treatment was best (as the 

washout failed), behavioral changes were compared to change in erythrocyte PUFAs. An 

improvement in literacy, attention, and behavior was associated with within-subject 

changes in erythrocyte PUFA. Increases in EPA, DHA, and total omega-3 PUFA and 

decreases in the omega-6:omega-3 ratio had the most consistent correlations. Subscales 

of parent-rated behavior and hyperactivity was also improved with high erythrocyte 

omega-3 PUFA
99

. In a separate study, Vaisman et al.
100

 investigated whether omega-3 

fatty acids esterified to phospholipids or triglycerides are most effective for EPA and 

DHA delivery and ADHD treatment. Children were given a daily aliquot of a relatively 
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low amount of EPA and DHA (153mg EPA, 95mg DHA) compared to most intervention 

trials. The omega-3 PUFAs were either esterified to phospholipids or delivered via fish 

oil (naturally esterified to triglyercides). Of note, the authors emulsified the fatty acids 

into a chocolate spread, which may improve child adherence to the supplement regimen. 

Interestingly, the EPA and DHA esterified to phospholipids resulted in the greatest 

increase in plasma EPA and DHA levels. Furthermore, this increase was correlated with 

the greatest improvement in behavior scores. The fish oil also increased plasma EPA and 

DHA levels but the impact on behavior, though not significantly different from the 

impact in the phospholipid group, was not significantly improved from placebo
100

. These 

studies raise the question of not simply what kind of omega-3 fatty acids to supplement 

with, but what kind of delivery method to use.  

When reviewing all the studies investigating the impact of an omega-3 

supplement on ADHD behavior, the results are not conclusive. Just as there are studies 

reporting an effect, there are also studies reporting none
101–103

. This could be because the 

intervention may best impact a subgroup of those with ADHD, most likely the same 

subgroup that demonstrate omega-3 insufficiency. This is a conclusion that Belanger et al. 

reported
104

. In their study comparing the effect of an omega-3 supplement versus an 

omega-6 supplement (control) on children with ADHD, only a subgroup of the children 

(30.7%) saw significant improvement in their attention. More studies are needed to 

specifically evaluate treatment intervention on those displaying EFA deficiency 

symptoms.  

Due to the inconsistent results from human studies, and the recent validation of a 

rat model for ADHD, animal studies are a relatively recent and valuable addition to 
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ADHD research. By utilizing an animal model, researchers can control for the placebo 

effect, perform more invasive analysis, and maintain a controlled environment. Research 

from animal studies may help determine how effective an omega-3 intervention is and 

pinpoint which physiological processes are being affected.  

 

1.5.2 Animal Models and Animal Behavioral Tests for ADHD 

An ideal animal model for behavioral disorders should have similar biochemistry, 

etiology, symptoms, and effective treatments as the disorder in humans
105

. Animal 

models are often advantageous over human models in that they allow for easier 

controlled environments, in-depth physiological analysis, and low risk of “placebo effect”. 

As ADHD diagnosis is currently only behaviorally based, the validation of an ADHD 

animal model is based primarily on behavior
105

. Therefore, a validated animal model for 

ADHD should conform to construct validity, predictive validity, and face validity. 

Construct validity confirms that the animal model conforms to a theoretical rational. 

Predictive validity confirms that the animal model correlates to ADHD in humans in 

regards to behavior and neurological functions, while face validity means the animal 

model mimics the fundamental behavioral symptoms of ADHD. Currently the 

Spontaneously Hypertensive Rat (SHR/NCrl) from Charles River, Germany (Rat 

Genome Database 2008) is the most validated animal model for ADHD research
106

. 

While the best control strain is the Wistar Kyoto Rat (WKY/NHsd) from Harlan, UK. 

Many studies have established face validity in the SHR. Both children with 

ADHD vs control and SHR vs control have been tested on a multiple fixed-

interval/extinction schedule of reinforcement
107–111

. A multiple schedule is defined as two 
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or more schedule components alternating in the presence of different stimulus. A fixed-

interval component is used to measure reactivity to reinforcers and impulsiveness, while 

the extinction component measures sustained attention and sensitivity to change
105

. These 

tests can be used to measure attention and impulsiveness. The ADHD symptom of 

impulsiveness can be seen as brief, short sequences of activity and rapid changes. It is 

also marked by the inability to wait, such as blurting out answers or choosing short-term 

rewards over bigger, long-term ones. These bursts of activity and rapid changes are 

typical in the SHR. Motor impulsiveness can be tested using the multiple fixed-

interval/extinction schedule discussed above with impulsiveness measured as bursts of 

responses with short inter-response times. In behavioral tests with children with ADHD, 

this type of behavior is seen towards the end of testing.  

Sagvolden et al.
105

 have conducted numerous studies in validating the SHR as a 

model for ADHD. One of the earlier studies compared SHR/NCrl and WKY/NHsd 

among other rat strains on their behavior when trained to respond to cue lights in a dual 

lever operant chamber. The rats were trained to press a lever once the light turned on over 

it and were rewarded with water. The rats were trained for weeks until ready for their 

final schedule, which was used for behavioral analysis. Sustained attention was measured 

as percent correct lever responses. Impulsiveness was determined by number of short 

inter-response times (<0.67s) and general activity was expressed as total number of lever 

presses.  

The researchers reported that the male SHR/NCrl rats had significantly poorer 

sustained attention compared to the WKY/NHsd and also greater general activity based 

on lever presses. The SHR/NCrl was moderately more impulsive than the other groups, 
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and more often responded to a previous lever press with a following lever press within 

0.67s despite no reinforcement for this extra press. However, while there was a trend, 

there was no significant difference between groups in terms of impulsiveness. On the 

other hand, in another study by Sagvolden et al.
112

 impulsiveness was found to be 

significantly higher for SHR than WKY.  

An open field maze can also be used to measure hyperactivity by measuring 

general locomotion. In this behavioral test, an animal is placed on one spot in a square 

open field with four walls. The floor is normally divided into squares and locomotion is 

measured as number of boxes crossed or via video recording and computer analysis. In 

addition, number of center box entries and number of rearings can also be measured. 

Normal rats are expected to stick to the perimeter and have relatively few rearings. The 

idea is that if an animal is hyperactive, they will not only travel farther and more 

frequently, but will also have more rearings and center box entries. The SHR is 

frequently found to have high measures of locomotion in this test
113

. 

In terms of construct validity, there is support that SHR genetics, behavior, and 

neurobiology conform to a theoretical rationale for ADHD. Recently, genetic similarities 

have been found between the SHR and those with ADHD. A 160bp insertion was found 

in the non-coding region of the DAT1 gene, just as genetic differences in the DAT1 gene 

of humans with ADHD have also been reported
27,29,114–116

. In addition, DAT1 expression 

is altered as it has been found to be reduced in SHR midbrain during the first postnatal 

month compared to controls, but then is increased after one month
117,118

. Adult SHR also 

have decreased extracellular dopamine levels in the caudate nucleus
120,121

. In addition, 

SHR also exhibit smaller brain volume, such as in the prefrontal cortex and hippocampus, 
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than controls, which has also been observed in humans with ADHD
122

. Furthermore, DA 

uptake, storage and metabolism are disturbed in SHR, consistent with one of the primary 

propositions for ADHD physiology
111,123–125

. In animal studies, DA turnover is used as a 

reflection of dopamine utilization, with the lower ratio indicating low dopamine 

utilization, and possibly hypodopaminergic signaling
120,126

. Homovanillic acid (dopamine 

metabolite) / dopamine ratio has been found to be lower in several brain areas in SHR 

versus WKY. 

Given the strength of the behavioral similarities of the SHR to ADHD-like 

behavior, it is argued that it passes predictive validity
105

. Many researchers have argued 

for altered reinforcement processes as a rationale for ADHD symptoms, and these 

processes were discovered via the use of an animal model
107,110,127–129

. Future studies 

utilizing the SHR may help localize neurobiology, genetic, or physiological abnormalities 

that underlie the disorder. 

One potential confounder with the SHR is the development of hypertension. 

Hypertension develops naturally as the SHR reach adulthood, therefore it is advised to 

study juvenile, pre-hypertensive rats for ADHD research (before 10-12 weeks of 

age)
112,130

. However, it has been shown that the hyperactive behavior is independent of 

hypertensive status
131,132

.  

 

1.5.3 Animal Intervention Studies 

The use of SHR in ADHD studies is becoming increasingly popular. Dervola et 

al.
133

 tested the impact of an omega-3 enriched diet on male and female SHR sustained 

attention, impulsiveness, and hyperactivity. The researchers used a dual lever operant 
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chamber and a behavioral test as described previously. The male rats on the omega-3 diet 

displayed improved attention, decreased hyperactivity and decreased impulsiveness. The 

female rats, on the other hand, displayed no change or the opposite effect. One thought is 

that the female SHR is not validated as a proper representation of ADHD and thus may 

not respond to treatment as expected. Furthermore, the omega-3 diet was much higher in 

fat than the control diet. Thus, the higher energy the omega-3 diet provided may have 

affected the rats’ behavior, explaining the opposite response of the females. In addition to 

behavioral outputs, the authors measured dopamine and serotonin and their respective 

degradation products (HVA and 5-HTAA) in order to measure dopamine and serotonin 

turnover. Dopamine turnover was improved with the omega-3 diet in the male SHR, 

which correlated with the improved changes in behavior.  A recent study by Hauser et al. 

compared the effects of an omega-3 enriched diet to an omega-3 deficient diet on SHR 

hyperactivity using an open field maze. The researchers found that the SHR on the 

omega-3 enriched diet were less hyperactive than rats on the deficient diet, further 

supporting the importance of omega-3 fatty acids in healthy motor control and 

behavior
134

.  

 

1.6 Oxidative Stress and Attention-Deficit/Hyperactivity Disorder 

Given the subgroup of those with ADHD exhibiting secondary omega-3 PUFA 

insufficiency, our lab suspected systematic oxidative stress as a contributing factor. There 

are several ways to measure oxidative stress. For example, total GSH intracellular 

concentration is an indicator of oxidative stress
135

. GSH is found in two forms, the 

reduced GSH form and the oxidized glutathione disulfide form (GSSG). Oxidative stress 
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can impact the GSH/GSSG ratio as well as total GSH. GSH can be measured by a wide 

variety of high-pressure liquid chromatography (HPLC) methods, which can detect GSH 

at picomolar concentrations. However, this process can have poor recovery of GSH
135

. 

Another method is to conduct a recycling kinetic assay, which allows for rapid and 

accurate measurements of GSH, GSSG, and GSH + GSSG.  

It has been established that a decrease in GSH concentration may be associated 

with the pathogenesis of many diseases, such as: AIDS, alcoholic liver disease, 

respiratory distress syndrome, and rheumatoid arthritis
136

. A decrease is also known to be 

associated with aging and has been observed in the substantia nigra of Parkinson Disease 

patients
137,138

. A depletion of total GSH (GSH + 2GSSG + protein-bound glutathione) 

and a decreased GSH/GSSG ratio are known indicators of oxidative stress in ischemic 

brain disease
139

, cancer
140

, and cardiovascular disease
141

. However, GSH concentrations 

are increased in the epithelial lining fluid of chronic smokers
142

. 

In 2003 our lab found significant correlations between an increase in red blood cell 

(RBC) α-tocopherol concentrations and a decrease in ADHD symptoms. Furthermore, 

Ross et al. reported increased exhalation of ethane in subjects with ADHD, a marker of 

omega-3 PUFA per oxidation
143

. Thus, we have suspected systematic increased oxidative 

stress as a potential factor in ADHD
144

. In 2006 we measured glucose-6-phosphate 

dehydrogenase activity in red blood cells, a marker of oxidative stress, in young adults 

with ADHD from Purdue University. Surprisingly, there was not a significant difference 

in activity in the ADHD group versus healthy controls. Furthermore, F
2
-isoprostane 

concentrations measured in urine were not elevated in those with ADHD
145

.  Nonetheless, 
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given the current evidence, it is still worth examining this potential factor in animal 

models for ADHD.  

 

1.7 Summary and Research Questions 

ADHD is a prominent behavioral disorder affecting 5% of children and adults 

worldwide
6
. While medical treatments are available, they only work for up to 70% of the 

population and have unwanted side effects
146

. Thus, alternative treatment options are 

frequently investigated. Omega-3 fatty acids continue to be a common topic in ADHD 

research. While many research studies support the efficacy of omega-3 supplementation, 

continued research is needed to determine the best dosage, delivery method, and identify 

whether a subgroup of the ADHD population would benefit more from omega-3 

supplementation than others. Furthermore, the impact of omega-3 deficiency or 

supplementation on ADHD-symptoms may bring light as to the etiology of the disorder.  

Animal models can be used to elucidate the mechanism by which omega-3 fatty acids 

elicit their impact on behavior, pending that this effect is consistent. 

At present there are only a few studies investigating dietary interventions on 

ADHD-like behavior in the SHR. In Chapter 3 we describe our study in which we aim to 

address the question of whether an omega-3 dietary intervention will reduce hyperactivity 

and modulate neurobiology and biochemistry in the SHR. Our first aim was to evaluate 

the impact of an omega-3 enriched diet on ADHD-like behavior. We hypothesized that an 

omega-3 enriched diet will reduce hyperactivity in the SHR, as seen in previous studies. 

We designed a 2x2 study in which we also tested the validated control strain, WKY, in 

order to control for a potential differential impact of the diet, and to record any 
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physiological or behavioral differences between strains. In regards to this, our second aim 

was to evaluate the impact of diet or strain on neurotransmission, oxidative stress, and 

fatty acid proportions in the brain and plasma. We hypothesized that the omega-3 

enriched diet would modulate neurotransmission, reduce oxidative stress, and increase 

omega-3 polyunsaturated fatty acid proportions in the brain and plasma phospholipids. 

We also hypothesized that the SHR will be more hyperactive, have lower dopamine and 

serotonin turnover, higher oxidative stress, and lower omega-3 PUFA proportions. In 

addition, we conducted a preliminary study on SHR and WKY on standard rat chow to 

establish protocols for testing ADHD-like behavior (Chapter 2).  
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CHAPTER 2.  PILOT STUDY 

2.1 Introduction 

A pilot study was conducted to confirm a behavioral difference between SHR and 

WKY under our testing conditions. SHR and WKY were fed standard rat chow under 

food restriction so that they remained around 90
th

 percentile for weight. Sucrose pellets 

were used as a reward for lever pressing in a dual lever operant chamber. An open field 

maze was utilized to record locomotion as a measure of hyperactivity.  

 

2.2 Methods 

2.2.1 Animal Models 

The study was approved by Purdue Animal Care and Use Committee (PACUC), 

and conducted in concordance with the laws regulating experiments on live animals in 

the United States. 8 male, 3-week old Spontaneously Hypertensive Rats (SHR/NCrl) and 

8 Wistar Kyoto Rats (WKY/NCrl) were purchased from Charles River International, Inc. 

Rats were initially housed 2/cage for 1 week with access to rat chow and water ad 

libitum, after which they were housed in individual cages. Rats were handled daily for the 

first two weeks and weighed continuously throughout the study. At 4 weeks of age food 

was restricted so that rats would be at their 90
th

 percentile for weight. Rats were exposed 

to a few sucrose pellets a few days before testing to reduce their novelty. Growth rate and 



35 

 

3
5
 

body weight were monitored to ensure proper growth, and rats maintained 80% of their 

average expected weight. The animals were caged under standard conditions (humidity 

about 55%, temperature about 22ºC, reverse 12h light/dark cycle).  

 

2.2.2 Diet 

Rats were fed standard rat chow (Nestle Purina Pet Care Company, St. Louis, 

MO). Dustless Precision 45mg Sucrose Pellets (Bio-Serv, Flemington, NJ) were used as a 

reward during testing. Sucrose pellets were composed of: sucrose, dextrose, cellulose, 

tablet binder, magnesium stearate, natural and artificial flavors, calcium silicate, and food 

dye (protein 0%, fat 0%, carb 97.5%).  

 

2.2.3 Behavioral Testing 

Table 1: Behavioral Training and Testing Schedule 

Behavioral Procedure Number of Sessions Reinforcement Schedule 

Magazine Training 1  

Flap Training 2-3 FT 10 

Shaping of lever-pressing 4-6 CRF 

30 minute training 7-9 FT 10 

60 minute training 10-14 VI 15 

60 minute Testing 15-34 VI 60 

Reinforcement was given either as a continuous reinforcement schedule (CRF), fixed 

time of reinforcement (FT), or variable interval schedule of reinforcement (VI) 

At 5 weeks of age the 16 animal started the training schedule detailed above 

(Table 1). Testing ran daily between 10:00 and 14:00.  Rats were randomized to one of 

the four chambers, and were tested at the same time each day. The 34 sessions included 
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training, lever shaping, and testing with reinforcers. Sessions used in the behavioral 

analysis lasted 60 minutes or until 45 pellets were rewarded.  

After animals were magazine trained, lever-pressing training began on one lever. 

The animals ran on continuous reinforcement and then fixed interval 10s sessions to 

strengthen the behavior. For their final schedule, rats were put on a variable interval 60s 

(VI60) schedule of reinforcement. Pressing the lever, signaled by a lit cue light above the 

lever, produced a reward on a VI60 schedule of reinforcement. While this occurs, the cue 

light above the lever turns off and the cue light in the reinforce-delivery hopper turns on. 

Following the reinforcer delivery, a VI60 timer is initiated to determine the time until the 

cue light turns on again.  

 

2.2.4 Apparatus 

The rats were tested in 4 operant chambers (Model 80004NS, Lafayette 

Instrument, Lafayette, IN). The chambers were equip with stainless steel floors, fixed 

lever press bars requiring a weight of 28mg to activate, and a white, opaque cue light 

above each lever. The animals had a working space of 30.5cm L x 26cm D x 20.0cm H. 

45mg sucrose reward pellets were dispensed in a small, recessed cubicle with a cue light 

that lit when rewards were dispensed. Abet II 2.16 (Lafayette Instruments Abet II, 

Lafayette, IN, USA) was used to record behavior and schedule reinforcements and lights.  

 

2.2.5 Measurement of Behavior 

The number of presses on the reinforcer-producing lever, time of events, and 

number of reinforcers produced and collected were recorded. Attention was calculated as 
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a measure of accurate responses on the reinforcer-producing lever as the animal had to 

pay attention to the cue light above the lever before pressing. Hyperactivity was 

measured as total number of lever-presses in the operant chamber, and distance travelled 

and rearings in the open field test
133

. 

 

2.2.6 Open Field 

The open field test was used to measure locomotor activity. The open field 

apparatus was a wooden 107cm x 107cm open-field box, with a Plexiglas floor. A 25-box 

grid was created with masking tape placed underneath the Plexiglas. Each square was 

20cm. Testing was conducted at 10 weeks of age. Rats started at the same corner of the 

box each time and allowed to roam uninterrupted for 15 minutes. Two researchers tallied 

total box crossings, rearings, and center box entries. Lights were off during testing with 

the exception of a red lamp. The maze was cleaned with 70% ethanol and allowed to dry 

between sessions. Rats were tested between 11:00-12:00 after their last day in the operant 

chamber.  

 

2.2.7 Statistics 

SPSS 22 (IBM SPSS Statistics, Armonk, NY) was used to conduct one-way 

ANOVA with repeated measures on the operant chamber behavioral outcomes, after data 

passed for normality and equal-variance. Kruskal Wallis test was used to determine 

normality for all data. Values were considered outliers if they were more than two 

standard deviations away from the mean. Student’s t-test was used to evaluate the open 

field test outcome measures. Significance was defined as p < 0.05. Values in figures 
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reported as mean + standard error of mean (SEM), values in text reported as mean + 

SEM. 

 

2.3 Results 

2.3.1 Operant Chambers 

 

Figure 5: Mean percent accuracy (correct presses/total presses) for WKY and SHR (mean 

+ SEM), n = 8 
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Figure 6: Mean total lever presses for WKY and SHR (mean + SEM), n = 8 

No statistically significant differences were observed between strains. Mean 

percent accuracy was 82.9+2.1 for WKY and 83.2+2.1 for SHR. Mean total lever presses 

were 1231.24+200.13 and 1343.26+200.13 for WKY and SHR, respectively. There was, 

however, a significant impact of day as both percent accuracy (p = 0.002) and total lever 

presses (p = 0.028) increased throughout the study. 
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2.3.2 Open Field Maze 

 

Figure 7: Mean box entries, rearings, and center box entries for the open field maze test 

for WKY and SHR. 
x,y

Signifies significant difference between strains (p < 0.05). Mean + 

SEM, n = 8 

SHR had significantly more box crossings (276.38+9.34 vs 90.38+18.52), rearings 

(92.25+4.51 vs 18.25+3.02) and center box entries (7.38+0.86 vs 0) than WKY  

(p < 0.001).  

 

2.4 Discussion and Conclusion 

Rats were only at 80
th

 percentile of their expected growth, which is lower than the 

target 85-90
th

 percentile desired. While an increase in diet was enlisted to promote further 

weight gain, the intervention was not strong enough. Consequently, the animals could 

have been more motivated than usual because of the increased need for food. While a 

behavioral strain difference has been observed in multiple studies
112

, our single-lever 

operant chamber tests did not reveal a difference in behavior between the two strains. 

However, the open field maze did show a significant strain effect. Thus, we chose to 
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focus on hyperactivity and proceed with the open field maze test for our subsequent study. 

Our data suggests that a dual-lever discrimination test may be needed to reveal the 

behavioral differences observed in other studies.
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CHAPTER 3. INTERVENTION STUDY 

3.1 Introduction 

Attention-deficit/hyperactivity disorder is the most commonly diagnosed 

behavioral disorder in children worldwide. Diagnosis rates have been increasing steadily 

in the United States, with up to 11% of children diagnosed with the disorder as of 2011
6
. 

ADHD is diagnosed based on symptoms detailed in the DSM-V, which include: 

inattention, hyperactivity, and impulsivity
1
. Dopamine abnormalities have been heavily 

implicated in the physiology of ADHD
30

. Multiple studies have confirmed a low 

dopamine response, lower dopamine receptor availability, and smaller brain region 

volumes in areas known to be rich in dopamine receptors
10,29,147,148

. Stimulant 

medications that prevent dopamine reuptake or increase dopamine release are effective 

for treating symptoms, but these medications only work for around 70% of the 

population
146

. 

The complete etiology of ADHD remains unknown, but clear environmental and 

genetic factors have been identified
31,149

. Nutritional insufficiencies, particularly essential 

fatty acids, have been a topic of interest in ADHD research. Essential polyunsaturated 

fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are 

crucial for healthy brain development. EPA and DHA, or their precursor alpha-linolenic 

acid (ALA), must be obtained from the diet as the body cannot synthesize them otherwise. 



43 

 

4
3
 

Most brain development occurs prenatally and during the first few years of life, 

therefore having adequate omega-3 PUFA is particularly important during this time
150,151

. 

The typical Western Diet consists of a very high omega-6 fatty acid: omega-3 fatty acid 

ratio (15:1) as opposed to the recommended ratio of 4:1
52,53,152

. Our lab has investigated 

essential fatty acid (EFA) status in children with ADHD, as many displayed EFA 

deficiency symptoms (i.e. increased thirst, dandruff, frequent urination). We found that a 

subgroup of children with ADHD, about 40%, had insufficient plasma EFA levels despite 

reporting a similar diet to the other children tested
44,153

. This finding has been 

subsequently reported by other labs as well, both within and outside the United States
45,46

. 

Furthermore, feeding infants baby formula, which lacked added essential omega-3 PUFA 

until 2002, is significantly correlated with increased ADHD risk
47

. Consequently, omega-

3 PUFAs have been implicated as a possible environmental factor in ADHD risk and 

development. 

The importance of adequate omega-3 PUFAs for healthy brain physiology has been 

demonstrated in several neurobiology and behavior studies on omega-3 PUFA deficient 

animals. Omega-3 PUFA deficiency, especially during times of heightened brain 

development, can have detrimental effects on learning, brain structure and function
151

. 

EPA and DHA are crucial for membrane fluidity, proper neurotransmission, and brain 

development
154

. Animal studies evaluating the impact of animals on an omega-3 deficient 

diet for multiple generations report decreased performance on learning and memory tasks, 

lower dopamine and serotonin concentration, and lower dopamine storage
69,81,83,94,155,156

. 

Interestingly, both learning and neurotransmitter deficits have been successfully reversed 

with omega-3 PUFA supplementation
92,157

. Omega-3 supplementation has been evaluated 
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for its impact on ADHD and several human and animal studies have reported a reduction 

in ADHD-symptoms. The results of these intervention studies, however, have not been 

unanimous
158

.  

In order to eliminate the risk of “placebo effect” and evaluate more invasive 

physiological factors, we utilized the Spontaneously Hypertensive Rat (SHR). The SHR 

is a well-validated animal model for ADHD, and displays all three major behavioral 

characteristics of the disorder
105,112,159

. In our study, we examine the impact of an omega-

3 enriched diet (2:1 omega-6:omega-3 ratio) versus a typical Western Diet (13.3:1) on 

hyperactivity, a common ADHD behavior. Juvenile SHR and their validated control 

strain, Wistar Kyota Rat (WKY), were fed either an omega-3 fatty acid dominant diet 

(omega-3 diet) or an omega-6 fatty acid dominant diet (omega-6 diet) followed by 

locomotion and rearing measurement in an open field maze. Dopamine abnormalities are 

heavily implicated in ADHD behavior, so we measured DA and its downstream 

neurotransmitter, serotonin (5-HT), turnover in the neostriatum. Additionally, both 

plasma and brain phospholipid compositions were assessed. Lastly, as oxidative stress 

could be a causative factor in secondary omega-3 PUFA deficiency, we analyzed liver 

glutathione (GSH) concentrations as a measure of oxidative stress. We hypothesize that 

the omega-3 diet will increase omega-3 PUFA proportions in plasma and brain 

phospholipids, increase DA and 5-HT turnover, and reduce oxidative stress, which will 

be correlated with a decrease in hyperactivity. We also hypothesize that the SHR will be 

more hyperactive, have lower neurotransmitter turnover, and a higher state of oxidative 

stress than the WKY.  
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3.2 Materials and Methods 

3.2.1 Animal Models 

The study was approved by Purdue Animal Care and Use Committee (PACUC), 

and conducted in concordance with the laws regulating experiments on live animals in 

the United States. 16 male, 3-week old Spontaneously Hypertensive Rats (SHR/NCrl) 

and 17 Wistar Kyoto Rats (WKY/NCrl) were purchased from Charles River International, 

Inc. Rats were initially housed four/cage for four days with access to standard rat chow 

and water ad libitum, after which they were randomized into two diet groups: omega-3 

enriched diet or omega-6 dominant diet. The extra WKY was placed in the omega-3 diet 

group. After one week rats were switched to individual cages. Rats were handled daily for 

the first two weeks and weighed continuously (every 3 days) throughout the study. Both 

groups had ad libitum access to their specified food and water. Food intake was 

calculated daily to ensure similar intake between groups. Growth rate and body weight 

increased as expected, and there was no difference in weight gain between dietary groups. 

The animals were caged under standard conditions (humidity about 55%, temperature 

about 22ºC, reverse 12h light/dark cycle).  
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3.2.2 Diet 

Table 2: Dietary Composition of the Omega-3 and Omega-6 Diets 

Modifications Omega-3 Diet Omega-6 Diet 

Soybean Oil 35g/kg 35g/kg 

Menhaden Oil 36g/kg - 

Corn Oil - 36g/kg 

α-tocopherol 133.5 IU/kg 133.5 IU/kg 

 

Table 3: Fatty Acid Composition of Both Diets (% Proportion) 

Fatty Acids Omega-3 Diet Omega-6 Diet 

16:0 16.96 12.60 

18:0 6.27 0.13 

16:1n7 4.19 3.12 

18:1n9c 16.15 26.34 

18:1n9t 2.58 0.94 

18:2n6c (LA) 33.23 56.08 

18:3n6 0.83 0.59 

18:3n3 4.87 0.19 

20:3n6 (DGLA) 0.03 - 

20:4n6 (AA) 0.62 - 

20:5n3(EPA) 7.36 - 

22:6n3 (DHA) 6.90 - 

 

Diets were modified from Bio-Serv AIN-93G standard rodent diet 

(http://www.bio-serv.com/Rodent_Standard_Diets/RDAIN93G.html). Solely the fat 

content was modified to ensure equivalence between diets with exception to fatty acid 

composition. The composition of both diets was as follows: 59.3% carbohydrate, 18.1% 



47 

 

4
7
 

protein, 7.1% fat, 4.8% fiber. The omega-3 enriched diet contained menhaden oil, while 

the omega-6 diet contained an equivalent amount of corn oil. Both diets had an 

equivalent amount of soybean oil. Consequently, the omega-3 enriched diet contained 

omega-3 long chain polyunsaturated fatty acid (LC-PUFA) EPA and DHA whereas the 

omega-6 diet had high amounts of omega-6 LC-PUFA precursor linoleic acid (LA) but no 

omega-3 LC-PUFAs. Furthermore, the omega-3 enriched diet had an omega-6:omega-3 

ratio of 2:1, whereas the omega-6 diet had a ratio of 13.3:1. α-tocopherol was added to 

both diets to protect against lipid peroxidation. See Table 2 and 3 for detailed 

composition information.  

 

3.2.3 Behavioral Experiment 

The open field test was used to measure locomotor activity. The open field 

apparatus was a wooden 107cm x 107cm open-field box, with a Plexiglas floor. A 25-box 

grid was created with masking tape placed underneath the Plexiglas. Each square was 

20.3cm. Testing was conducted at 8 weeks of age. Rats started at the same corner of the 

box each time and allowed to roam uninterrupted for 15 minutes. Two researchers tallied 

total box crossings and rearings. Lights were off during testing with the exception of a 

red lamp. All testing sessions were recorded by a camcorder and reevaluated by 

researchers. The maze was cleaned with 70% ethanol and allowed to dry between 

sessions. Rats were tested between 10:00-13:00 six days a week. Each rat was tested at 

the same time every other day, for a total of three trials. 
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3.2.4 Euthanasia 

Rats were euthanized at 10 weeks of age via CO2 exposure and cardiac stick. 

Blood was collected via cardiac stick and stored in EDTA tubes (EDTA used as an 

antiocoagulant). Tubes of blood were mixed on a rocking mixer and then stored on ice 

until final storage in freezer. Kidney, liver, brain, and spleen were collected, wrapped in 

foil, and immediately frozen in liquid nitrogen. The neostriatum was separated from the 

rest of the brain and also frozen. 

 

3.2.5 Analysis 

Blood was centrifuged for 20 minutes at 3000g. Plasma was collected and 

aliquoted for storage in -80ºC. Liver, brain, spleen, and kidney were also washed and 

stored in -80ºC until analysis. 

 

3.2.5.1 Phospholipid and Oxidative Stress Analysis 

Chemicals and Materials: Methanol and chloroform were purchased from Macron 

Fine Chemicals (Central Valley, PA). Solid phase extraction (SPE) silica cartridges 

(500mg, 6ml) and holder were purchased from Burdick & Jackson (Muskegon, MI). 

Bovine serum albumin (BSA) protein assay kit and dye reagent concentrate were 

purchased from Bio-Rad Laboratories, Inc. (Hercules, CA). 96 Well Tissue Culture Plates 

(flat bottom) and 15ml polypropylene conical tubes were purchased from Falcon 

(Corning Science Mexico S.A. de C.V.). All other chemicals and reagents were purchased 

from Sigma-Aldrich (St. Louis, MO).  
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3.2.5.1.1 Phospholipid Composition Method 

Plasma: 0.5ml of plasma was thawed and added to a medium test tube. 3.5ml of 

methanol was added to the plasma followed by 7ml of chloroform. The solution was 

filtered through Whatman #5 paper then washed with 6ml chloroform:methanol. 3ml 

0.88% KCL was added and the solution was vortexed for 2 minutes. Samples were then 

refrigerated overnight. The bottom chloroform layer was removed and dried under 

nitrogen in a 37ºC water bath. Afterwards samples underwent column separation via solid 

phase extraction silica cartridges. Cartridges were washed with 10ml of chloroform then 

dried plasma lipids were dissolved in 0.5ml of chloroform and poured through the 

column. Once the lipid solution was absorbed, another 10ml of chloroform was added to 

the cartridge, followed by 10ml of methanol. The fraction was collected and then an 

additional 10ml of methanol was added. The columns were then washed with 20ml 

methanol and 20ml of chloroform. Methanol fractions were combined and dried under 

nitrogen. Then 1ml of methanol with butylated hydroxytoluene (BHT) and 1ml 14% 

boron trifluoride (BF3) were added and the solution was vortexed. Afterwards the test 

tube was capped tightly and heated in a 100ºC heating block for 30 minutes. Once cooled, 

1ml hexane with butylated hydroxytoluene and 3ml of double-dionized water (DDI) were 

added. After vortexing, the top layer was used for gas chromatography (GC) analysis. 

Protocol adapted from Juaneda and Rocquelin and Ohta et al.
160,161

. 

Whole brain: Around 0.120g whole brain was cut, weighed and homogenized in 

homogenizing buffer (50mM tris-HCl, pH 7.4, 2mM EDTA) to make a 10% 

weight/volume (w/v) solution. Phospholipid extraction was conducted as described above 

with the exception of the column separation, which was not needed. 
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3.2.5.1.2 Oxidative Stress Method 

Liver total glutathione (GSH) was analyzed as a marker of oxidative stress, using 

a protocol adapted from Rahman et al.
135

. A section of liver tissue was cut and weighed, 

ranging from 0.100g-0.250g in mass. The tissue was then homogenized using a mortar 

attached to a Sears Craften drill in enough ice-cold 5% metaphosphoric acid to make a 

20% w/v solution. The samples were then centrifuged at 3000g for 20 minutes at 4ºC in 

15ml conical vials. Reagent buffers were made fresh according to instructions with the 

exception of DTNB and β-NADPH solution. DTNB solution was made using 4mg of 

Elmands reagent, and β-NADPH was made using 6mg β-NADPH. GSH standards ranged 

from 3.13µg/ml – 50µg/ml. For the spectrometer analysis, 25µL of sample or standard 

was loaded into each well of the 96-well plate, followed by 115µL of the GR/DTNB 

mixture. After 90 seconds, 60µL of β-NADPH was added. The plate was immediately 

read via spectrometer (PowerWave Bio-Tek Instruments, Inc. Winooski, VT) and GSH 

concentration was calculated using a standard curve. GSH concentration was then 

normalized to protein for statistical analysis.  

 

3.2.5.1.3 Protein Assay 

A 1:10 dilution of Bio-Rad protein assay dye reagent concentrate and bovine 

serum albumin were used for the protein assay. BSA standard concentrations ranged from 

0.0625mg to 0.50mg. 5µl of DDI water, standard, or sample was pipetted into a 96-well 

plate. 200µl of dye was added to each well. Plate was immediately analyzed at 595nm via 

spectrometer.  
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3.2.5.2 Neurotransmitter Analysis 

3.2.5.2.1 Chemicals 

A high performance liquid chromatogrpahy (HPLC) machine was utilized to 

conduct monoamine analysis. Dopamine, homovanillic acid, and serotonin standards 

were obtained from Arcos Organics, while 5-hydroxyindole-3-acetic acid (5-HIAA) and 

isoproterenol were obtained from Sigma. 

 

3.2.5.2.2 Sample Preparation 

Neostriatum samples were weighed and homogenized in 500uL of ice-cold 0.2M 

HCLO4. The homogenizer was the same mortar and pestle mounted to a Sears Craften 

drill used for the previous tissue sample analyses. The suspension was mixed with ISO (a 

monoamine internal standard) in 0.12mM ascorbic acid, bringing the final concentration 

to 500µM ISO. The homogenates were centrifuged at 12,0000g at 2ºC for 30 minutes. 

Supernatents were stored at -20ºC until analysis. Samples were filtered through 0.22µm 

nylon syringe filters into glass vials for HPLC analysis. 

 

3.2.5.2.3 Monoamine Analysis 

Reverse-phased HPLC (ESA), equipped with a phenomenex Kinetex 2.6µM C18 

column (inner diameter 4.6mm, length 100mm) was used for monoamine analysis. ESA 

CoulArray electrochemical detectors had working potentials 200, 225, 250, 275, 325, 

350, and 375mV. The mobile phase consisted of 20mM sodium phosphate buffer, pH 2.5, 

and 1% methanol in a 1:1 solution of the 20mM sodium phosphate buffer, pH 2.5, and 
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100% methanol. Mobile phase was varied on a gradient so that the methanol percentage 

ranged from 1%-25%. Individual samples were eluted at 35 minutes with a flow rate of 

0.7mL/min. Known concentrations of external standards were analyzed on the same day. 

Chromatograms were analyzed using ESA CoulArray and monoamine concentrations 

were expressed in pmol/mg protein. 

 

3.2.6 Statistical Analysis 

Behavioral outcomes were analyzed using two-way ANOVA with repeated 

measures on SPSS 22. GSH, neurotransmitter, and phospholipid comparisons were 

analyzed using two-way ANOVA, passing tests for normality and equal variance on 

SigmaStat (Jandel Scientific Software, San Jose, CA) or SPSS 22 (IBM SPSS Statistics, 

Armonk, NY). Kruskal Wallis test was used to determine normality for all data.  Outliers 

were considered any value greater or less than two standard deviations. Variables for all 

ANOVA tests were strain and diet. Data that did not pass normality were transformed 

using either 1/x
2
 or 1/x transformation. Student t-test was used to analyze plasma EPA 

data as only the omega-3 diet group had non-zero values. For all tests p < 0.05 

established significance. One-way ANOVA was run using SPSS 22 if there was a strain x 

diet interaction.  
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3.3 Results 

3.3.1 Behavioral Analysis 

The results of the open field maze test for hyperactivity are graphed below.  

 

Figure 8: Mean total box entries spanning the three trial days of WKY and SHR for both 

diets, n = 7-9. 
x,y

Signify significant difference between strains, 
d,e,f

signify significant 

impact of day. Values are mean + SEM. 
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Figure 9: Mean total rearings spanning the three trial days of WKY and SHR for both 

diets, n = 7-9. 
x,y

Signify significant differences between strains, 
a,b

signify significant 

impact of diet. Values are mean + SEM.  

Total box crossings and rearings were analyzed with two-way ANOVA with 

repeated measures (Figures 8 and 9). No effect of diet was found for total box crossings 

or rearings. However, there was a significant difference among strains for both measures 

(p = 0.003 box crosses, p = 0.000 rearings). SHR crossed a mean of 244.98+11.96 boxes 

and averaged 101.52+3.65 rearings over the three testing days. WKY scored significantly 

less than the SHR, with an average of 166.72+11.62 box crossings and 32.11+3.31 

rearings. For the WKY, the average box crossings were impacted by day (p = 0.024), 

while average box crossings for SHR did not change significantly. WKY stuck to the 

perimeter of the maze or rested in one corner, while the SHR moved quickly and 

frequently across the entire maze. 
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3.3.2 Plasma and Brain Phospholipid Composition 

Data for plasma and brain fatty acid proportions are presented in tables 4 and 5, while the 

three main omega-6 and omega-3 LC-PUFAs are graphed (Figures 10 and 11). 

 

Table 4: Fatty acid composition of the plasma of WKY and SHR on both diets (% 

proportion) 

Plasma Phospholipids 

Fatty Acids WKY SHR 

 Omega-6 Omega-3 Omega-6 Omega-3 

16:0 23.41+0.60
a 

26.88+0.60
b 

25.23+0.63
a 

26.76+0.60
b 

18:0 27.46+1.60 24.45+1.60 29.40+1.67 27.98+1.60 

16:1n7 0.59+0.10
a,x 

0.95+0.10
b,x 

0.27+0.10
a,y 

0.83+0.10
b,y 

18:1n9c 6.93+0.40
a 

8.10+0.40
b 

6.83+0.50
a 

7.91+0.40
b 

18:1n9t 2.90+0.20
x 

3.01+0.20
x 

2.21+0.20
y 

2.68+0.20
y 

18:2n6c (LA) 10.54+0.80
a 

13.05+0.80
b 

10.72+0.90
a 

13.25+0.80
b 

20:3n6 (DGLA) 0.19+0.10
a 

0.83+0.10
b 

0.07+0.10
a 

0.77+0.10
b 

20:4n6 (AA) 25.39+0.80
a,x 

13.05+0.80
b,x 

21.96+0.80
a,y 

11.61+0.80
b,y 

20:5n3(EPA) 0.04+0.28
a,x

 3.55+0.28
b,x

 0+0.28
a,y

 1.58+0.28
b,y

 

22:6n3 (DHA) 2.50+0.27
a,x

 5.56+0.27
b,x

 3.31+0.29
a,y

 6.36+0.27
b,y

 
a,b

Different letters signify significant difference between diets 
x,y

Different letters signify significant difference between strains 

All values are means+SEM, n = 6-8 
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Figure 10: A. Mean plasma phospholipid proportion of arachidonic acid (AA), B. 

eicosapentaenoic acid (EPA), C. and docosahexaenoic acid (DHA) in the WKY and SHR 

for both diets, n = 6-8.
x,y

Signify significant differences between strains, 
a,b

signify 

significant impact of diet. Mean + SEM. 

Table 5: Fatty acid composition of brain in WKY and SHR on both diets (% proportion) 

Phospholipids 

Fatty Acids WKY SHR 

 Omega-6 Omega-3 Omega-6 Omega-3 

16:0 23.51+0.30
a,x 

22.30+0.28
b,x 

24.20+0.30
a,y 

23.67+0.30
b,y 

18:0 22.79+0.36
 

23.53+0.34
 

22.99+0.36
 

23.36+0.36
 

16:1n7 0.51+0.02
a 

0.61+0.02
b 

0.51+0.02
a 

0.67+0.02
b 

18:1n9c 19.24+0.39
a,x 

20.71+0.37
b,x 

18.64+0.39
a,y 

19.15+0.37
b,y 

18:1n9t 4.48+0.09
x 

4.41+0.08
x 

4.07+0.09
y 

3.92+0.09
y 

18:2n6c (LA) 1.01 0.98 1.04 0.97 

20:4n6 (AA) 12.54+0.20
a 

10.23+0.20
b 

12.06+0.20
a 

10.57+0.20
b 

20:5n3(EPA) 0.36+0.02
x 

0.37+0.02
x 

0.31+0.02
y 

0.28+0.02
y 

22:6n3 (DHA) 15.58+0.36
a 

16.86+0.36
b 

16.13+0.36
a 

17.33+0.36
b 

AA/DHA 0.80+0.02
a 

0.61+0.02
b 

0.75+0.02
a 

0.61+0.02
b 

a,b
Different letters signify significant difference between diets 

x,y
Different letters signify significant difference between strains 

All values are mean+SEM, n = 8-9 
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Figure 11: A. Mean brain phospholipid proportion of arachidonic acid (AA), B. 

eicosapentaenoic acid (EPA), C. and docosahexaenoic acid (DHA) in the WKY and SHR 

for both diets, n = 8-9.
x,y

Signify significant differences between strains, 
a,b

signify 

significant impact of diet. Mean + SEM. 

Table 4 and 5 summarize the fatty acid composition of plasma and whole brain 

phospholipids for SHR and WKY on both diets. The omega-3 enriched diet was 

successful in significantly increasing DHA in both the brain and plasma, but EPA was 

only significantly greater in plasma.  Omega-6 PUFA precursor linoleic acid (LA) was 

significantly higher with the omega-3 enriched diet in plasma, but arachidonic acid was 

significantly lower in both plasma and brain. Interestingly, there was a significant strain 

difference for brain EPA and both brain and plasma EPA and DHA, with EPA higher in 

the WKY strain and DHA higher in the SHR. AA/DHA ratio in the brain was 

significantly lower in rats on the omega-3 diet.  
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3.3.3 Total Glutathione 

 

 

Figure 12: GSH concentration (µg/mg protein) in the liver in SHR and WKY on both 

diets. 
x,y

Signify significant differences between strains, 
a,b

signify significant impact of 

diet. Mean + SEM, n = 8-9. 

Liver total GSH concentration (µg/mg protein) was significantly impacted by diet, and 

differed according to strain. SHR and WKY on the omega-3 enriched diet both displayed 

higher GSH concentrations, increasing from 4.63 to 5.37 and 3.54 to 4.52, respectively. 

SHR also had significantly higher liver GSH concentration than WKY, independent of 

diet. There was not a significant strain x diet interaction (Figure 12).  
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3.3.4 Neurotransmitters 

 

Figure 13: A. Dopamine (DA) concentration, B. homovanillic acid (HVA) concentration, 

and C. dopamine turnover (HVA/DA) in the neostriatum of SHR and WKY on both diets, 

n = 6-8. 
x,y

Signify significant differences between strains, 
a,b

signify significant impact of 

diet. Mean + SEM. 

 

Figure 14: A. Serotonin (5-HT) concentration, B. 5-hydroxyindole-3-acetic acid (5-

HIAA) concentration, and C. serotonin turnover (5-HTAA/5-HT) in SHR and WKY 

neostriatum on both diets, n = 6-8. 
x,y

Signify significant differences between strains, 
a,b

signify significant impact of diet. Mean + SEM. 
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DA, HVA, 5-HT, and 5-HTAA were measured using HPLC and normalized to internal 

standard (pmol/mg). DA concentration differed significantly between strains, with WKY 

having lower neostriatal DA concentration on both diets (17.18+1.41 SHR vs 12.48+1.36 

WKY, p = 0.023). DA concentration was lower in SHR with the n-3 enriched diet, and 

this difference was found to be significant using one-way ANOVA. There was also a 

significant diet x strain interaction (p=0.047) (figure 13).  There was not a significant 

impact of strain or diet on HVA concentration. Interestingly, SHR had significantly lower 

dopamine turnover than WKY on both diets (0.053+0.002 SHR vs. 0.071+0.002 WKY, p 

= 0.000). Serotonin concentration was significantly lower with the n-3 enriched diet for 

both strains (0.463+0.043 vs. 0.328+0.041 omega-6 vs omega-3 WKY and 0.533+0.043 

vs. 0.430+0.046 omega-6 vs omega-3 SHR, p = 0.011) but there was no strain difference 

or strain x diet interaction. The diet did not have an impact on the serotonin degradation 

product, 5-HTAA, but there was a significant strain difference with WKY having a lower 

concentration of 5-HIAA than SHR (0.536+0.045 WKY vs. 0.671+0.048 SHR, p = 0.049) 

(Figure 14). Despite these differences there was no between strain, diet, or strain x diet 

interaction on serotonin turnover.  

 

3.4 Discussion 

The current 2 x 2 design study provides insight into the impact of an omega-3 

enriched diet on the behavior and biochemistry of the SHR. To the authors’ knowledge, it 

is also one of few studies that compare an omega-3 enriched diet to a diet typical of a 

western diet – a more realistic scenario than comparing to an omega-3 deficient diet.  The 

SHR and WKY received a diet with either a 2:1 or 13.3:1 ratio of omega-6:omega-3 fatty 
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acids. Our goal was to test if altering the omega-6:omega-3 ratio would be enough to 

impact behavior and neurobiology. Thus, the diets only differed in their fat source and 

fatty acid ratio. We found that the omega-3 diet was successful in changing phospholipid 

proportions and altering a marker of oxidative stress in both strains but not in modulating 

behavior or neurotransmission. We also further confirmed both biochemical and 

behavioral strain differences between the SHR and WKY, including inherent differences 

in plasma and brain phospholipid composition, neurotransmission and oxidative stress 

markers.  

Rats in both dietary groups remained healthy and grew as expected throughout the 

study, with no differences between groups. As predicted, the SHR was significantly more 

hyperactive than the WKY. However, our dietary intervention had no impact on behavior 

in either strain. That being said, the lack of impact on behavior is consistent with our 

neurotransmitter results.  

The omega-3 diet was successful in improving omega-3 PUFA proportion in both 

plasma and brain phospholipids. Of particular interest, strain differences were observed 

in plasma AA, EPA, and DHA. Unexpectedly, SHR had higher plasma DHA than WKY 

while WKY had higher plasma and brain EPA. The dietary intervention was effective in 

changing overall plasma and brain phospholipid composition, with the exception of EPA 

in the brain. This differs from our observations in previous human studies, where a 

subgroup of children and adults with ADHD had low proportions of plasma phospholipid 

DHA. A recent study on SHR and hyperactivity also reported higher DHA proportion in 

the brain compared to WKY. The researchers investigated the correlation between 

AA/DHA ratio and hyperactive behavior, and found that a higher AA/DHA ratio in the 
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brain was significantly correlated with greater hyperactivity. Thus, altering AA/DHA 

ratio could have a greater impact on hyperactivity than changing DHA alone
154

. In our 

study, the omega-3 enriched diet was successful in lowering the AA/DHA ratio in brain, 

but this did not translate into a change in behavior.  

Disturbances in the dopaminergic system can lead to ADHD-like behavior such as 

lack of attention, impulsivity, and hyperactivity and are thus thought to be associated 

with ADHD. However, focusing on dopamine alone may be an oversimplification of the 

disorder, as successful stimulant treatments can also block other monoamine 

transporters
162,163

 and subsequently increase concentrations of DA, norepinephrine (NE), 

and 5-HT
164,165

. That is why we evaluated serotonin turnover in addition to dopamine 

turnover. Dopamine concentration was lower for SHR on the omega-3 diet, while 

serotonin concentration was lower for both strains. Nonetheless, as no impact was found 

on serotonin or dopamine turnover, it can be concluded that our intervention did not have 

an overall impact on dopamine and serotonin utilization. However, of note is that the 

SHR had lower DA turnover than the WKY, which is consistent with other studies on DA 

turnover in SHR
126,133

. In an omega-3 dietary intervention study conducted by Dervola et 

al.
133

 DA turnover did not differ between SHR on the control diet and WKY, which 

differed from our results. On the other hand, their intervention was successful in 

improving DA turnover. A noteworthy difference between our studies is the length and 

strength of intervention. Dervola et al. supplemented rats with a high dose of omega-3 

fatty acids for two generations, which was successful in improving behavior and 

modulating neurotransmission
133

. We chose to focus on juvenile SHR in order to narrow 
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down the most effective time period for intervention. We also maintained consistent fat 

proportion for both diets to eliminate extra calories as a confounding factor. 

Previous studies have provided evidence supporting that those with ADHD may 

have increased oxidative stress
143,144

. There are also multiple papers demonstrating that 

adult SHR have higher oxidative stress than their WKY counterparts
166,167

. Thus, we 

hypothesized that we also would find evidence of higher oxidative stress in the SHR than 

the WKY. We used GSH as a marker of oxidative stress, with higher concentration 

indicative of an improved redox balance and less oxidative stress while very high 

concentrations could be indicative of increased oxidative stress. Surprisingly, the WKY 

had lower GSH concentration. However, oxidative stress is best understood by evaluating 

multiple markers. A secondary oxidative stress marker, such as F2-isoprostanes or 

oxidized glutathione (GSSG), will be measured in the future as an internal standard. 

Nonetheless, our preliminary data hints that the omega-3 diet was effective in reducing 

oxidative stress. 

While there was a marked behavioral difference between the SHR and WKY, our 

dietary intervention did not have our desired impact on hyperactive behavior. These 

results are not surprising, however, given that dopamine neurotransmission was also not 

affected. While brain DHA proportion was increased, the dosage or length of time for the 

intervention was apparently not enough to have an impact on dopamine or serotonin 

turnover. There are few other studies that have tested an omega-3 intervention on SHR 

behavior. One such study compared SHR on an omega-3 adequate or omega-3 deficient 

diet, and found that the omega-3-adequate diet resulted in less locomotion/hyperactivity 

than the deficient diet. However, many studies have already confirmed the detrimental 
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impact of omega-3 deficiency on behavior, independent of ADHD status. A very recent 

study was published that also looked at an omega-3 enriched diet in comparison to a 

primarily omega-6 diet and similarly did not observe a change in hyperactive behavior
168

. 

Studies with our timeline are important because they narrow down the timeframe and 

dosage for efficacy of an omega-3 intervention. As a dietary intervention during prenatal 

and postnatal growth was successful
133

, whereas studies during 3-10 weeks of age were 

not
168

, a pre-weaning age range should be investigated in the future. 

 

3.5 Conclusion 

In summary, our omega-3 PUFA enriched diet did not improve hyperactive 

behavior, consistent with the lack of impact on DA and 5-HT turnover. However, our 

intervention successfully increased omega-3 PUFA proportion in plasma and brain, and 

may have improved redox balance and decreased oxidative stress in both strains. Further 

studies should be conducted investigating the impact of an omega-3 intervention pre-

weaning. Additionally, our study further highlights the inherent behavioral and 

biochemical differences between SHR and WKY.  
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CHAPTER 4. CONCLUSIONS AND FUTURE DIRECTIONS 

ADHD is a multifactorial disorder with conflicting evidence pertaining to its etiology. 

Over 11% of children in the United States, and around 5% of both children and adults 

worldwide, are affected
6
. The symptoms of the disorder can negatively impact school 

performance, personal relationships, and can lead to greater risk taking behaviors. 

Medicinal treatment is effective for around 70% of those with ADHD, but it comes with 

the risk of side effects such as decreased appetite and insomnia. Clearly, these side effects 

could have unfavorable effects on both children and adults. Consequently, alternative 

treatments with fewer side effects are of great interest.   

Although the origin of ADHD is not fully understood, what we do know can help 

elucidate potential treatments. Our lab has identified a subgroup of children with ADHD 

that display essential fatty acid (EFA) deficiency symptoms such as increased thirst, 

frequent urination, and dandruff. Subsequently a number of studies, ours included, 

reported that as high as 40% of subjects with ADHD had lower proportions of plasma 

docosahexaenoic acid than healthy controls and others with ADHD. Omega-3 

polyunsaturated fatty acids, EPA and DHA especially, are known to be vital for healthy 

brain development and function. In fact, an omega-3 PUFA deficiency can induce 

ADHD-like behavior in otherwise healthy animals. In cases of omega-3 PUFA induced 

learning deficits and hyperactivity, postnatal omega-3 PUFA supplementation was
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effective in reversing the effects. The reason why DHA proportions are lower in a 

subgroup of those with ADHD, despite similar diets to healthy controls, is currently 

unknown. However, oxidative stress could be a potential factor, since long chain PUFAs 

are easily oxidized. There exists some evidence of increased oxidative stress in those with 

ADHD
143

, and the animal model for ADHD is known to have heightened states of 

oxidative stress
166,167

.  

In our study we investigated the hypothesis that an omega-3 PUFA enriched diet 

would decrease hyperactivity, modulate neurotransmission, decrease oxidative stress, and 

increase omega-3 PUFA proportions in the brain and plasma. One concern was that our 

intervention may not have been long enough to modulate brain phospholipid proportions, 

but we were successful in increasing DHA proportion, and decreasing arachidonic acid 

proportion, in brain. Both EPA and DHA proportions were increased in the plasma. For 

the most part, the impact of the omega-3 diet was similar for plasma and brain. However, 

some strain differences were only seen in plasma. As reported in a previous study, DHA 

proportion in the brain was higher in the SHR than the WKY
154

. These results went 

against our predication that the SHR would also display lower DHA proportions, as seen 

in our previous human studies.  

Another surprising result was that the SHR seem to have less incidence of oxidative 

stress than the WKY based on liver total glutathione concentrations. There is a possible 

explanation for this occurrence, however, as GSH alone is not enough to evaluate redox 

balance and oxidative stress. In the future, we plan to analyze oxidized glutathione 

(GSSG) for a more complete picture of redox balance. F2-isoprostanes can be analyzed as 

well as an internal standard. Together, these analyses will provide more reliable 
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information on the redox state of the animals. Nonetheless, the omega-3 diet slightly 

improved GSH levels, suggesting decreased oxidative stress, which is consistent with the 

reports of other studies
169

. In addition, our diets contained greater vitamin E than in a 

typical rodent diet. The increased antioxidant content in the diet could also be a potential 

confound to the oxidative stress data, although it was the same for both diets.  

Despite the increase in brain DHA proportion, dopamine (DA) and serotonin (5-HT) 

neurotransmission was not modulated. DA and 5-HT turnover were similar for both diets, 

but DA turnover was lower in the SHR. This is consistent with other studies on the 

SHR
111,123,124,133

, and also consistent with the validation for its use as a model for 

ADHD
105

 .  

While our intervention did not elicit a behavioral or neurotransmitter change, it 

has provided information on the best time for dietary interventions. As a previous omega-

3 intervention animal study has been successful in reducing ADHD symptoms, it seems 

that the greatest impact occurs pre-weaning or prenatally via maternal supplementation. 

In the future it would be beneficial to test the impact of supplementation during isolated 

developmental periods, such as solely maternal and prenatal intervention. 

Our pilot study discussed in Chapter 2 was done in order to develop behavioral testing 

protocols that elucidated the difference in behavior between the SHR and WKY. Our 

single-lever operant test was not difficult enough to show any differences between strains. 

Other studies have confirmed a behavioral difference when using nose-poke tests or a 

dual-lever discrimination task
105,133,170

. Future studies should utilize these operant 

chamber tests when evaluating the impact of treatments or interventions on ADHD-like 

behavior in an animal model. On the other hand, the open field maze test was appropriate 
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for identifying hyperactivity in the SHR and the number of box crossings and rearings 

was significantly higher than for the WKY. Thus, we chose to open field maze test in our 

main study.  

There is still much to understand in regards to ADHD treatment, etiology, and 

neurobiology. As there exists a subgroup of those with ADHD who display EFA 

deficiency symptoms, human intervention studies should evaluate that subgroup 

separately from the rest. The disparity between the results of human intervention trials 

could be due to omega-3 interventions impacting those with low omega-3 PUFA 

proportions more so than others. In terms of animal studies, future research should 

narrow the age-range for when intervention is most effective.  It would also be beneficial 

to test high doses of omega-3 EPA or DHA supplementation, such as what is used in 

human studies. Furthermore, if it established that an increase in omega-3 PUFA 

proportions modulates dopamine neurotransmission in the SHR, research should focus on 

which part of the dopaminergic pathway is being affected. Specifically, more research 

should be done on dopamine active transporter (DAT) availability and activity, and if 

omega-3 fatty acids have an impact. Finally, oxidative stress should continue to be 

investigated in the subgroup of those with ADHD who display EFA deficiency symptoms, 

as a possible rationale for the lower omega-3 PUFA proportions.
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