
Purdue University
Purdue e-Pubs

Open Access Theses Theses and Dissertations

Fall 2014

Impact Of A Visual Programming Experience On
The Attitude Toward Programming Of
Introductory Undergraduate Students
Saurabh Godbole
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses

Part of the Computer Sciences Commons, Educational Assessment, Evaluation, and Research
Commons, and the Higher Education Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Godbole, Saurabh, "Impact Of A Visual Programming Experience On The Attitude Toward Programming Of Introductory
Undergraduate Students" (2014). Open Access Theses. 327.
https://docs.lib.purdue.edu/open_access_theses/327

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F327&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F327&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F327&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F327&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F327&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/796?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F327&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/796?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F327&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1245?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F327&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses/327?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F327&utm_medium=PDF&utm_campaign=PDFCoverPages

30
 08 14

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

Department

To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement,
Publication Delay, and Certification/Disclaimer (Graduate School Form 32), this thesis/dissertation
adheres to the provisions of Purdue University’s “Policy on Integrity in Research” and the use of
copyrighted material.

Saurabh Godbole

IMPACT OF A VISUAL PROGRAMMING EXPERIENCE ON THE ATTITUDE TOWARD
PROGRAMMING OF INTRODUCTORY UNDERGRADUATE STUDENTS

Master of Science

Alka Harriger

Bradley Harriger

Grant Richards

Alka Harriger

Jeffrey Whitten 12/05/2014

i

i

IMPACT OF A VISUAL PROGRAMMING EXPERIENCE ON THE ATTITUDE
TOWARD PROGRAMMING OF INTRODUCTORY UNDERGRADUATE

STUDENTS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Saurabh Godbole

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

December 2014

Purdue University

West Lafayette, Indiana

ii

ii

To my entire family. Thank you for standing by me through ups and downs.

iii

iii

ACKNOWLEDGEMENTS

I would like to thank my major professor, Alka Harriger, for her invaluable

input on each and every step of this research project. From the very first day of

my graduate studies, Prof. Harriger created for me opportunities ranging from

being a Teaching Assistant to conducting outreach sessions for High School

students. I am grateful for her constant support throughout my journey as a

graduate student. Also, I would like to thank Professor Bradley Harriger and Dr.

Grant Richards for their timely feedback, advice, and support for my research

work, especially for creating microcontroller demonstration unit for the

experiment conducted during this study.

I also want to thank Prof. Guity Ravai for allowing me to conduct my study

with the students in CNIT 15501. Without her consent, this research would have

been impossible.

Also, I want to thank Rongrong Zhang from the Statistical Consulting

Service in the Department of Statistics, Purdue University. Her tremendous help

was critical in analyzing the data by creating a statistical model.

I want to thank my grandparents who have always believed in me and

encouraged me throughout these years at Purdue.

I would also like to thank Swaroopa Kanade for her steadfast support,

constant encouragement, and incredible patience during discussions on student

interests, programming, and statistical analyses.

I want to thank all who have made these years at Purdue unforgettable.

iv

iv

TABLE OF CONTENTS

Page
LIST OF TABLES ... vi
LIST OF FIGURES .. vii
LIST OF ABBREVIATIONS .. viii
GLOSSARY .. ix
ABSTRACT ... xiii
CHAPTER 1. INTRODUCTION .. 1
1.1 Background .. 1
1.2 Significance .. 2

1.2.1 Current Techniques for Teaching Programming 3
1.2.2 Improving Student Understanding of Logic Using Flowcharts 4

1.3 Research Question ... 5
1.4 Assumptions ... 5
1.5 Limitations .. 6
1.6 Delimitations ... 6
1.7 Summary .. 7
CHAPTER 2. REVIEW OF RELEVANT LITERATURE .. 8
2.1 Importance of Procedural Programming and Graphical Elements 9
2.2 Research on Programming Tools to Improve Learning 11
2.3 Graphical Programming Tools and Their Impact on Student Learning 18
2.4 Physical Implementation of Graphical Programming Languages 30
2.5 Past Research on Student Attitudes Toward Programming 35
2.6 Summary .. 38
CHAPTER 3. METHODOLOGY ... 40
3.1 Experimental Setup .. 40
3.2 Hypotheses .. 44
3.3 Participants ... 45
3.4 Methodology ... 46

3.4.1 IRB .. 47
3.4.2 Procedures .. 47

3.5 Privacy and Confidentiality of the Participant Data 51
3.6 Statistical Analysis .. 51
3.7 Summary .. 53

v

v

Page
CHAPTER 4. PRESENTATION OF THE DATA AND FINDINGS 54
4.1 Data Preparation and Analysis ... 54
4.2 Test of Significance for the Dataset ... 58
4.3 Equivalence Testing ... 63
4.4 Qualitative Analysis of the data .. 64
4.5 Summary .. 67
CHAPTER 5. CONCLUSIONS, DISCUSSION, AND RECOMMENDATIONS ... 68
5.1 Conclusions .. 68
5.2 Implications of the Study .. 70
5.3 Challenges of using Graphical Programming Languages and Student

Comprehension .. 71
5.4 Future Work and Recommendations .. 72
LIST OF REFERENCES .. 74
APPENDICES
Appendix A: Approval to Use Attitude Survey .. 81
Appendix B: Instructor Approval ... 82
Appendix C: IRB Approval for Research ... 83
Appendix D: Participant Pre- and Post-Instructional Surveys 84
Appendix E: Attitude Category and Related Questions 87

vi

vi

LIST OF TABLES

Table Page

2-1 Visual Programming Language Tools and their Functionality 12
3-1 Timetable for Instructional Session ... 49
3-2 Descriptive and inferential Data Collected for Each Participant 52
4-1 Demographics of the Participant ... 55
4-2 Coded Values Survey Participant Responses .. 57
4-3 Coded Value for Participant Grade Level .. 59
4-4 Coded Values for Participant Gender ... 59
4-5 P-Values for Attitude Changes Between Surveys for All Participants 61
4-6 Attitude Changes Between Survey Differentiated by Gender 62
4-7 Average Attitudes By Categories Measured ... 63
4-8 Confidence Interval for all Significance Testing .. 63
4-9 Goodness Probability of Frequent Words in Pre Instructional Survey 65
4-10 Goodness Probability of Frequent Words in Post Instructional Survey 1 . 65
4-11 Goodness Probability of Frequent Words in Post Instructional Survey 2 . 66
4-12 Goodness Probability of Repeated Words on All Three Surveys 66
5-1 Results of Hypothesis Testing ... 67
Appendix Table
D-1 Pre- and Post-Instructional Survey Questions .. 85

vii

vii

LIST OF FIGURES

Figure Page

4-1 Q-Q Plot of the Responses .. 58
4-2 Change in Attitude Over the Research Period .. 61
4-3 Attitude Changes Based on Participant Gender .. 62

viii

viii

LIST OF ABBREVIATIONS

BASIC − Beginner's All Purpose Symbolic Instruction Code

COMMS − Communication

CPU − Central Processing Unit

EEPROM − Electronically Programmable Read Only Memory

I/O − Input / Output

IDE − Integrated Development Environment

IT − Information Technology

IRB − Institutional Review Board

OOP − Object Oriented Programming

RAM − Random Access Memory

RAPTOR − Rapid Algorithmic Prototyping Tool for Ordered Reasoning

SICAS − Interactive System for Algorithm Development and Simulation

WYSIWYC − What You See Is What You Code

ix

ix

GLOSSARY

Algorithm – “Any well-defined computational procedure that takes some value, or
set of values, as input and, through a series of processes, produces some
value, or set of values, as output” (Cormen, Leiserson, Rivest, & Stein,
2009, p. 5)

Alice – “An innovative 3D programming environment that makes it easy to create

an animation for telling a story, playing an interactive game, or a video to
share on the web” (“What is Alice?,” 2014).

Arduino – “An open-source physical computing platform based on a simple

microcontroller board, and a development environment for writing software
for the board” (“What is Arduino?,” 2014).

Central Processing Unit – “The unit of a computer system, which fetches,

decodes and executes programmed instructions” (“IEEE Standard
Glossary of Computer Hardware Terminology,” 1995).

Compiler – “A computer program that translates programs expressed in a high

order language into their machine language equivalents” (“IEEE Standard
Glossary of Software Engineering Terminology,” 1990).

CPU – See Central Processing Unit.

Critical Thinking – “Critical thinking is defined as a process of reflective thinking

that goes beyond logical reasoning to evaluate the rationality and
justification for actions within context” (Forneris & Peden-McAlpine, 2007).

Debug – “To detect, locate, and correct faults in a computer program” (“IEEE

Standard Glossary of Software Engineering Terminology,” 1990).

Decisions – An essential program control structure that denotes a branch point in

the logic in which the path to follow is predicated by a Boolean condition.

Eclipse Graphical Modeling Framework (GMF) – “Provides a generative

component and runtime infrastructure for developing graphical editors”
(Golubev, Istria, & Irawan, 2014).

x

x

Envigilator – “An assignment level learning analytics system, which captures
screenshot of the users every set number of seconds, which can viewed
live by a proctor” (Lutes, 2013).

Flowchart – “A formalized graphic representation of a program’s logic process”

(Aguilar-Savén, 2004).

Iconic Programmer – “[A]…learning and development tool for introductory

programming in flowcharts, Java, Turing, and more…[which] eliminates
the overhead of programming – no syntax errors and no text editors or
compilers – and allows [one] to focus on algorithm development” (Chen,
n.d.).

IDE – See Integrate Development Environment.

Integrated Development Environment – “Applications that present many of the

tools required for creating software within a single user interface” (Kenefick,
2011)

Interactive System for Algorithm Development and Simulation – “[A] system [that]

allows students to implement algorithms to solve problems, using a
flowchart representation” (Santos, Gomes, & Mendes, 2010).

Interpreter – “A computer program that translates and executes each statement

or construct of a computer program before translating and executing the
next” (“IEEE Standard Glossary of Software Engineering Terminology,”
1990).

LabVIEW – “A graphical programming platform that helps engineers scale from

design to test and from small to large systems” (“What is LabVIEW?,”
2014).

Logic – “Reasoning conducted or assessed according to strict principles of

validity” (“logic,” 2014).

Loops – An essential program control structure that involves repeating a

sequence of one or more program instructions.

Microcontroller – “A CPU plus random access memory (RAM); electrically

erasable, programmable, read only memory (EEPROM); inputs/outputs
(I/O); and communication (Comms)” (Park, 2003, p.1-2).

NanoNavigator – “…[A] software tool for all setup, programming…the [NanoLine]

programmable logic module [using flowchart based programming
language]” (“Quick and easy programming,” 2014).

xi

xi

Object-Oriented Programming – “Programming in terms of a collection of discrete
objects that incorporate both data and behavior” (Nikishkov & Kanda,
1999).

PORTUGOL – “An integrated development environment (IDE) for structured

programming [which] incorporates the ability to generate structured
program statements by creating corresponding flowcharts” (de Jesus,
2011).

Procedural Language – “A programming language in which the user states a

specific set of instructions that the computer must perform in a given
sequence” (“IEEE Standard Glossary of Software Engineering
Terminology,” 1990).

Program Code – “In software engineering, computer instructions and data

definitions expressed in a programming language or in a form output by an
assembler, compiler, or other translator” (“IEEE Standard Glossary of
Software Engineering Terminology,” 1990).

Programming – “The transforming of logic and data from design specifications

(design descriptions) into computer applications and software” (“IEEE
Standard Glossary of Software Engineering Terminology,” 1990).

Programming Language – “Any language used to create a set of instructions for

a computer to follow in carrying out a task, a framework to use in solving a
problem, when that solution is storable for future use” (DiNitto, S.A., 1988).

Rapid Algorithmic Prototyping Tool for Ordered Reasoning. – “[T]ool [that] allows

students to create programs using basic flowcharting symbols” (Carlisle,
Wilson, Humphries, & Hadfield, 2005)

RAPTOR – See Rapid Algorithmic Prototyping Tool for Ordered Reasoning.

Robot – “A mechanical device that can be programmed to perform some task of

motion under automatic control” (“IEEE Standard Glossary of Computer
Hardware Terminology,” 1995).

Scratch – A programming tool designed for young children, which enables the

creation of an animation using program-based blocks that snap together
like puzzle pieces.

xii

xii

Sentiment analysis – The “computational study of people’s opinions, appraisals,
attitudes, and emotions toward entities, individuals, issues, events, topics
and their attributes” (Liu & Zhang, 2012).

SICAS – See Interactive System for Algorithm Development and Simulation.

Software – “Computer programs, procedures, and possibly associated

documentation and data pertaining to the operation of a computer system”
(“IEEE Standard Glossary of Software Engineering Terminology,” 1990).

Splish – “Icon-based programming on a PC, compiles the visually-created

program into an object code for a stack based virtual computer, transfers
the object code to the target Arduino board via the USB interface, and
executes the object code by the interpreter located on the Arduino board”
(Kato, 2010).

Syntax – “The structural or grammatical rules that define how the symbols in a

language are to be combined to form words, phrases, expressions, and
other allowable constructs” (“IEEE Standard Glossary of Software
Engineering Terminology,” 1990).

Tools – Related to programming, a tool is typically the software development

environment in which one writes a computer program.

Visualization – “Visualization is defined as representations of information

consisting of spatial, non-arbitrary (i.e. "picture-like" qualities resembling
actual objects or events), and continuous (i.e. an "all-in-oneness" quality)
characteristics” (Rieber, 1995).

WHILE – “A small imperative programming language whose programs are based

on a signature Σ and are made from assignments, sequential composition,
conditional statements, and while statements” (Daintith, 2004).

What You See Is What You Code – “A programming tool that allows the

programmer to write program instructions using basic code while
manipulating visual program objects” (Hundhausen & Brown, 2007)

WYSIWYC – See What You See Is What You Code.

xiii

xiii

ABSTRACT

Godbole, Saurabh S. M.S., Purdue University, December 2014. Impact of
Programming Cyber-physical Systems on the Interest Level of Freshmen College
Students. Major Professor: Alka Harriger.

Traditionally, textual tools have been utilized to teach basic programming

languages and paradigms. Research has shown that students tend to be visual

learners. Using flowcharts, students can quickly understand the logic of their

programs and visualize the flow of commands in the algorithm. Moreover,

applying programming to physical systems through the use of a microcontroller to

facilitate this type of learning can spark an interest in students to advance their

programming knowledge to create novel applications. This study examined if

freshmen college students’ attitudes towards programming changed after

completing a graphical programming lesson. Various attributes about students’

attitudes were examined including confidence, interest, stereotypes, and their

belief in the usefulness of acquiring programming skills. The study found that

there were no statistically significant differences in attitudes either immediately

following the session or after a period of four weeks.

1

1

CHAPTER 1. INTRODUCTION

This chapter gives a basic overview of the research, defining the research

question. It also delineates the scope and the significance of the study in addition

to the assumptions, limitations, and delimitations that form the basis of this

research project.

1.1 Background

Many college freshmen embarking on a computing major may have little to

no background in programming (Bevan, Werner, & McDowell, 2002). Students

may experience difficulty in grasping many programming concepts stemming

from the nebulous and abstract nature of these topics; therefore, solving this

problem warrants a new approach.

Microcontroller technology has revolutionized the world of information

technology (IT). Devices have continued to become more and more complex,

and at the same time, their functionality is increasing. These advances create an

opportunity to utilize such technology in a pedagogical setting, increasing the

instructional effectiveness. These devices can be used to make programming

concepts easy to understand, relevant, and still teach the basic theoretical

constructs by making the results of programming more tangible to the students.

Present-day introductory software development courses that focus only on

2

2

teaching concepts and creating logical programs to reinforce lessons learned are

ideal candidates for using tools that enable creation of physical computing

applications.

1.2 Significance

While working as a teaching assistant, the researcher witnessed students’

difficulty in grasping many programming concepts stemming from the ambiguous

and theoretical nature of such topics. Therefore, the researcher decided to study

the attitudes of students toward programming, as attitude can have a tremendous

impact on their performance. A solution to the abstract nature of programming

can be provided by using visual learning in programming classes (Robins,

Rountree, & Rountree, 2003). Mateas (2005) argued that programming is a

fundamental component of “procedural literacy”. The researcher noted that “…

the ability to read and write processes…” is crucial to “…understand interplay

between…human meaning-making and technically-mediated processes” (Mateas,

2005). Therefore, the study of programming can be viewed as an essential

building block of logical thinking.

Since the beginning of Information Technology as a discipline, research

has been done on how to best teach the fundamentals of programming with

greater comprehension and retention of concepts (Burton & Bruhn, 2003). At the

advent of procedural languages, flowcharts were regarded as one of the best

tools to assist novice programmers to learn and master the methodical thinking

required for complex programming tasks (Robins et al., 2003). Due to its inherent

property of visualization, this type of aid can assist students in creating the logical

3

3

flow of a program without learning a particular programming language.

Flowcharts can even be drawn on paper, so they can help students visualize the

logical flow of the commands through a computer-based application even without

knowledge of any specialized software.

1.2.1 Current Techniques for Teaching Programming

Many typical introductory courses focus on writing an application in a

particular programming language. Novice programmers are exposed to a

particular syntax with elaborate examples to illustrate intricacies of the specific

language. Generally, first year college students become familiarized with a

particular programming language, but their problem-solving skills stay

undeveloped through this approach. Students in introductory programming

courses are often tasked with complicated projects, which require a higher level

of understanding with an ability to decompose problems into smaller chunks in

systematic fashion. In the past, computer science students were taught

procedural languages such as BASIC in the first programming course (DiNitto,

S.A., 1988); but, currently, students in programming courses are generally taught

an object-oriented (OO) programming language, such as Python (Robins et al.,

2003). Although object-oriented and procedural paradigms may seem different,

OO still involves considerable procedural coding. If decomposed into smaller

pieces, the flow of logic in the methods used in OO languages is sequential in

nature (Gosling, Steele, Joy, Bracha, & Buckley, 2013). Therefore, if students

learn how to program using flowcharts, they will understand the procedural flow.

4

4

1.2.2 Improving Student Understanding of Logic Using Flowcharts

As noted previously, flowcharting, although very basic, can be extremely

beneficial for novice programmers to think in a process-oriented manner. One

can employ hardware (microcontroller) technologies in order to reinforce the

foundational concepts of programming. The literature suggests that this approach

seems promising (Carlisle et al., 2005; Dabroom, Refie, & Matmti, 2013;

Goadrich, 2014). As students embark on information technology related careers,

combining both visual and hands-on approaches to teach programming to

college freshmen can lead to innovative solutions to problems (Chun & Ryoo,

2010; Hwang, Su, & Tseng, 2010).

Based on the discussion above, the researcher studied the impact of

teaching a flowchart-based software tool to novice programmers. Graphical

programming software was used in direct conjunction with a programmable

microcontroller. By using a visual language that can enable interaction with a

physical medium, students were be able to see the actual results of their

flowchart program. As stated in Chapter 3, a quantitative analysis of student

feedback was used to determine if their interest had increased in the

programming discipline. Examining the results of this study may also help

educators review the student attitudes toward programming and create a

curriculum that appeals to their interests by revising their approaches in

introductory programming classes.

5

5

1.3 Research Question

The research question for this study is:

• Can student interest in learning basic programming concepts be increased

through the use of microcontroller technology and flowchart programming?

To answer this question, as noted above, visual learning in programming

classes can be utilized. Using graphical software programming tools, students

can picture their creations to understand the basic programming concepts.

Graphical elements such as flowcharts capture the procedural flow of commands

through a program. Using such a technique can help students think in a logical

manner, improving their understanding of structure and flow of a program (Crews

& Butterfield, 2002). This increased understanding may spark interest in college

freshmen to further their knowledge of programming in a different paradigm,

while improving their learning. Coupling such an approach with microcontroller

technology can help students witness their creations, “things” they can touch and

feel. More importantly, this approach may expand the boundaries of student

innovation.

1.4 Assumptions

An instructional session was provided to participants in which they created

a program for a microcontroller using a graphical programming language. After

the session, data was collected using Likert Scale based surveys. The following

assumptions have been made:

6

6

1. Each participant will work individually and not be influenced by other

participants.

2. Participants will be able to learn at least two basic concepts, decisions and

loops of graphical programming language within the instructional period.

3. The participants lack programming knowledge prior to the study.

4. All participants will be honest while answering survey questions.

5. Because the software chosen for the study runs only in Windows

Operating System (version 7 or less), all participants will be able to use a

computer with a Windows™ environment.

1.5 Limitations

The limitations of this study are noted below.

1. If participants have prior programming experience, it may impact the study

results.

2. The study was carried out over the period of four weeks. The instructional

session and pre- and first post-instructional surveys were administered

only on the first day. Therefore, the length of study may affect results.

1.6 Delimitations

The delimitations of this study are as follows:

1. To facilitate the feasibility of the study, only students attending Purdue

University who are enrolled in CNIT 15501 during Fall 2014 will be used

7

7

as participants. This should result in study subjects mainly between the

ages of 19-25.

2. Due to the small size of the sample, the generalization of the results may

be limited.

3. The research only studies freshmen. This may limit the generalization of

the results.

4. The research only presents the interest levels of the participants. It does

not claim to predict the future performance of participants in programming

classes.

5. The research study is conducted only using the equipment stated in the

Methodology chapter.

1.7 Summary

This chapter provided the background for analyzing the student attitudes

toward programming. Research suggests that retention of programming concepts

can be increased by incorporating physical hardware devices in the coursework

(Carlisle et al., 2005; Dabroom, Refie, & Matmti, 2013; Goadrich, 2014). As noted

above, if students are provided with novel technology, their interest in

programming may change, possibly leading to attitude changes. An analysis of

student attitudes was undertaken to test this theory. The overall background of

this study is stated in the previous sections in addition to any assumptions by the

researchers. The scope of this study is limited by previously stated limitations

and delimitations.

8

8

CHAPTER 2. REVIEW OF RELEVANT LITERATURE

In the last three decades, the demand for programmers has increased

(Robins et al., 2003). Because computing programs require at least one

programming course, all new students in this field are required to successfully

learn programming (Robins et al., 2003). Those with an initial lack of

understanding and background related to programming may encounter difficulties

in the course. As a result, programming courses are often cited as difficult and,

historically, tended to have high dropout rates (Smith & Delugach, 2010).

Although there are many schools of thought related to how programming

should be taught in an introductory course, there is consensus about the

importance of programming (Robins et al., 2003). This knowledge is important

because it leads to the development of analytical and problem-solving abilities in

students. Due to the abstract nature of the topic, it can also promote creative

thinking. Therefore, understanding the various approaches for teaching

programming may be especially helpful to instructors of first year computing

students.

9

9

2.1 Importance of Procedural Programming and Graphical Elements

In the early days of programming, procedural programming languages

were the norm, but in the last 30 years, object-oriented programming (OOP) has

been the leading paradigm used to teach programming to students (White &

Sivitanides, 2005). Object-oriented programming languages, for example, Java

or C++, have been at the center of this change in teaching technique. Robins,

Rountree, and Rountree (2003) note that this OOP approach may be popular

because of the real-life like constructs or user-friendliness. Nonetheless,

researchers argue that the process of identifying objects is not easy, and further,

correlating problem domain and program domain objects is a cumbersome

process (Robins et al., 2003). This may explain why learning object-oriented

programming is especially challenging for novice programmers.

Robins et al. (2003) cite a study that analyzed the level of comprehension

of procedural and object-oriented programs. The participants in the study were

second semester college students and were learning different programming

languages, either PASCAL or C++. These subjects were then quizzed on the

code written in the language they were taught in their respective course. There

were no significant differences in the level of understanding when subjects were

given smaller programs. On the other hand, when given longer and more intricate

programs, students learning the procedural language performed better in all

areas studied by researchers. The researchers also noted that novice

programmers may develop a good understanding of how a small problem may be

solved by the OO paradigm but longer and more complex programs may require

10

10

a representation in a procedural flow of instructions (Robins et al., 2003).

Therefore, creating a procedural depiction may help new programmers more

easily identify and solve complex problems.

Object-oriented programming languages inherently have a low coupling of

methods, making them very distributed. A study by Wiedenbeck, Ramalingam,

Sarasamma, and Corritore (1999) suggests that the program flow and distributed

functions in an object-oriented program may make the program’s logic difficult to

understand for novice programmers. A corresponding program in a procedural

language, though, can make it easier to picture a conceptual depiction of the

logic. Some of the literature reviewed does lend support to the claim that the

concept of object-oriented programming is an easier way of envisioning and

creating solutions to real world problems (Burton & Bruhn, 2003; Wiedenbeck et

al., 1999).

Many information technology students find it tough to master the craft of

programming because this requires the fundamental knowledge of conceptual

thinking, problem solving, and mathematics (Winslow, 1996). In addition to

deciphering the unclear nature of the various tasks involved, students must learn

the specific semantic conventions of the language. Although numerous

approaches to help minimize issues related to learning have been tested and

developed over the years, there is no concrete and definite strategy that can

easily overcome barriers to comprehension due to the kind of problems

programming presents. Therefore, it is important for educators to find ways to

minimize issues with lack of learning.

11

11

De Jesus (2011) states that one of the ways to improve student

understanding of logical flow and procedural thinking is the usage of flowcharts.

This strategy can be especially helpful because visual features are often easier

to grasp than abstract notions. The researcher states that structural/procedural

languages may be used to aid students in understanding the fundamental

building blocks of programming.

First year introductory programming courses in information technology are

very critical as they lay the groundwork for learning programming throughout the

remaining college years. Programming tools that provide visual representation of

concepts may help achieve better results in teaching students programming

because graphical exemplification, such as flowcharts, can allow students to

better understand algorithms (de Jesus, 2011). This way, students can visualize

how the actual program runs and even follow the step-by-step execution of the

program to understand each and every part of the solution.

2.2 Research on Programming Tools to Improve Learning

Programming is a complex skill to acquire, so educators have created

numerous tools to promote learning of programming among novices. There are

tools that allow new students in information technology to design and test objects

(de Jesus, 2011), manipulate robots through visual programming interfaces

(Anderson, McKenzie, Wellman, Brown, & Vrbsky, 2011) or generate and control

animated worlds (“What is Alice?,” 2014). Table 2-1 provides a concise summary

of features of select graphical programming tools that have been used in other

12

12

studies to gauge student interest and/or performance in programming. The

following discussion elaborates further on each of these tools.

Table 2-1
Visual Programming Language Tools and their Functionality

No. Name

Functionality
Flowchart-

type
Interface

Loops Conditions Code
Visualization

1 Alice

✕ ✓ ✓ ✓

2
Iconic

Programmer

✓ ✓ ✓ ✓

3 LabVIEW

✓ ✓ ✓ ✕

4 PORTUGOL

✕ ✓ ✓ ✓

5 RAPTOR

✓ ✓ ✓ ✕

6 Scratch

✓ ✓ ✓ ✕

7 SICAS

✓ ✓ ✓ ✓

8 vIDE

✓ ✓ ✓ ✓

9 WYSIWYC

✕ ✓ ✓ ✓
10 NanoNavigator ✓ ✓ ✓ ✓

Although, there are several tools to encourage learning, the challenge is

not to create more tools but to examine current environments to probe if current

technology is working as expected. To understand this issue, Gross and Powers

(2005) studied the programming tools designed to improve programming skills of

new learners.

The researchers studied multiple novice programming environments to

assess their impact on learning. They chose these environments due to the

unique approaches that each tool uses for teaching the concepts. The

13

13

environments chosen were: Alice, BlueJ, Jeliot, Lego Mindstorms, and RAPTOR

(Gross & Powers, 2005). Alice is a well-documented environment, which

empowers users to create algorithms to operate a multitude of three-dimensional

objects through animation. BlueJ is a Java-based IDE used for introducing the

object-oriented paradigm to students; it allows users to create and manipulate

objects in real-time. Jeliot is a juxtaposition of environments, integrating

animation of Java code; this tool animates the entire Java program, enabling

users to step through the program execution. Lego Mindstorms is a robotics kit

that includes a microcontroller capable of controlling the robot.

Gross and Powers (2005) describe several studies pertaining to all five

tools discussed in the article. One of the studies cited by the researchers used

Alice as the tool to teach students various programming concepts. In order to

determine if employing such tool had made any significant difference on student

learning, the researchers tracked student grades for a period of two years. The

students in the treatment group exhibited higher GPAs and a greater percentage

of them continued to the following course compared with other control groups.

The students exhibited positive attitudes toward programming in addition to

improved performance. This study clearly highlights the positive influence of

visual programming on learning. Similar results were found in a study involving

BlueJ. It showed that the comprehension of OO concepts among students

improved. A study employing Jeliot found significant improvement in student

learning by calculating and evaluating scores from pretest and posttest.

Researchers found that the programming classes using Lego Mindstorms

14

14

improved student attitude toward programming. These results strongly suggest

that students respond positively to visual and/or physical programming

environments.

Burton and Bruhn (2003) argue that it is important to teach students

procedural programming languages first, even before teaching object-oriented

languages. The researchers argue that OO is not a replacement for the

aforementioned programming paradigm but is complementary. They note that

although OO is a new paradigm, it does not replace old paradigms such as

procedural programming. They also argue that the algorithmic paradigm needs to

be absorbed first before learning OO because of the “need”…for students “…to

know how OOP fits into the bigger picture” (Burton & Bruhn, 2003).

Burton et al. (2003) state that the basic concept of an object in the OO

paradigm is quite simple to understand. Writing software using this concept,

however, requires the understanding of interaction between objects in the

problem domain. Also learning about abstract concepts in the OO domain

requires focused efforts in addition to the time overhead. The authors argue that

becoming an expert in object-oriented programming requires at least three years

of training. Conversely, the procedural programming approach heavily focuses

on creating a concrete algorithm to solve a problem. Burton & Bruhn (2003)

identify the following main steps for problem solving using the procedural

approach:

1. Read and comprehend the question

2. Develop a possible answer to the question

15

15

3. Validate and construct the solution as an algorithm

4. Transcribe it into an actual working code

5. Examine and fix any issues in the code

6. Create documentation for the code

Burton et al. (2003) advise that students master thinking in a logical

manner before learning about the object-oriented approach. This way, students

will learn about the process of solving a problem, which can be extrapolated to

deciphering problems in an object-oriented environment. The authors also feel

that the ability to scrutinize a problem and create solutions in a proper, sequential

manner is especially important for novices. They further note that the OO

paradigm undermines the learning of efficient and effective procedural design

principles. It is important to teach simpler concepts first when teaching

programming to make the overall process well-structured for students to

understand in an effective manner. For Burton et al. (2003), the natural order for

teaching software design should involve educating students first on procedural

principles and then on the object-oriented paradigm. The authors deem that

teaching programming concepts in a gradual and systematized way can improve

learning.

Although teaching using the right paradigm of programming is essential to

improved student understanding, the main premise of the argument is the

hypothesis that obstacles to learning lie in the process of creating computer

programs. In order to write a well-designed program, Kelleher & Pausch (2005)

state that students must know the following:

16

16

1. How to convey commands to the computer (syntax),

2. How to organize commands (style), and

3. How the computer actually executes these commands.

Kelleher and Pausch (2005) note that many novice programmers struggle

with various aspects of programming. Despite efforts to simplify programming

languages, students find it difficult to “[remember] names of the commands, the

order of parameters, whether or not they are supposed to use parentheses or

braces” (Kelleher & Pausch, 2005). The researchers suggest that, in order to

facilitate learning of the fundamental constructs of programming, one can

completely circumvent the syntax problems by using graphical elements to

symbolize various parts of a computer program, for example, variables, control

options, and commands. Because various components can be relocated and

joined together to create programs, introductory programmers only need to

“recognize the names of commands and the syntax of the statements is encoded

in the shapes of the objects, preventing them from creating syntactically incorrect

statements” (Kelleher & Pausch, 2005).

Most of the environments created to facilitate learning of programming

systems have been created with a focus on novices by employing more

convenient procedures for programming and many have removed unnecessary

syntax, including some visual elements (Kato, 2010; “What is Alice?,” 2014,

“What is Arduino?,” 2014). Using this approach, students have been able to see

the results of their creations immediately, providing a substitute to typing program

instructions. It is possible, according to Kelleher et al. (2005), to design a

17

17

software development environment to be suitable for a wide variety of audiences,

especially introductory students. Using such graphical programming methodology,

students can concentrate on learning about the structure and flow of the

programs rather than focusing on writing syntactically correct programs.

As previously discussed, visual programming languages are one of the

ways to improve student cognition of programming basics. Hils (1992) notes that

the data flow model is one of the more popular ways on which many visual

programming languages are based. This model presents introductory students a

view of data flowing through the logic of the program, the transformations that

data undergoes, and the final result(s) of the computation(s). The author also

notes that visual models, such as the data flow model, provide the ability of

“viewing monitors at various points to show the data to the user. Consequently,

many recent visual programming languages are based on the data flow model”

(Hils, 1992).

The notion of utilizing data flow diagram elements for representing an

algorithm is quite popular. The central premise of this approach is that the data

flow model and related concepts can be used to portray the flow of logic through

a program using nodes that represent functions of the actual program (Hils,

1992). The flow going in and coming out is considered as input and output of the

node, respectively. Different philosophies recommend varied data modeling

methods to represent data.

Hils (1992) describes multiple examples of how the data flow model can

be used to depict programs by creating flowchart-style structures, some of which

18

18

are discussed next. According to the author, the “pure” model of the data

flowchart does not have the constructs such as loops, but instead relies on

imperative execution of commands (statements that change the program’s state).

This model uses primitive representation of flow using arrow symbols. Most

visual programming languages utilize boxes and other constructs to depict

functions and lines to denote the data flow. It is possible to insert steps that allow

users to examine data values throughout the execution of the program. Unlike

the “pure” model, many graphical programming languages include visual

elements that permit iteration. Some languages provide the ability to create

different types of loops (e.g. FOR, DO WHILE, etc.). This simplifies the process

of building a program and removes the complexities involved in manually

creating nodes that imply iteration.

Hils (1992) reports that some visual languages can also involve inclusion

of data types in visual programs. The author notes that, generally, the type check

is performed throughout the construction of the algorithm. This ensures that

users can connect nodes to each other that do not violate the language syntax,

diminishing the risk of any errors at run-time due to type discrepancies. This

study acknowledges the fact that there are significant variations between visual

programming languages, but the more important point is that, overall, they

simplify the learning process by using graphical elements.

2.3 Graphical Programming Tools and Their Impact on Student Learning

It is important to ensure that novice programmers learn programming

19

19

languages in a way that can solidify their grasp of algorithms in addition to

developing critical thinking skills. The Instituto Politécnico de Tomar in Portugal

developed ‘Portugol’, a structured programming integrated development

environment (IDE) (de Jesus, 2011). This IDE incorporates the ability to generate

structured program statements by creating corresponding flowcharts. It also

provides an ability to generate a flowchart based on a block of structured

programming statements. The researcher states that this tool was created to

assist first-year computer science students in learning programming concepts.

Such tools have been used in the past to improve comprehension and generate

interest in programming paradigms.

Carlisle, Wilson, Humphries, and Hadfield (2005) note that students

devote a large amount of time learning and dealing with the syntax of a language

in introductory programming courses. Moreover, most courses teach

programming concepts through the use of textual, editor-based applications;

such environments make it difficult for many students to learn programming. Also,

many students struggle in courses that use a textual approach due to their

inherent inclination to a visual perspective (Carlisle et al., 2005).

A previous study observed that using a textual programming language in

introductory programming classes may “annoy and distract attention from the

core issue of algorithmic problem solving” (Carlisle et al., 2005; Shackelford &

LeBlanc, R.J., 1997). The authors witnessed that this leads to instructors

emphasizing potential problem areas such as syntactical errors, instead of

focusing on the actual learning of algorithms and foundational concepts.

20

20

A study conducted by Carlisle et al. (2005) found that between 75 percent

and 83 percent of the students in the programming course were predominantly

visual learners. This finding can explain the difficulties many students face while

learning programming. To combat this issue, the researchers created a graphical

programming application called RAPTOR or Rapid Algorithmic Prototyping Tool

for Ordered Reasoning. This tools uses flowcharting symbols to create programs.

The program also allows users to execute their algorithms to test proper

functionality. Students can execute their programs in a continuous mode or step

through the program to examine values of each and every data element (Carlisle

et al., 2005).

Graphical programming environments can significantly benefit visual

learners. Fischer, Giaccardi, Ye, Sutcliffe, and Mehandjiev (2004) note the

importance of such environments in their article titled, “Meta-Design: A Manifesto

for End- User Development” (Carlisle et al., 2005),

“Text-based languages tend to be more complex because the syntax and

lexicon (terminology) must be learned from scratch, as with any human

language. Consequently, languages designed specifically for end users

represent the programmable world as graphical metaphors containing

agents that can be instructed to behave by condition-action rules. The aim

is to reduce the cognitive burden of learning by shrinking the conceptual

distance between actions in the real world and programming” (Carlisle et

al., 2005).

21

21

To analyze if RAPTOR has made any improvements in student learning,

the researchers devised an experiment. The study spanned three semesters,

each semester with 365, 530, 429 students being analyzed, respectively. Carlisle

et al. (2005) incorporated three questions on the final exam to examine if the

problem-solving ability of students had increased. The researchers compared the

results using one-sided, two-sided, and two-sample t-tests (Carlisle et al., 2005).

The authors noticed that the students, provided with multiple options,

overwhelmingly chose to represent their algorithms using graphical elements. A

peculiar result of the study was that although students had learned a third-

generation programming language, a whopping 95 percent used flowcharts for

represent their solutions to the algorithmic problems. The study concluded that

this change in problem-solving ability of the students could be attributed to using

RAPTOR as a tool for teaching algorithm development. Researchers also noted

that the graphical elements of RAPTOR permitted students to solve problems

easily because they could easily follow the flow of logic through the problem. This

study underscores the importance of offering graphical tools to students to

cement their basic knowledge of programming (Carlisle et al., 2005).

One of the most popular tools of teaching introductory programming

concepts is Scratch. This tool was developed by MIT Media Labs in order to

“nurture a new generation of creative, systematic thinkers comfortable using

programming to express their ideas” (Resnick et al., 2009). The authors sought

to provide software to people who had no background in programming and had

never realized the potential of this technology to create interesting animations

22

22

(Resnick et al., 2009). Generally, this software is used in K-12 to motivate and

generate interest about computing majors among students before introducing

them to more advanced programming concepts. (Resnick et al., 2009).

In order to introduce to the fundamentals of computing and logical thinking,

researchers at Harvard University decided to use Scratch to teach initial

programming concepts (Malan & Leitner, 2007). The researchers used two

lectures during the first week of classes before teaching Java for rest of the

course. The research was conducted “not to improve scores but instead to

improve first-time programmers’ experiences, we surveyed students throughout

the summer for their thoughts on Scratch and its impact on their education”

(Malan & Leitner, 2007). As this research aims to improve student interest in

programming, enhancing the programming experience of new programmers is

central to improving their attitude.

There were a total of 25 survey respondents, 52 percent of which had no

prior exposure to programming, while 32 percent had limited programming

experience. 16 percent of the respondents had used some programming

language for at least one year. Malan and Leitner (2007) asked their students

about the impact of using Scratch on their experience with Java, 76 percent

reported positive influence, eight percent noted negative influence, while 16

percent stated neither positive or negative impact on learning. This study clearly

demonstrates the possibility that graphical programming tools can direct impact

student outlook on text-based programming languages. Also, such languages

can improve student reasoning.

23

23

There have been many tools, as previously noted, that can construct

pictorial representations of algorithms to help students understand programming

fundamentals. To create an active learning environment, educators have created

systems in which students can visualize their algorithms created using graphical

elements. Hundhausen and Brown (2007) note that such tools “support a similar

development model in which coding an algorithm is temporally distinct from

viewing and interacting with the resulting visualization” (Hundhausen & Brown,

2007). Because novice programmers have difficulty using correct syntax for code,

they will benefit from being able to view the execution process. According to the

researchers, the ability of models to provide live feedback can assist the

introductory students in information technology to detect and rectify programming

mistakes and eventually develop syntactically correct code.

To study the hypothesis that allowing students to type code and show

corresponding results simultaneously would aid comprehension, the researchers

created a model called “What You See Is What You Code” or WYSIWYC

(Hundhausen & Brown, 2007). The software was designed in a way to develop

programs using a combination of writing very basic code while manipulating

visual program objects. WYSIWYC evaluates code being typed with every edit

for syntax errors, allowing novice programmers to receive immediate feedback

on the validity of their code. Novices can edit their code because the

programming tool provides suggestions on creating syntactically accurate

statements. Students can also view their creations in real-time in an adjoining

window.

24

24

Most of the data collected to analyze students was gathered through

observations and videotaping of the participants. Hundhausen and Brown (2007)

observed that many students communicated their irritation with regards to the

pseudo code language used in the program created. The authors quoted a

participant in the study who remarked that it was difficult to visualize the actual

result of the algorithm without getting needed feedback from the software tool.

The data collected also revealed that only 30 percent time was spent on actually

writing any code (Hundhausen & Brown, 2007). This study revealed that

introductory students in programming courses need a medium to visualize their

code to actually understand fundamentals and gain confidence to write

algorithms. Just providing them suggestions on how to write syntactically correct

code does not necessarily improve cognition and lead to improved attitudes

toward programming.

Due to the importance of computers in engineering areas, programming is

one of required topics taught to engineering students. According to Bucks and

Oakes (2010) there is substantial evidence that students in introductory

programming courses have difficulty learning and employing concepts by writing

code in the relatively short period of a semester. This may be due to the

tendency of students to learn programing concepts visually. The researchers

decided to research the difficulty with learning programming by using graphical

programming languages in introductory courses for the engineering students

(Bucks & Oakes, 2010).

25

25

Bucks et al. (2010) used two course sections comprised of 120 students

per section from multiple introductory programing courses. The course sections

were modified to integrate usage of graphical programming. This approach was

taught in both lecture as well as the laboratory exercises by the same instructors.

The LabVIEW graphical language, created by National Instruments, was selected

for the study. This language consists of blocks, which can be connected to form a

program. The researchers ensured that sufficient instructions were provided to

students to allow them to create well-designed programs. Six lectures and

laboratory periods were required to teach fundamentals of LabVIEW. The

students were given a project to be completed using the aforementioned

language.

The results from the experiment devised by Bucks et al. (2010) were

significant. Researchers noted student concerns related to the additional

workload of learning and implementing LabVIEW. Nevertheless, as the semester

progressed, the students became comfortable with using the programming

language and even learned about different functionality of the language not

taught in class.

A student attitude survey was conducted to record student attitudes

toward programming and their overall experience with the LabVIEW language

project. Although, many students had complaints about the projects at the

beginning of the semester, student attitudes toward LabVIEW improved during

the course of the study. The researchers also compared this feedback with the

course sections where LabVIEW was not used as a learning instrument. The

26

26

overall course rating for the traditional course was between 2.5–3 out of five

points, but ratings for the modified course was between 3.5–4 out of five points

(Bucks & Oakes, 2010). The researchers noted that students were able to learn

the required material well through the medium of a graphical programming

language. Also, students in the modified course sections demonstrated overall

improvement in cognition of class topics.

It is widely known and researched that many students in information

technology programming courses struggle with issues related to syntax, logic,

and control flow of algorithms (Chen & Morris, 2005). This problem also affects

students enrolled in high school science courses, since many times there is not

enough time to teach all aspects of being an effective and efficient programmer.

Researchers in Canada, therefore, decided to create a very simple tool called

“Iconic Programmer” that is based on flowcharts and visual programming that

uses icons to represent programing constructs (Chen & Morris, 2005). This tool

can even translate icons and symbols into Java or Turing. This way, students can

view and map various flowchart icons to programming language statements.

Simplifying the process of creating a working program, Chen and Morris

(2005) used three primary structures of programming, namely sequences, loops,

and branches in code. The researchers utilized flowchart icons for denoting

activities, branches, and decisions to enable students to create simple algorithms.

This tool was used as a supplementary tool to teach students in CS 101 at York

University, Canada. Moreover, Iconic Programmer has also been used in a high

school setting. Employing this teaching aid in two different pedagogical settings

27

27

allowed researchers to study two different groups of students, one at the college

level and the other at the high school level (Chen & Morris, 2005).

The researchers, as anticipated, found that students reacted positively to

the functionality provided by Iconic Programmer. Many high school science

students viewed creating flowcharts on paper as extraneous to the learning

process. Nonetheless, it allowed them to envision the design of algorithms, data

flows, and overall control structures. Both high school and university students

found the functionality to view flowcharts in Java particularly useful (Chen &

Morris, 2005). This research further strengthens the argument that visual aids,

especially flowcharts, help students better understand programming concepts.

As the graphical user interface technology continues to advance, the

methods of creating programs should also become simpler to use in the future.

Lucanin and Fabek (2011) note that there are many visual programming

languages that can allow programmers to use icons and flowchart-based

approaches to create applications rather than focusing on working with specific

programming languages. The researchers used the WHILE programming

language to demonstrate a new way of generating code. The language was

implemented using a system built on the GMF or Eclipse Graphical Modeling

Framework. In addition, the authors contend that this method easily allows

mapping of a flowchart to the program code (Lucanin & Fabek, 2011).

In order to demonstrate the functionality of a programming tool that can

shift the burden of creating the program code from the programmer to the

development environment, Lucanin et al. (2011) suggested that the programming

28

28

tool should be able to express the algorithm for a program in a certain manner

and be capable of translating such logic into machine code for execution by the

processor. From these two basic low-level requirements, Lucanin et al. (2011)

created four models to implement the aforementioned functionality. First, the

graphical elements were defined, and then researchers decided which tools

would be used to draw the flowchart. The authors used a mapping model that

would dictate how graphical elements would map to the custom WHILE language

code, in addition to the Eclipse Modeling Framework (EMF).

The solution created by Lucanin et al. (2011) for graphical programming

was able to create flowchart structures and map such structures to syntactical

constructs of a programming language. The tool was able to provide users with a

novel interface that simplified the program development. Studies similar to the

one conducted by Lucanin et al. (2011) are vital to being able to innovate new

means of teaching programming to students. If such technology continues to

mature, the necessity to learn, remember, and apply textual-based programming

languages to compose algorithms will be greatly reduced for introductory

programmers.

Santos, Gomes, and Mendes (2010) discuss a similar approach as other

researchers noted previously. They point out the fact that efforts have been

made to enhance learning activities related to programming. Nonetheless, the

success of such activities remains disputed. Difficulties with learning these

concepts and subsequent failure rates led to courses with large populations of

struggling students. The problem is exacerbated by the intellectual diversity of

29

29

the class, comprised of students with dissimilar ability for comprehension and

varying degree of knowledge (Santos et al., 2010). The conventional

methodology the courses utilize generally fails because teachers are unable to

support the needs of students and provide them guidance regarding

programming when needed.

It is generally agreed upon that students have various levels of aptitude for

programming-related tasks, but empirical research also suggests that all students

can succeed in this field, provided they are dedicated and have adequate

guidance (Santos et al., 2010). The authors discuss different tools that have

been created so as to facilitate education of programming topics. Santos et al.

(2010) provide details on a tool developed by researchers called SICAS, which is

a Portuguese acronym and translates into English as Interactive System for

Algorithm Development and Simulation This tool is fundamentally based on the

paradigm of graphical programming to enable students to develop their

programming skills.

SICAS enables students to apply algorithms for solving given problems

using a flowchart-based illustration. This tool also includes the ability to create

and assign variables, perform input/output tasks, and apply iterative and

conditional structures. To allow students to create complex programs, SICAS

also supports recursive functions. According to the authors, this tool “supports

common data types, namely numbers, strings and one-dimensional arrays” for

familiarizing students with basic programming concepts (Santos et al., 2010).

The program also has the ability to export solutions to external programming

30

30

languages such as C, Java, and even pseudo-code. Students can visualize their

programs without being bogged down by syntactical issues. The primary goal of

SICAS is to enhance algorithm construction skills and improve students’ critical

thinking skills; this makes the ability to learn a certain programming language is a

secondary objective.

The researchers argue that such tools are mere stepping-stones for

programming education. Such tools cannot meet all students’ needs to improve

their understanding of algorithmic concepts. Generally, flowcharts are easier to

understand, leading many students to visualize and predict their solutions to

challenges in a problem domain.

2.4 Physical Implementation of Graphical Programming Languages

When programming, it is important to continuously test solutions because

it may be difficult to visualize and simulate all of the functionality of the algorithm.

For robotic applications, it is even more important because such systems involve

many hardware components. These components have monetary value and could

become damaged if used incorrectly. If physical systems are not tested well,

there may be a risk of damage to the hardware and of injury to the person

operating such systems.

Graphical programming techniques allow students to create, test, and

modify their algorithms quickly. According to Rogers and McVay (2012), this is

especially true when the students need to learn and become proficient at a

programming language in brief period. Using an environment that will reduce

31

31

development time for algorithms is needed and a possible solution can be

provided by graphical programming. This method, according to the authors of the

study, “allows an engineer to move quickly from theory to proof-of-concept and

into prototyping” (Rogers & McVay, 2012). Also, such a programming language

may not constrain the ability of students to materialize their ideas into physical

robotic movements.

To verify their theory in an engineering environment, Rogers et al. (2012)

used students in a mechatronics class who were tasked with creating a robotic

algorithm. The students were given ATMega 128 microcontroller and an E-Maxx

truck, which could be controlled using a radio. Students could use C to program

their algorithms. During the study spanning two semesters, only one team in the

first semester and none in the second semester were able to create a functional

program. After the failure of students to perform well, the researchers changed

their methods, and the following semester gave students a PIC32 microcontroller

and used Simulink, which provides a graphical interface for microcontroller

programming (Rogers & McVay, 2012). This interface resulted in improved

student performance, and enabled them to conceive somewhat more

complicated programs than students who only used the C programming

language for completing their projects.

Based on observations by the researchers, students were able to

accomplish more when they were provided with the graphical programming

interface instead of textual C. Students achieved more sophisticated results

using Simulink compared with almost absolute failure of using the C language

32

32

alone. This study underscores the importance of graphical interfaces when

programming for microcontroller environments. Many microcontrollers, due to

their basic architecture, only allow native code compilations such C/C++ (Rogers

& McVay, 2012). This increases the level of difficulty for students, demotivates

them, and makes cyber-physical systems seem too difficult to work with.

Chun and Ryoo (2010) propose a new system to teach physical

computing to students in various stages of their academic career, ranging from

elementary school to college students. The authors created this new learning

method using a graphical programming interface and Light Emitting Diode (LED)

display kit. The LED display shows various images or animations created using a

flowcharting tool. Educating introductory students in information technology can

spark a passion that may go well beyond the standard objectives of courses.

Because students spend an enormous amount of time struggling to learn the

syntax of a language, providing them a tool to minimize these problems and

improve learning is important (Chun & Ryoo, 2010).

Physical computing can be an excellent tool to teach students

fundamentals of programming. Students can not only visualize their creations but

also touch, feel, and improve corresponding physical devices. LEDs have

become increasingly inexpensive, so the researchers decided to utilize a display

kit comprised of an 8X8 matrix LED panel. This kit also includes a

microprocessor, and a serial communication component. In order to control LEDs,

Chun et al. (2010) created a web-based flowchart interface. This flowcharting tool

was designed to support basic programming constructs such as variables,

33

33

conditional statements, loops, one-dimensional arrays, and simple functions.

Because the LED panel contains the 8X8 matrix of LEDs, the students could

create 264 different light configurations, allowing them to create multi-colored

intricate shapes and patterns.

To observe the effect of these tools on elementary students, Chun et al.

(2010) undertook an experiment in which they studied 126 students enrolled in

three different elementary schools. This experiment was conducted with only

elementary students as subjects. The overall positive attitude demonstrated by

the students may suggest that physical computing may have some merits while

improving students’ attitude toward programming regardless of the educational

level. Throughout the experiment, the students demonstrated positive attitude

towards programming. Researchers also noticed that students felt much more

engaged while creating algorithms using provided tools. The use of LED kits also

raised their interest in creating a working application (Chun & Ryoo, 2010). Using

such tools in courses improved student collaboration, which, in turn, can lead to

improved learning. This study underscores the importance of the visual learning

medium. Such techniques, described above, can especially be beneficial when

paired with physical devices.

Employing physical systems that complement software development tools

can lead to more students understanding basic, even advanced, programming

concepts. The Arduino is the one of the multifaceted tools that can be used to

accomplish various activities, ranging from educational to recreational. Kato

(2010) provides a synopsis of a graphical programming language called Splish,

34

34

which enables users to develop applications for the Arduino using visual, icon-

oriented, programming interface. The Splish language was developed using the

JavaFX framework, which made this language platform independent and allowed

for greater overall portability between different operating systems.

The researcher notes that Splish code can be interpreted by a virtual stack

machine, after it is compiled and translated into machine code. This allows the

user to debug the code without having an Arduino connected to a computer. If an

Arduino is connected to a computer, this approach enables students to perform

interactive debugging. Graphical programming, employing physical devices, is

very different from working with a software-only approach; physical computing

can attract students to learn about such techniques and improve their

programming abilities (Kato, 2010).

Kato (2010) explains the overall design of the system in detail to provide a

complete picture of how the system works in real life. The researcher also

provides an example of how a flowchart-like, icon-based program was created.

The Splish language actually creates C code behind the scene for Arduino. One

of the problems faced by the researcher was related to how big a program can

get to run on Arduino. Kato (2010) noted that there are some empirical statistics

related to memory allocation of Arduino, which can be used to efficiently manage

memory on the Arduino. According to Kato (2010), the Splish language is easy to

use for programming and for debugging, and therefore, it can be beneficial for

educators to teach and students to learn fairly easily. Due to the graphical nature

of this language, Splish can be used to “accelerate the physical computing

35

35

experience” of students, in addition to generating interest in programming and

reinforcing their programming skills (Kato, 2010).

2.5 Past Research on Student Attitudes Toward Programming

Students’ early attitudes toward programming are critical in understanding

various attributes in their academic careers such as satisfaction, future success,

and willingness to learn. Understanding their attitudes can help educators tailor

the introductory courses in order to build positive attitudes toward programming.

A study was done by Garrett and Walker (2008) to examine the overall attitude of

students toward programming languages.

The researchers conducted a year-long (two semesters) study in which

the participating students were exposed to a variety of programming languages

ranging from traditional (C++, Java) and scripting (MATLABTM script) to graphical

programming languages such as RAPTOR and LabVIEW (Garrett & Walker,

2008). Even Alice was taught to help students develop critical thinking skills. The

students who participated in this survey were from various majors such as

Computer Science and Electrical Engineering. The courses taught students

fundamental programming knowledge in multiple languages in a significantly

short period. The authors also attempted to find if students demonstrated more

positive attitudes toward graphical languages or the traditional programming

languages. A survey was used to collect data about student attitudes, which used

a five-point Likert Scale. Also, the questions asked were worded positively and

36

36

negatively. Reverse coding technique was used to standardize the responses to

the Likert Scale questions.

The data analysis found that the majority of the students had negative

attitudes toward Alice, but neither negative nor positive attitudes toward

traditional (C++, Java) or graphical (RAPTOR, LabVIEW) programming

languages. Using two-tailed t tests and an alpha of 0.10, the authors concluded

that was not enough evidence to suggest either positive or negative attitude

toward traditional or graphical programming languages even after the year-long

study period (Garrett & Walker, 2008). Further analysis of the data suggested

that graphical programming languages might enable students to think in a logical

manner in addition to providing them with graphical interface.

As programming is generally considered a difficult topic to understand,

studying student attitudes can help instructors introduce technologies, which can

improve student learning and overall attitude. A study was conducted by Baser

(2013), in Turkey, to gauge differences in attitudes among males and females as

well as to understand the impact of student attitude about programming on their

success in the computing major.

The participants in the study were 137 sophomore students learning

Python in an introductory programming language course. An attitude survey was

created by the researcher in the Turkish language to measure various attitude

elements – confidence, usefulness, attitude toward success, and motivation –

about programming (Baser, 2013). The study used a five-point Likert Scale for

gathering attitude data. The instructors conducted a pilot study to ensure that the

37

37

survey was a valid and reliable tool to measure attitudes. The surveys also

included positively and negatively worded statements, which were reverse-coded

for the proper analysis.

The average minimum attitude was 1.66, while the average maximum

attitude was 4.94, which led the researcher to conclude that students did not

have positive attitude towards programming but their attitude was not very

negative either (Baser, 2013). The differences among males and females were

significant – males tended to have more positive attitudes toward programming

than females. Baser (2013) also found that correlation between student grades

and attitude was significant but only accounted for 16.7% of overall attitude. This

means that the attitude toward programming is not the only factor affecting

student success. The researcher also found that the difference between the

genders about confidence, usefulness, and motivation was significant, but the

difference between overall attitudes toward success was not significant (Baser,

2013). This study demonstrated that there is a need to improve student attitudes

in order to improve their overall outlook on programming, which may lead to

increased success.

As previously noted, attitudes toward programming impacts students’

performance and related success in computer science and related fields, which

require strong programming skillsets. Therefore, it is critical to increase student

confidence and their opinion about the usefulness of programming. A study was

conducted at the University of Alabama by researchers who wanted create an

38

38

environment that could boost student confidence by combining graphical

programming language and robotics (Anderson et al., 2011).

The researchers used PREOP or “Providing robotic experiences through

object-oriented programming…” which “ is a syntax-free graphical programming

tool” (Anderson et al., 2011). This environment is based on Alice and has been

shown to amplify student curiosity in Computer Science. The course used iRobot

for teaching students programming concepts. For conducting the research,

students were taught new concepts each week during a two-hour session for a

period of ten weeks. The student data was collected using surveys, which were

completed by 71 students but due to the age limitation data for students below

the age of 19 years were not considered for the analysis.

The student attitudes after taking the course were considerably more

positive, but the results were not statistically significant. Moreover, the overall

interest in Computer Science increased slightly as high overall interest was

recorded at the beginning of the ten-week long instructional period. The study did

not produce statistically significant results and the authors concluded that more

research is required in order to study how to change attitudes and increase

interest and learning by using graphical programming language in conjunction

with robotics (Anderson et al., 2011).

2.6 Summary

As noted in the review, many studies have found that the physically

interactive systems can abet student learning of programming concepts. Among

39

39

freshmen college students, programming is one the most dreaded topics (Robins

et al., 2003). Using the technological approaches mentioned above, the student

interest in various aspects of programming can be improved. Leveraging

microcontroller technology to teach programming is a relatively new technique.

More research is warranted to investigate the impact of using cyber-physical

systems in increasing student interest in programming.

40

40

CHAPTER 3. METHODOLOGY

As discussed in the previous chapters, being able to write code is an

important aspect of information technology curricula. This ability enables

students to not only create useful programs but also think and solve problems in

a logical manner. Because most students today are visual learners, it is possible

to leverage graphical user interfaces for learning and teaching of programming

concepts (Carlisle et al., 2005). This study aimed to expose freshmen college

students to a graphical programming environment to program a microcontroller

and examined if such experience changed their interest in programming.

Increased interest may lead to innovative ideas and may even improve their

problem-solving and decision-making skills. Attitudinal data was collected using

online surveys to determine whether the experiment caused significantly

improved attitudes. This chapter explains the design of the experiment for this

study. The participants, the procedures for data collection from the participants,

the variables, and the methods for data analysis are also described in this

chapter.

3.1 Experimental Setup

Empirical evidence suggests that programming is one of the most

challenging learning aspects of information technology education. Many students

41

41

dislike programming, and information technology-related disciplines experience

high dropout rates for this reason. This experiment involved examining if usage

of microcontroller technology and flowcharting tools improves the interest level of

freshmen college students in programming. As part of this experiment, subjects

were required to participate in one, two-hour-long session in which the subjects

programmed a microcontroller using a flowchart-based language. Researchers in

the past have mainly used just visual programming languages to test if student

understanding of programming fundamentals changes. The researcher has

conducted few outreach sessions for Purdue University’s College of Technology

in which high school students are taught how to program the microcontroller used

in this research. The outreach sessions results have been generally positive and

suggested that students’ attitude may improve after such session.

This research focused on providing students with a graphical

programming experience and its impact on the interest levels of freshmen

students. In this study, the following hardware and software were used:

• Hardware

o Phoenix Contact nanoLine Microcontroller (nLC-055-024D-08I-

04QRD-05A)

o Phoenix Contact Operator Panel (nLC-OP1-LCD-032-4X20)

o Input Switch Simulator for nanoLine

o Output Simulator for nanoLine

o USB Cable for nanoLine

o Light Bulb

42

42

• Software

o Phoenix Contact nanoNavigator (Version 4.1.0 (617))

o Envigilator Proctoring Software

Data was collected using three scientific online surveys, which were

created using Qualtrics Survey Software. These surveys included: one pre-

instructional survey and two post-instructional surveys. The second post

instructional survey was administered four weeks after the instructional session.

During this period of four weeks, no additional treatment was provided to

students. In the past, the researcher has noticed a positive response regarding

the session and overall programming immediately following the outreach session.

Therefore, it was important to understand if the attitude changes prevail over time.

All of three surveys were identical and contained 16 multiple-choice statements

about various aspects of programming education in addition to two short answer

questions. Students answered these statements using a Likert-scale with four

options: Strongly Agree, Agree, Disagree, and Strongly Disagree. This allowed

the researcher to examine student opinions about included statements at

sufficient granularity. The surveys, which were completed electronically, were

based on an attitude survey reported in an article by Munson, Moskal, Harriger,

Lauriski-Karriker, & Heersink (2011). The survey measured various attributes

related to the field of information technology. These attitude attributes included

(Shashaani & Khalili, 2001):

43

43

• Confidence

• Interest

• Stereotypes

• Usefulness

The following sample statements illustrate the kind of statements that

comprised the attitude survey (Munson et al., 2011):

• Confidence

o I am comfortable learning programming concepts.

o I have a lot of self-confidence when it comes to taking

programming courses.

• Interest

o I am able to think in a logical manner to innovatively create

new programs.

o I think programming is boring.

• Stereotypes

o A student who performs well in programming courses will

probably not have a life outside of computers.

o Men are more likely to excel in programming classes than

women.

44

44

• Usefulness

o The challenge of using programming languages to solve

problems appeals to me.

o I am confident that I can find a job as a software

engineer/software programmer.

Some of the survey statements above are quoted directly from a study

conducted by Munson et al. (2011). The researcher obtained an approval from Dr.

Barbara Moskal to use a version of the attitude survey. This approval email can

be found in Appendix A.

Ensuring the quality of answers was critical and, therefore, the statements

in the survey were both positively and negatively worded. The aforementioned

concepts are discussed in further detail in the following sections.

3.2 Hypotheses

Many introductory college students with limited or no background in

programming struggle throughout their programming classes in information

technology and computer science. As noted previously by Robins et al. (2003),

programming courses experience high dropout rates; therefore, making the initial

introduction to programming more engaging and personally relevant may lead to

improved learning and interest in the programming field in students.

Consequently, this study aimed to explore the possibility that using a graphical

programming environment within the physical computing realm could increase

45

45

interest in programming among freshmen college students. A two-tailed test was

carried out in order to test the following hypothesis.

H0 = There is no statistically significant increase in positive attitudes about

programming in students who are exposed to a graphical programming interface

for microcontroller programming.

Ha = There is statistically significant increase in positive attitudes about

programming in students who are exposed to a graphical programming interface

for microcontroller programming.

Statistical tests were performed individually for each of the measurements

(confidence, interest, stereotypes, and usefulness).

3.3 Participants

There were criteria that a participant must satisfy in order to take part in

this study. The participants were required to be above 18 years of age and

enrolled at Purdue University. Also, they had to be comfortable with completing

the online survey. The participants were asked to volunteer for this research. The

participants were instructed throughout the session on how to use the

microcontroller, create programs, and complete an activity at the end of the

session. All students in CNIT 15501 were invited to participate in this study. This

should have provided a sufficient sample size to perform analyses to spot any

statistical significance. The number of subjects depended on the number of

students enrolling in this course and accepting the invitation to participate. The

researcher obtained approval from the instructor teaching this course (see

46

46

Appendix B). Prior to the start of the study, the expected enrollment in this study

was 60 participants, but the actual enrollment was 43. Additionally, not all

enrolled students completed all three surveys – the number of participants who

completed all three surveys was recorded as only 32.

3.4 Methodology

As noted previously, the aim of the study was to see if freshmen college

students who engage in a cyber-physical programming session would become

more interested in programming in general. Empirical research suggests that

programing courses are dreaded by many students due to the difficulty level,

which results from the abstract nature of the topic. Many freshmen college

students have traditionally learned programming through text-based editors with

few to almost no graphical elements. This study examined whether their interest

in programming improved or not by employing a system in which they developed

their programs using a graphical tool and could also see the physical product of

their programs using a microcontroller.

As indicated by the literature review, earlier studies have conducted tests

that mainly related to graphical programming languages for comprehension of

fundamental information technology concepts. These pedagogical approaches

have included teaching procedural programming, tools for visualizing algorithmic

development, and flowchart-based development environments that only operate

in cyber space. Every graphical programming language development

environment is different, so the attributes to be analyzed vary by some degree.

47

47

Chun and Ryoo (2010) conducted a similar study on South Korean high school

students in which the subjects used a web-based flowchart program to control an

LED kit to create novel shapes on the LED display and noted overall positive

results and demonstrated that overall problem-solving capability of the subjects

increased. The study described here recruited freshmen college students in order

to determine if their interest level in overall programming increased by employing

graphical programming to create programs for a microcontroller.

3.4.1 IRB

This study was categorized as human subject research and required to

receive an approval from the Institutional Review Board (IRB) as the data was

collected from students in a programming course. An application for requesting

permission to conduct research was submitted to the IRB on 06/13/2014, and

approval was received on 06/17/2014, which can be found in Appendix C.

3.4.2 Procedures

As noted previously, all students in CNIT 15501 were given the

opportunity to participate in the study. The students were provided a consent

form and they could opt out of the study without any penalty. CNIT 15501 had

three laboratory sections during the semester of research. The study used these

laboratory periods to conduct the instructional session and administer pre- and

post-instructional surveys (see Appendix D). The hardware and software

mentioned earlier was used for the instructional session.

48

48

At the beginning of the session, all participants were given a unique 10-

digit identification number (ID), which was used to correlate the survey responses

with participant demographics during data analysis. All participants were

provided an overview of the experiment, instructions on how to use each tool

(hardware and software), and details on how to complete surveys. They were

given sufficient time to login to the computers. Once logged in, the participants

were asked to start the Envigilator proctoring software. This enabled the

researcher to capture screenshots of every participant’s computer every two

seconds, providing insights into how the flowcharting software was used by the

participants. The participants were instructed to complete a pre-instruction survey

to capture their initial opinions about computer programming. The post-instruction

surveys asked participants exactly the same questions immediately after the

intervention and four weeks after the intervention. The pre-instruction survey

defined a baseline to compare results of the experiment immediately after the

activity session and four weeks after the session. The four-week post survey was

used to mitigate concerns regarding short-term, positive feedback immediately

following the instructional session. The entire dataset was analyzed after

conclusion of the second post-instruction survey.

Table 3-1 provides a timetable for the various phases of the instructional

session.

49

49

Table 3-1
Timetable for Instructional Session

No. Name Description Total Time

1 Provide
unique
identification
number (ID)

Participants were handed their unique
ID

5 minutes

2 Collect
consent forms

Participants were given the consent
form for participation in the study upon
entering laboratory

5 minutes

3 Overview of
the research
project

The participants provided an overview
of the research project, methodology,
and the data collection methods

10 minutes

4 Pre-
Instructional
survey

The participants completed a survey 15 minutes

5 Hands-on
activity

This was completed in three steps:
1) Familiarized participants about

the hardware and software
2) Walked participants through an

activity
3) Asked participants to modify a

program to include new
functionality

50 minutes

6 Post-
Instructional
survey

The participants completed a post-
instructional survey

15 minutes

7 Post-
Instructional
survey

This survey was conducted four weeks
after the initial instructional session.

15 minutes

During the research session, after the subjects completed the pre-

instruction survey, they were given step-by-step instructions on how to create a

simple program using Phoenix Contact’s nanoNavigator software. This simple

program employed the basic foundational elements of a programming language,

including loops and decisions. The participants learned how the Phoenix Contact

50

50

microcontroller utilizes various programming elements. It was important for

participants to visualize their creation, because this was one of the main focuses

of the experiment. The subjects were familiarized with the built-in simulator in

nanoNavigator, the software for programming the microcontroller. The example

program for the hands-on activity was very simple – turning a light on/off when a

switch was on/off. They were also shown how to download the created program

onto the Phoenix Contact microcontroller. Using this microcontroller, the

participants were able to physically observe the functionality of their creation on

the actual microcontroller.

In order to challenge the participants to think logically, they were given a

simple task that required them to modify the program they created with the

researcher. The researcher walked students through an activity during the

instructional session. This activity involved creating a simple program, which

would turn on a light bulb attached to the microcontroller when a switch was

turned on. When the switch was turned off, the light bulb turned off. The activity

was intentionally designed to be simple but instructional. The flowchart-based

program utilized two programming concepts – variables and loops. After this

activity, the students were tasked to add a timer, which would track how long a

light had been turned on. When the light turned off, the timer stopped and

displayed the total time on the display for 5 seconds. The researcher was

available to answer any questions that participants may have, ensuring that the

participants understand how to work with nanoNavigator software. They were

allowed to work on their assigned task individually for approximately 20 minutes.

51

51

The researcher reserved the next 10 minutes to demonstrate some correct

modifications made by the participants using the Phoenix Contact microcontroller.

In the last 15 minutes of the session, the participants completed the post-

instructional survey. Participants’ responses were analyzed to gauge the

outcome of the experiment, in addition to the quantitative data analysis.

3.5 Privacy and Confidentiality of the Participant Data

It was paramount to protect all data related to the participants. The

participants only used a 10-digit unique ID to complete all surveys. A Microsoft

Excel file was used to store the names and associated unique IDs of the

participants. This file featured password protection with password known only to

the researcher. The data gathered using the Envigilator proctoring application

was transcribed at the conclusion of the study, after which it was permanently

deleted. The participants were also instructed before beginning of the all

Qualtrics surveys not to include any personally identifiable information.

3.6 Statistical Analysis

Statistical analysis of the data collected was performed to identify if there

was a significant attitude change in the interest level of the participants when

they completed a two-hour experimental session designed to expose them to

programming a microcontroller using a graphical programming language. The

analysis also inspected any feedback provided by participants in the short

answer questions so that similar studies in the future can include new techniques

52

52

based on this research to measure overall attitudes of the introductory

information technology students.

Purdue’s Department of Statistics’ Statistical Consultation Service aided in

the analysis of the data. Based on their advice, the data collected through this

study was analyzed using a two-sided significance test on a linear mixed model.

The data, including the baseline figures, was entered in RStudio 0.98 for

statistical analysis. Table 3-2 identifies the data to be entered in the statistical

analysis software:

Table 3-2
Descriptive and Inferential Data Collected for Each Participant

Data Type Data Collected
	
 	

Descriptive Data: College Grade Level
Gender

	
 	

Inferential Data: Confidence
 Interest
 Stereotypes
 Usefulness

The enrollment in CNIT 15501 was expected to be 60 students, although

the only 43 participants were enrolled in the course at the time of the experiment.

The researcher used various mixed models to differentiate between the

participants based on college grade level and gender. This enabled the

researcher to determine if participant attitude had changed significantly after the

session compared to the baseline attitude at the beginning of the session.

53

53

3.7 Summary

This chapter described the design of the research, the hypothesis, the

setup of the experiment, the methodology, and the analysis methods used for

scrutinizing the data gathered in this study. It also provided the justification for

the experiment design and methodology utilized in this research.

54

54

CHAPTER 4. PRESENTATION OF THE DATA AND FINDINGS

This chapter includes an explanation of how the gathered data was

prepared for statistical analysis. It introduces and presents the outcomes of both

quantitative and qualitative data gathered during the research.

4.1 Data Preparation and Analysis

As stated in the research hypothesis, this analysis gathered survey data

from a group of freshmen in CNIT 15501 course by providing them an

introductory session of programming a Phoenix Contact NanoLine

microcontroller. The instructional sessions were monitored using Envigilator

software. Based on the analysis of the Envigilator sessions, all participants were

able to successfully use the nanoNavigator software and follow instructions.

Although there were instances where students fell behind while following

instructions being given, in all such situation, the participants demonstrated

sufficient ease of use while working with the software.

For this experiment, the data was gathered in the form of three surveys –

pre-instructional session survey and two post-instructional surveys, latter of

which was conducted four weeks after the instructional session. The participants

created a program for the selected microcontroller using the NanoNavigator

software by following the series of instructions by the researcher during the

55

55

instructional session. The data collected through surveys provided the

participants specific statements about four specific variables that the researcher

aimed to study: confidence, interest, stereotypes, and usefulness. The original

enrollment in the course was estimated at 60 students, while the actual

enrollment was only 43 students. Therefore, the analysis is based on analysis of

the students who participated in the instructional session and completed all three

required surveys. The breakdown of the students who completed all three

surveys follows:

Table 4-1

Demographics of the Participant

Grade Level No. of Participants Gender
 Male Female

Freshmen 24 18 6
Sophomore 6 4 2

Junior 1 1 0
Senior 1 1 0
Total 32 24 8

The data was methodically organized in a simple way based on the

descriptive variables. The categorical data collected through this survey was vast

and needed to be divided into multiple subsets. As this research project aims to

analyze the change in attitudes toward programming among freshmen students,

the data was split into two separate groups who completed all required surveys –

one with only freshmen participants, one with all participants who completed the

surveys. The organization of the data into two separate groups allowed for an

easier analysis. The analysis was performed both with and without taking gender

56

56

into consideration. In addition, the data was scrutinized by comparing student

grade levels. Although the analysis did not discard the data gathered from non-

freshmen students, the conclusions are based on the analysis of freshmen

attitudes toward programming. The researcher did not include past programming

experience of the participants in any of the surveys because students with a prior

course in programming are excused from enrolling in the course. This was

considered to have reduced the chances of participants with substantial

programming taking part in the experiment.

The participants answered 16, four-point Likert-scale statements that

measured their attitudes; this survey was based on work by Munson et al. (2011).

These statements were considered as variables for the analysis. The participants

were asked exactly the same statements in all three surveys to ensure that the

responses were consistent throughout. All statements asked were created in a

paired manner in which one of the statements was positively worded, while the

other question in the pair was negatively worded. Any responses from students

who did not participate in all three surveys were excluded from the analysis. This

gave a sample size of 24, which was used for analyzing all three data points.

Specific values were assigned to the responses by students. The four-

point Likert Scale statements had the following choices with specific values for

analysis.

57

57

Table 4-2
Coded Values Survey Participant Responses

Coded Values for
Positive Statements

Choices for Response Coded Values for
Negative Statements

1 Strongly Agree 4
2 Agree 3
3 Disagree 2
4 Strongly Disagree 1

This coding meant that for statements that were positively worded, lower

values would suggest the participant agreed with the statements, and for

negatively worded statements, higher values suggested an agreement. The

statements that were used to gather responses from the participants were

organized into four separate categories for analysis: confidence, interest,

stereotypes, and usefulness. Appendix E notes the specific statements that

correspond to each of the four categories.

On the day of the instructional session, data was gathered from a pre-

instructional survey and the first post-instructional survey. Four weeks after the

instructional session, data was gathered again during the second post-

instructional session to measure if the attitudes of the participants had changed

further. No treatment was provided during these four weeks. All three datasets

were compared to see if the attitudes revealed any changes.

The goal of the study was to see if the attitudes about programming of the

freshmen participants changed significantly after completion of a 110-minute

instructional session using a visual programming language coupled with

microcontroller technology. A linear mixed model was used to analyze the data.

58

58

This was due to a small sample size, which did not permit using paired t-tests for

the analysis. Using this type of model, the researcher was able to include a

random-effect variable (participants), in addition to fixed-effect variables such as

time and gender. Also, this model enabled the analysis of the data, which was

gathered over a period of time on the same participants. Before selecting a

particular linear model, a Q-Q Plot of the data was analyzed, which suggested a

non-normal distribution. This further solidified the basis for using a mixed linear

model. Figure 4-1 shows the Q-Q Plot for the entire dataset.

Figure 4-1 Q-Q Plot of the Responses

4.2 Test of Significance for the Dataset

For analysis, the data from all three surveys was combined in a single

Microsoft Excel file. This dataset file was loaded into RStudio for further statistical

evaluation. An additional column called Time was added to the dataset to

represent the different points in time when the data was collected, where pre

59

59

instructional survey had value of 1, first post-instructional survey was 2 and

second post-instructional survey was 3. The data for grade level were coded as

follows:

Table 4-3
Coded Value for Participant Grade Level

Grade Level Coded Value
Freshman 1
Sophomore 2
Junior 3
Senior 4

Table 4-4 notes the coded values for gender data.

Table 4-4
Coded Values for Participant Gender

Gender Coded Value
Male 1
Female 2

The linear mixed model used for the analysis is as follows (Fox, 2002):

𝑦!"#$ = 𝜇 + 𝛼! + 𝛽! + 𝛾! + 𝜀!

where

𝛼!,… ,𝛼! are the fixed-effect coefficients, which takes into account the

three separate times that data was collected and is represented by α!!
!!! .

𝛽!,… ,𝛽! are the fixed-effect coefficients, which takes into account the

gender (male and female) data and is represented by 𝛽!!
!!! .

𝛾!,… , 𝛾! are random effect coefficients, supposed to be normally

distributed, represented by 𝛾! ~ 𝑁(0,𝜎!"!).

60

60

𝜀! is the standard error, presumed to be distributed normally and

represented by 𝜀! ~ 𝑁(0,𝜎!), in the observations j in the group of participants k.

After the linear model was constructed, the test for significance was

performed for the overall response using RStudio 0.98. The data gathered from

the pre instructional survey was used as baseline for the analysis and the level of

significance was set at 90% (α = .1) primarily due to the small sample size. The

test was carried out for the hypothesis noted below:

H0 = There is no statistically significant increase in positive attitudes about

programming in students who are exposed to a graphical programming interface

for microcontroller programming.

Ha = There is statistically significant increase in positive attitudes about

programming in students who are exposed to a graphical programming interface

for microcontroller programming.

This can be stated in the mathematical terms as below:

H0: Response0 = Responseα

Hα: Response0 < Responseα

The test for significance was carried out by the researcher while taking

into consideration time and gender for all freshman participants. The results are

noted below.

61

61

Figure 4-2 Changes in Attitude Over the Research Period

The graph above combines changes in attitudes for all four categories

(confidence, interest, stereotype, and usefulness) for all freshmen participants.

Based on this, it is clear that, the attitude changes between the pre and first post-

instructional survey were marginal. Also, the changes from first post-instructional

to the second post-instructional survey were minimal. The findings were

corroborated by the results of the significance test.

Table 4-5
P-Values for Attitude Changes Between Surveys for All Participants

Attitude Change Between Surveys p-Value

Pre and Post 1

0.9951

Pre and Post 2 0.9923
Post 1 and Post 2 0.9997

For all freshmen, the changes between first and second post-instructional

survey are significant, while the changes from pre and first post-instructional

survey were insignificant.

62

62

The following graph shows the average changes in attitudes for males and

females. In the graph “1” implies males, while “2” denotes females.

Figure 4-3 – Attitude Changes Based on Participant Gender

It can be seen that after the pre-instructional session, the average score

for males increased, while the average score for females decreased substantially.

Table 4-6 shows the results for the significance test, in which gender was

included as one of the fixed-effect coefficients.

Table 4-6
Attitude Changes Between Survey Differentiated by Gender

Surveys Average Attitude
Male Female

Pre

1.993

2.104

Post 1 1.979 2.104
Post 2 1.983 2.083

63

63

The researcher also measured the attitude changes in all individual

categories. Following are the results when the mixed linear model was applied to

the categories.

Table 4-7
Average Attitudes By Categories Measured

Attitude Change
Between Surveys

Confidence Interest Stereotypes Usefulness

Pre

2.115

1.833

2.052

2.083

Post 1 2.021 1.781 2.135 2.104
Post 2 2.052 1.854 2.083 2.042

4.3 Equivalence Testing

The p-value can only provide evidence against the null hypothesis. As the

dataset for this research project contains a small sample size, the use of the

equivalence test is warranted to ensure proper conclusions are reached.

Following is the mathematical representation of the equivalence test for this

study:

H0: |µμ! − µμ!| ≥ δ and Hα: µμ! − µμ! < δ

To perform this test, confidence intervals were created for all freshmen

participants differentiated by time. The table below notes both the confidence

interval and associated p-value are noted below.

Table 4-8
Confidence Interval for all Significance Testing

Time Confidence Interval p-value

Pre

(-0.0792, 0.1000)

0.2032
Post 1 (-0.0948, 0.1000) 0.1958
Post 2 (-0.0740,0.1000) 0.2175

64

64

4.4 Qualitative Analysis of the data

In order to understand what the participants in the survey thought of the

importance of programming and their views on flowcharting software, two open-

ended questions were included in the all three surveys. The questions are:

• Describe, in detail, what you can achieve by learning programming in

your academic life.

• Have you learned about flowcharts before? Do you think it can help

you think logically?

Based on the visual inspection of the data, most of the participants

answered these two questions on all three surveys. All responses to these

questions were thoroughly inspected. The researcher found that most of the

responses demonstrated a positive attitude toward programming and

flowcharting. The researcher attempted to use sentiment analysis and perform

test of significance on the data. Sentiment analysis is defined as “the

computational study of people’s opinions, appraisals, attitudes, and emotions

toward entities, individuals, issues, events, topics and their attributes” (Liu &

Zhang, 2012).

The researcher analyzed the data using a Sentiment Analysis tool

developed by Jain (2014). The tool creates a file that contains the average

goodness probability of frequently occurring words also called sentiments.

Additionally, standard deviation of a sentiment is also noted for all words

appearing more than three times in the text of survey responses. Average

65

65

goodness probability of sentiment closer to 1 suggests positive sentiment for a

particular word. Tables 4-9, 4-10, and 4-11 show the results of the analyses for

the pre- and both post-instructional surveys. Table 4-12 shows responses for the

words that appeared on all three surveys to show the progression of sentiment.

Responses for both questions were combined for the results.

Table 4-9
Goodness Probability of Frequent Words in Pre Instructional Survey

Word Count Average Goodness
Probability of Sentiment

Standard
Deviation

Programming 230 0.0233 0.0674
Flowcharts 150 0.0065 0.0196
Process 70 0.0019 0.0031
Charts 60 0.0004 0.0007
Flow 60 0.0004 0.0007
Life 60 0.0007 0.0012
Skills 60 0.0453 0.0915
Computer 50 0.0001 0.0001
Courses 50 0.0012 0.0019
Help 50 0.0009 0.0010

The results for the first post-instructional survey are shown in Table 4-10.

Table 4-10

Goodness Probability of Frequent Words in Post Instructional Survey 1

Word Count Average Goodness
Probability of Sentiment

Standard
Deviation

Programming 150 0.0749 0.2083
Flowcharts 130 0.0209 0.0267
Help 80 0.3139 0.3784
Life 70 0.5691 0.4032
Things 60 0.0156 0.0300
Code 50 0.1255 0.2017
Skill(s) 50 0.6865 0.3538
Process 40 0.1782 0.3007
Way 40 0.0958 0.1010
Computer(s) 60 0.0341 0.0662

66

66

The results for the second post-instructional survey are noted below for

frequently occurring words.

Table 4-11

Goodness Probability of Frequent Words in Post Instructional Survey 2

Word Count Average Goodness
Probability of Sentiment

Standard
Deviation

Programming 170 0.1432 0.3042
Flowcharts 90 0.0157 0.0221
Skills 90 0.5052 0.3503
Life 70 0.6440 0.3764
Problem 70 0.4354 0.3658
Problems 60 0.0470 0.0801
Job 50 0.1454 0.2070
Knowledge 50 0.4225 0.4515
Skill 50 0.6421 0.3330
Code 40 0.0003 0.0004
Computer(s) 30 0.1432 0.3042

The analysis of the three tables 4-9, 4-10, and 4-11, it is clear that few

words occurred frequently in all three surveys.

Table 4-12
Goodness Probability of Repeated Words on All Three Surveys

Word Average
Goodness

Standard
Deviation

Average
Goodness

Standard
Deviation

Average
Goodness

Standard
Deviation

 Pre-session Post-session 1 Post-session 2

Programming 0.0233 0.0674 0.0749 0.2083 0.1432 0.3042
Flowcharts 0.0065 0.0196 0.0209 0.0267 0.0157 0.0221
Skill(s) 0.0453 0.0915 0.6865 0.3538 0.5052 0.3503
Life 0.0007 0.0012 0.5691 0.4032 0.6440 0.3764
Computer(s) 0.0001 0.0001 0.0341 0.0662 0.0225 0.0321

67

67

The five words – computer(s), flowcharts, life, programming, and skill(s) –

that appeared on all three lists, show an overall improved goodness sentiment

after the pre instructional survey. The overall positive sentiment in the common

words can be observed as increasing.

4.5 Summary

This chapter provided detailed information about how the data was

conditioned and the type of analysis performed on both quantitative and

qualitative data, which was collected during the experiment.

During the quantitative analysis of the Liker Scale data, no significance

was found. Analysis of answers to the descriptive questions at the end of surveys

pointed to overall positive attitude among participants about programming.

68

68

CHAPTER 5. CONCLUSIONS, DISCUSSION, AND RECOMMENDATIONS

This thesis described the process used to measure changes in participant

attitudes, in terms of confidence, interest, stereotypes, and usefulness. The

participants were given an instructional session, which utilized microcontroller

programming using flowchart-based visual programming tool. This chapter

presents relevant conclusions and recommendations based on the work

described in the previous chapters.

5.1 Conclusions

Historically, textual-based programming languages have been used to

teach introductory programming courses. As students tend to be visual learners,

these programming languages do not enable them visualize the flow of logic

throughout the program. Graphical programming languages provide a new

approach to teaching students programming, in addition to critical thinking skills.

Flowcharting is one the most basic techniques used to map the logic of a

program. When flowcharting technology is paired with a microcontroller, students

can create a novel application, which they can touch and feel. This research

project augmented the current approach of using visual programming languages

with a microcontroller technology to study if it was possible to improve the

attitude of freshmen college students in programming. The study also

69

69

hypothesized that students’ interest level would improve after providing them a

demonstration of visual programming language and microcontroller technology.

The data analysis measured changes in attitude based on the pre-

instructional survey, post-instructional survey 1, and post-instructional survey 2.

Table 5-1 shows results of the hypothesis testing.

The data does not provide enough evidence to show a significant different

between attitudes throughout the experiment, and, therefore, the results of the

experiment are inclusive.

Table 5-1
Results of Hypothesis Testing

Sessions Hypotheses Testing
Results

Pre- and Post-Instructional Survey 1 H0 Not Rejected

Pre- and Post-Instructional Survey 2 H0 Not Rejected

Post- 1 and Post-Instructional Survey 2 H0 Not Rejected

The results show that there was not a significant difference between the

participant attitudes after the instructional session, which included a

demonstration of Phoenix Contact NanoLine microcontroller. Also, no positive

change in student attitudes between the post instructional survey 1 and post

instructional survey 2 was recorded. As the p-values were quite large to be not

significant, further investigation of the impact of graphical programming

languages with microcontroller is warranted. The hypotheses for the study were

tested for changes between all three surveys.

70

70

The participants in the experiment were students in CNIT 15501. One of

the assumptions for the study states that participants have little to no prior

programing experience. The lack of deep knowledge about programming may

explain the insignificant results from all three surveys. The participants continued

to learn about different programming techniques throughout the course of

experiment during their regular course lectures and labs; they may continue to

form opinions regarding programming throughout the course of the semester. It

can be theorized that the insignificance found between surveys may be due to

changing attitude toward programming concepts.

Also, the results gathered for freshman and non-freshman participants

were very similar; inconclusive. The analysis also pointed to the conclusion that

the gender did not impact overall attitudes of the participants. No statistical

significance was found across all three surveys for the four categories stated

previously in Chapter 3 and Chapter 4.

5.2 Implications of the Study

The research project investigated the idea of using cyber-physical

systems for creating a positive attitude about programming and showed that

overall attitude toward programming may be improved by providing a subjects a

prolonged exposure to graphical programming technology. This is the very first

study done at Purdue University, in which the participants utilized a flowchart-

based programming language to program a Phoenix Contact NanoLine

microcontroller. The study proposed a different way to introduce programming in

71

71

a simple, easy to understand but methodical way to students before teaching

them textual-based programming languages. This project also offered a notion,

which can be further enhanced into curriculum courses to promote enhanced

student learning of programming languages throughout their early college

education.

A study like this, which can find significance difference in student attitude,

may have wide-ranging consequences for researchers in technology-education

or engineering-education who are tasked with improving learning outcomes of

programming courses. The project and methodology used to accomplish this

shows a promise to improve student attitudes in long term.

5.3 Challenges of using Graphical Programming Languages and Student

Comprehension

Although using graphical programing languages may, theoretically,

improve student attitude toward programming, it is important to keep in mind

challenges related to such study.

1. This approach assumes that most of the students are visual learners. If

the students do not fall in this category, using graphical programming

languages in conjunction with microcontroller may not change their

interest in programming and, in turn, attitudes.

2. If students are taught graphical programming language in an introductory

course, they may struggle to transition to textual-based object oriented

72

72

programming languages, which, today, are exclusively used for application

development.

These issues can be potential threats to the efficacy of the advocated

approach to improve student attitudes about programming. Nonetheless, the

method proposed in this research may be further investigated to mitigate or

minimize the challenges.

5.4 Future Work and Recommendations

This was a study designed to study changes in attitude toward

programming by providing participants an instructional session, which

incorporated flowchart-based programming language and microcontroller

technology. There are multiple ways to further this study to investigate attitude

changes.

1. Consideration must be given to the fact that the experiment was

conducted on students who were already in a programming class. It is

possible to students were interested in programming even before the

experiment. Therefore, to improve their interest and measure such

change, a future study, similar to one described in this thesis, may use

participants from General Studies or undecided majors. These students

can be taught the fundamentals of critical thinking and programing through

a newly designed course, which uses microcontroller technology coupled

with flowcharting software.

73

73

2. The sample size for this study was quite small. Increasing sample size

may yield more significant data related to how students perceive the

instructional session.

3. It is possible to study two groups of students, in which one group of

students are taught graphical programming languages, while the other

group are taught traditional textual programming languages. Their

attitudes can be measured after completing the programming curricula.

4. A new course can be designed, which teaches students graphical

programming language. A follow-on course can be taught using a textual

programming language. The overall attitude of the students can be

assessed at the conclusion of the introductory graphical language course

and at the end of the textual language course.

5. Only one instructional session was delivered to the students in this study.

In future, multiple sessions may be delivered to students and student

attitudes can be measured after each session.

6. When measuring attitudes of the students, more statements may be

included in the Likert Scale-based survey. More survey questions may

allow researchers to gather more data points about each category,

providing greater insight into student attitude.

7. A five or seven point Likert scale survey may be used to capture attitude

data. This may allow for increased granular information about specific

attitude characteristics of the participants.	

79

79

LIST OF REFERENCES

74

74

LIST OF REFERENCES

Aguilar-Savén, R. S. (2004). Business process modelling: Review and framework.

International Journal of Production Economics, 90(2), 129–149.

doi:10.1016/S0925-5273(03)00102-6

Anderson, M., McKenzie, A., Wellman, B., Brown, M., & Vrbsky, S. (2011).

Affecting attitudes in first-year computer science using syntaxfree robotics

programming. ACM Inroads, 2(3), 51–57. doi:10.1145/2003616.2003635

Baser, M. (2013). Attitude, gender and achievement in computer programming.

Online Submission, 14(2), 248–255.

Bevan, J., Werner, L., & McDowell, C. (2002). Guidelines for the use of pair

programming in a freshman programming class. In 15th Conference on

Software Engineering Education and Training, 2002. (CSEE T 2002).

Proceedings (pp. 100–107). doi:10.1109/CSEE.2002.995202

Bucks, G., & Oakes, W. (2010). Integration of graphical programming into a first-

year engineering course. In American Society for Engineering Education.

American Society for Engineering Education.

Burton, P. J., & Bruhn, R. E. (2003). Teaching programming in the OOP era.

SIGCSE Bull., 35(2), 111–114. doi:10.1145/782941.782993

Carlisle, M. C., Wilson, T. A., Humphries, J. W., & Hadfield, S. M. (2005).

RAPTOR: A visual programming environment for teaching algorithmic

problem solving. In Proceedings of the 36th SIGCSE Technical

Symposium on Computer Science Education (pp. 176–180). New York,

NY, USA: ACM. doi:10.1145/1047344.1047411

75

75

Chen, S. (n.d.). Classroom tools for computer science and mathematics.

Retrieved November 20, 2014, from

http://www.edutoolresearch.com/index.html

Chen, S., & Morris, S. (2005). Iconic programming for flowcharts, Java, Turing,

etc. In Proceedings of the 10th Annual SIGCSE Conference on Innovation

and Technology in Computer Science Education (pp. 104–107). New York,

NY, USA: ACM. doi:10.1145/1067445.1067477

Chun, S.-J., & Ryoo, J. (2010). Development and application of a web-based

programming learning system with LED display kits. In Proceedings of the

41st ACM Technical Symposium on Computer Science Education (pp.

310–314). New York, NY, USA: ACM. doi:10.1145/1734263.1734369

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to

algorithms (3rd ed.). Cambridge, Mass: MIT Press.

Crews, T., & Butterfield, J. (2002). Using technology to bring abstract concepts

into focus: A programming case study. Journal of Computing in Higher

Education, 13(2), 25–50. doi:10.1007/BF02940964

Dabroom, A., Refie, W. M., & Matmti, R. (2013). Microcontroller-based learning

kit: Course design using constructive alignment principles. In 2013 21st

Mediterranean Conference on Control Automation (MED) (pp. 558–566).

doi:10.1109/MED.2013.6608777

Daintith, J. (2004). While programming language. A Dictionary of Computing

(2004th ed.). Encyclopedia.com. Retrieved from

http://www.encyclopedia.com/doc/1O11-whileprogramminglanguage.html

De Jesus, E. (2011). Teaching computer programming with structured

programming language and flowcharts. In Proceedings of the 2011

Workshop on Open Source and Design of Communication (pp. 45–48).

New York, NY, USA: ACM. doi:10.1145/2016716.2016729

DiNitto, S.A., J. (1988). Future directions in programming languages. In ,

International Conference on Computer Languages, 1988. Proceedings (pp.

169–176). doi:10.1109/ICCL.1988.13061

76

76

Fischer, G., Giaccardi, E., Ye, Y., Sutcliffe, A. G., & Mehandjiev, N. (2004). Meta-

design: A manifesto for end-user development. Commun. ACM, 47(9), 33–

37. doi:10.1145/1015864.1015884

Forneris, S. G., & Peden-McAlpine, C. (2007). Evaluation of a reflective learning

intervention to improve critical thinking in novice nurses. Journal of

Advanced Nursing, 57(4), 410–421. doi:10.1111/j.1365-

2648.2007.04120.x

Fox, J. (2002). Linear mixed models appendix to an R and S-PLUS companion to

applied regression. Retrieved from http://cran.r-

project.org/doc/contrib/Fox-Companion/appendix-mixed-models.pdf

Garrett, J., & Walker, T. (2008). Student attitudes towards the use of graphical

programming languages. In Proceedings of 2008 ASEE Southeastern

Section. Memphis, Tennessee.

Goadrich, M. (2014). Incorporating tangible computing devices into CS1. J.

Comput. Sci. Coll., 29(5), 23–31.

Golubev, M., Istria, M., & Irawan, H. (2014, November 17). What is GMF  ?

Retrieved from https://wiki.eclipse.org/Graphical_Modeling_Framework

Gosling, J., Steele, G., Joy, B., Bracha, G., & Buckley, A. (2013, February 28).

Chapter 12. Execution. Retrieved April 6, 2014, from

http://docs.oracle.com/javase/specs/jls/se7/html/jls-12.html

Gross, P., & Powers, K. (2005). Evaluating assessments of novice programming

environments (pp. 99–110). ACM Press. doi:10.1145/1089786.1089796

Hils, D. D. (1992). Visual languages and computing survey: Data flow visual

programming languages. Journal of Visual Languages & Computing, 3(1),

69–101. doi:10.1016/1045-926X(92)90034-J

Hundhausen, C. D., & Brown, J. L. (2007). What You See Is What You Code: A

“live” algorithm development and visualization environment for novice

learners. Journal of Visual Languages & Computing, 18(1), 22–47.

doi:10.1016/j.jvlc.2006.03.002

77

77

Hwang, C.-S., Su, Y.-C., & Tseng, K.-C. (2010). Effects of computer game-based

instruction on students’ programming achievement in Taiwan. In 2010

International Conference on Computational Aspects of Social Networks

(CASoN) (pp. 233–236). doi:10.1109/CASoN.2010.60

IEEE Standard Glossary of Computer Hardware Terminology. (1995). IEEE Std

610.10-1994, i–. doi:10.1109/IEEESTD.1995.79522

IEEE Standard Glossary of Software Engineering Terminology. (1990). IEEE Std

610.12-1990, 1–84. doi:10.1109/IEEESTD.1990.101064

Jain, A. (2014, May). Analyzing responses to open ended questions for SPIRIT

using aspect oriented sentiment analysis. Purdue University, West

Lafayette.

Kato, Y. (2010). Splish: A visual programming environment for Arduino to

accelerate physical computing experiences (pp. 3–10). IEEE.

doi:10.1109/C5.2010.20

Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming: A

taxonomy of programming environments and languages for novice

programmers. ACM Comput. Surv., 37(2), 83–137.

doi:10.1145/1089733.1089734

Kenefick, S. (2011, December 19). Integrated development environment.

Retrieved April 6, 2014, from

https://www.gartner.com/doc/1879714/integrated-development-

environment

Liu, B., & Zhang, L. (2012). A survey of opinion mining and sentiment analysis. In

C. C. Aggarwal & C. Zhai (Eds.), Mining Text Data (pp. 415–463).

Springer US. Retrieved from http://link.springer.com/chapter/10.1007/978-

1-4614-3223-4_13

logic. (2014). Oxford Dictionaries. Oxford University Press. Retrieved from

http://www.oxforddictionaries.com/us/definition/american_english/logic

78

78

Lucanin, D., & Fabek, I. (2011). A visual programming language for drawing and

executing flowcharts. In 2011 Proceedings of the 34th International

Convention MIPRO (pp. 1679–1684).

Lutes, K. (2013). Envigilator. West Lafayette: DelMar Software Development,

LLC. Retrieved from http://www.envigilator.com/

Malan, D. J., & Leitner, H. H. (2007). Scratch for budding computer scientists.

ACM SIGCSE Bulletin, 39(1), 223–227.

Mateas, M. (2005). Procedural literacy: Educating the new media practitioner. On

the Horizon, 13(2), 101–111. doi:10.1108/10748120510608133

Munson, A., Moskal, B., Harriger, A., Lauriski-Karriker, T., & Heersink, D. (2011).

Computing at the high school level: Changing what teachers and students

know and believe. Computers & Education, 57(2), 1836–1849.

doi:10.1016/j.compedu.2011.03.005

Nikishkov, G. P., & Kanda, H. (1999). The development of a Java engineering

application for higher-order asymptotic analysis of crack-tip fields.

Advances in Engineering Software, 30(7), 469–477. doi:10.1016/S0965-

9978(98)00131-8

Park, J. (2003). Practical embedded controllers: Design and troubleshooting with

the Motorolla [i.e. Motorola] 68HC11. Oxford  ; Burlington, MA: Newnes.

Quick and easy programming. (2014). Retrieved from

https://www.phoenixcontact.com/online/portal/us?1dmy&urile=wcm:path:/u

sen/web/main/products/subcategory_pages/programming_p-19-

05/af3bf5fe-db28-41f2-bfe8-f7f9e8ee93f1/af3bf5fe-db28-41f2-bfe8-

f7f9e8ee93f1

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E.,

Brennan, K., … Kafai, Y. (2009). Scratch: Programming for all. Commun.

ACM, 52(11), 60–67. doi:10.1145/1592761.1592779

Rieber, L. P. (1995). A historical review of visualization in human cognition.

Educational Technology Research and Development, 43(1), 45–56.

79

79

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching

programming: A review and discussion. Computer Science Education,

13(2), 137–172. doi:10.1076/csed.13.2.137.14200

Rogers, J. R., & McVay, R. C. (2012). Graphical microcontroller programming. In

2012 IEEE International Conference on Technologies for Practical Robot

Applications (TePRA) (pp. 48–52). doi:10.1109/TePRA.2012.6215653

Santos, Á., Gomes, A., & Mendes, A. J. (2010). Integrating new technologies and

existing tools to promote programming learning. Algorithms, 3(2), 183–196.

doi:10.3390/a3020183

Shackelford, R. L., & LeBlanc, R.J., J. (1997). Introducing computer science

fundamentals before programming. In Frontiers in Education Conference,

1997. 27th Annual Conference. Teaching and Learning in an Era of

Change. Proceedings. (Vol. 1, pp. 285–289 vol.1).

doi:10.1109/FIE.1997.644858

Shashaani, L., & Khalili, A. (2001). Gender and computers: Similarities and

differences in Iranian college students’ attitudes toward computers.

Computers & Education, 37(3–4), 363–375. doi:10.1016/S0360-

1315(01)00059-8

Smith, B. J., & Delugach, H. S. (2010). Work in progress - Using a visual

programming language to bridge the cognitive gap between a novice’s

mental model and program code. In 2010 IEEE Frontiers in Education

Conference (FIE) (pp. F3G–1–F3G–3). doi:10.1109/FIE.2010.5673502

What is Alice? (2014). Retrieved from

http://www.alice.org/index.php?page=what_is_alice/what_is_alice

What is Arduino? (2014). Retrieved from http://arduino.cc/en/Guide/Introduction

What is LabVIEW? (2014). Retrieved from http://www.ni.com/labview/

White, G., & Sivitanides, M. (2005). Cognitive differences between procedural

programming and object oriented programming. Information Technology

and Management, 6(4), 333–350. doi:10.1007/s10799-005-3899-2

80

80

Wiedenbeck, S., Ramalingam, V., Sarasamma, S., & Corritore, C. (1999). A

comparison of the comprehension of object-oriented and procedural

programs by novice programmers. Interacting with Computers, 11(3),

255–282.

Winslow, L. E. (1996). Programming pedagogy - Psychological overview.

SIGCSE Bull., 28(3), 17–22. doi:10.1145/234867.234872

68

68

APPENDICES

81

81

Appendix A: Approval to Use Attitude Survey

82

82

Appendix B: Instructor Approval

83

83

Appendix C: IRB Approval for Research

84

84

Appendix D: Participant Pre- and Post-Instructional Surveys

Participant Attitude Survey

Note: This survey will be administered online using Qualtrics Survey Software.
The following questions will be used to create this online survey. The two
questions regarding “Demographics” and one question regarding “Prior
Programming Experience” will not appear on post-instruction surveys.

Instructions:

1. Type in your assigned 10-digit unique ID in the box labeled Participant
Identification Number.

2. There are 16 multiple-choice survey questions and 2 short-answer
questions. For each multiple-choice question, please select the one best
alternative in your opinion.

3. This survey is simply asking your opinion about a number of things
related to programming both before and after the instructional session.
There are no wrong or right answers.

4. For questions 1-16, please select from the choices below:
• Strongly Agree
• Agree
• Disagree
• Strongly Disagree

5. There are 2 short-answer questions at the end of the survey. Use the
boxes provided to type your answers. You can write answers in your
own words in the box given for the open-ended questions. While
answering these questions, do not include your name or PUID, or any
other personally identifiable information.

6. When you are done, click on Submit to finish your survey.

Demographics:

• What is your college grade level?
o Freshman
o Sophomore
o Junior
o Senior

85

85

• Are you a male or female?
o Male
o Female

Survey Questions:

Table D-1
Pre- and Post-Instructional Survey Questions

No. Question Strongly
Agree

Agree Disagree Strongly
Disagree

1. I am confident with
learning programming
concepts.

2. I think programming is
interesting.

3. A student who performs
well in programming
courses will probably not
have a life outside of
computers.

4. I hope that my future
career will require the use
of programming concepts.

5. I do not think that I will take
additional programming
courses.

6. I am not interested in
learning programming
concepts.

7. To do well in programming,
a student must spend most
of his/her time at a
computer.

8. Knowledge of
programming will allow me
to secure a good job.

9. I would not take additional
programming courses if I
were given the opportunity.

86

86

Table D-1 Continued

10. A student who performs

well in programming
courses is likely to have a
life outside of computers.

11. I think programming is
boring.

12. I hope that I can find a
career that does not
require the use of
programming concepts.

13. I have little self-confidence
when it comes to
programming
courses/activities.

14. I want to learn
programming concepts.

15. Doing well in programming
does not require a student
to spend most of his/her
time at a computer.

16. Knowledge of
programming skills will not
help me secure a good job.

Short Answer Questions:

1. Describe, in detail, what you can achieve by learning programming in your
academic life.

2. Have you learned about flowcharts before? Do you think it can help you
think logically?

87

87

Appendix E: Attitude Category and Related Questions

Confidence

1. I am confident with learning programming concepts.
2. I have little self-confidence when it comes to programming

courses/activities.
3. I do not think that I will take additional programming courses.
4. I would not take additional programming courses if I were given the

opportunity.
Interest

5. I think programming is interesting.
6. I am not interested in learning programming concepts.
7. I think programming is boring.
8. I want to learn programming concepts.

Stereotypes
9. A student who performs well in programming courses will probably not

have a life outside of computers.
10. To do well in programming, a student must spend most of his/her time at a

computer.
11. A student who performs well in programming courses is likely to have a

life outside of computers.
12. Doing well in programming does not require a student to spend most of

his/her time at a computer.
Usefulness

13. I hope that my future career will require the use of programming concepts.
14. Knowledge of programming will allow me to secure a good job.
15. I hope that I can find a career that does not require the use of

programming concepts.
16. Knowledge of programming skills will not help me secure a good job

	Purdue University
	Purdue e-Pubs
	Fall 2014

	Impact Of A Visual Programming Experience On The Attitude Toward Programming Of Introductory Undergraduate Students
	Saurabh Godbole
	Recommended Citation

	Completed - Form_30
	1 - Saurabh Completed Thesis

