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ABSTRACT 
 
 
 
Duffy, Patrick James M.S., Purdue University, December 2014. Vegetation and 
soil characteristics of pine plantations and naturally regenerated hardwood 
forests on the Hoosier National Forest. Major Professor: Michael Jenkins.  

 
 
 
During the 1930s there was widespread erosion on farmland and subsequent 

land abandonment. As a result, Pinus strobus L. (white pine), P. resinosa Aiton 

(red pine), and P. echinata Mill. (shortleaf pine) were planted in the Midwest to 

prevent erosion and rehabilitate sites. These species were selected due to their 

wide availability at the time. Currently, it is the goal of the U.S. Forest Service to 

provide a more natural and sustainable landscape, in part by removing these 

non-native Pinus stands and by replacing them with native hardwood species. 

The ultimate success of hardwood restoration depends, in part, on the lasting 

influence of Pinus stands on the soil where they were planted. This is worthy of 

concern because species of the family Pinaceae have a noted impact on nutrient 

availability, organic matter cycling, soil acidity, and soil buffering capacity 

compared to mesophytic hardwood species.  

This study investigates the impact that Pinus plantations have had on soil and 

vegetation communities compared to hardwood stands. I sampled old-field sites 

on mesic ridges and bottoms in the Hoosier National Forest that were planted to 

P. echinata and P. strobus, or naturally regenerated to mixed hardwood species. 

I measured overstory and understory vegetation, including saplings, seedlings
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and herbaceous-layer species. I measured environmental variables including 

soil, litter depth, and canopy openness. Soils were sampled and analyzed for 

macronutrients, micronutrients, pH, organic matter, exchange capacity, and Al. I 

used Non-metric multidimensional scaling (NMS) ordination and two-way ANOVA 

with Tukey multiple comparisons post hoc tests (α = 0.05) to statistically analyze 

data.Species composition under Pinus stands was distinctly different from that of 

hardwood stands. Pinus stands had lower concentrations of organic matter (OM; 

-21%), total carbon (TC; -29%), total nitrogen (TN; -30%), manganese (Mn;         

-37%), calcium (Ca; -24%), Zinc (Zn; -13%), and boron (B; -24%). Pinus stands 

had 2-5 times greater litter depth and 17% greater concentrations of Al compared 

to naturally regenerated hardwoods. As a result, Pinus stands displayed lower 

herbaceous-layer cover, species richness, and diversity. Hardwood stands 

contained a greater number of plant functional groups and had greater cover of 

graminoids, perennials, invasive species, and other mesophytic woody species 

including Acer saccharum Marshall (sugar maple), Lindera benzoin L. 

(spicebush) and Cornus florida L. (flowering dogwood). Herbaceous functional 

groups were more dominant on bottoms, while seedlings and saplings were more 

dominant on ridges. Ridge hardwood stands contained more mesophytic woody 

species, whereas ridge P. echinata stands contained a greater density of 

understory Quercus spp. and Fagus grandifolia Ehrh. (American beech). 

Soil fertility proved to be a driving factor in understory communities in my study. 

Infertile soil with deep litter hosted lower plant cover, but a greater density of 

Quercus spp., whereas more nutrient rich soils hosted mesophytic species. 

Bottomland soil was better buffered, allowing Acer spp. to ascend to the 

overstory with Pinus. The result was that, in bottoms, Pinus did not have as large 

an impact on soil or vegetation communities, resulting in greater similarity to 

hardwood stands.
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CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW 
 
 
 

1.1 Setting and Historical Context 

Land cover in Indiana was once dominated by hardwood forest. Two glacial 

events (Illinoian and Wisconsin) defined most of the landscape of northern 

Indiana, leaving relatively flat topography and productive soils derived from 

glacial parent material (Welch et al. 2001). In southern Indiana, glacial melt water 

formed rivers and carved valleys within the sedimentary bedrock, resulting in 

largely bedrock-derived soils. In sum, Indiana is generally comprised of the 

northern Norman Upland and southern Crawford Upland subsections, which are 

divided by the Mitchel Plain (Homoya et al. 1984). The Norman Upland has 

narrow ridges and steep valleys, whereas the Crawford Upland contains broad 

ridges and valleys, which provide suitable sites for agriculture and contain caves, 

springs, and mineral deposits which became economically important around 

1818 (Sieber and Munson 1992). Both subsections were divided into four 

management units that comprise the Hoosier National Forest. The Norman 

Upland contains the Pleasant Run Unit, while the larger Crawford Upland 

contains the Lost River Unit, Patoka River Unit, and the Tell City Unit.  

With human occupation, anthropogenic disturbance shaped the structure and 

composition of forest communities. Evidence of Native American tribes has been 

dated to well over 12,000 years before present, beginning with nomadic hunters 

and gatherers. Through time, Native Americans altered the landscape through 

cultivation and the use of fires for hunting, berry production, land clearing for 

agriculture, and 
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for the creation of fire breaks (William 2000; Stewart 2002; Johnson et al. 2009). 

European settlers later cleared land for the production of corn and beans, and 

later cash crops such as tobacco, as well as for building materials and fuel. The 

severity of this land alteration increased as small family farms spread across the 

landscape (Sieber and Munson 1992).  

As the population grew, the demand for wood products increased, and most 

forests were cleared by the early 1900s (Carman 2013). This was followed by 

unsustainable farming practices, resulting in severely eroded soil, and the 

bankruptcy of property owners, many of whom abandoned their land during the 

Great Depression. With this increase in available land, the Week’s Act of 1911 

and its expansion: the Clarke-McNary Act of 1924 became influential in shaping 

national forest property. The Adolph Leopold land surveys of 1931 documented 

land degradation (Sieber and Munson 1992), ultimately resulting in the purchase 

of largely post agricultural lands, which became the Hoosier National Forest 

(HNF) in 1951 (Jenkins and Parker 2001). 

During the 1930s, the Civilian Conservation Corps (CCC) and the Works 

Progress Administration (WPA) started planting Pinus species in many areas of 

degraded and abandoned farmland across much of the United States (Parker 

and Ruffner 2004). The most commonly planted species in Indiana were Pinus 

strobus L. (white pine), P. resinosa Aiton (red pine), and P. echinata Mill. 

(shortleaf pine; Otis 1986; Sieber and Munson 1992), due to their wide 

availability as nursery stock (Dumroese et al. 2005). This planting strategy has 

continued into the 1970s, as is evidenced by the fact that Pinus stands in the 

HNF post date the CCC and WPA. At greater than 40 years old, most of these 

stands are available for harvest. However, the predominance of hardwood saw 

mills in the Midwest reflects a lack of market demand for the estimated 58,107 

hectares of Pinus in Indiana, Ohio, and Illinois (USDA Forest Service 2013). Net 

present value, which is the sum potential monetary gain over a given time period 

discounted to the present, could be improved if native hardwoods were grown 
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instead, in order to reflect market demands. Furthermore, without direct 

management these stands have the potential to succeed to dominance by 

currently low value species such as Rosa multiflora Thunb. (multiflora rose), 

Fraxinus spp. L. (ash), Acer rubrum L. (red maple), and Acer negundo L. 

(boxelder). Higher value species such as Quercus spp. (oaks) and Juglans spp. 

L. (walnut) can provide greater economic quality to these forests. Ecological 

quality is being considered in conversion as well.  

Ecological quality, in terms of species richness and diversity, spatial 

heterogeneity, ecological resilience, and functional space, can be reduced in 

conifer monocultures. There is evidence that planted conifer monocultures have 

reduced vertical and horizontal heterogeneity compared to natural growth. 

Habitat heterogeneity is a prime determiner of functional diversity as well 

(Lindenmayer and Hobbs 2004). As a consequence, high quality food sources 

and shelter may be limited. Therefore, lower faunal diversity is expected in 

conifer plantations (Lindenmayer and Hobbs 2004; McGrath et al. 2004; Bielecki 

et al. 2006; Oxbrough et al. 2012; Paritsis and Aizen 2008). As species differ in 

their response to various abiotic risks and pathogens, stands with greater 

numbers of species spread risk, and as one species may die out through insect 

pests, fungal pathogens, wind, or fire, more resistant species may fill in gaps, 

thereby maintaining forest structure. Therefore, mixed stands are more resistant 

to disturbance and are more resilient afterward (Jactel et al. 2009). Non-native 

conifer monocultures are generally more susceptible to risk from insect 

pathogens (Jactel and Brockerhoff 2007), as mixed stands of genetically distinct 

individuals spread the risk from herbivory by creating a mosaic of host and non-

host trees, where the distance between host trees acts as a buffer from infection. 

This trend is particularly notable for specialist pests (Jactel and Brockerhoff 

2007). Many conifers are also at greater risk for wind damage, partly because 

they keep their leaves in winter when most storm damage occurs (Schütz et al. 

2006). In addition, conifer species often contain higher concentrations of resins 

and oils in needles and bark, and are consequently more flammable. This 
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increases the likelihood of fire, as well as fire intensity, and thus the likelihood of 

damage and tree mortality. Thus, Pinus monocultures are generally at a greater 

risk to fire damage (Gonzalez et al. 2006). Lastly, in a meta-analysis, Piotto 

(2008) found that stands with a number of dominant overstory species produce 

greater diameter growth over monocultures, improving net present value. Thus, 

conversion to mixed hardwood stands may decrease risk, increase spatial 

heterogeneity and functional groups, increase biodiversity, improve stand value, 

and generally improve ecological value (Lindenmayer and Hobbs 2004). 

Currently, it is the goal of the U.S. Forest Service to provide a more natural and 

sustainable landscape, in part by removing these non-native Pinus stands and by 

replacing them with mixed hardwood species. The ultimate success of restoration 

efforts depends, in part, on the lasting influence of Pinus stands on the soil where 

they were planted. 

 

1.2 Impacts of Agriculture on Soil 

Through tillage, soil organic matter (SOM) aggregates, mineral aggregates and 

roots are disturbed and displaced (Six et al. 1999). This comes partly from the 

physical perturbation of the soil, and partly from erosion of both SOM and small 

particles when fields are dormant (McLauchlan 2006). Decomposition requires 

aeration, so the rate of SOM loss is highly correlated with the concentration of 

O2. Since O2 diffuses into soil slowly, tillage increases the rate of decomposition 

of organic matter (Six et al. 1999). Humus decomposes into a variety of 

compound types including enzymes, nutrients, and organic acids. Organic acids 

play a role in pH, complexation or chelation, and the release of nutrients into the 

soil (Sposito 2008). For example, oxalic acid, HOOC-COOH, dissociates at 

varying pH to yield one or two moles of H+ per liter (-OOC-COOH or -OOC-COO-

), allowing complexation or chelation at one or two sites per molecule, 

respectively. In doing so, it may complex Fe3+, Al3+, Mg2+, and other metals while 

simultaneously lowering soil pH. Similarly, humic and fulvic acids from humus 
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dissociate in solution at varying levels of pH, releasing H+ and balancing their 

charge through complexation. In addition, organic matter structure is highly 

variable and largely amorphous and contains varying carboxylic and phenolic 

groups. These groups dissociate H+ to produce negatively charged, hydrophilic 

sites to bind hydrophilic compounds like nutrient cations, while also containing 

lipophilic sites to bind hydrophobic compounds. For this reason, humus binds a 

large proportion of soil nutrients, from 1 to 9 molc kg-1 whereas average mineral 

soil in a typical Alfisol contains 0.15 molc kg-1. These amorphous molecules form 

colloidal structures, which are non-crystalline aggregations, which aid soil 

nutrient retention (Sposito 2008). Tillage breaks aggregates apart, allowing for 

the disruption and loss of SOM (Six et al. 1999).  

The principal factors controlling soil acidity are the quantity of acids present, the 

strength of acids, and the degree of dissociation of acids (Binkley et al. 1989). 

The presence of acids are driven by CO2 (g) input, Acid deposition of S and N 

sources from fertilizers and acid rain (Helyar and Porter 1989; Sposito 2008), 

humus dissociation and decomposition as discussed above, proton biocycling 

principally in the rhizosphere, and reactions with Al and Fe hydroxyl groups in 

mineral soil (Sposito 2008). Thus in addition to tillage altering humus 

decomposition, ammonium fertilizers are important in increasing acidification 

(Tarkalson et al. 2006; Helyar and Porter 1989).  

As soil acidifies, the concentration of protons is great enough to remove large 

quantities of cations, allowing eluviation from surface soil. These nutrient cations 

are released from the surface of clay minerals, in the interlayers of clay minerals, 

and on the broken edges of minerals. The rate at which inter-layer minerals 

desorb in the presence of H+ at low pH is complex, and directly related to their 

hydrolysis constant and enthalpy of hydration. The hydrolysis constant describes 

how likely an ion is to incite hydrolysis, which is the breaking apart of water, 

usually resulting in the complexation of that metal with OH-. The enthalpy of 

hydration describes the amount of energy necessary for that metal to bind with 
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water, and so the greater the absolute value, the less likely that metal is to bind 

with water. The practical significance is that exchangeable cations between clay 

minerals with high enthalpies of hydration will hold the structure of that mineral, a 

good example of which being calcium. This is also partly because Ca has a small 

hydrated radius and keeps clay interlayers from expanding (Sposito 2008). At low 

pH, proton attack occurs, and cations which occupy the interlayer may be 

replaced by H+, which compromises the clay structure, and at the same time 

attacks clay aggregates, dispersing clays into smaller particle sizes and 

effectively reducing the presence of clay in the surface soil over time (Sposito 

2008).  

Al and Si are found primarily in the crystal lattices of phyllosilicate minerals (clay 

minerals), and through isomorphic substitution, smaller concentrations of Mg, 

and Fe are held in the structure of many phyllosilicates. Minerals dissolve at low 

pH, releasing these species into solution. As Fe and Al are released from 

crystalline mineral structures, the species released depend on pH. For Al, the 

minimum amount of dissolution occurs around pH five. Below that, Al(III) is the 

principal species released, and Al(OH)2+, Al(OH)2+, and Al(OH)3 become more 

dominant in that order with increasing pH (Sposito 2008). The majority of Al-

toxicity comes from the adsorption of Al3+(aq) to root sites. In addition, as Al 

incites hydrolysis and binds with hydroxyl groups, it releases H+, which is why Al 

plays a strong role in soil acidification, is considered an acid cation, and is of 

concern to plant health at lower soil pH (Wright 1989; Sposito 2008). 

The result is that with tillage and decreased pH, clay and organic aggregates are 

disturbed and can be displaced, nutrient cations can be released and leached, Al 

can be released from clays, and the resulting surface soil can have larger 

average grain size.  
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Therefore, at low pH nutrient availability is diminished and soil texture may 

increase, and because most of the water holding capacity and cation exchange 

capacity in soil comes from humus and phyllosilicates, nutrient holding capacity 

and moisture retention can be reduced (Helyar and Porter 1989).  

Tillage also affects soil carbon, and soil carbon is indicative of soil health (Kasel 

and Bennett 2007). Soil carbon includes humus, which provides a source of 

nutrients and serves as a component of soil structure. Soil carbon includes 

carboxyl groups, which provide adsorption sites and microbial substrate, the 

latter being necessary to sustain microbial populations. Soil carbon includes 

enzymes and amino acids, which are directly used to sustain life. Lastly, soil 

carbon includes earthworms and other soil fauna that affect porosity, soil 

permeability, and decomposition (Kasel and Bennett 2007; Karlen et al. 1994).  

Tillage allows soil organic carbon (SOC) to be exposed to a greater oxygen 

concentration, allowing for accelerated oxidation and resulting in increased 

decomposition and loss of soil organic matter. SOC is also lost through erosion 

(McLauchlan 2006). Diminished SOC corresponds to diminished substrate for 

microorganisms as well, further hindering microbial capacity. Soil microbes are 

instrumental to soil function through nitrogen fixation, methane oxidation, and 

decomposition (Borken et al. 2003; Kasel and Bennett 2007). Therefore, 

diminished SOC is analogous to diminished soil health (Kasel and Bennett 2007). 

Intensive agriculture also causes the loss of available nitrogen (N) and 

phosphorous (P) through increased decomposition, increased erosion, 

decreased plant input rates as plants are harvested, and increased uptake of P 

by leguminous plants (McLauchlan 2006). 
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The severity of agricultural soil degradation in the Midwest was exacerbated 

during the Dust Bowl Era by non-fallow farming practices, the effects of which 

were most severe in drought years (Hurt 1981). Auten (1945) and Billings (1938) 

suggested that within decades of planting Pinus on old-field sites, soil quality, 

aeration and growing capacity may improve. Billings (1938) shows that over the 

first 12 years after planting P. echinata on an old-field Piedmont soil, a prevalent, 

nutrient-poor tillage layer dissipated to yield a thicker A horizon, likely due to litter 

build up and root growth. Over time, the various O, A, and B horizons became 

thicker, and nutrient availability increased. Additionally, species composition 

shifted from shallow rooting herbaceous species to more deeply rooting 

hardwood species over time. The success of Pinus on these poor quality sites 

likely results from their tolerance to nutrient-poor conditions. However, literature 

suggests that the long-term impact of Pinus on these sites may not be beneficial 

for the regeneration of native hardwoods. 

 

1.3 Impacts of Conifers on Soil 

The long-term impact of conifers on soil frequently involves nutrient loss and soil 

acidification through litter and root inputs. These impacts are the result of slower 

decomposition and litter buildup on the forest floor (Berg and McClaugherty 

2003; Stendahl et al. 2010), differing concentrations of nutrients and chemical 

compounds within litter, and lower soil pH from litter and ectomycorrhizal 

leachates (Hizal et al. 2013; Berg and McClaugherty 2003; Yin et al. 2014).  

The biomolecules released from litter vary by species, and litter from Pinus spp. 

contains low concentrations of labile organic substances and nutrients, such as 

sugars, water soluble nutrients and phenolic acids, but contains larger 

proportions of large molecular weight compounds, such as cellulose, 

hemicellulose and lignin. Labile compounds are readily lost from litter, whereas 

high molecular weight compounds decompose slowly. As they decompose, they 
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release intermediary, labile compounds. Lignin releases phenolic acids, which 

can be allelopathic. As these compounds decompose, they leave increasingly 

recalcitrant fractions, and as a result, late stage decomposition features high 

lignin and N concentrations. Nitrogen inhibits the enzyme ligninase, which aids in 

the decomposition of lignin, and so high leaf N concentrations correspond to high 

remaining lignin concentrations. High variability in litter decomposition by species 

has been observed due to variation in initial N concentrations. In the uncommon 

case where conifer litter has very low N concentrations (<0.0036%), lignified 

tissue may decompose more readily. Along with N, the enzyme Manganese 

Peroxidase (MnP) is affective to the decomposition of lignin. However, its 

solubility increases with decreasing pH (Berg and McClaugherty 2003), so its 

availability may be limited as pH diminishes. Therefore, litter in conifer stands 

decomposes more slowly than broadleaf litter in part because of decreased Mn 

concentrations where acid soil is found and because of N and lignin 

concentrations within litter (Berg and McClaugherty 2003). In addition, as litter 

decomposes, the amount of surface area increases, thereby increasing microbial 

degradation. Because coniferous litter resists decay, its surface area increases 

more slowly, further retarding decomposition (Kuiters and Sarink 1986).  

This delayed decomposition affects the temporal release of phenols, which have 

been found to be allelopathic (Berg and McClaugherty 2003). These readily 

soluble organic acids are leached from both deciduous and coniferous litter, both 

in early stage decomposition and as an intermediary product of lignin 

decomposition (Berg and McClaugherty 2003). However, deciduous litter inputs 

peak between October and January, after litterfall when plants are dormant. Due 

to slower decomposition and greater litter persistence, coniferous litter releases 

phenols during the growing season, resulting in the potential inhibition of ground 

layer growth (Blaschke 1981).  
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In addition to high lignin concentrations, coniferous litter generally releases 

nutrients into soil more slowly compared to broadleaf trees (Berg and 

McClaugherty 2003; Pritchett 1979; Binkley and Valentine 1991; Yin et al. 2014). 

In particular, Northup et al. (1995) show that the high polyphenol content in 

conifer litter corresponds to a shift in the form of nitrogen released, and thus its 

availability and mobilization. Nitrogen is generally released in organic forms 

through proteins and amino acids, as well as mineral forms in ammonium (NH4+), 

or nitrate (NO3-). Ammonium is the major source of biologically available N for 

most species, and NO3- is the most readily leached form (Vitousek and Matson 

1985). Organic N often forms protein-tannin complexes, which are recalcitrant 

aggregations of hydrophobic organics to polyphenols. As such, the concentration 

of organic N increases with polyphenol content in litter, whereas mineral forms of 

N decrease. In addition, N mineralization is limited in acid soil and in cold 

climates, where organic N provides increasing fractions of total soil N. Conifers 

form ectomycorrhizal (ECM) associations. ECM are found in habitats limited by 

mineral N availability. First, that they are found in habitats with an average pH 

below 5 (Read 1991), and in species with relatively high polyphenol leaf content, 

which is associated with a dominance of N in proteins and limited mineral N 

(Northup et al. 1995, Smith and Read 2010; Yin et al. 2014). Evidence suggests 

that many species of ECM can directly utilize these protein sources as well as 

amino acids. In a comparison of amino acid uptake in Pinus, Picea, and Fagus, 

Wallenda and Read (1999) illustrated that the affinity for common organic N 

sources is high in ECM fungal species. ECM can utilize organic N directly by 

enzymes such as carboxypeptidase, which breaks N apart from these proteins 

(Northup et al. 1995).  

That ECM and ericoid mycorrhizae (EM) readily utilize organic N has been well 

studied (Smith and Read 2010). However, recent evidence suggests that 

vesicular arbuscular mycorrhizae (AM) may readily utilize complex organic 

sources for N, although there is no direct evidence of saprotrophy in AM fungi 

(Smith and Read 2010). One hypothesis suggests that hyphae readily grow 
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towards organic N rich patches and utilize that source while it decomposes 

(Leigh et al. 2009). Whether they directly increase proteolytic activity, or improve 

the activity of saprotrophic fungi, ECM and EM outcompete AM for organic N 

sources (Smith and Read 2010). In a study comparing amino acid uptake in AM 

to ECM with A. saccharum, Quercus, and Tsuga canadensis, Gallet-Budynek et 

al. (2009) showed that both functional types take up amino acids directly. AM 

formed with species of higher labile litter content and improved mineral N 

availability, where ECM formed with species of recalcitrant litter and soil enriched 

in organic material, as literature suggests. 70% of N in ECM came from organic 

N, compared to 20% for AM. Nave et al. (2013) showed that ECM were more 

common in mineral N limited sites, which transitioned to AM dominated sites as 

mineral N increased, and that Quercus, in association with ECM, were superior 

competitors for N. While there is evidence that AM compete well for both organic 

and mineral N, there is greater support in the literature for the concept that ECM 

utilize complex organic N directly, but direct evidence of this is also somewhat 

limited (Smith and Read 2010). There is still a lack of direct evidence to elucidate 

the competitive difference of ECM and AM for organic N sources (Smith and 

Read 2010; Näsholm et al. 2009; Uibopuu 2013), partly from a lack of field 

studies comparing them directly (Yin et al. 2014). However, Yin et al. (2014) 

show that ECM exudates and enzymatic activity have a strong impact on nutrient 

cycling, especially from organic sources, and nutrient acquisition in stands with 

recalcitrant litter and slow decomposition.  

Relatively low pH has been observed in conifer stands, and comes from the 

release of strong aliphatic acids: oxalic, malic, citric, and formic acid during litter 

decomposition (Pohlman and McColl 1988) and from ectomycorrhizal leachates 

(Helyar and Porter 1989; Landeweert et al. 2001). Soil acidity, as measured by 

pH, is determined by acid concentration, degree of acid dissociation (which 

correlates negatively to base saturation), and the strength of acids present 

(Binkley et al. 1989). pH will be lower with a high concentration of organic acids, 

low base saturation, and with strong organic acids, where a low acid dissociation 
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constant (pKa) corresponds to high acid strength. When aliphatic organic acids 

dissociate, they complex or chelate metals and lower soil pH (Helyar and Porter 

1989; Landeweer et al. 2001). Oxalic, formic, citric, and malic acid are also 

strong acids (pKa = 1.23, 3.76, 3.08, 3.40; Zhang et al. 2009), thus having a 

strong impact on soil pH. Pohlman and McColl (1988) found that 60-80% of litter 

extracts of Pinus ponderosa Lawson & C. Lawson (ponderosa pine), Calocedrus 

Kurz (incense cedar), and Pseudotsuga menziesii (Mirb.) Franco (douglas-fir) 

were made of oxalic, mallic, gallic, and protocatechuic acid, with oxalic acid 

dominating Pinus litter. Other studies have found relatively high concentrations of 

oxalic, formic, acetic, and citric acid in Pinus banksiana Lamb. (jack pine), Pinus 

rigida Mill. (pitch pine), Pinus lambertiana Douglas (sugar pine), Pinus radiata D. 

Don (Monterey pine), Picea rubens Sarg. (red spruce), P. strobus, and Tsuga 

canadensis (L.) Carrière (eastern hemlock; Smith 1969; Krzyszowska et al. 

1996). Fox and Comerford (1990) showed that this suite of aliphatic organic 

acids is common for many other Pinus species, including Pinus elliotii Engelm. 

(slash pine), Pinus taeda L. (loblolly pine), and Pinus palustris Mill. (longleaf 

pine). 

Polyphenolic compounds and organic acids released from conifer litter (Pollman 

and McColl 1988) and ectomycorrhizae (Hue et al. 1986; van Hees et al. 2005) 

dissolve sesquioxides of Fe and Al through chelation. These acids include freely 

released aliphatic acids, including oxalic, malic, and citric acid, and polyphenolic 

compounds such as tannin and phenols (Pohlman and McColl 1988; Muir et al. 

1964). In describing podsolization, De Coninck (1980) found that metal-organic 

complexes formed with Si, Al, and Fe translocated through the soil profile in 

solution. In cold climates, this eluviation of sesquioxides, combined with slow 

decomposition and nutrient-poor litter, results in podsolization: the formation of a 

soil with low concentrations of nutrients in surface horizons, a corresponding low 

pH and a high degree of surficial leeching. Where climate is milder, such as in 

Ohio, Indiana, and Illinois, a high degree of leaching is unlikely, and so conifers 

are likely to have a lesser impact on soil.  
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The increase in soil acidity from the release of organic acids increases the 

solubility of nutrients, and reduces the integrity of silicate minerals (Sauer et al. 

2007), as well as organic and clay aggregates and structures (Sposito 2008). 

Soluble nutrients are eluviated and a disruption in clay and humus aggregates 

facilitates sandier textured soil through the loss of smaller particles and reduced 

total exchange capacity (TEC). The reduction in TEC occurs because organic 

matter and clay mineral surfaces hold the majority of exchange capacity. This 

results in a soil with reduced nutrient availability, reduced water holding capacity, 

diminished buffering capacity, and potential Al-toxicity (Pritchett 1979).  

Al(III) becomes increasingly available below a pH of five, and as the principle Al 

species that adsorbs to roots, it corresponds to increased Al-toxicity (Wright 

1989; Sposito 2008). The rhizosphere responds to increased Al-toxicity through 

organic acids and plays a large role in soil acidification and nutrient transport. 

When ectomycorrhizae (ECM) release their organic acids, Al(III) and Fe(III) are 

complexed or chelated. There is evidence that ECM will respond to Al 

concentration by releasing increased concentrations of oxalic acid, which 

complexes Al and keeps it from root surfaces (Zheng et al. 1998). Thus, ECM 

associations are of a competitive advantage in environments where pH is low 

through higher tolerance to Al(III) as they release greater concentrations of Al(III) 

into the soil environment and away from the rhizosphere. The dissociation of 

these organic acids lowers soil pH as well (Sposito 2008). Consequently, ECM 

lower nutrient availability and remove trivalent metals to some degree. Since 

members of the family Pinaceae are known to form ECM associations (Pritchett 

1979), it follows that conifers lower pH through litter and that they form ECM 

associations, which lower soil pH as a self-replacing competitive strategy.  

Conifers form ECM, which strongly change the soil environment, increasing the 

availability of nutrients, and increasing access to complex organic N and P 

sources. They inhabit sites with slow nutrient cycling, with recalcitrant leaf litter 

and lower average pH (Read 1991; Smith and Read 2010; Yin et al. 2014). Many 
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hardwood and herbaceous species, on the other hand, form vesicular arbuscular 

mycorrhizal (AM) associations. Hyphae of AM more rapidly acquire mineral 

nutrients, which are quickly cycled in leaf litter, as associated species have highly 

labile litter content. As bases, like Ca, are cycled more quickly, and because 

exudates do not strongly alter soil acidity like ECM, this promotes higher pH and 

allows for more robust microbial populations, and increases the availability of 

mineral nutrients, including N. Therefore, P becomes the most limiting nutrient 

therein, and evidence suggests that AM are superior competitors for mineral P 

compared to ECM (Read 1991; Smith and Read 2010; Yin et al. 2014). 

The association of ECM with conifers is partly why conifers are better able to 

tolerate extreme soil conditions. However, the degree to which conifers change 

the soil environment depends upon the inherent buffering capacity of the soil. 

Buffering capacity is largely determined by cation exchange capacity, which is 

determined largely by the amount of humus and phyllosilicate minerals, and to a 

lesser degree by hydroxides and carbonates. Sodalite, cancrinite, nahcolite, 

calcite, and other carbonates react in solution with pH to dissociate their metal 

cation and to bind H+.  

CaCO3(s) + H+ = HCO3-(aq) + Ca2+(aq)  

Soil will be increasingly buffered against pH change with greater concentrations 

of carbonates, hydroxides, humus, and phyllosilicates (Sposito 2008). The two 

land types studied here were mesic ridges and bottoms, and were defined by 

Ecological Land Type Phases (ELTP; Zhalnin 2004). The two ELTPs differ, in 

part, by parent material, soil texture, and topographic position, so it is reasonable 

to expect a notable difference in buffering capacity between ELTP 13, mesic 

ridges, and ELTP 42, bottoms. Though both tend to be silt loam soils, bottoms 

contain two meters of silt alluvium, whereas mesic ridges average silt loam to 

clay loam up to 68 cm, with sandstone parent material beneath. Lastly, mesic 

ridges and bottoms differ in average pH, 5.5 vs. 6.8 (Zhalnin 2004), implying that 
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bottoms are better buffered. Thus, water and nutrient rich alluvial materials 

transported to bottoms should provide an added source of exchangeable bases, 

phyllosilicates, and organic matter from surrounding sources, which should 

provide added buffering capacity in bottoms. 

Bottomland soils also have a greater water input rate from upland and upstream 

sources, and as a consequence have the potential to have standing water for a 

greater proportion of the year. Gases like O2 and CO2 diffuse into inundated soil 

far more slowly than dry soil, and over time soil O2 is depleted and CO2 

accumulates through respiration. As O2 is the greatest electron acceptor, O2 

depletion correlates to an increase in available electrons, and an inevitable 

reduction of NO3-, SO42-, Fe3+, Mn4+, and CO2 as they take up electrons. These 

redox sensitive species (N, S, Fe, Mn, C, and O) are released from minerals 

such as goethite (FeOOH) and replaced by H+. This is partly responsible for the 

superior buffering capacity of bottomland soils (Sposito 2008). 

 MnOOH(s) + 3H+(aq) + e- = Mn2+(aq) + 2H2O(l) 

 FeOOH(s) + 3H+(aq) + e- = Fe2+(aq) + 2H2O(l) 

As a redox sensitive species, Fe is reduced and leached quickly in soils and so 

certain bacteria, fungi, and grasses have developed siderophores to complex 

Fe(III; Sposito 2008). Siderophores are biomolecules which complex Fe(III), and 

thus lower its redox potential so that it remains in soil more readily. Without this 

complexation, Fe(III) is reduced to Fe(II), which is soluble and quickly leaches 

from surface soil. In addition, these organic compounds complex other trivalent 

metals such as Al(III) and divalent nutrient cations, potentially lowering metal 

toxicity to microbes and retaining some soil nutrients (Sposito 2008). 
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1.4 The Herbaceous Layer in Forested Ecosystems 

Improving ecological quality in forest ecosystems is partly a matter of improving 

ecosystem function, which refers to ecological processes that control energy, 

nutrient, and organic matter fluctuation throughout the environment (Cardinale et 

al. 2012). To that end, biodiversity and the range of functional traits in an 

ecosystem need to be considered. Biodiversity is the variety of life, including 

variation in genes, species, and functional traits, and can be measured through 

taxonomic or functional diversity. Functional traits include morphological, 

physiological, phenological, and behavioral traits which can be measured 

individually and directly influence performance (Cardinale et al. 2012).  

Therefore, functional diversity is a measure of the range, distribution, and 

abundance of functional traits in a given ecosystem, whereas taxonomic diversity 

is a measure of the range, distribution, and abundance of species in a given 

ecosystem. A distinct difference between the two measures is that while 

taxonomic diversity does not always directly relate to ecosystem function, 

functional diversity does (Cardinale et al. 2012).  

In a review of two decades of research, Cardinale et al. (2012) showed that 

biodiversity and ecosystem stability are positively correlated, where stability 

refers to the resistance to change in ecosystem functions and services. 

Furthermore, diverse communities are more productive because of a variety of 

functional traits, rather than a variety of species (Cardinale et al. 2012). For these 

reasons, this study investigates taxonomic diversity as well as the variety of 

functional groups in the southern Hoosier National Forest. The herbaceous layer 

in forested communities plays an important role in biodiversity, regeneration, and 

nutrient cycling (Gilliam 2007). This stratum typically contains the largest number 

of species within forest ecosystems, and thus overall plant species diversity is 

largely a function of herbaceous-layer diversity (Yu and Sun 2013). Vegetation 

communities are increasingly threatened by fragmentation, species invasions, 

and environmental degradation. Since species in the herbaceous layer are more 
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prone to extirpation than those of other forest strata (Gilliam 2007), the 

herbaceous layer is a critical element in efforts to conserve biodiversity. Rare 

plants, in particular, have specific habitat requirements, so they can serve as 

indicators of biodiversity loss in response to changing disturbance regimes 

(Gilliam 2007). In addition, herbaceous communities influence advance 

regeneration through competition with seedlings. Because seedlings have to 

grow through the shade of the herbaceous and shrub layers, a denser layer may 

reduce the ability of woody plants to regenerate, and may reduce advance 

regeneration (Gilliam 2014; Gilliam and Roberts 2003).  

The herbaceous layer also contributes to soil quality by influencing the cycling of 

nutrients. Herbaceous litter concentrations of N, P, Mg, and K are generally much 

greater than in woody plants and decompose several times faster. Thus, through 

nutrient uptake and litter decomposition, the herb layer rapidly cycles nutrients, 

decreasing nutrient leaching (Gilliam 2007). The most notable example is in that 

spring ephemerals may act as a vernal dam, effectively making nutrients more 

available for later season seedlings, and facilitating healthy forest soil (Muller 

1978; Muller 2003; Gilliam 2007). 

The composition of the herbaceous community is most directly related to the 

availability of light, moisture, and soil nutrients, and forms a strong linkage with 

forest overstories (Jenkins and Parker 1999; 2000; 2001; Lipscomb and Nilson 

1990; Yu and Sun 2013; Gilliam and Roberts 2003; Gilliam 2007; 2014). The 

term linkage refers here to a relationship wherein the dynamics of the overstory 

significantly affect those of the understory. Specifically, that preexisting forest 

structure influences microclimate and microtopography, which influences 

moisture, light, and nutrient levels, which drive herbaceous species diversity, 

richness, and evenness (Gilliam et al. 1995). Disturbance changes the existing 

forest structure, altering these three factors through the distribution of living trees, 

standing dead wood, and coarse woody debris. For these reasons, this study 

investigates herbaceous-layer communities. 
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Conifers frequently have lower herbaceous-layer diversity (Barbier et al. 2008). 

This is a consequence of overstory linkage, and relates to the fact that conifer 

plantations have low overstory species richness. This should also correlate to low 

woody species diversity where seed sources may be limited (Gilliam 2014, 

Gilliam 2007). As a consequence of plantation, vertical and horizontal 

heterogeneity is reduced, which results in reduced functional diversity as well 

(Lindenmayer and Hobbs 2004). This results in reduced shelter and food 

availability, and can result in lower faunal diversity (Lindenmayer and Hobbs 

2004). Additionally, there is evidence to suggest that conifers frequently lower 

soil pH, buffering capacity, exchangeable bases, or nutrient availability and have 

greater litter depth and allelopathic litter, all of which can lower species diversity 

or change functional group distributions in Pinus stands (Barbier et al. 2008; 

Blaschke 1981; Berg and McClaugherty 2003).  

Litter quality directly affects herbaceous-layer species (Gilliam 2014), and litter 

depth alters light availability and quality, acts as a mechanical barrier to 

establishment and germination, and affects moisture and temperature (Barbier et 

al. 2008, Facelli and Pickett 1991a; Loydi et al. 2013). Species vary in their 

response to litter depth, yet it is agreed that deep litter (>500 g m2) acts as an 

effective mechanical barrier for most species, although this provides a 

competitive opportunity for a select few (Barbier et al. 2008; Loydi et al. 2013; 

Sydes and Grime 1981). In a meta-analysis of litter on understory diversity, Xiong 

and Nilsson (1999) showed similar results, suggesting that litter depth affects 

species richness more than biomass, showing that community composition is 

strongly affected by litter depth, and relates to litter quality. Facelli and Pickett 

(1991a; b) provide evidence that graminoids are less sensitive to litter than 

annual and perennial herbs, and that tree litter may be more inhibiting than 

herbaceous litter. Additionally, in a recent meta-analysis, Loydi et al. (2013) show 

that increased litter depth also may increase soil moisture availability, which can 

aid seedling establishment in dry sites. There is evidence that larger seed size, 

such as that of Juglans spp. also correlates to a greater ability to germinate in 
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thick litter because of greater energy reserves (Loydi et al. 2013). Meers et al. 

(2010) suggest that Pinus litter and ectomycorrhizae have a negative effect on 

herbaceous layer diversity as well. Other studies show that Pinus spp., Quercus 

spp., and Fagus spp. all appear to lower understory diversity and reduce soil 

fertility to a degree (Barbier et al. 2008). It is logical to conclude that they may be 

reasonable habitat companions due to having similar strategies for leaf nutrient 

retention (recalcitrant litter) and mycorrhizal relationships.  

It appears Quercus regeneration is occasionally high in conifer plantations, which 

is partly reflected in that their acorns have mild moisture requirements for 

germination and medium litter depth may provide better moisture conditions on 

dry ridges. However, Quercus regeneration appears to be highly dependent upon 

seed bank and propagule supply from past land use (Navarro-González et al. 

2013). The fact that these trends are difficult to predict is reflective of the fact that 

there is a complex interaction between soil acidification, nutrient availability, litter 

depth, light transmittance, throughfall, and interspecific understory competition. 

Gilliam (2014) suggests that herbaceous species often outcompete seedlings for 

nutrients and increase nutrient cycling because of labile litter content. Therefore, 

they can have a direct negative impact on advance regeneration (Gilliam 2007). 

Where they are affected by litter depth, they may decrease in abundance and 

provide a competitive opportunity for a more tolerant,woody species. 

 

1.5 Study Objectives 

The primary objective of this thesis was to determine how the long-term presence 

of non-native Pinus species affected soil chemistry and influenced the 

composition and diversity of herbaceous-layer plant communities. This was done 

by comparing P. echinata plantations, P. strobus plantations, and naturally 

regenerated hardwood forest sites on mesic ridges and bottoms. In Chapter 2, 

we investigate differences in soil chemistry of the A horizon (top 10 cm of mineral 
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soil) between Pinus and hardwood sites by analyzing samples for concentrations 

of total C (%), total N (%), P (mg kg-1), Ca (mg kg-1), Mg (mg kg-1), Zn (mg kg-1), 

B (mg kg-1), and Al (mg kg-1). In addition, we also determined litter depth (cm), 

pH, C/N ratio, total exchange capacity (meq 100 g-1), and organic matter (%). 

Chapter 3 examines the difference in herbaceous and seedling species 

composition and diversity across stand types in response to soil chemistry and 

site characteristics, including non-metric multidimensional scaling (NMS) 

ordination and indicator species analysis.  

I hypothesize that Pinus stands will have lower pH and nutrient status, with 

greater litter depth and Al. This will be more evident in ridges than bottoms due to 

the difference in buffering capacity afforded by topographic position and soil type. 

I further hypothesize that differences in soil conditions between Pinus and 

hardwood stands will be correlated to differences in herbaceous-layer diversity 

and composition. Finally, I hypothesize that the regeneration density of 

mesophytic tree species, such as A. saccharum, will be lower on Pinus sites, 

while the density of Quercus spp. regeneration will be greater. 
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CHAPTER 2 RESPONSE OF SOIL CHEMISTRY TO LONG-TERM 
OCCUPANCY BY NON-NATIVE PINUS SPECIES 

 
 
 

2.1 Abstract 
 

Species of the family Pinaceae have a distinct impact on nutrient availability, 

organic matter cycling, soil acidity, and soil buffering capacity compared to many 

hardwoods. This is the result of slow litter decomposition and litter accumulation, 

differing concentrations of recalcitrant and labile compounds in litter, and low soil 

pH from litter and ectomycorrhizal (ECM) leachates. A slower rate of nutrient 

cycling can result, and acidification corresponds to increased nutrient leaching 

and a release of Al into the soil solution. The degree to which Pinus stands affect 

soil chemistry, however, depends on the initial buffering capacity of the soil. 

Pinus spp. in my study were planted on old-fields where soil erosion and 

degradation should yield low buffering capacity. Consequently, decades of Pinus 

occupancy may have a lasting impact on soils. Currently in the Midwestern 

United States, managers are converting stands to native hardwood mixtures. 

However, the suite of appropriate silvicultural actions and the success of these 

conversions will depend on the lasting influence of Pinus on soil and vegetation 

communities. To investigate these long-term impacts, I compared the soil 

chemistry and species composition of Pinus echinata and P. strobus plantations 

in southern Indiana to those of nearby naturally regenerated hardwood stands. 

To assess potential differences resulting from topographic position, Pinus 

plantations and hardwood stands were examined on both mesic ridges and 

bottoms. On average, soils in Pinus plantations had lower concentrations 
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of organic matter (OM; -21%), total carbon (TC; -29%), total nitrogen (TN; -30%), 

manganese (Mn; -37%), calcium (Ca; -24%), zinc (Zn; -13%), and boron (B; -

24%). Pinus stands had 2-5 times greater litter depth and 17% greater 

concentrations of Al compared to naturally regenerated hardwoods. The 

difference between Pinus and hardwood stands was greater on ridges than 

bottoms, as bottom Pinus appeared to have minimal impact on soil chemistry. 

This was likely due to superior buffering capacity in bottom soils, and the 

presence of codominant Acer spp. in Pinus overstories. 

 

2.2 Introduction 
 

In the Midwest, Pinus echinata Mill. (shortleaf pine) and Pinus strobus L. (white 

pine) were planted on eroded, abandoned old-fields (Otis 1986; Sieber and 

Munson 1992). These plantations may not be as ecologically valuable as native 

hardwood mixtures as a result of lower functional heterogeneity, and lower 

average diversity (Barbier et al. 2008; Facelli and Pickett 1991a; Loydi et al. 

2013; Lindenmayer and Hobbs 2004; Bielecki et al. 2006). Thus, land managers 

are seeking favorable conversion strategies for the regeneration of native 

hardwoods. The success of conversion will depend, however, upon the lasting 

impact of Pinus stands on soil chemistry and productivity. 

Species of the family Pinaceae impact nutrient availability, organic matter cycling, 

soil acidity, and soil buffering capacity in ways explicitly different from mesophytic 

hardwoods. This is the result of slow litter decomposition and the resulting 

accumulation of litter (Berg and McClaugherty 2003; Stendahl et al. 2010; Finzi 

et al. 1998) that contains high concentrations of recalcitrant compounds (Berg 

and McClaugherty 2003; Read 1991; Finzi et al. 1998; Kuiters and Sarink 1986; 

Pohlman and McColl 1988). Under such conditions, soil pH is typically low 

because of acid inputs from decomposing litter and ectomycorrhizal leachates 
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(Hizal et al. 2013; Berg and McClaugherty 2003; Binkley and Valentine 1991; 

Read 1991; van Hees et al. 2005). Pinus litter is generally nutrient-poor and 

degrades slowly, resulting in diminished nutrient input into mineral soil (Berg and 

McClaugherty 2003; Pritchett 1979; Binkley and Valentine 1991). Furthermore, a 

greater proportion of nutrients may be in organic rather than mineral form, which 

are not as readily absorbed by roots (Smith and Read 2010).  

Conversely, the herbaceous and woody species found in this study, including 

Acer spp. L. (maple) and Liriodendron tulipifera L. (tuliptree), commonly have 

more rapidly decomposing litter and vesicular-arbuscular mycorrhizal (VAM) 

associations. Through rapid decomposition and cycling of nutrients like Ca, in 

association with VAM, these species may promote improved base saturation and 

buffering in soil, higher pH, and increased nutrient mineralization through larger 

bacterial populations (Kalisz 1986; McClaugherty et al. 1985; Berg and 

McClaugherty 2003; Finzi et al. 1998; Jenkins et al. 2007; Holzmueller et al. 

2007; Gilliam 2014; Read 1991; Smith and Read 2010). Therefore, conifers and 

hardwoods have distinctly different effects on soil chemistry that serve to 

replicate soil conditions in which they are superior competitors.  

Conifers naturally occur on infertile, dry, and/or acid soils, which is partly why 

they were used to afforest highly eroded old-fields in the Midwest (Auten 1946; 

Billings 1938). Native conifer soil is typically lower in pH, exchangeable bases, 

base saturation, organic matter, and exchange capacity compared to adjacent 

hardwoods (Brown and Curtis 1952; Pohlman and McColl 1988; Ste-Marie and 

Pare 1999). This is the result of both the natural soil conditions on which they 

best compete, and the soil chemical change incurred by conifers. However, the 

degree to which conifers change soil conditions depends on the soil’s initial 

buffering capacity.  
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In poorly buffered, low pH soils, such as in the Piedmont soils of the Carolinas, 

conifers naturally cause low pH, infertile soil conditions (Binkley et al. 1989; 

Richter et al. 1994; Binkley and Sollins 1990; Pallant and Riha 1999; Binkley and 

Valentine 1988). Conversely, well-buffered soils show much less change 

associated with conifers (Hizal et al. 2013; Rolfe and Boggess 1973; France et al 

1989).  

The geology of southern Indiana is largely comprised of sandstone bedrock 

underlying silt loam soils of the Wellston and Apalona series (Table 2.1). These 

soils typically have lower buffering capacity when compared to the glacial till-

dominated soils in northern Indiana (Zhalnin 2004; Homoya et al. 1984). 

Furthermore, ridges typically have lower buffering capacity than bottoms (Sposito 

2008). Bottoms in southern Indiana receive greater inputs of silt loam alluvium 

from glacial meltwater and receive greater annual inputs of water and aqueous 

nutrients. In addition to this improved input of nutrients, the greater moisture 

content of bottom soils compared to ridges likely leads to greater rates of 

reduction in soils as well. In reduction, redox sensitive species (N, S, Fe, Mn, C, 

and O) are released from minerals such as goethite (FeOOH) and replaced by 

H+.  

 FeOOH(s) + 3H+(aq) + e- = Fe2+(aq) + 2H2O(l) 

All of these factors improve buffering capacity in bottoms (Zhalnin 2004; Sposito 

2008). Therefore, Pinus plantations may have a more lasting impact on soil 

chemistry on ridges, but less of an impact on bottoms.  

The impact of Pinus spp. on soils has been well studied in their natural setting 

(Sauer et al. 2007; Smith and Read 2010; Read 1991). However, less is known 

about soil impacts in plantations, where Picea abies (L.) Karst. (Norway spruce) 

has received extensive study (Bergh et al. 1999; Binkley and Valentine 1991; 

Herault et al. 2005; Humphrey 2005) compared to members of the genus Pinus. 

In southern Indiana both P. echinata and P. strobus are non-native species 
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(Lawson 1990; Wendel and Smith 1990) that were planted on former hardwood 

sites outside of their native ranges. Little is known about how long-term site 

occupancy by these species has affected soils in forests without a native conifer 

species. In addition, regardless of nativity, difference in soil chemistry between 

monocultures and diverse stands is not yet fully understood (Barbier et al. 2008). 

To investigate the long-term impacts of Pinus plantations on soils and vegetation 

communities, I studied P. echinata and P. strobus plantations and compared 

them to naturally regenerated hardwood stands in old-fields on mesic ridges and 

bottoms in southern Indiana. I sampled vegetation communities and soil 

chemistry on 113 plots. In this study I address the following hypotheses:  

1) The occupancy of Pinus on these bedrock-derived soils will show 

discernable impacts on soil chemistry. Soils under Pinus stands will have 

lower pH and reduced nutrient availability, as well as greater litter depths 

and Al concentrations compared to adjacent naturally regenerated 

hardwood stands.  

2) The effect of Pinus spp. on soil chemistry will differ between ridges and 

bottoms. Because bottoms have more highly buffered soil, the effects of 

Pinus spp. on soil chemistry will be less pronounced. As such, the 

differences in soil chemistry between Pinus and hardwood sites should be 

more pronounced on ridges than in bottoms. 

 

 

 

 

 

 

 

 

 
 



33 
 

 
2.3 Methods 

 

2.3.1 Study Sites 

Sample sites were chosen within the Tell City Unit of the Hoosier National Forest 

within the Crawford Upland Subsection (CUP) as defined by Homoya et al. 

(1984). In ArcMAP v10.1, I used Ecological Landtype Phase (ELTP) to select 

sample sites, which is a land classification delineated by several variables 

including dominant vegetation, indicator species, soil type, elevation, slope, and 

slope aspect (Van Kley 1993). Because ELTP 13 Fagus-Acer 

saccharum/Arisaema Mesic Ridges, and ELTP 42 Acer saccharinum/Boehmeria 

Bottomlands were the most common ELTPs in our study region, and because 

both contained an abundance of Pinus plantations, we confined our sampling to 

these two. To limit variability of soil across potential plots, I used Natural 

Resource Conservation Service (NRCS) soil series data to assure that sites had 

similar soil types. While NRCS data show that there are many specific soil 

groups found within each ELTP, most of these soils only differ slightly. Soils on 

ELTP 13 tend to be silt loam over sandstone parent with an argillic horizon of silt 

loam or silty clay between 20 and 68 cm (NRCS 2013), with an average A 

horizon depth of 4.7 ± 0.8 cm and an average pH of 5.5 ± 1.1. ELTP 42 consists 

of silt loam alluvium over 2 m thick with a poorly differentiated A horizon 

estimated at 10 cm and an average pH of 6.8 ± 0.2 (Zhalnin 2004). The two most 

common NRCS soil series found within sites on mesic ridges and bottoms were 

Apalona silt loam and Wellston silt loam (Table 2.1). Both have average pH 

values between 3.5-7.3 and average CEC below 20 meq per 100 g (NRCS 

2013). Other soil series found within sites contained similar values for pH, CEC, 

and soil type. 
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Across mesic ridges and bottoms, I selected three vegetation types for sampling: 

Pinus echinata Mill. (shortleaf pine) plantations, Pinus strobus L. (white pine) 

plantations, and naturally regenerated hardwood sites. Hardwoods that had 

regenerated naturally after agricultural abandonment included Platanus 

occidentalis L. (American sycamore), Liriodendron tulipifera L. (tuliptree), 

Juniperus virginiana L. (eastern redcedar), Juglans nigra L. (black walnut), Acer 

negundo L. (boxelder), A. rubrum L. (red maple), and A. saccharum. Digitized 

aerial photographs from the 1940s were overlain in ArcMAP to ensure that 

chosen sites were previously utilized for agriculture. To reduce edge effects, I 

used a 20 m buffer from roads, and a 40 m buffer between adjacent stand types 

to minimize the influence of surrounding litter types. Within these buffered 

delineations, the final sample coordinates were randomly selected in ArcMAP. 

Lastly, sites that experienced secondary disturbances such as logging, 

windstorms, or fire after agricultural abandonment were rejected. At all sites, I 

recorded GPS coordinates and marked plot locations with rebar and witness tree 

tags. 

I determined the age of each stand sampled to ensure that Pinus and hardwood 

sites were of a comparable age. While stand age data were collected by the 

USDA Forest Service by coring various representative trees within a defined 

stand, the resulting polygons represented by these ages were often quite large. 

Therefore, in order to more accurately represent overstory age on sampled plots, 

I cored three dominant trees at 30 cm above the ground using an increment 

borer. The average age of these three trees was used to estimate stand age 

(Jenkins and Parker 1999; 2000). By using only sites that were historically used 

for agriculture, we limited stand age to a maximum of 70 years, due to the fact 

that land was largely abandoned in the 1930s and 1940s (Welch et al. 2001). 

The average age was between 25 and 40 years, because most of the plantations 

in the Hoosier National Forest occurred later than the 1940s. 

 

 
 



35 
 

 
2.3.2 Field Sampling Design 

Due to the fact that soils vary across each ELTP, and because past agricultural 

use altered A horizon thickness through increased erosion (Welch et al. 2001), I 

collected soil samples at 0-10 cm and 10-20 cm using an impact driven soil 

corer. Sampling at these depths allowed me to capture the zone of herbaceous-

layer rooting. All soil sampling was conducted in cardinal directions, 5.6 m from 

plot center. A minimum of 400 g per sample was collected per site. For the 0-10 

cm sample, five cores were taken and put into separate bags, and for 10-20 cm 

depth, five cores were combined into one sample because of a lack of funding for 

laboratory analysis. I also collected litter from three 25 cm2 quadrats located 5.6 

m west, north, and east of plot center. In total, 585 soil samples and 351 litter 

samples were collected (Figure 2.1). 

 

2.3.3 Laboratory Analysis 

Soil samples were air dried on paper plates for three to five days. Samples were 

then crushed with a mortar and passed through a 2 mm sieve to separate 

mineral and non-mineral material. Coarse grained material volume was then 

measured using volumetric displacement. The soil sample volume was 

calculated by subtracting the volume of coarse fragments from the total volume 

of the sample. Bulk density (Db) was then calculated by taking the mass of dry 

soil over the corrected core volume. Litter samples were dried at 70oC for 48 

hours or until constant mass (Amacher et al. 2003). Non-litter material was then 

separated and weighed, while litter was passed through a Wiley mill to reduce 

particle size. A subsample of each ground sample was then placed into a vial 

with BBs and shaken with a paint shaker for approximately four hours until 

homogenized. Within the Forest Ecology, Silviculture, and Soils Laboratory at 

Purdue University, total carbon (TC%) and nitrogen (TN%) were estimated using 

an ECS CosTech 4010 Elemental Analyzer. A horizon soil samples were sent to 
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Brookside Laboratories, Inc. (New Bremen, OH) to analyze pHwater , organic 

matter (%), total exchange capacity (TEC; meq 100 g -1), estimated nitrogen 

release, S (ppm), P (mg kg-1), Ca (mg kg-1), Mg (mg kg-1), K (mg kg-1), Na (mg 

kg-1), B (mg kg-1), Fe (mg kg-1), Mn (mg kg-1), Cu (mg kg-1), Zn (mg kg-1), and Al 

(mg kg-1) were measured by Mehlich III Extraction, and percent Ca, Mg, Na, and 

K for base saturation (Nelson and Sommers 1996; McLean 1982; Schulte and 

Hopkins 1996; Ross 1995; Mehlich 1984; Bray and Kurtz 1945).  

 

2.3.4 Sampling Design and Data Analysis 

In total, I sampled 44 ridge P. echinata sites, 26 ridge P. strobus sites, 7 ridge 

hardwood sites, 9 bottom P. echinata sites, 7 bottom P. strobus sites, and 13 

bottom hardwood sites, resulting in an unbalanced experimental design. These 

sample sites comprised all suitable sample sites within the study area.  

I used two-way Analysis of Variance (ANOVA) with categorical variables stand 

type and ELTP to more closely examine explanatory variables that were 

correlated with ordination axes, including functional groups (r2 > 0.2; Chapter 3). 

This included analyzing variables by stand type (P. echinata, P. strobus, or 

hardwood), ELTP (mesic ridges or bottoms), and their interaction term. The 

interaction compared individual types, for example: ridge P. echinata vs. ridge 

hardwood, ridge P. strobus vs. bottomland P. strobus, etc. Assumptions of 

normality and constant variance were assessed with plots of studentized 

residuals versus fitted values (Neter et al. 1996). We also used residual plots to 

screen potential outliers (Neter et al. 1996). I used a square root transformation 

for litter depth, Ca, B, Zn, and canopy openness. For Fe, I removed an extreme 

outlier and log transformed. Non-transformed data are presented for ease of 

interpretation. Dead basal area, being particularly problematic, was centered, 

absolute value transformed, and square root transformed in order to better fit 

assumptions of normality and constant variance. When ANOVA revealed 
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significant differences, I used the Tukey multiple comparisons test for post hoc 

comparisons (α = 0.05). If assumptions were violated after transformation, I used 

a Kruskal-Wallis ANOVA on Ranks with Dunn’s Multiple Comparisons (α = 0.05). 

Because A horizon pH, organic matter (%), and total exchange capacity should 

have a large influence on exchangeable cations and Al-toxicity, I regressed these 

against the dependent variables exchangeable cations and Al. As with ANOVA, I 

inspected residuals and transformed data as needed. 

 

2.4 Results 
 

pH, OM (%), TC (%), TN (%), B (mg kg-1), Mn (mg kg-1), Ca (mg kg-1), and Zn 

(mg kg-1) in the top 10 cm of soil were all greater in hardwoods than Pinus 

stands. Both A and B horizon pH were lower in Pinus than hardwood stands (F = 

2.9, 9.8, p = 0.06, <0.001). B horizon pH was significantly lower than A horizon 

pH as well (Mann-Whitney Ranked Sum Test; U = 140.5, p<0.001). Mean A 

horizon pH was 5.5 ± 0.1 in Pinus stands and 5.9 ± 0.1 in hardwood stands, 

while mean B horizon pH was 4.2 ± 0.09 in Pinus stands and 4.56 ± 0.08 in 

hardwood stands. B horizon pH was lowest in ridge P. echinata stands with a 

mean of 4.0 ± 0.05. Organic matter was greater in ridge hardwoods than ridge 

Pinus stands. Organic matter (%) ranged from 2.4 to 5.6, with a mean of 3.6 ± 

0.1 in ridge Pinus and 4.6 ± 0.2 in ridge hardwood stands, with a significant 

interaction term (F = 8.2, p<0.001). Total carbon (%) differed significantly 

between stand types through their interaction term as well. Percent total carbon 

was greater on ridge hardwood than on ridge Pinus sites, averaging 1.7 ± 0.1 on 

Pinus and 2.3 ± 0.1 on hardwood sites (F = 6.6, p = 0.002). Total nitrogen (%) 

was analogous to total carbon, with a mean of 0.1 ± 0.01 and 0.2 ± 0.01 on ridge 

Pinus and ridge hardwood sites, respectively (F = 4.0, p = 0.02; Figure 2.2; Table 

2.2).  
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Litter depth (cm) showed the opposite trend, and was greater in Pinus, following 

the trend P. echinata>P. strobus>hardwood (F = 15.7, p<0.001). Mean litter 

depth was 19.0 ± 2.0 in P. echinata, 14.1 ± 2.5 in P. strobus, and 5.6 ± 2.6 in 

hardwoods stands. Litter mass (g m-2) was significantly greater in Pinus than 

hardwood stands (P. echinata>P. strobus>hardwood), with means of 823.9 ± 

67.5, 592.4 ± 83.7, and 287.1 ± 86.3, respectively. Litter carbon to nitrogen ratio 

(LC:LN) in bottoms was significantly greater in Pinus than in hardwood stands 

(LC:LN  =  40.3 ± 1.9 for P. echinata, 35.6 ± 2.4 for P. strobus, and 27.9 ± 1.6 for 

hardwoods; F = 9.3, p<0.001). Concentrations of B (F = 7.9, p = 0.002), Ca (F = 

4.3, p = 0.02), and Zn (F = 14.1, p<0.001) were all greater in hardwood than in 

Pinus stands. For Mn, the interaction term was significant (F = 4.6, p = 0.01), and 

soils on ridge hardwood sites contained more Mn than Pinus stands (Figure 2.2; 

Table 2.2). Bottomland sites showed fewer trends, due in part to the small 

number of suitable sites available. In bottoms, soil concentrations of Fe (F = 4.2, 

p = 0.02), Zn (F = 14.1, p<0.001), Ca (F = 4.3, p = 0.02), and B (F = 7.9, 

p<0.001) were greater in hardwood stands than P. echinata stands, with a 

significant interaction term for Fe (F = 4.3, p = 0.02). TEC (F = 12.3, p<0.001), P 

(F = 5.7, p = 0.02), Na (F = 6.8, p = 0.01), and Zn (F = 7.2, p = 0.01) were greater 

in bottoms than ridges. TEC ranged from 4.2 to 22.7, with a mean of 8.8 ± 0.4 on 

ridges, and 11.2 ± 0.6 on bottoms (Table 2.2).  

Soil Al concentrations (mg kg-1) were significantly greater on ridges than on 

bottoms. Soil N concentrations were significantly greater in Pinus stands than 

hardwood stands, and the interaction term was significant (F = 5.4, p = 0.01). 

With a significant interaction term, Al was greater in bottom P. strobus than 

bottom hardwood stands (F = 5.4, p = 0.006; Figure 2.2; Table 2.2). 
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2.5 Discussion 

 

The results of my study show that decades of Pinus occupancy have resulted in 

changes to soil chemistry. Overall, Pinus stands had thicker litter layers and 

greater litter mass, less soil organic matter, and reduced nutrient concentrations 

compared to hardwood sites. Specifically, total N and total C were lower in Pinus 

than in hardwood stands, but Al content was greater. The soil differences 

observed between Pinus and hardwood stands partly resulted from the slow 

decomposition and resulting buildup of litter on the forest floor (Berg and 

McClaugherty 2003; Stendahl et al. 2010). Litter from Pinus spp. contains low 

concentrations of labile compounds, such as sugars, water soluble nutrients and 

phenolic acids, but contains larger proportions of large molecular weight 

compounds, such as cellulose, hemicellulose and lignin. Labile compounds are 

readily lost from litter, whereas high molecular weight compounds decompose 

slowly. This accumulation of high molecular weight compounds results in the 

accumulation of a thick litter layer in Pinus forests (Berg and McClaugherty 

2003). In my study, I observed litter depths in Pinus stands 2-5 times greater 

than those in hardwood stands. This recalcitrance of Pinus litter resulted in lower 

organic matter content in the surface soil of Pinus stands, which contributed to 

reduced TC, TN, and micronutrient content likely due to reduced mineralization. 

Additionally, the accumulation of litter mass in conifer forests alters moisture and 

temperature conditions, and may act as a mechanical barrier to germination and 

seedling establishment (Barbier et al. 2008, Facelli and Pickett 1991a; Loydi et 

al. 2013). Loydi et al. (2013) found that a litter mass of >500 g per m2 significantly 

reduced the ability of plants to germinate. However, it appears that deep litter 

afforded a competitive opportunity for species that tolerate such litter conditions 

by producing large seeds, such as Quercus spp. In my study, the deep litter layer 

I observed in Pinus stands (mean > 500 g per m2) may have contributed to the 

greater regeneration of Quercus spp. there (Chapter 3). 
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The Al concentrations in Pinus stands suggest that more Al was released from 

silicate minerals and sorption sites, thus increasing the possibility of Al-toxicity in 

this stand type (Wright 1989). Overall, ridge soils contained higher 

concentrations of Al than bottom soils. Increased soil Al content may have 

contributed to the greater density of Quercus spp. and F. grandifolia stems 

observed in P. echinata sites (Chapter 3). Seedlings of both of these 

genera/species have been shown to be resistant to higher levels of soil Al than 

the majority of their competitors (McCormick and Steiner 1978; Schaedle et al. 

1989). 

Many studies suggest that soil acidity should be affected by agricultural use. Old-

fields experience soil degradation in several ways, including the loss of soil 

organic matter and small particles through tillage and erosion (McLauchlan 

2006), which reduces buffering capacity (Sposito 2008). In addition, old-fields 

may be acidified by ammonium fertilizer input (Tarkalson et al. 2006). Therefore, 

old-field sites may have lower CEC and OM, and be more susceptible to pH 

change than uncultivated fields. In my study, the fact that OM and TEC were 

relatively low across all stand types suggests that past agricultural use may have 

decreased the amount of humus in the soil. Pinus stands are slow to replenish 

this material, as is evident in the deep litter depth and low OM, TC, and TN in 

Pinus stands compared to hardwoods. However, base saturation in this study 

was high, averaging around 70% across all sites. This suggests that both 

hardwood stands and conifer plantations in this study are somewhat well 

buffered against pH change. This is particularly true in bottoms, which we 

expected to be better buffered. This is supported by higher TEC, and greater 

concentrations of certain nutrients including Na and Zn, that I observed in 

bottoms compared to ridges. Furthermore, Fe showed a trend only in bottoms, 

and because Fe is a redox sensitive species, it is reasonable to conclude that Fe 

was reduced and made soluble, allowing for leaching or uptake. Through this 

reduction, soil buffering was improved (Sposito 2008). Lastly, ELTP data suggest 

that, due to its land position, bottoms should receive greater nutrient inputs in 
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solution from runoff, improving soil fertility and buffering capacity (Zhalnin 2004). 

Conversely, though base saturation was high in ridges, ridge sites were less well 

buffered and did, in fact, show distinct differences between Pinus and hardwood 

stands. 

This study showed diminished pH and nutrient status in Pinus plantations. 

Furthermore, that the B horizon pH was significantly lower than A horizon pH 

may signify that some leaching is occurring at moderate depth. Native conifer 

forests typically have lower pH and buffering capacity than adjacent hardwood 

forests (Brown and Curtis 1952; Pohlman and McColl 1988; Ste-Marie and Pare 

1999), which is largely a consequence of low nutrient concentrations in litter and 

strong acids released from litter and ectomycorrhizae (Hizal et al. 2013; Berg and 

McClaugherty 2003; Binkley and Valentine 1991; Read 1991; van Hees et al. 

2005). However, the degree to which conifers alter soil conditions depends upon 

the initial buffering capacity of the soil. Binkley et al. (1989) and Richter et al. 

(1994) studied old-field conifer plantations in the Carolinas on sand to sandy 

loam Piedmont soils, which had minimal initial base saturation, organic matter 

percentage, and/or CEC, contributing to low buffering capacity. As a 

consequence, conifer soils remained poorly buffered with diminished pH 

averaging 4.14-4.97. On 20 year-old Pinus taeda L. (loblolly pine) plantations on 

old-fields, Binkley et al. (1989) showed that pH was diminished due to low base 

saturation, which was largely a consequence of elevated acid strength. Binkley 

and Sollins (1990) showed that the strength of acids and base saturation 

determined pH change in Alnus-Pinus stands, with a mean pH of 4.6-5.1, and 

corresponding low base saturation (0.09-0.34%). Conifer stands had lower OM, 

and texture increased to loam soils. Pallant and Riha (1999) observed surface 

soil pH that ranged from 3.4 to 3.6 under planted P. resinosa in south-central 

New York and Binkley and Valentine (1989) observed a mean pH of 4.2 under 

planted P. strobus in south-central Connecticut.  
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In a study conducted in southern Illinois, a region with native forest composition 

and history similar to my study area, Rolfe and Boggess (1973) found pH values 

under 35 year-old P. echinata plantations that were similar to those I observed in 

my study (pH ≈ 5). However, the pH values observed under P. echinata by Rolfe 

and Boggess (1973) did not differ from those observed in adjacent hardwood 

stands. Interestingly, Rolfe and Boggess (1973) observed little difference 

between surface soil (0 - 8 cm) and subsurface (8 -15 cm) pH under P. echinata, 

while in my study pH values under Pinus spp. were significantly lower in 10-20 

cm depth vs. 0-10 cm, ranging between 4.04 and 4.25. Although pH values did 

not differ, Rolfe and Boggess (1973) did observe lower concentrations of bases 

and less OM in P. echinata stands than in hardwood stands. These studies 

illustrate that the degree to which conifers affect soil pH depends on the initial 

buffering capacity of the soil, as well as the strength of acids released from litter 

and roots. These studies also show that conifers frequently lower concentrations 

of exchangeable bases, base saturation, OM, and CEC, thus lowering buffering 

capacity. However, conifers do not always alter pH concordantly, and further 

study is necessary to thoroughly understand the phenolic compounds released 

from individual species’ litter and their impacts on soil chemistry (Berg and 

McClaugherty 2003).  

While the differences we observed between Pinus and hardwood stands were 

largely driven by decades of site occupancy by Pinus species, the hardwood 

species that established after land abandonment also affected soil conditions and 

augmented the contrast with Pinus stands. In my study, hardwood overstories 

were dominated by L. tulipifera, and understories were dominated by A. 

saccharum and L. benzoin, with C. florida as a common associate (Chapter 3). 

Liriodendron tulipifera foliage has been shown to produce litter with high 

concentrations of P, Ca, and Mg relative to other species (Chandler 1941; 

Jenkins et al. 2007), including Quercus spp. which likely dominated the forests in 

my study area prior to clearing for agriculture (Jenkins and Parker 1998; 

Morrissey et al. 2008). According to Kalisz (1986), L. tulipifera contributes to 
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improved soil nutrient availability following old-field succession. Base saturation, 

especially with Ca, increases because L. tulipifera roots accumulate nutrients 

and keep nutrient cycling near the surface, promoting nutrient rich humus. A. 

saccharum and L. benzoin litter decays rapidly and contains high concentrations 

of N and water soluble compounds, especially Ca (Chandler 1941; Jenkins et al. 

2007). Similarly, C. florida foliage accumulates Ca and produces rapidly 

decomposing litter, which promotes nutrient rich soil (Thomas 1969; Jenkins et 

al. 2007) through more rapid mineralization (Holzmueller et al. 2007). 

In my study, differences between stand types were less pronounced in bottoms 

compared to ridges. Soils on bottoms were better buffered than those on ridges, 

as is evidenced by increased TEC and nutrient availability resulting from upland 

sources of alluvium (Zhalnin 2004). This may have allowed Acer species to 

establish and recruit in the subcanopy and canopy of P. echinata and P. strobus 

stands. This may have further reduced the impacts of litter and root inputs from 

Pinus species (Schuster and Dukes 2014; Read 1991). Additionally, unlike 

hardwood stands on ridges, hardwood stands in bottoms contained large 

components of P. occidentalis, J. nigra, Acer spp. and B. nigra, in addition to L. 

tulipifera (Chapter 3). While L. tulipifera and A. saccharum litter has been shown 

to increase soil cation levels, these other species likely have mixed effects on soil 

chemistry (Henry 1934; Reinsvold and Reeves 1986; Meiners 2014; Al Naib and 

Rice 1971; Leroy and Marks 2006; Willis 2000).  

 

2.6 Conclusions 
 

Decades of occupancy by Pinus species in plantations have altered soil 

chemistry in southern Indiana forests relative to soils in areas that underwent 

natural succession to hardwoods. In Pinus stands, I observed thicker litter layers, 

less soil organic matter, and reduced cation concentrations than hardwood sites. 
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In addition, total N and total C were lower in Pinus than in hardwood stands, but 

Al content was higher. Changes that I observed, compared to other conifer 

studies, suggest that the degree to which Pinus spp. affect soil chemistry 

depends upon the initial buffering capacity of the soil, the species planted, and 

the length of Pinus residence time. In addition to the effects of Pinus species, the 

differences between stand types I observed were also likely augmented by the 

mix of species in developing stands on hardwood sites. L. tulipifera, A. 

saccharum, and other native species that were dominant or common on my 

hardwood sites have been shown to ameliorate soil nutrient content and may 

have contributed to site recovery.  

Pinus and hardwood stands in bottoms were more similar than pine and 

hardwood stands on ridges because of increased soil buffering capacity and the 

intermixing of Acer species and Pinus species in the overstory, which in 

combination likely reduced the cumulative effects of litter inputs from Pinus 

species.  
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2.8 Figures 

  

 
 

Figure 2.1 Nested plot sampling design, 0.01 ha plot within a 0.05 ha plot.
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Figure 2.2 Litter depth and soil variables are listed by stand type and ELTP for 0-
10 cm depth. Letters represent significant differences in values (p <0.05). SLP = 
Pinus echinata, WP = P. strobus, and HW = hardwood. 
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2.9 Tables  
 

Table 2.1 Soil series listed by stand type and ELTP. The two most common 
series were Apalona and Wellston Silt Loams. 

Stand Type Soil Series 
Ridge Pinus echinata Apalona Silt Loam 
Ridge Pinus echinata Wellston Silt Loam 
Ridge Pinus echinata Adyeville-Tipsaw-Ebal Complex 
Ridge Pinus echinata Hosmer Silt Loam 
Ridge Pinus echinata Ebal-Duechers_kitterman Complex 
Ridge Pinus strobus Apalona Silt Loam 
Ridge Pinus strobus Wellston Silt Loam 
Ridge Pinus strobus Adyeville-Tipsaw-Ebal Complex 
Ridge Pinus strobus Adyeville-Wellston-Duechars Silt Loams 
Ridge Pinus strobus Adyeville Silt Loam 
Ridge Pinus strobus Ebal-Duechers_kitterman Complex 
Ridge Pinus strobus Tipsaw-Adyeville Complex 
Ridge Hardwood Apalona Silt Loam 
Ridge Hardwood Wellston Silt Loam 
Ridge Hardwood Adyeville-Tipsaw-Ebal Complex 
Ridge Hardwood Tipsaw-Adyeville Complex 
Bottom Pinus echinata Apalona Silt Loam 
Bottom Pinus echinata Gatchel Silt Loam 
Bottom Pinus echinata Adyeville-Tipsaw-Ebal Complex 
Bottom Pinus echinata Gatchel Loam 
Bottom Pinus strobus Adyeville Silt Loam 
Bottom Pinus strobus Adyeville-Tipsaw-Ebal Complex 
Bottom Pinus strobus Tipsaw-Adyeville Complex 
Bottom Pinus strobus Ebal-Duechers_kitterman Complex 
Bottom Hardwood Wellston Silt Loam 
Bottom Hardwood Apalona Silt Loam 
Bottom Hardwood Adyeville-Tipsaw-Ebal Complex 
Bottom Hardwood Markland Silty Clay Loam 
Bottom Hardwood Ebal-Duechers_kitterman Complex 
Bottom Hardwood Haymond Silt Loam 
Bottom Hardwood  Gatchel Silt Loam 
Bottom Hardwood Tipsaw-Adyeville Complex 
Bottom Hardwood Cuba Silt Loam 
Bottom Hardwood Adyeville-Wellston-Duechars Silt Loams 
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Table 2.2 Soil variables for stand type, ELTP, and their interaction (mean ± S.E.). Means with different superscripts 
were significantly different according to a Tukey multiple comparisons test (p <0.05). F values are listed on the right. 
*Factors or interaction significantly different (p <0.05). Non-transformed data are presented for ease of interpretation. 
Samples are from 0-10 cm depth. N=53 Pinus echinata, 33 P. strobus, 20 Hardwood, 77 ridge, and 29 bottom sites. 

Variable P. echinata 

 

P. strobus 

 

Hardwood 

 

Ridge 

 

Bottom 

 

Stand 
Type 

ELTP Stand 
Type 

X 
ELTP 

A horizon pH        
(ridge only) 5.53 ± 0.06a 5.66 ± 0.07ab 5.86 ± 0.14b 5.68 ± 0.06b 5.49 ± 0.07b 2.89 4.19* 1.70 

B horizon pH 4.20 ± 0.08a 4.20 ± 0.10a 4.56 ± 0.11b 4.27 ± 0.05 4.33 ± 0.06 9.83* 0.54 1.03 

TEC 
 (meq 100 g-1) 

9.15 ± 0.68 10.21 ± 0.85 10.56 ± 0.91 8.75 ± 0.42a 11.19 ± 0.55b 1.69 12.30* 0.14 

Organic Matter %  
(ridge only) 3.65 ± 0.08a 3.63 ± 0.11a 4.66 ± 0.20b 3.98 ± 0.08 3.96 ± 0.11 4.13* 0.03 8.21* 

Litter Depth (cm) 18.97 ± 1.96a 14.10 ± 2.45a 5.56 ± 2.64b 13.99 ± 1.22 11.76 ± 1.60 15.70* 1.23 0.34 

Litter Mass (g m-2) 824 ± 68a 592 ± 83a 287 ± 86b 638 ± 56 498 ± 73 12.10* 2.32 1.78 

Litter C:N Ratio  
(bottom only) 40.30 ± 1.94a 35.64 ± 2.38a 27.89 ± 1.62b 36.37 ± 0.88 34.61 ± 1.16 9.30* 1.46 4.06* 

Total Nitrogen %         
(ridge only) 0.14 ± 0.01a 0.14 ± 0.01a 0.20 ± 0.01b 0.16 ± 0.01 0.16 ± 0.01 0.31 9.63 3.99* 

Total Carbon %         
(ridge only) 1.65 ± 0.05a 1.65 ± 0.07a 2.32 ± 0.13b 1.87 ± 0.05 1.78 ± 0.07 6.14* 1.11 6.57* 

Calcium (mg kg-1) 855.3 ± 73.0a 945.1 ± 91.3ab 1118.0 ± 98.4b 900.6 ± 45.5 1045.0 ± 59.6 4.33* 3.71 1.32 

Sodium (%) 0.82 ± 0.05a 0.77 ± 0.06ab 0.66 ± 0.07b 0.81 ± 0.03a 0.68 ± 0.04b 3.56* 6.80* 0.66 

Boron (mg kg-1) 0.29 ± 0.02a 0.29 ± 0.03a 0.38 ± 0.03b 0.32 ± 0.01 0.31 ± 0.02 7.85* 0.07 0.99 
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Variable 
P. echinata 

 

P. strobus 

 

Hardwood 

 

Ridge 

 

Bottom 

 

Stand 
Type 

ELTP Stand 
Type 

X 
ELTP 

Iron   (mg kg-1) 
(bottom only) 155.0 ± 13.5a 181.0 ± 16.6ab 225.0 ± 11.3b 146.0 ± 6.2 187.0 ± 8.1 4.16* 16.40* 4.32* 

Manganese (mg     
kg-1)   (ridge only) 158.3 ± 11.4a 151.4 ± 15.0a 250.3 ± 28.3b 186.7 ± 11.3 182.3 ± 14.9 1.26 0.06 4.63* 

Zinc  (mg kg-1) 1.7 ± 0.1a 1.9 ± 0.2b 2.0 ± 0.2b 1.8 ± 0.1a 2.2 ± 0.1b 14.10* 7.16* 2.16 

Phosphorus (mg    kg-

1) 71.3 ± 5.1a 79.8 ± 6.4a 87.3 ± 6.8b 83.2 ± 3.2 75.7 ± 4.1 3.44* 2.11 2.42 

Aluminum (mg kg-1) 863.3 ± 30.7a 842.2 ± 38.5a 712.6 ± 41.4b 861.0 ± 19.1a 750.5 ± 25.1b 8.58* 12.40* 5.43* 

Bulk Density (Mg m-3) 
(ridge only) 1.01 ± 0.02a 1.07 ± 0.02a 0.87 ± 0.04b 0.98 ± 0.02 1.07 ± 0.02 5.73* 9.30* 3.12* 

TEC = total exchange capacity
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CHAPTER 3 RESPONSE OF UNDERSTORY COMMUNITIES TO LONG-
TERM OCCUPANCY BY NON-NATIVE PINUS SPECIES  

 
 
 

3.1 Abstract 
 

During the early to mid-20th century, conifer species were planted widely on 

abandoned farmland in the eastern United States to stabilize soils and promote 

site recovery. In many areas, non-native Pinus species were planted on sites that 

were dominated by mesic hardwood species prior to clearing. Therefore, these 

plantings constitute a shift in overstory composition towards species with 

recalcitrant litter that may decrease soil pH and nutrient availability. They also 

constitute a shift away from endemic species with more nutrient rich litter that 

decomposes more quickly. These plantations provide an excellent opportunity to 

examine soil and environmental conditions associated with long-term occupancy 

by Pinus species as they influence the diversity, composition, and resilience of 

herbaceous-layer communities. In this study, I compared herbaceous-layer 

composition in Pinus echinata and Pinus strobus plantations to that of naturally 

regenerated hardwood stands in the Tell City Unit of the Hoosier National Forest. 

Sample plots were distributed between two ecological landtype phases (ELTPs), 

ELTP 13, Fagus-Acer saccharum/Arisaema Mesic Ridges, and ELTP 42, Acer 

saccharinum/Boehmeria Bottomlands. Site measurements and chemical analysis 

of soil samples were used to examine species distribution across gradients using 

non-metric multidimensional scaling (NMS) ordination. Two-way ANOVA was 

used to examine differences in species functional 
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groups across stand types and ELTP. My results show that changes in soil 

chemistry resulting from Pinus spp. occupancy have altered the composition and 

distribution of herbaceous-layer species in ordination space. Species across 

stand types and ELTPs were distributed across dominant gradients related to 

litter depth, cation content, and soil aluminum concentration. Hardwood sites 

were associated with greater herbaceous-layer cover, particularly in bottoms. 

Pinus echinata stands contained a greater density of understory Quercus spp. 

and Fagus grandifolia stems, particularly in ridges. My results suggest that pine 

occupancy has created divergent successional trajectories in comparison to 

hardwood stands. These differing trajectories may offer unique challenges and 

opportunities for restoration efforts. For example, Pinus-Quercus associations 

may provide a means to restore native Quercus communities to parts of this 

landscape. 

 

3.2 Introduction 
 

The composition of plant communities is largely determined by interspecific 

competition for light, moisture, and soil nutrients (Gilliam 2014; Aerts 1999; 

Grace 2012). As such, species differ in their strategies for nutrient acquisition 

and allocation based on habitat types. Within species, traits that favor dominance 

in a nutrient-rich environment by maximizing tree growth often correspond to 

limited growth or survival on nutrient-poor sites where competition is present 

(Aerts 1999). Species that allocate resources to acquiring nutrients through 

prolific root growth or by retaining nutrients to minimize loss have an advantage 

in nutrient-poor soil. These strategies for acquiring nutrients depend, in part, on 

characteristics of mycorrhizal associates, which are influenced by soil type (Read 

1991).  
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For example, conifers frequently compete and persist in nutrient-poor soils 

through nutrient retention in recalcitrant litter and through ectomycorrhizal 

associations, which allow persistence in nutrient limited, low pH soils (Aerts 

1999; Smith and Read 2010).  

Dominance by Pinus spp. facilitates low nutrient conditions in soils. Pinus litter 

contains high recalcitrant fractions, whereas hardwood litter typically contains 

greater labile fractions. Low Pinus labile content corresponds to forest floor 

accumulation and diminished nutrient release into mineral soil as well as slower 

organic matter cycling (Berg and McClaugherty 2008; Pritchett and Fisher 1979; 

Binkley and Valentine 1991). A review of 700 studies comparing conifers and 

hardwoods by Barbier et al. (2008) found that conifer and hardwood overstories 

differ in understory composition through complex interactions of the light 

environment, moisture availability, nutrients dynamics, and litter inputs. There is 

evidence to suggest that conifer dominance in forests may lower soil pH, 

buffering capacity, exchangeable bases, base saturation, organic matter, and 

nutrient availability through inputs of litter. Additionally, that litter affects 

germination and moisture retention. These soil characteristics, combined with the 

allelopathic nature of coniferous litter, frequently lower plant species diversity or 

change plant functional group distributions in Pinus stands (Barbier et al. 2008; 

Blaschke 1981; Berg and McClaugherty 2003).  

Herbaceous-layer communities are directly affected by litter quality and 

composition differs between Pinus and hardwood forests (Gilliam 2014). The 

accumulation of Pinus litter alters moisture and temperature conditions, and may 

act as a mechanical barrier to germination and establishment (Barbier et al. 

2008, Facelli and Pickett 1991a; Loydi et al. 2013). Facelli and Pickett (1991a 

and b) found that annual and perennial herbs are often more impacted by litter 

depth than graminoids, and that woody litter may be more inhibiting than 

herbaceous litter. Additionally, a recent meta-analysis by Loydi et al. (2013) 

found that increased litter depth can increase soil moisture availability, which can 
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aid in the establishment of woody seedlings. The accumulation of recalcitrant 

litter may favor the germination of large-seed species in particular, such as those 

in the genus Quercus due to their greater energy reserves. Evidence also 

suggests that Fagus spp., and Quercus spp. are similar to Pinus spp. with regard 

to litter nutrient retention, ectomycorrhizal associations, and subsequent lower 

herbaceous-layer diversity (Barbier et al. 2008; Read 1991). Herbaceous species 

compete with seedlings for light, and have a direct impact on advance 

regeneration. Through rapid nutrient uptake and cycling, they also generally have 

a positive impact on nutrient availability (Gilliam 2007; Gilliam 2014). Graminoids 

and woody species may make up a greater proportion of the composition of 

conifer monocultures, whereas non-graminoid herbaceous species are typically 

associated with more fertile soil conditions (Facelli and Pickett 1991a; Loydi et al. 

2013). 

Long-term agriculture on former forest sites results in a loss of biological 

legacies, such as rhizomes and the native seed bank, and the alteration of soil 

physical and chemical properties, such as reduced A-horizon depth, organic 

mater content and cation availability (Jenkins and Parker 2000, Flinn and Marks 

2007). As a result, the recovery of vegetation communities on abandoned 

agricultural sites is often dependent upon the dispersal ability of species from 

surrounding communities and the ability of these species to tolerate degraded 

soil conditions (Flinn and Velland 2005; Flinn and Marks 2007). While the 

typically slow progression from old-field to secondary forest has been widely 

studied (e.g., Bazzaz 1975, Inouye et al. 1987; Myster and Pickett 1994), less is 

known about how the introduction of non-native conifers to abandoned 

agricultural sites alters the composition and diversity of recovering forests that 

would otherwise develop on these old-fields. 

During the early to mid-20th century, federal agencies in the U.S. planted trees on 

newly acquired public lands in an effort to curb erosion and regrow forestland on 

abandoned farmland. These replanting efforts began with the Civilian 
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Conservation Corps and Works Progress Administration in the 1930s (Parker 

and Ruffner 2004), and continued with the USDA Forest Service and state 

conservation agencies more recently. Pinus echinata Mill. (shortleaf pine), Pinus 

strobus L. (white pine), and Pinus resinosa Aiton. (red pine) were planted across 

large portions of the Central Hardwoods Region (Otis 1986, Sieber and Munson 

1992). In Indiana, Ohio, and Illinois, around 58,107 hectares of these non-native 

Pinus spp. persist today (USDA Forest Service, 2013). In these states, there is 

very limited and sporadic economic value to these stands, and research 

suggests that they may not be as ecologically desirable as mixed stands of 

native hardwoods (Barbier et al. 2008, Facelli and Pickett 1991a; Loydi et al. 

2013; Lindenmayer and Hobbs 2004). For this reason, managers have begun 

exploring strategies to convert these stands to native hardwoods. The success of 

conversion will depend in part on the lasting impact Pinus species have had on 

soil and vegetation communities where planted. In addition, though the long-term 

occupancy of Pinus monocultures has been studied with regard to soil quality, 

the long-term impact on the herbaceous-layer is not as well understood (Auten 

1945; Billings 1938; Sauer et al. 2007; Barbier et al. 2008). Therefore, this study 

offers an excellent opportunity to examine the compositional trajectory of 

understory communities as influenced by four decades of Pinus spp. dominance 

and the resulting alterations to soil chemistry. Such an examination provides 

valuable insight into the resiliency of forest ecosystems in the face of long-term 

changes to the edaphic environment.  

To examine the long-term impacts of Pinus establishment, I compared the plant 

species composition of P. echinata and P. strobus plantations to that of 

hardwood stands that naturally regenerated after land abandonment. I did so on 

two soil types: mesic ridges and bottoms. In this study, I address the following 

hypotheses:  

 
  



61 
 

1) The soil conditions associated with long-term Pinus occupancy will result 

in pronounced differences in species composition between Pinus and 

hardwood forests.  

2) Shifts in understory composition will be more pronounced on ridges than 

in bottoms because of their difference in soil buffering capacity and 

overstory composition.  

3) On ridges, Pinus site litter conditions in particular will have favored the 

establishment of woody species over herbaceous species, and will have 

shifted the composition of woody regeneration away from mesic species 

such as A. saccharum and towards species more tolerant of nutrient-poor 

conditions, such as those in the family Fagaceae.  

 

3.3 Methods 
 

3.3.1 Study Sites 

Sample sites were chosen within the Tell City Unit of the Hoosier National Forest 

within the Crawford Upland Subsection (CUP) as defined by Homoya et al. 

(1984). In ArcMAP v10.1, I selected study sites based upon Ecological Landtype 

Phase (ELTP), which is a land classification delineated by several variables 

including dominant vegetation, indicator species, soil type, elevation, slope, and 

slope aspect (Van Kley 1993). Because ELTP 13 Fagus-Acer 

saccharum/Arisaema Mesic Ridges, and ELTP 42 Acer saccharinum/Boehmeria 

Bottomlands were the most common ELTPs in our study region, and because 

both contained an abundance of Pinus plantations, we confined our sampling to 

these two types. To limit variability of soil across potential plots, I used Natural 

Resource Conservation Service (NRCS) soil series data to ensure that sites had 

similar soil types. While NRCS data show that there are many specific soil 

groups found within each ELTP, most of these soils only differ slightly. Soils on 
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ELTP 13 tend to be silt loam over sandstone parent with an argillic horizon of silt 

loam or silty clay between 20 cm and 68 cm (NRCS 2013), with an average A 

horizon depth of 4.7 ± 0.8 cm and average pH of 5.5 ± 1.1. ELTP 42 consists of 

silt loam alluvium over 2 m thick with a poorly-differentiated A horizon estimated 

at 10 cm and average pH of 6.8 ± 0.2 (Zhalnin 2004). The two most common 

NRCS soil series found within sites on mesic ridges and bottoms were Apalona 

silt loam and Wellston silt loam (Table 3.1). Both have average pH values 

between 3.5-7.3 and average CEC below 20 meq per 100 g (NRCS 2013). Other 

soil series found within sites contained similar values for pH, CEC, and soil type. 

Across mesic ridges and bottoms, I selected three vegetation types for sampling: 

P. echinata-dominated plantations, P. strobus-dominated plantations, and 

naturally regenerated hardwood forests. Hardwood species that regenerated 

naturally after agricultural abandonment included Platanus occidentalis L. 

(American sycamore), Liriodendron tulipifera L. (tuliptree), Juniperus virginiana L. 

(eastern redcedar), Juglans nigra L. (black walnut), Acer negundo L. (boxelder), 

A. rubrum L. (red maple), and A. saccharum. Digitized aerial photographs from 

the 1940s were overlain in ArcMAP to ensure that chosen sites were previously 

utilized for agriculture. To reduce edge effects, I used a 20 m buffer around 

roads, and a 40 m buffer between adjacent stand types to minimize the influence 

of surrounding vegetation types. Within these buffered delineations, the final 

sample coordinates were randomly selected in ArcMAP. Lastly, sites that 

experienced secondary disturbances such as logging, windstorms, or fire after 

agricultural abandonment were rejected. At all sites, I recorded GPS coordinates 

and marked plot locations with rebar and witness tree tags. In total, I sampled 44 

ridge P. echinata sites, 26 ridge P. strobus sites, 7 ridge hardwood sites, 9 

bottom P. echinata sites, 7 bottom P. strobus sites, and 13 bottom hardwood 

sites. These sample sites comprised all suitable sample sites within the study 

area.   

 
  



63 
 

I determined the age of each stand sampled to ensure that Pinus and hardwood 

sites were of a comparable age. While stand age data were collected by the 

USDA Forest Service by coring various representative trees within a defined 

stand, the resulting polygons represented by these ages were often quite large. 

Therefore, in order to more accurately represent overstory age on sampled plots, 

I cored three dominant trees at 30 cm above the ground using an increment 

borer. The average age of these three trees was used to estimate stand age 

(Jenkins and Parker 1999; 2000). By using only sites that were historically used 

for agriculture, we limited stand age to a maximum of 70 years, due to the fact 

that land was largely abandoned in the 1930s and 1940s (Welch et al. 2001). 

The average age was between 25 and 40 years, because most of the plantations 

in the Hoosier National Forest occurred later than the 1940s. 

 

3.3.2 Field Sampling Design 

Vegetation was sampled from May 13 to August 15, 2013 using a nested plot 

design (Jenkins and Parker 1998; 1999; 2000; 2001; Van Kley 1993). From a 

common center, I established a 0.01 ha circular plot (r = 5.6 m) within a 0.05 ha 

circular plot (r = 12.6 m). Within the 0.01 ha plot, I tallied all woody saplings (> 1 

m height, < 3 cm DBH) by species and measured DBH and recorded the species 

of all stems greater than 3 cm DBH. Within the 0.05 ha plot, I recorded the DBH 

and species of all stems ≥ 10 cm DBH. A 4 m2 quadrat was placed 5.6 m from 

plot center in each cardinal direction, resulting in a total of four quadrats. Within 

each quadrat, I tallied seedlings (woody stems < 1 m tall) by species and 

estimated the percent cover of herbaceous-layer species, which included the 

cover of woody species below 1 m, and could exceed 100% cover.  
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Herbaceous-layer species that occurred on the plot but were not found in the 

quadrats were given a cover value equal to half that of the lowest species cover 

recorded in the quadrats (Figure 3.1). Species nomenclature follows the USDA 

PLANTS Database (NRCS 2014). Canopy openness was measured using a 

Nikon EOS 20D camera with 10 MP, mounted with an 8 mm fisheye lens. 

Pictures were taken between June 5th and July 30th to keep data within range of 

peak leaf out (Constabel and Lieffers 1996). At each site, the camera was 

mounted on a tripod at 1 m above the ground, and leveled. Four photos were 

taken, one in each cardinal direction 5.6 m from plot center, with the camera 

facing north. 

Due to the fact that soils vary across each ELTP, and because past agricultural 

use alters the A horizon thickness through increased erosion (Welch et al. 2001), 

I collected soil samples at 0-10 cm and 10-20 cm using an impact driven soil 

corer. Sampling at these depths allowed me to capture the zone of herbaceous-

layer rooting. All soil sampling was conducted adjacent to the 4 m2 quadrats. A 

minimum of 400 g per sample was collected per site. For the 0-10 cm sample, 

five cores were taken and put into separate bags, and for 10-20 cm depth, five 

cores were combined into one sample because of a lack of funding for laboratory 

analysis. I also collected litter from three 25 cm2 quadrats located 5.6 m west, 

north, and east of plot center. In total, 585 soil samples and 351 litter samples 

were collected. Soils were analyzed for organic matter (%), total exchange 

capacity (TEC; meq 100 g-1), pH, total C (TC; %), total N (TN; %), P (mg kg-1), Ca 

(mg kg-1), Mg (mg kg-1), Zn (mg kg-1), B (mg    kg-1), and Al (mg kg-1); see chapter 

2 for full description of soil chemical analyses.  

Canopy photographs were organized in ImageJ software by defining north, east, 

and west coordinates for batch processing. A first image was separated into the 

blue color spectrum, displayed in grey scale, and given a threshold of Minimum 

to limit the allowed range of wavelengths of light. This first image layout was 

used with a batch processing macros.ijm file to run all 351 images. To avoid 
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skewed readings, images which displayed sunflecks were removed, resulting in a 

total of one to four images per site, with an average of three per site. Those 

images were then analyzed in CIMES-fisheye software (Jean-Michel Walter 

2009) to yield canopy openness, gap fraction, and canopy closure. 

 

3.3.4 Sampling Design and Data Analysis  

I calculated total basal area (TBA), living basal area (LBA), and dead basal area 

(DBA) as m2 ha-1. I also calculated overstory density and sapling density as 

stems ha-1. Seedling density was calculated as stems per 100 m2 by species. 

Percent cover was averaged over four plots by species. Using percent cover of 

herbaceous-layer species, I calculated richness (S), Shannon-Weiner diversity 

(H’), and Evenness using PC-ORD Version 5.1 (McCune et al. 2002).  

To investigate compositional differences between ELTPs and stand types within 

the Hoosier National Forest, I used non-metric multidimensional scaling (NMS) 

ordination with PC-ORD version 5.1 (McCune et al. 2002). NMS is appropriate 

for non-normally distributed datasets such as with species percent cover, partly 

by avoiding assumptions of linear relationships among variables. An arcsine 

square root transformation was used on the herbaceous-layer species data to 

improve normality and decrease the effect of scarcity/rarity within the matrix. I 

used the Sorenson (Bray-Curtis) distance measure on Autopilot mode, on the 

Slow and Thorough setting with default settings of a 0.00001 stability criterion, 50 

real runs, and 50 randomized runs of 500 iterations for each dimensionality (from 

one to six), using a random number starting point to find the appropriate 

dimensionality. Then, 250 real and 250 randomized runs were conducted for the 

ordination. Correlations of the main matrix with environmental variables were 

calculated with Pearson’s r and vectors of maximum absolute value were plotted 

on ordination axes for any correlation greater than 0.2. 
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Indicator species analysis was conducted using the herbaceous-layer main 

matrix with 4999 runs of a Monte Carlo test. Additionally, I created dominance 

tables for overstory, sapling, and herbaceous-layer species. By summing percent 

cover values, I combined individual herbaceous species into the following 

functional groups: graminoids, sedges, perennials, annuals, biennials, and 

invasive ground cover. Similarly, I combined woody species into the following 

functional groups: native shrubs, invasive shrubs, native vines, invasive vines, 

sub canopy trees, and other species. Additionally, Acer saccharum, A. negundo, 

A. rubrum, Quercus spp., Fraxinus spp., Fagus grandifolia Ehrh. (American 

beech), were analyzed as individual species or genera. I analyzed the sapling 

layer for A. saccharum, A. negundo, A. rubrum, Quercus spp., Fraxinus spp., 

shrubs, F. grandifolia, sub canopy trees, and other species. 

The most common species in the annuals/biennials group were largely Sanicula 

canadensis L. (black snakeroot) and Impatiens capensis Meerb. (spotted touch-

me-not) and the most common species in the perennials group were Packera 

aurea (L.) Á. Löve & D. Löve (heart-leaved golden ragwort), Lycopodium spp. 

(clubmoss), moss, and Ageratina altissima (L.) R.M. King & H. Rob. (white 

snakeroot). Invasives consisted mostly of Rosa multiflora Thunb. (multiflora 

rose), Lonicera japonica Thunb. (Japanese honeysuckle), and Microstegium 

vimineum (Trin.) A. Camus (Japanese stiltgrass). Shrubs consisted largely of 

Lindera benzoin (L.) Blume (spicebush), Smilax spp. (greenbrier), and Rubus 

spp. (blackberry). Native vines were largely Toxicodendron radicans (L.) Kuntze 

(poison-ivy), and Parthenocissus quinquefolia (L.) Planch. (Virginia creeper; 

Appendix C). Subcanopy trees consisted of Amelanchier spp. (serviceberry), 

Aralia spinosa L. (devil’s walkingstick), Asimina triloba (L.) Dunal (pawpaw), 

Carpinus caroliniana Walter (musclewood), Cercis canadensis L. (redbud), 

Cornus florida L. (flowering dogwood), Morus rubra L. (red mulberry), Ostrya 

virginiana (Mill.) K. Koch (ironwood), Rhus spp. (sumac), and Salix spp. (willow). 

Finally, the other tree species group of the seedling and sapling layers included 

Aesculus glabra Willd. (Ohio buckeye), Celtis occidentalis L. (hackberry), 
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Diospyros virginiana L. (persimmon), Juglans nigra, Juniperus virginiana L. (red 

cedar), Liquidambar styraciflua L. (sweetgum),  Prunus serotina Ehrh. (black 

cherry), Sassafras albidum (Nutt.) Nees (sassafras), L. tulipifera, and Pinus spp. 

The most common woody herbaceous-layer species, excluding tree seedlings, 

were T. radicans, P. quinquefolia, L. benzoin, L. japonica, and R. multiflora.  

I used two-way Analysis of Variance (ANOVA) with stand type and ELTP as 

categorical variables to more closely examine explanatory variables that were 

correlated with ordination axes, including functional groups. This included 

analyzing variables by stand type (P. echinata, P. strobus, or hardwood), ELTP 

(mesic ridges or bottoms), and examining their interaction terms. The interaction 

compared individual types, for example: ridge P. echinata vs. ridge hardwood, 

ridge P. strobus vs. bottomland P. strobus, etc. Assumptions of normality and 

constant variance were assessed with plots of studentized residuals versus fitted 

values (Neter et al. 1996). We also used residual plots to screen potential outliers 

(Neter et al. 1996).  I used an arcsine square root transformation on species 

functional groups. I used square root transformations on litter depth, Ca, Zn, B, 

and Mn. Lastly, I removed an extreme outlier for Fe, and log transformed. Non-

transformed data are presented for ease of interpretation. Dead basal area, 

being particularly problematic, was centered, absolute value transformed, and 

square root transformed in order to better fit assumptions of normality and 

constant variance. When ANOVA revealed significant differences, I used the 

Tukey multiple comparisons test for post hoc comparisons (α = 0.05). Where 

transformations could not improve assumptions, I used Kruskal-Wallis ANOVA 

on Ranks with Dunn’s Multiple Comparisons post hoc test (α = 0.05).   
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3.4 Results 
 

3.4.1 Species Distribution Across Environmental Gradients 

The NMS ordination had a final stress of 17.56, instability of <0.0001, and a 

three-dimensional solution. Each axis accounted for 12.9%, 30.0%, and 35.6% of 

variation respectively, which totaled 78.5% of the total variation. Sites were well 

divided by stand type and ELTP. Both P. echinata and P. strobus stands were 

associated with increased TBA, litter depth, and Al, while hardwood sites were 

associated with increased Ca, Zn, and TEC. Ridge sites were associated with 

high values of TBA, litter depth, and Al, whereas bottoms were associated with 

high soil nutrient content (Figure 3.2). Axis three was correlated with litter depth 

(r2 = 0.296), Al (r2 = 0.40), Zn (r2 = 0.24), Ca (r2 = 0.28), and TEC (r2 = 0.23), 

while axis two was largely associated with TBA (r2 = 0.22), litter depth (r2 = 0.17), 

and Fe (r2 = 0.12). In effect, litter depth, TBA, Na, and Al increased with ridge 

sites and with P. echinata, while soil nutrients, TEC, Ca, and Zn increased with 

bottoms and hardwood sites (Figure 3.2).  

Functional groups displayed clear associations with stand type and ELTP and 

were distributed across both stand and edaphic variables (Figure 3.2). Annuals, 

biennials, graminoids, and invasives were associated with hardwood and bottom 

sites and with greater values of Ca, Zn, and TEC and lower values of Al, TBA, 

and litter depth. Cover of seedlings, particularly Quercus spp., F. grandifolia, and 

A. rubrum trended with Pinus ridge sites, and with increasing values of TBA, litter 

depth, and Al. Overall, more functional groups were associated with hardwood 

than with Pinus sites, and with bottoms than with ridges (Figure 3.2).  
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3.4.2 Soil Conditions  

pH, OM (%), TC (%), TN (%), B (mg kg-1), Mn (mg kg-1), Ca (mg kg-1), and Zn 

(mg kg-1) of the top 10 cm of soil were all greater in hardwood than in Pinus 

stands (max p = 0.04). Additionally, fewer trends were observed in bottoms 

between Pinus and hardwood sites because of a limited number of suitable sites, 

higher buffering capacity, and a difference in vegetation composition. Soil Fe, Zn, 

Ca, and B were greater in hardwood bottoms than P. echinata bottoms. TEC, P, 

Na, and Zn were greater in bottoms than ridges. Lastly, soil Al (mg kg-1) was 

significantly greater on ridges than on bottoms and was significantly greater in 

Pinus stands than hardwoods. On bottom sites, Al was greater in P. strobus than 

hardwoods (Chapter 2).   

 

3.4.3 Stand Structure and Composition  

Total basal area (TBA) was greater in Pinus plantations than naturally 

regenerated sites, averaging 45.0 ± 2.3 and 26.7 ± 2.8 m2 ha-1 respectively (F = 

25.6, p <0.001). However, basal area of dead trees (DBA) was significantly 

greater in P. strobus sites than P. echinata or hardwood sites, with an average of 

2.4 ± 0.7 m2 ha-1 in P. strobus, 1.8 ± 0.6 m2 ha-1 in P. echinata, and 1.4 ± 0.8 

m2 ha-1 in hardwood (F = 8.9, p<0.001). Understory light availability as measured 

by canopy openness did not vary with TBA or ELTP. It differed only with DBA, 

which was only greater in P. strobus sites than P. echinata or hardwood sites (F 

= 11.6, p <0.001; Table 3.2). 

Hardwood sites had greater species richness (F = 10.8, p <0.001) and Shannon-

Weiner diversity (F = 5.3, p = 0.007) than Pinus sites. Species richness averaged 

35 ± 2.4 on Pinus vs. 46 ± 2.9 on hardwood sites, and diversity averaged 2.2 ± 

0.1 on Pinus sites vs. 2.6 ± 0.2 on hardwood sites. Not surprisingly, average 

herbaceous-layer percent cover was greater in hardwood sites than Pinus, 
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averaging 66.2 ± 9.0 and 142 ± 11.0 for Pinus and hardwoods respectively (F = 

42.9, p<0.001; Table 3.2). Graminoids, perennials, annuals, biennials, sedges, 

native shrubs, invasive shrubs, and native vines all showed greater average 

cover in hardwoods than in Pinus stands. Biennials exhibited greater values in 

bottom hardwood vs. Pinus, showing a significant interaction term. Invasive 

shrub cover was greater in hardwood than in P. echinata stands. Mean percent 

cover for graminoids was 1.7 ± 2.9 and 16.4 ± 3.5 on Pinus and hardwood sites, 

respectively (F = 12.7, p <0.001). Perennials averaged 7.5 ± 4.4 on Pinus sites 

and 29.4 ± 5.3 on hardwood sites (F = 12.68, p <0.001). Lastly, native vines 

averaged 19.3 ± 3.2 and 50.9 ± 6.9 on ridge Pinus vs. ridge hardwood with a 

significant interaction term (F = 7.16, p = 0.001; Table 3.3; Figure 3.3).  

Acer saccharum, subcanopy trees, and other tree seedlings had greater density 

in hardwood than in Pinus stands. For saplings, A. saccharum, subcanopy trees, 

other tree species, and invasive shrubs had higher stem density in hardwoods 

than Pinus stands. Average seedling density (stems per 100 m2) for A. 

saccharum was 4.0 ± 5.3 and 19.7 ± 5.7 in P. strobus and hardwood sites 

respectively (F = 3.9, p = 0.023). Subcanopy tree seedlings averaged 8.1 ± 4.3 in 

Pinus and 20.6 ± 5.1 in hardwood stands (F = 4.8, p = 0.01). Other tree seedlings 

averaged 27.5 ± 4.3 and 52.7 ± 9.1 for ridge Pinus stands and ridge hardwoods 

respectively, with a significant interaction term at α = 0.1 (F = 2.99, p = 0.06; 

Table 3.4; Figure 3.3). Average sapling stem density (stems ha-1) for A. 

saccharum was 98.4 ± 89.7 and 928.6 ± 192.4 in ridge Pinus and ridge 

hardwood sites respectively, with a significant interaction term (F = 3.6, p = 

0.032). Subcanopy tree saplings averaged 111.6 ± 69.8 in Pinus and 413.8 ± 

83.5 in hardwood stands (F = 9.3, p<0.001). Other tree saplings averaged 176.5 

± 49.6 and 500.0 ± 106.3 in ridge Pinus vs. ridge hardwood stands with a 

significant interaction term at α = 0.1 (F = 3.0, p = 0.05). Lastly, for invasives 

shrubs, sapling density averaged 49.5 ± 49.7 and 147.3 ± 59.6 in Pinus stands 

vs. hardwoods, respectively (F = 2.9, p = 0.06; Table 3.5; Figure 3.3). 
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Bottoms had greater species richness than ridges (F = 10.0, p = 0.002), 

averaging 42 ± 1.8 and 35 ± 1.4, respectively (Table 1). Bottoms had greater 

percent cover of invasive shrub species, invasive groundcover species, 

perennials, biennials, and sedges. Invasive shrub percent cover averaged 4.6 ± 

1.6 in bottoms and 11.2 ± 2.0 on ridges (F = 6.7, p = 0.01). Invasive groundcover 

averaged 7.0 ± 1.6 and 12.9 ± 2.0 in bottom and ridge sites, respectively (F = 

5.3, p = 0.02). Perennials averaged 9.5 ± 2.4 and 20.0 ± 3.2 (F = 6.8, p = 0.01) 

and biennials averaged 0.6 ± 0.4 and 2.0 ± 0.5 (F = 5.5, p = 0.02; Table 2). In 

addition, A. negundo seedlings and saplings had higher stem density in bottoms 

than ridges (Table 3.3; Figure 3.3). 

Conversely, total seedling density was higher on ridges than bottoms, averaging 

200.5 ± 111.0 and 130.1 ± 118.5 stems per 100 m2 respectively (F = 14.1, 

p<0.001). For seedlings and saplings, A. rubrum, Quercus spp., Fraxinus spp., 

and other tree species were generally greater on ridges than bottoms. For 

seedlings (stems per 100 m2), mean A. rubrum density was 29.8 ± 5.4 on ridges 

and 8.2 ± 7.1 on bottoms (F = 5.8, p = 0.02). Mean Quercus spp. density was 

13.2 ± 2.3 on ridges and 7.2 ± 3.0 on bottoms (F = 2.5, p = 0.09). Mean Fraxinus 

spp. density was 58.8 ± 9.6 on ridges and 21.2 ± 12.6 on bottoms (F = 5.6, p = 

0.02). Lastly, density of other tree species was 35.9 ± 3.7 on ridges and 8.2 ± 4.8 

on bottoms (F = 21.2, p<0.001; Table 3.4; Figure 3.3). Mean sapling density 

(stems per hectare) for A. rubrum was 198.1 ± 53.0 on ridges and 19.2 ± 69.5 on 

bottoms (F = 4.2, p = 0.04). Mean density for Quercus spp. was 134.7 ± 39.9 on 

ridges and 93.7 ± 52.3 on bottoms (F = 2.1, p = 0.12). Lastly, mean other tree 

density was 284.3 ± 42.6 on ridges and 67.0 ± 55.8 on bottoms (F = 9.6, p = 

0.003; Table 3.5; Figure 3.3). Lastly, native vine percent cover was greater on 

ridges than bottoms with an average of 29.8 ± 2.8 and 8.6 ± 3.6 respectively (F = 

21.5, p<0.001; Table 3.3; Figure 3.3). Mean Quercus spp. and F. grandifolia 

densities were greater on P. echinata sites than hardwoods for both seedlings 

(stems per 100 m2) and saplings (stems per ha). Mean Quercus spp. seedling 

density was 15.7 ± 3.6 for P. echinata and 7.3 ± 4.9 for hardwood, with a 
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significant interaction term at α = 0.1 (F = 2.5, p = 0.09). Mean F. grandifolia 

seedling density was 4.9 ± 1.9 on P. echinata and 2.1 ± 2.6 on hardwood, though 

it was not significant (F = 1.3, p = 0.28; Table 3.4; Figure 3.3). For saplings, 

mean Quercus spp. density was 201.1 ± 64.0 on P. echinata and 89.0 ± 86.4 on 

hardwoods, though it was not significant (F = 2.1, p = 0.12), and mean F. 

grandifolia sapling density was 414.9 ± 108.0 on P. echinata and 45.6 ± 106.1 on 

hardwoods (F = 5.5, p = 0.01; Table 3.5; Figure 3.3). Ridge hardwoods were 

dominated by L. benzoin and A. saccharum.  

Bottomland P. echinata sites were somewhat dominated by A. saccharum, F. 

grandifolia, and Fraxinus spp. saplings, bottomland P. strobus were dominated 

by L. benzoin, A. negundo, and Fraxinus spp., and bottomland hardwoods by a 

wider mix of saplings (Table 3.4; Table 3.5; Appendix C; Figure 3.3). 

 

3.4.4 Indicator Species Analysis 

Not surprisingly, the overstory of P. echinata and P. strobus ridge stand types 

were almost exclusively dominated by P. echinata and P. strobus respectively, 

while hardwood sites were dominated by L. tulipifera (Table 3.4). Overstory 

indicator species analysis showed similar trends. For ridge P. echinata sites, P. 

echinata (IV = 56.3, p = 0.0002) and A. rubrum (IV = 31.5, p = 0.02) were 

indicators. For ridge P. strobus sites, P. strobus was an indicator (IV = 48.3, p = 

0.0002). For ridge hardwood sites, L. tulipifera (IV = 38.3, p = 0.01), Ulmus rubra 

Muhl. (red elm; IV = 29.4, p = 0.02), and J. nigra (IV = 27.8, p = 0.02) were the 

overstory indicators. For bottom P. echinata sites, A. saccharum (IV = 37.2, p = 

0.004), and O. virginiana (IV = 19.1, p = 0.049) were indicators. For bottom P. 

strobus sites, A. negundo (IV = 28.3, p = 0.01) and Gleditsia triacanthos L. 

(honeylocust; IV = 16.7, p = 0.048) were indicators. Lastly for bottom hardwoods, 

P. occidentalis (IV = 45.2, p = 0.001) and Betula nigra L. (river birch; IV = 18.2, p 

= 0.03) were indicators. In terms of saplings, for ridge P. echinata sites, F. 
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grandifolia (IV = 42, p = 0.01) and Q. velutina (IV = 27, p = 0.04) were indicators. 

For bottom P. strobus, A. negundo (IV = 22.5, p = 0.01), U. rubra (IV = 35.1, p = 

0.004), and D. virginiana (IV = 38.7, p = 0.03) were indicators. Lastly, for 

bottomland hardwoods, P. occidentalis was an indicator (IV = 18.2, p = 0.03; 

Table 3.6). 

Indicator species in the herbaceous stratum varied between stand types and 

ELTPs. There were no significant indicators for ridge P. echinata sites, and 

Asplenium platyneuron (L.) Britton, Sterns & Poggenb. (ebony spleenwort) was 

the only indicator for ridge P. strobus (IV = 29.2, p = 0.049). However, ridge 

hardwood sites had 13 indicators including the woody species: A. saccharum  (IV 

= 54, p = 0.01), U. rubra (IV = 53.5, p = 0.01), L. styraciflua  (IV = 46.8, p = 0.02), 

and C. occidentalis  (IV = 45.1, p = 0.03), and the herbaceous species: 

Helianthus annuus L. (common sunflower; IV = 42.3, p<0.001) and Eupatorium 

purpureum L. (spotted joe pye weed; IV = 41.7, p = 0.02). Bottomland P. 

echinata had nine indicators, including Monarda fistulosa L. (beebalm; IV = 40, p 

= 0.002), and Vibernum spp. (IV = 29.6, p = 0.047). Bottomland P. strobus had 

seven indicators, including A. negundo (IV = 50.1, p = 0.01), and M. vimineum 

(IV = 40.2, p = 0.01), an invasive grass species. Lastly, bottomland hardwood 

sites had 19 indicators including P. aurea (IV = 76.7, p<0.001), S. canadensis (IV 

= 62.1, p = 0.002), Verbesina alternifolia (L.) Britton ex Kearney (wingstem; IV = 

58.2, p<0.001), Asarum canadense L. (wild ginger; IV = 53.2, p<0.001), Laportea 

canadensis (L.) Weddell (wood nettle; IV = 58.2, p<0.001), and I. capensis (IV = 

47.0, p = 0.002; Table 3.6). 
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3.5 Discussion 
 

3.5.1 Community Divergence by Stand Type 

In my study, soil conditions resulting from Pinus occupancy directly impacted the 

composition of herbaceous-layer communities and the distribution of species 

across edaphic gradients. Greater litter depths likely contributed to slower 

nutrient cycling, as was evident in the reduced organic matter and macronutrient 

availability in surface soil. This was a result of recalcitrant litter, which on average 

breaks down more slowly than hardwood litter (Berg and McClaugherty 2003). 

Soils in Pinus stands had slightly lower pH, lower concentrations of Ca, and 

higher concentrations of Al (Chapter 2). Likely as a result of this lower soil 

fertility, Pinus stands had lower Shannon-Wiener diversity, species richness, and 

percent cover when compared to hardwood sites. Literature suggests that lower 

species diversity in Pinus stands is common due to the acidifying effect of litter 

and mycorrhizal leachates of aliphatic organic acids, which lowers soil fertility 

(Pohlman and McColl 1988; Helyar and Porter 1989; Landeweert et al. 2001; 

Smith 1969; Krzyszowska et al. 1996; Fox and Comerford 1990) and favors a 

limited suite of species tolerant of such conditions. Research has also shown that 

Pinus litter acts as a mechanical barrier to the successful germination and 

establishment of many species, including annuals, biennials, and many perennial 

herbs (Meers et al. 2010; Berg and McClaugherty 2003; Read 1991; Barbier et 

al. 2008, Facelli and Pickett 1991a; Loydi et al. 2013; Blaschke 1981). In the 

ordination, greater litter depth and high Al concentrations, and low cation 

availability were most strongly associated with P. echinata plots, while P. strobus 

plots were associated with intermediate values of these variables. There is some 

evidence to suggest that P. strobus may have more intermediate litter depths 

compared to many other species in Pinaceae and Fagaceae (Barbier et al. 

2008). In my study, understory richness, diversity, and cover were also 

intermediate in P. strobus stands compared to P. echinata and hardwood stands, 

suggesting that that understory communities were affected by litter depth and soil 
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fertility directly. In addition, canopy openness was greater in P. strobus stands, 

yet this greater availability of light did not correlate to increased cover or species 

diversity. Conversely, hardwood plots were associated with high availability of 

cations, reduced litter depths, and low levels of Al. In addition to the absence of 

Pinus spp., these improved soil conditions are likely a result of the occupancy of 

L. tulipifera, A. saccharum, and other species such as C. florida, who rapidly 

cycle calcium and other nutrients, improving soil base saturation and buffering 

capacity, and therefore soil fertility (Kalisz 1986; McClaugherty et al. 1985; Berg 

and McClaugherty 2003; Finzi et al. 1998; Jenkins et al. 2007; Holzmueller et al. 

2007).  

Pinus sites, on average, contained fewer functional groups and had overall lower 

coverage of functional groups, whereas hardwoods possessed greater coverage 

of a greater number of groups. Annuals, biennials, perennial herbs, and invasive 

species were all more common on hardwood sites, likely as a consequence of 

improved soil fertility. The species in these functional groups have more rapid 

litter decomposition compared to conifers and form arbuscular mycorrhizal (AM) 

associations, which facilitate rapid uptake of cations, increase pH, and often 

improve buffering capacity, all of which contribute to active microbial 

communities (Berg and McClaugherty 2003; Aerts 1999; Read 1991; Smith and 

Read 2010). Research also suggests that these herbaceous groups are 

particularly sensitive to deep litter layers (Facelli and Pickett 1991 a and b), such 

as those associated with Pinus species.  

In Pinus stands, I observed a greater density of woody stems, such as Fraxinus 

spp. and Acer rubrum, which are widespread generalist species that display 

tolerance of a wide range of soil conditions. In addition, Quercus spp. and F. 

grandifolia were more common on P. echinata sites than other stand types. 

Evidence suggests that Quercus may establish well in deep litter because of 

large seeds with large energy reserves (Loydi et al. 2013). Additionally, members 

of Fagaceae have slow nutrient cycling and litter decomposition, and form 
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ectomycorrhizal associates (Read 1991; Smith and Read 2010), which facilitate 

soil acidification through organic acid leachates; a strategy that increases uptake 

of limited nutrients and minimizes Al-toxicity (Read 1991; Smith and Read 2010; 

Van Hees et al. 2005; Zheng et al. 1998).  

 

3.5.2 Community Divergence by ELTP 

I observed marked differences in the soil chemistry of ridges and bottoms, which 

in turn influenced species distributions. Within ELTPs, I observed more defined 

differences in soils between Pinus and hardwood stands on ridges than on 

bottoms. The more nutrient-rich and well buffered soil in bottoms allowed Acer 

spp. to persist and advance into the canopy within P. echinata and P. strobus 

stands over the past 40 years. Because Pinus and Acer species differ in terms of 

litter residence time, cation concentration, and mycorrhizal associates, their 

influence on soil should also differ (Berg and McClaugherty 2003; McClaugherty 

et al. 1985; Read 1991). Additionally, with greater moisture availability in bottoms 

compared to ridges (Zhalnin et al. 2004), nutrient cycling may have been more 

rapid. This was evident in that litter depth and macronutrient availability did not 

differ greatly between stand types within bottoms compared to stand types on 

ridges, suggesting that moisture content contributed to greater similarity in 

decomposition rates between stand types.  

Liriodendron tulipifera dominated hardwood stands on ridges and this species 

has been shown to have positive effects on decomposition rates and nutrient 

availability (Kalisz 1986). On bottoms, L. tulipifera was codominant with J. 

virginiana, P. occidentalis, and J. nigra. These species vary in litter 

decomposition rates and mycorrhizal types (Henry 1934; Reinsvold and Reeves 

1986; Meiners 2014; Leroy and Marks 2006), and in the case of J. nigra and P. 

occidentalis, produce allelopathic compounds (Meiners 2014; Willis 2000; Al Naib 

and Rice 1971). Consequently, their accumulated effects on soil chemistry are 
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likely more variable, and there is little evidence to suggest that these species 

would promote understory diversity (Henry 1934; Reinsvold and Reeves 1986; Al 

Naib and Rice 1971; Leroy and Marks 2006; Willis 2000). The potential buffering 

from change of soils in bottoms driven by Pinus spp. is supported by earlier 

studies. Research has shown that Pinus, and other acidifying species such as 

ericaceous shrubs, have more pronounced impacts on soils that are poorly 

buffered (Grant, 1978; Binkley et al. 1989; Richter et al. 1994; Binkley and 

Valentine 1991; Binkley and Sollins 1990; Hizal et al. 2013; Rolfe and Boggess 

1973). 

Functional group distributions were clearly different due to soil differences 

between ridges and bottoms. Bottoms had greater mean cover across functional 

groups than ridges, including annuals, biennials, and perennials, as well as 

greater cover of Acer species, likely as a result of reduced interference from 

deep litter layers (Facelli and Pickett 1991 a and b) and greater soil fertility. The 

cover of invasive species was greatest in bottom P. strobus and bottom 

hardwood stands. However, bottom P. strobus stands had the lowest canopy 

cover due to the dieback and mortality of mature P. strobus trees, which may 

have contributed some to the greater total plant cover and greater cover of 

invasive species.    

Regardless of stand type, I observed greater density and cover of woody species 

on ridges, but a greater cover of herbaceous species in bottoms. Herbaceous 

plants compete well for nutrients in the herbaceous layer and may have a 

negative impact on the establishment and persistence of advance regeneration 

(Gilliam 2007). On ridges, where herbaceous groups were likely inhibited by thick 

litter and low nutrient availability, woody plants exhibited greater importance.  
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3.5.3 Potential for Restoration 

Prior to the 1800s, the Hoosier National Forest was dominated by Quercus-

Carya forests. Forest harvesting via large openings has led to the regeneration 

and dominance of L. tulipifera, while selective harvesting via small openings has 

driven the dominance of Acer saccharum (Jenkins and Parker 1998). The 

ascension of L. tulipifera represents a clear divergence in successional trajectory 

(Zhalnin 2004), while the increased importance of A. saccharum represents 

accelerated succession towards late-successional shade-tolerant species 

(Abrams and Scott 1989). My study has shown that the establishment of Pinus 

plantations decades ago has led to another very pronounced divergence in 

successional trajectory. In the hardwood stands I sampled, the increased 

importance of mesophytic species, such as L. tulipifera and A. saccharum, has 

come at the expense of masting species in the genera Quercus and Carya. Soils 

on P. echinata ridges, and to a lesser degree P. echinata bottoms, contained 

thick litter layers, high concentrations of Al, and low availability of cations. As a 

consequence, this stand type contained low cover of herbaceous species and 

mesophytic woody seedlings. However, site occupancy by P. echinata has also 

led to increased cover and density of Quercus spp. and Fagus grandifolia. 

Because the regeneration of Quercus species on productive sites has been 

highly problematic throughout the Quercus-Carya forest (Johnson et al. 2009), 

this edaphically driven promotion of Quercus advance regeneration should be 

explored as a restoration opportunity for managers. Given the appropriate 

silvicultural strategies, it is likely that the use of shelterwoods and low intensity 

burning treatments on these sites may allow for the successful regeneration of 

Quercus spp. where advanced regeneration is present (Johnson et al. 2009). 
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3.6 Conclusion 
 

Pinus stands had a clear impact on soil chemistry in my study (Chapter 2), which 

showed a direct impact on the composition and distribution of understory 

communities. Where mesophytic hardwoods dominated, soil fertility was greater, 

and species richness and cover of herbaceous species groups were greater. 

Pinus stands displayed lower herbaceous species diversity and total cover, but 

greater density and importance of understory Quercus spp. stems. These 

differences between Pinus and hardwoods were less pronounced in bottoms. 

This is likely due, in part, to the large component of Acer spp. that established in 

the overstory, intermixed with Pinus species in bottoms. These Acer spp. 

contributed to litter inputs and likely reduced the effects of Pinus species on soil 

chemistry. In addition, hardwood stands in bottoms contained a mix of canopy 

species with varying effects on soil chemistry.   

Overstory species composition strongly affected soil conditions (Chapter 2), 

which in turn strongly influenced species distributions. This reflects an ecological 

feedback loop in which both Pinus and mesophytic species are superior 

competitors in specific soil conditions, and have competitive strategies that 

replicate those soil conditions. 
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3.8 Figures 
 

 
 
 

Figure 3.1 Nested plot sampling design, 0.01 ha plot within a 0.05 ha plot.
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Figure 3.2 Non-metric multidimensional scaling (NMS) ordination reveals trends 
by herbaceous-layer functional groups (top) as well as by stand type and 
Ecological Land Type Phase (ELTP; bottom). Several functional groups are 
omitted for clarity of presentation (sedges, perennials, and native shrubs), though 
they show a similar trend. TBA = Total Basal Area (m2 ha-1), LDepth = Litter 
Depth (cm).  
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Figure 3.3 Mean percent cover and mean density of herbaceous layer functional 
groups (top), seedling groups (middle), and sapling groups (bottom). SLP = P. 
echinata, WP = P. strobus, HW = hardwood. 
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3.9 Tables 
 

Table 3.1 Soil series listed by stand type and ELTP. The two most common 
series were Apalona and Wellston Silt Loams. 

Stand Type Soil Series 
Ridge Pinus echinata Apalona Silt Loam 
Ridge Pinus echinata Wellston Silt Loam 
Ridge Pinus echinata Adyeville-Tipsaw-Ebal Complex 
Ridge Pinus echinata Hosmer Silt Loam 
Ridge Pinus echinata Ebal-Duechers_kitterman Complex 
Ridge Pinus strobus Apalona Silt Loam 
Ridge Pinus strobus Wellston Silt Loam 
Ridge Pinus strobus Adyeville-Tipsaw-Ebal Complex 
Ridge Pinus strobus Adyeville-Wellston-Duechars Silt Loams 
Ridge Pinus strobus Adyeville Silt Loam 
Ridge Pinus strobus Ebal-Duechers_kitterman Complex 
Ridge Pinus strobus Tipsaw-Adyeville Complex 
Ridge Hardwood Apalona Silt Loam 
Ridge Hardwood Wellston Silt Loam 
Ridge Hardwood Adyeville-Tipsaw-Ebal Complex 
Ridge Hardwood Tipsaw-Adyeville Complex 
Bottom Pinus echinata Apalona Silt Loam 
Bottom Pinus echinata Gatchel Silt Loam 
Bottom Pinus echinata Adyeville-Tipsaw-Ebal Complex 
Bottom Pinus echinata Gatchel Loam 
Bottom Pinus strobus Adyeville Silt Loam 
Bottom Pinus strobus Adyeville-Tipsaw-Ebal Complex 
Bottom Pinus strobus Tipsaw-Adyeville Complex 
Bottom Pinus strobus Ebal-Duechers_kitterman Complex 
Bottom Hardwood Wellston Silt Loam 
Bottom Hardwood Apalona Silt Loam 
Bottom Hardwood Adyeville-Tipsaw-Ebal Complex 
Bottom Hardwood Markland Silty Clay Loam 
Bottom Hardwood Ebal-Duechers_kitterman Complex 
Bottom Hardwood Haymond Silt Loam 
Bottom Hardwood Gatchel Silt Loam 
Bottom Hardwood Tipsaw-Adyeville Complex 
Bottom Hardwood Cuba Silt Loam 
Bottom Hardwood Adyeville-Wellston-Duechars Silt Loams 
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Table 3.2 Species richness, diversity, and stand variables for stand type, ELTP, and their interaction (mean ± S.E.). 
Means with different superscripts were significantly different according to a Tukey multiple comparisons test (p < 0.05). 
F values are listed on the right. *Factors or interaction significantly different (p <0.05). Non-transformed data are 
presented for ease of interpretation. N=53 Pinus echinata, 33 P. strobus, 20 Hardwood, 77 ridge, and 29 bottom sites. 

Variable P. echinata P. strobus Hardwood Ridge Bottom Stand 
Type 

ELTP Stand 
Type X 
ELTP 

Species Richness   
(S) 33.7 ± 2.2a 36.6 ± 2.7a 45.9 ± 2.9b 35.2 ± 1.4a 42.3 ± 1.8b 10.77* 10.02* 2.01 

Species Diversity   
(H') 2.2 ± 0.1a 2.1 ± 0.2a 2.6 ± 0.2b 2.2 ± 0.1 2.4 ± 0.1 5.30* 3.70 2.64 

Total Basal Area   (m2 
ha-1) 45 ± 2a 47 ± 3a 28 ± 3b 41 ± 1 39 ± 2 25.57* 1.03 5.09* 

Seedling Density   
(stems per 100 m2) 145 ± 26 180 ± 32 210 ± 35 228 ± 16a 129 ± 21b 2.20 14.07* 1.30 

Sapling Density   
(stems ha-1) 1887 ± 517 2676 ± 648 2729 ± 698 2829 ± 322 2032 ± 423 1.21 2.25 1.38 

Standing Dead Wood   
(m2 ha-1) 1.8 ± 0.6a 4.3 ± 0.7b 1.4 ± 0.8a 2.4 ± 0.4 2.6 ± 0.5 8.89* 0.18 1.06 

Canopy Openness 
(%) 0.06 ± 0.01a 0.10 ± 0.01b 0.07 ± 0.01a 0.07 ± 0.00 0.07 ± 0.01 11.61* 0.01 2.49 
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Table 3.3 Functional groups (mean ± S.E.) based upon herbaceous-layer cover (%) by stand type, ELTP, and their 
interaction. Means with different superscripts were significantly different according to a Tukey multiple comparisons 
test (p < 0.05). F values are listed on the right. *Factors or interaction significantly different (p <0.05; **p <0.1). Non-
transformed data are presented for ease of interpretation. N=53 Pinus echinata, 33 P. strobus, 20 Hardwood, 77 ridge, 
and 29 bottom sites. 

Variable P. echinata P. strobus Hard 
wood 

Ridge Bottom Stand 
Type 

ELTP Stand 
Type X 

ELTP 
Native Shrubs 2.54 ± 1.05a 3.06 ± 1.31a 6.87 ± 1.42b 4.98 ± 0.65 3.33 ± 0.86 6.15* 2.35 0.26 

Native Vines  
(ridge only) 

19.30 ± 2.80a 19.20 ± 3.67a 50.90 ± 6.93b 29.80 ± 2.78a 8.57 ± 3.64b 3.25* 21.53* 7.16* 

Invasive Shrubs 1.77 ± 2.49a 8.38 ± 3.12a 13.65 ± 3.36b 4.63 ± 1.55a 11.20 ± 2.03b 7.91* 6.66* 3.05 

Invasive 
Groundcover 

6.93 ± 2.49 11.88 ± 3.12 11.05 ± 3.36 7.00 ± 1.55a 12.90 ± 2.03b 1.66 5.30* 1.89 

Graminoids 1.45 ± 2.60a 1.90 ± 3.25a 16.35 ± 3.50b 4.17 ± 1.62 8.98 ± 2.12 12.68* 3.26 1.42 

Perennials 6.57 ± 3.89a 8.36 ± 4.87a 29.35 ± 5.25b 9.54 ± 2.42a 20.00 ± 3.18b 12.68* 6.84* 4.13* 

Annuals 0.05 ± 0.17a 0.13 ± 0.21a 0.89 ± 0.23b 0.26 ± 0.10 0.45 ± 0.14 9.35* 1.16 1.25 

Biennials  
(bottom only) 

0.40 ± 0.76a 0.23 ± 0.95a 5.24 ± 0.64b 0.61 ± 0.35a 1.96 ± 0.46b 9.29* 5.52* 6.36* 

Sedges 0.43 ± 0.48a 0.17 ± 0.60a 2.01 ± 0.65b 0.36 ± 0.30a 1.37 ± 0.39b 4.95* 4.23* 1.51 

Sum Percent 
Cover   

49.20 ± 0.08a 83.10 ± 0.11a 141.95 ± 0.11b 88.20 ± 0.05 94.60 ± 0.07 43.07* 0.57 3.96* 

 

 

 

 

     
  



 
92 

Table 3.4 Functional groups (mean ± S.E.) based upon seedling density (stems per 100 m2) by stand type, ELTP, and 
their interaction. Means with different superscripts were significantly different according to a Tukey multiple 
comparisons test (p < 0.05). F values are listed on the right. *Factors or interaction significantly different (p <0.05; **p 
<0.1). Non-transformed data are presented for ease of interpretation. N=53 Pinus echinata, 33 P. strobus, 20 
Hardwood, 77 ridge, and 29 bottom sites. 

Variable P. echinata P. strobus Hard 
wood 

Ridge Bottom Stand 
Type 

ELTP Stand 
Type X 
ELTP 

A. negundo  
(bottom only) 

1.4 ± 5.3a 28.1 ± 6.5b 25.0 ± 4.4b 1.4 ± 2.4a 18.2 ± 3.2b 6.30* 17.95* 4.48* 

A. rubrum 15.7 ± 8.7 20.9 ± 10.9 20.5 ± 11.7 29.8 ± 5.4a 8.2 ± 7.1b 0.16 5.88* 0.28 

A. saccharum 12.6 ± 4.2 4.0 ± 5.3 19.7 ± 5.7 12.1 ± 2.6 12.1 ± 3.4 3.90* 0.00 1.68 

Quercus* 15.7 ± 3.6a 7.7 ± 4.5a 7.3 ± 4.9b 13.2 ± 2.3a 7.2 ± 3.0 2.52** 2.62 0.63 

Fraxinus 36.0 ± 15.5 58.8 ± 19.4 25.1 ± 20.8 58.8 ± 9.6a 21.2 ± 12.6b 1.39 5.60* 1.01 

Subcanopy 
Trees 

6.6 ± 3.8a 9.6 ± 4.7 20.6 ± 5.1b 13.7 ± 2.4 10.8 ± 3.1 4.79* 0.57 0.99 

Shrubs 13.0 ± 5.9 18.1 ± 7.3 21.1 ± 7.9 14.7 ± 3.7 20.0 ± 4.8 0.70 0.77 0.70 

F. grandifolia 4.9 ± 1.9 1.5 ± 2.4 2.1 ± 2.6 2.3 ± 1.2 3.4 ± 1.6 1.28 0.26 0.01 

Other tree 
species 

14.6 ± 5.9 23.0 ± 7.3 28.5 ± 7.9 35.9 ± 3.7a 8.2 ± 4.8b 2.00 21.20* 2.99 
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Table 3.5 Functional groups (mean ± S.E.) based upon sapling density (stems per hectare) by stand type, ELTP, and 
their interaction. Means with different superscripts were significantly different according to a Tukey multiple 
comparisons test (p < 0.05). F values are listed on the right. *Factors or interaction significantly different (p <0.05; **p 
<0.1). Non-transformed data are presented for ease of interpretation. N=53 Pinus echinata, 33 P. strobus, 20 
Hardwood, 77 ridge, and 29 bottom sites. 

Variables P. echinata P. strobus Hard 
wood 

Ridge Bottom Stand 
Type 

ELTP Stand 
Type X 

ELTP 
A. negundo 
(bottom only) 

0.0 ± 69.1a 550.0 ± 84.6b 84.6 ± 57.5ab 19.6 ± 31.4a 211.5 ± 41.1b 11.30* 13.77* 10.84* 

A. rubrum 69.8 ± 85.1 131.0 ± 106.5 125.3 ± 114.7 198.1 ± 53.0a 19.2 ± 69.5b 0.23 4.19* 0.11 

A. saccharum 
(ridge only) 

148.8 ± 77.6a 48.0 ± 101.8a 928.6 ± 192.4b 375.1 ± 77.0 207.6 ± 101.1 5.25* 1.74 3.55* 

Quercus 201.1 ± 64.0 52.7 ± 80.1 89.0 ± 86.4 134.7 ± 39.9 93.7 ± 52.3 2.14 0.39 0.20 

Fraxinus 479.5 ± 332.0 915.7 ± 425.6 353.9 ± 447.8 824.5 ± 206.8 341.5 ± 271.3 0.91 2.01 0.38 

F. grandifolia 414.9 ± 108.0a 61.0 ± 135.2b 45.6 ± 145.7b 201.6 ± 67.3 146.1 ± 88.3 5.49** 0.25 0.58 

Shrubs 238.7 ± 169.1 599.0 ± 211.7 568.7 ± 228.0 383.6 ± 105.3 554.0 ± 138.2 2.06 0.96 2.27 

Subcanopy Trees 111.8 ± 62.0a 111.4 ± 77.6a 413.8 ± 83.5b 226.0 ± 38.6 198.6 ± 50.6 9.33* 0.19 3.03 

Invasive Shrubs* 18.1 ± 44.2a 81.0 ± 55.3a 147.3 ± 59.6b 99.1 ± 27.5 65.1 ± 36.1 2.89** 0.56 0.26 

Other Hardwoods  
(ridge only) 

120.9 ± 42.9a 232.0 ± 56.2ab 500.0 ± 106.3b 284.3 ± 42.6 67.0 ± 55.8 3.04 9.59* 3.14* 
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Table 3.6 Indicator Species for overstory, sapling, and herbaceous-layer strata. 
IV = importance value. SLP = P. echinata, WP = P. strobus, HW = hardwood.  

Overstory  Stand Type IV P value    Mean   S.Dev 

Pinus echinata Ridge-SLP 56.3 0.0002 17.6 4.25 
Acer rubrum Ridge-SLP 31.5 0.0234 19.7 4.74 
Pinus strobus Ridge-WP 48.3 0.0002 15.1 5.22 
L. tulipifera Ridge-HW 38.3 0.0048 20.9 4.93 
Ulmus rubra Ridge-HW 29.4 0.0166 11.2 6.08 
Juglans nigra Ridge-HW 27.8 0.0154 9.8 5.81 
Acer saccharum Bottom-SLP 37.2 0.0038 17.7 5.28 
Ostrya virginiana Bottom-SLP 19.1 0.0494 8.5 5.26 
Acer negundo Bottom-WP 28.3 0.009 9.3 5.46 
Gleditsia triacanthos Bottom-WP 16.7 0.0478 5.7 4.36 
Platanus occidentalis Bottom-HW 45.2 0.0012 11.4 6.15 
Betula nigra Bottom-HW 18.2 0.0252 6.7 4.69 

Sapling 
 

Stand Type IV P value    Mean   S.Dev 

Fagus grandifolia Ridge-SLP 42 0.0052 19.5 5.83 
Quercus velutina Ridge-SLP 27 0.0404 14.9 5.53 
Acer negundo Bottom-WP 38.7 0.0056 11 6.25 
Ulmus rubra Bottom-WP 35.1 0.0042 9.2 5.6 
Diospyros virginiana Bottom-WP 22.5 0.0308 8.5 5.28 
Platanus occidentalis Bottom-HW 18.2 0.0276 7.2 4.2 

Herbaceous Layer   Stand Type   IV P value   Mean     S.Dev  

Asplenium 
platynueron 

Ridge-WP 29.2 0.0498 16.5 6.4 

Acer saccharum Ridge-HW 54 0.0064 25.2 8.03 
Ulmus rubra Ridge-HW 53.5 0.0128 23.6 9.83 
Nyssa sylvatica Ridge-HW 46.8 0.0194 19.9 9.55 
Celtis occidentalis Ridge-HW 45.1 0.0278 21.3 9.3 
Toxicodendron 
radicans 

Ridge-HW 44.5 0.0002 24.5 3.82 

Parthenocissus 
quinquefolia 

Ridge-HW 43.5 0.0182 28.1 5.77 

Helianthus annuus Ridge-HW 42.3 0.0008 8.1 5.43 

Eupatorium 
purpureum 

Ridge-HW 41.7 0.0214 16.8 8.51 

Ranunculus 
recurvatus 

Ridge-HW 28.1 0.0266 9.7 6.25 

Lichen Ridge-HW 27.7 0.0342 15.9 5.24 
Juglans cinerea Ridge-HW 25.8 0.0184 8.2 5.21 
Desmodium 
glutinosum 

Ridge-HW 25.1 0.022 9 5.38 

Cretaegus spp. Ridge-HW 24.7 0.0154 7.6 4.56 
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 Stand Type   IV P 
value 

  Mean     
S.Dev 

 Stand 
Type 

  IV 

Monarda fistulosa Bottom-SLP 40 0.0018 8.7 5.37 
Heuchera spp. Bottom-SLP 33.3 0.0002 7.6 4.43 
Vibernum acerifolium Bottom-SLP 29.6 0.047 15.1 7.09 
Actaea pachypoda Bottom-SLP 26.8 0.0186 9.3 5.69 
Polygonatum biflorum Bottom-SLP 25.4 0.0292 10.4 5.98 
Vibernum rufidulum Bottom-SLP 22 0.0242 7.4 5.34 
Sanicula acalypha Bottom-SLP 21.7 0.0228 7.7 4.71 
Leucanthemum 
vulgare 

Bottom-SLP 18 0.047 8 4.88 

Lonicera maackii Bottom-SLP 17.7 0.0466 8.1 5.21 
Acer negundo Bottom-WP 50.1 0.0046 16.5 7.64 
Cornus florida Bottom-WP 40.3 0.0418 20.5 9.04 
Microstegium 
vimineum 

Bottom-WP 40.2 0.0116 16.1 6.99 

Fraxinus 
pennsylvanica 

Bottom-WP 39.9 0.0154 16.8 7.6 

Mitella diphylla Bottom-WP 25.4 0.0394 10 6.29 
Panicum lanuginosum 
var implicatum 

Bottom-WP 25.3 0.0178 7.9 4.84 

Collinsonia 
canadensis 

Bottom-WP 16.6 0.0404 6.7 5 

Packera aurea Bottom-HW 76.7 0.0002 16.9 7.77 
Sanicula canadensis Bottom-HW 62.1 0.002 25.8 8.75 
Verbesina alternifolia Bottom-HW 58.2 0.0004 12.2 6.88 
Asarum canadense Bottom-HW 53.2 0.0004 11.3 6.52 
Laportea canadensis Bottom-HW 47.7 0.0004 10.2 6.07 
Impatiens capensis Bottom-HW 47.6 0.0018 12.9 6.78 
Clematis virginiana Bottom-HW 31.4 0.0314 14.1 6.99 
Boehmeria cylindrica Bottom-HW 30.6 0.0338 13.8 7.17 
Elymus virginicus Bottom-HW 29.8 0.013 8.6 5.62 
Apios americana Bottom-HW 29.7 0.0074 9.4 5.49 
Aster sp 1 Bottom-HW 29.3 0.0272 10.5 6.49 
Cryptotaenia 
canadensis 

Bottom-HW 26.1 0.0376 11.4 6.46 

Diarrhena americana Bottom-HW 25.9 0.0344 11.3 6.08 
Cephalanthus 
occidentalis 

Bottom-HW 23.1 0.017 7.6 4.41 

Osmorhiza longistylis Bottom-HW 23.1 0.0184 7.6 4.76 
Glechoma hederacea Bottom-HW 22.8 0.0424 10.1 6.25 
Hypericum punctatum Bottom-HW 22.3 0.0298 8.1 5.02 
Euonymus 
americanus 

Bottom-HW 15.4 0.0294 7.3 4.36 

Aster sp 3 Bottom-HW 15.4 0.0282 7.2 4.26 
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CHAPTER 4 CONCLUSIONS AND MANAGEMENT IMPLICATIONS 
 
 
 

4.1 Conclusions 

In my study, Pinus stands contained lower nutrient availability, greater litter 

depth, and greater Al content compared to hardwood stands. This corresponded 

to lower species richness, diversity, and functional richness in Pinus stands. 

Specifically, whereas mesophytic functional groups dominated hardwood stands 

with greater soil fertility, more tolerant Fraxinus, A. rubrum, Quercus, and Fagus 

species dominated Pinus sites. This is supported by the fact that while light 

availability was greater in P. strobus stands, species richness, diversity, and 

cover generally were not. Additionally, this is supported in that P. strobus stands 

contain intermediate values for both edaphic variables and understory cover 

values. 

I predicted that Pinus stands would show discernable differences in soil 

chemistry in terms of nutrient availability, litter depth, and Al. Pinus stands had 

lower soil pH, OM (%), TC (%), TN (%), B (mg kg-1), Mn (mg kg-1), Ca (mg kg-1), 

and Zn (mg kg-1) and greater litter depth and Al (mg kg-1). Measures of soil 

fertility followed the general order Pinus echinata < P. strobus < hardwood 

stands. In my study, I observed litter depths in Pinus stands 2-5 times greater 

than those in hardwood stands. This recalcitrance of Pinus litter resulted in lower 

organic matter content in the surface soil of Pinus stands, which contributed to 

reduced TC, TN, and micronutrient content likely due to reduced decomposition 

rates (Table 2.1).
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I also predicted that differences in soil conditions would cause compositional 

differences between Pinus and hardwood stands. Species diversity, distribution, 

cover, and composition of understory species did differ. Across all stand types, 

hardwood stands displayed the greatest species richness, Shannon-Weiner 

diversity, and total cover of herbaceous-layer species while P. echinata stands 

displayed the lowest (Table 3.2). Overall, herbaceous-layer species displayed 

clear distributions across edaphic gradients related to Pinus species occupancy.  

Additionally, I predicted that Pinus species on ridge sites would inhibit the 

establishment of herbaceous species, largely from litter acting as a mechanical 

barrier, and that drier ridge sites would favor woody plants. Cover of seedlings, 

particularly Quercus spp., F. grandifolia, and A. rubrum were in fact associated 

with Pinus ridge sites, greater litter depth, and greater concentrations of Al 

(Figure 3.2 & Figure 3.3).  

I further predicted that differences between stand types would be more 

pronounced on ridges, due to the greater buffering capacity of soils in bottoms. I 

observed greater differences in soil variables between stand types on ridges, 

whereas bottoms did not show as many distinct differences. Soils in bottoms 

were better buffered through higher moisture availability and cation exchange 

capacity from adjacent alluvium. Also, the overstory of Pinus stands in bottoms 

contained a large component of Acer species, which likely reduced the effects of 

recalcitrant Pinus litter. I also observed differences in soil chemistry between 

hardwood stands on ridges and bottoms. Bottom hardwood stands contained a 

mix of overstory species, whereas hardwood overstories on ridges were 

dominated by Liriodendron tulipifera; a species whose litter has been shown to 

ameliorate soil conditions. The mix of species in bottoms, which included J. 

virginiana, P. occidentalis, and J. nigra in addition to L. tulipifera, may have less 

pronounced ameliorating impacts on soil (Appendix C). However, there was a 

notably greater cover of herbaceous species in bottoms, likely as a result of 

greater moisture availability and reduced litter depth (Figure 3.3; Table 2.2). On 
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ridges, I observed greater density and cover of woody species than in bottoms. 

Mesophytic woody species, including A. saccharum, C. florida, L. benzoin, and 

R. multiflora were common in ridge hardwood stands, while Quercus spp. and 

Fagus grandifolia were more common in ridge P. echinata stands (Figure 3.3; 

Table 3.4; Table 3.5). Species in Pinaceae and Fagaceae tolerate low soil fertility 

in similar ways. Quercus also show high tolerance for soil Al, which was higher in 

Pinus plantation soils. Therefore, there is potential for regenerating Quercus in 

Pinus ridges, given the appropriate suite of silvicultural treatments.  

 

4.2 Management Implications 

In considering which suite of silvicultural options is most appropriate for 

establishing hardwood stands on former pine sites, it is necessary to identify 

management goals. Generally, managers are interested in improving their 

forests’ net present value (NPV), and improving biodiversity in concert with 

protecting threatened species. There is virtually no market for the estimated 

58,107 ha of Pinus stands that occur in Indiana, Ohio, and Illinois (USFS 2013). 

Therefore, managers should largely focus on biodiversity when identifying 

management goals in these stands. Plantations show lower average diversity 

because of lower average structural heterogeneity (Lindenmayer and Hobbs 

2004). They may host fewer macroinvertebrates, birds, and small mammals as a 

result (Lindenmayer and Hobbs 2004). Pinus plantations have shown this trend 

in particular, and can show reduced plant diversity partly as a result of deep, 

allelopathic litter (McGrath et al. 2004; Bielecki et al. 2006; Oxbrough et al. 2012; 

Paritsis and Aizen 2008; Loydi et al. 2013; Blasche 1981). However, there is 

evidence that Pinus plantings can provide some winter cover for some animal 

species to a limited age (Parker 1986). Additionally, in the case of the 

fragmented landscape of Indiana, Ohio, and Illinois, these plantations surrounded 

by remnant native vegetation may provide some degree of heterogeneity at the 

landscape scale (Lindenmayer and Hobbs 2004).  
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Therefore, large-scale conversion should only be performed where there is 

evidence of ecological benefit, and potential future economic value, such as 

converting these stands to Quercus species. 

In my study, Pinus echinata sites contained 230 ± 314 sapling stems per hectare 

and 1910 ± 1687 seedling stems per hectare of advance regeneration of 

Quercus species. Compared to the other stand types I studied, this result 

suggests that P. echinata stands on ridges could provide an important 

opportunity for the restoration of Quercus-dominated stands. Johnson et al. 

(2009) estimate that, in the xeric Missouri Ozarks, 988 to 1482 stems per hectare 

of 3-6 feet is adequate advance regeneration for maintaining Quercus species 

following clearcut harvestings. This suggests that techniques to promote height 

growth of oak and reduce the density of competing mesophytic species may be 

necessary for successful conversion to Quercus-dominated forests. The literature 

suggests that shelterwood/burning treatments may be more effective in 

promoting the growth and persistence of small-stature Quercus regeneration 

(Johnson et al. 2009; Brose et al 1999). Under this system, repeated burning is 

used in conjunction with overstory removal to promote Quercus growth and 

dominance in the understory prior to release via reductions in overstory density. 

Additionally, due to limited propagule supply and advance regeneration, natural 

regeneration may be augmented with Quercus underplantings. 

Unlike the moderate success of Quercus under Pinus echinata, P. strobus stands 

show a large degree of top-kill and a large proportion or Fraxinus, A. rubrum, and 

invasives. The data reported on P. strobus reflects a small portion of the sites 

visited because most sites contained a noteworthy dieoff of overstory P. strobus 

and were rejected as study sites. This implies that, given no management, most 

of the overstory will die off within a century, which will provide a mixed age class 

structure, a large degree of coarse woody debris, and large spatial heterogeneity. 

This may aid in providing functional space for various fauna, and improve 

functional diversity (Lindenmayer and Hobbs 2004; McCarthy and Bailey 1994; 
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Lohr et al. 2002). Given that there is a small proportion of P. strobus stands at 

less than 1% of total HNF forest cover, and that these stands occupy added 

winter cover in a mosaic of native hardwood vegetation, no management may be 

the best option.  

 

4.3 Future Directions  

My study has provided important information about the effects of decades of 

occupancy of Pinus species on forest communities. My results demonstrated that 

Pinus occupancy is associated with reductions in soil fertility and nutrient 

availability. However, the mechanisms that drive these changes in edaphic 

conditions are poorly understood. To better understand the impacts of conifers 

on soils, native herbaceous species, and woody regeneration, studies need to 

focus on factors that create these impacts, such as litter recalcitrance, 

mycorrhizal relations, and their associated acid exudates in conjunction with 

plant community distributions and abundances. In addition, my study considered 

light availability during the summer growing season, showing no differences 

between Pinus and hardwood species. However, it is possible that Pinus stands 

have ecologically relevant light limitation during the early spring, which may affect 

the vernal flora. Based upon these limitations in my study, future research should 

focus on the mechanisms driving differences in competitive success, tolerance, 

and ecosystem function, rather than the species themselves. 
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Appendix A  Study Variables 

All variables listed for stand type, ELTP, and their interaction (mean ± S.E.). Means with different superscripts were 
significantly different according to a Tukey multiple comparisons test (p < 0.05). F values are listed on the right. 
*Factors or interaction significantly different (p <0.05; **p <0.1). Non-transformed data are presented for ease of 
interpretation. SLP = P. echinata, WP = P. strobus, HW = hardwood. In total, I sampled 44 ridge P. echinata sites, 26 
ridge P. strobus sites, 7 ridge hardwood sites, 9 bottom P. echinata sites, 7 bottom P. strobus sites, and 13 bottom 
hardwood sites.  
 
Variable Ridge SLP Ridge WP Ridge HW Bottom SLP Bottom WP Bottom HW Ridge Bottom 

Species Richness 
(S) 27.3 ± 1.4a 35.0 ± 1.8a 43.3 ± 3.4b 40.1 ± 3.0a 38.2 ± 3.6a 48.5 ± 2.5b 35.2 ± 1.4a 42.3 ± 1.8b 

Species Diversity 
(H') 1.9 ± 0.1a 2.1 ± 0.1a 2.5 ± 0.2b 2.5 ± 0.2a 2.1 ± 0.2a 2.7 ± 0.1b 2.2 ± 0.1 2.4 ± 0.1 

Understory 
evenness 0.58 ± 0.02 0.60 ± 0.03 0.67 ± 0.05 0.67 ± 0.04 0.59 ± 0.05 0.68 ± 0.04 0.62 ± 0.02 0.65 ± 0.03 

Total Basal Area 
(m2 ha-1) 45 ± 1a 44 ± 1a 35 ± 3b 46 ± 3a 49 ± 3a 22 ± 2c 41 ± 1 39 ± 2 

Standing Dead 
Wood  (m2 ha-1) 1.3 ± 0.4a 3.9 ± 0.5b 1.9 ± 0.9a 2.2 ± 0.8a 4.6 ± 1b 0.9 ± 0.6a 2.4 ± 0.4 2.6 ± 0.5 

Seedling Density  
(stems per 100 m2) 169 ± 16 232 ± 21 284 ± 40 122 ± 35 128 ± 43 137 ± 29 228 ± 16a 129 ± 21b 
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Variable Ridge SLP Ridge WP Ridge HW Bottom SLP Bottom WP Bottom HW Ridge Bottom 

Sapling 
Density  
(stems ha-1) 2409 ± 325 2452 ± 426 3628 ± 805 1366 ± 710 2900 ± 870 1830 ± 591 2829 ± 322 2032 ± 423 

 
Stand Age 59.4 ± 1.7a 39.0 ± 2.2c 47.1 ± 4.2b 59.6 ± 3.7a 36.0 ± 4.5c 48.9 ± 3.1b 47.8 ± 1.7 48.2 ± 2.2 

Litter C:N 
Ratio 37.60 ± 0.89 36.45 ± 1.16 35.06 ± 2.20 40.30 ± 1.94a 35.64 ± 2.38a 27.89 ± 1.62b 36.37 ± 0.88 34.61 ± 1.16 

Litter Depth  
(cm) 21.00 ± 1.23a 15.35 ± 1.61a 5.61 ± 3.04b 16.94 ± 2.68a 12.85 ± 3.28a 5.50 ± 2.23b 13.99 ± 1.22 11.76 ± 1.60 

Litter Mass (g 
m-2) 970 ± 56a 709 ± 73a 233 ± 139b 677 ± 122a 475 ± 150a 340 ± 102b 638 ± 56 498 ± 73 

TEC (meq 
100 g-1) 7.84 ± 0.42 9.26 ± 0.56 9.16 ± 1.05 10.46 ± 0.93 11.16 ± 1.14 11.95 ± 0.77 8.75 ± 0.42a 11.19 ± 0.55b 

Organic 
Matter (%) 3.65 ± 0.08a 3.63 ± 0.11a 4.66 ± 0.20b 3.97 ± 0.18 4.07 ± 0.22 3.83 ± 0.15 3.98 ± 0.08 3.96 ± 0.11 

A horizon pH 5.53 ± 0.06a 5.66 ± 0.07ab 5.86 ± 0.14b 5.54 ± 0.12 5.28 ± 0.15 5.64 ± 0.10 5.68 ± 0.06a 5.49 ± 0.07b 

B horizon pH 4.04 ± 0.05a 4.23 ± 0.06a 4.56 ± 0.12b 4.25 ± 0.11a 4.19 ± 0.13a 4.56 ± 0.09b 4.27 ± 0.05 4.33 ± 0.06 

Total Nitrogen 
(%) 0.14 ± 0.01a 0.14 ± 0.01a 0.20 ± 0.01b 0.15 ± 0.01a 0.15 ± 0.01a 0.17 ± 0.01a 0.16 ± 0.01 0.16 ± 0.01 

Total Carbon 
(%) 1.65 ± 0.05a 1.65 ± 0.07a 2.32 ± 0.13b 1.88 ± 0.12 1.68 ± 0.14 1.79 ± 0.10 1.87 ± 0.05 1.78 ± 0.07 
Bray 
Phosphorus  
(mg kg-1) 1.29 ± 0.41 2.27 ± 0.54 1.54 ± 1.02 1.83 ± 0.90 3.71 ± 1.10 4.39 ± 0.75 1.70 ± 0.41a 3.31 ± 0.54b 

Sulphur  
(ppm) 11.84 ± 0.28 10.64 ± 0.36 10.71 ± 0.69 10.33 ± 0.60 11.67 ± 0.74 10.00 ± 0.50 11.06 ± 0.27 10.67 ± 0.36 
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Variable Ridge SLP Ridge WP Ridge HW Bottom SLP Bottom WP Bottom HW Ridge Bottom 

Calcium  (mg 
kg-1) 752.1 ± 46.1a 961.2 ± 60.1ab 988.4 ± 113.5b 958.4 ± 100.1a 929.0 ± 122.6ab 1247.5 ± 83.3b 900.6 ± 45.5 1045.0 ± 59.6 

Sodium (%) 0.92 ± 0.03a 0.81 ± 0.04ab 0.71 ± 0.08b 0.71 ± 0.07a 0.73 ± 0.08ab 0.60 ± 0.06b 0.81 ± 0.03a 0.68 ± 0.04b 

Boron  (mg kg-

1) 0.27 ± 0.01a 0.29 ± 0.02a 0.40 ± 0.03b 0.30 ± 0.03a 0.28 ± 0.04a 0.36 ± 0.02b 0.32 ± 0.01 0.31 ± 0.02 

Iron  (mg kg-1) 146.1 ± 6.2a 146.7 ± 8.1ab 145.4 ± 15.4a 155.0 ± 13.5a 181.0 ± 16.6ab 225.4 ± 11.3b 146.1 ± 6.2 187.1 ± 8.1 

Manganese  
(mg   kg-1) 158.3 ± 11.4a 151.4 ± 15.0a 250.3 ± 28.3b 188.9 ± 24.9ab 195.8 ± 30.5ab 162.1 ± 20.7a 186.7 ± 11.3 182.3 ± 14.9 

Zinc  (mg kg-1) 1.71 ± 0.07a 1.57 ± 0.10a 2.24 ± 0.18b 1.71 ± 0.16a 2.12 ± 0.20b 1.67 ± 0.14b 1.84 ± 0.07a 2.17 ± 0.10b 

Magnesium 
(%) 13.10 ± 0.59 13.61 ± 0.78 14.73 ± 1.47 12.68 ± 1.29 12.62 ± 1.58 11.82 ± 1.08 13.82 ± 0.59 12.37 ± 0.77 

Copper  (mg 
kg-1) 2.67 ± 0.20 2.89 ± 0.27 2.04 ± 0.51 2.46 ± 0.45 3.02 ± 0.55 3.10 ± 0.37 2.53 ± 0.20 2.86 ± 0.27 

Potassium  
(mg kg-1) 74.77 ± 3.18 76.20 ± 4.20 98.71 ± 7.87 67.78 ± 6.94 83.33 ± 8.51 75.92 ± 5.78 83.23 ± 3.15 75.68 ± 4.14 

Aluminum (mg 
kg-1) 969 ± 19a 82 ± 25b 788 ± 48c 757 ± 42ab 857 ± 52a 637 ± 35b 861 ± 19a 750 ± 25b 

Canopy 
Openness (%) 0.07 ± 0.00a 0.09 ± 0.01b 0.06 ± 0.01a 0.05 ± 0.01a 0.10 ± 0.01b 0.07 ± 0.01a 0.07 ± 0.00 0.07 ± 0.01 

Bulk Density (g 
cm-3) 1.01 ± 0.02a 1.07 ± 0.02a 0.87 ± 0.04b 1.05 ± 0.04 1.10 ± 0.05 1.05 ± 0.03a 0.98 ± 0.02 1.07 ± 0.02 

Base 
Saturation (%) 70.73 ± 1.54 74.67 ± 2.02 78.56 ± 3.82 70.87 ± 3.37 64.18 ± 4.13 72.69 ± 2.80 74.66 ± 1.53a 69.25 ± 2.01b 

TEC= Total Exchange Capacity 
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Appendix B  Complete List of Species 
 
 
 
All species listed. Species codes correspond to functional groups (P = 
perennials, A = annuals, B = biennials). “+” represents the stand type(s) where a 
species was found at least once.  
SLP = P. echinata, WP = P. strobus, HW = hardwood. 

 

Spp. 
Code 

Species Ridge 
SLP 

Ridge 
WP 

Ridge 
HW 

Bottom 
SLP 

Bottom 
WP 

Bottom 
HW 

P1 Achillea millefolium   +    
P2 Actaea pachypoda    + + + 
P3 Ageratina altissima + + + + + + 
P4 Agrimonia gryposepala  + + + + + 
P5 Agrimonia rostellata + + +  + + 
P6 Allium canadense var 

canadense 
+     + 

P7 Allium tricoccum    +  + 
P8 Amphicarpaea 

bracteata 
+ + + + + + 

P9 Anemonella 
thalictroides 

   +  + 

P10 Antennaria parlinii   +    
P11 Apios americana    +  + 
P12 Arisaema dracontium  + + + + + 
P13 Arisaema triphyllum + + + + + + 
P14 Aristolochia serpentaria + + + + + + 
P15 Arnoglossum 

plantagineum 
    + + 

P16 Asarum canadense    + + + 
P17 Asclepias syriaca  + + +   
P18 Asplenium platynueron + + + + + + 
P19 Aster drummondii  +     
P20 Aster prenanthoides     + + 
P21 Aster sp + + + +   
P22 Aster sp #1   +  + + 
P23 Aster sp #2      + 
P24 Aster sp #3       + 
P25 Aster umbellatus  +  +   
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Spp. 
Code 

Species Ridge 
SLP 

Ridge 
WP 

Ridge 
HW 

Bottom 
SLP 

Bottom 
WP 

Bottom 
HW 

P26 Boehmeria cylindrica  + + + + + 
P27 Chamerion 

angustifolium 
 +   + + 

P28 Cicuta maculata     + + 
P29 Circaea lutetiana + +  + + + 
P30 Collinsonia canadensis +    +  
P31 Coronilla varia   +  +  
P32 Cryptotaenia 

canadensis 
+ +  +  + 

P33 Cunila origanoides      + 
P34 Desmodium 

cuspidatum var 
cuspidatum 

  +    

P35 Desmodium glutinosum  + +   + 
P36 Desmodium nudiflorum + + + + + + 
P37 Desmodium 

paniculatum 
  + +   

P38 Desmodium 
rotundifolium 

+      

P39 Eupatorium perfoliatum      + 
P40 Eupatorium purpureum + + + + + + 
P41 Eupatorium sp      + 
P42 Eutrochium maculatum + +  +  + 
P43 Frasera caroliniensis  +  +   
P44 Galium obtusum  + + +  + 
P45 Galium aparine + + + + + + 
P46 Galium circaezens + + + + + + 
P47 Galium concinnum + + + +   
P48 Galium pilosum + +     
P49 Galium sp  +  +  + 
P50 Galium triflorum      + 
P51 Geranium maculatum  +     
P52 Geum canadense + + + + + + 
P53 Goodyera pubescens + + + +   
P54 Hackelia virginiana  +     
P55 Helianthus 

microcephalus 
     + 

P56 Helianthus annuus   +   + 
P57 Herb sp # 1  +      
P58 Herb sp # 2   +     
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Spp. 
Code 

Species Ridge 
SLP 

Ridge 
WP 

Ridge 
HW 

Bottom 
SLP 

Bottom 
WP 

Bottom 
HW 

P59 Herb sp # 3   +     
P60 Herb sp # 4  +      
P61 Houstonia caerulea +      
P62 Houstonia purpurea  +     
P63 Heuchera sp    +   
P64 Hydrastis canadensis    +  + 
P65 Hydrophyllum sp      + 
P66 Isopyrum biternatum      + 
P67 Laportea canadensis    +  + 
P68 Lespedeza cuneata + + + + +  
P69 Lespedeza reptans   +    
P70 Lespedeza virginica      + 
P71 Leucanthemum vulgare  +  + +  
P72 Lichen + + + + + + 
P73 Lycopodium 

dendroideum 
+ + + +  + 

P74 Lysimachia ciliata + +     
P75 Lysimachia nummularia + +   + + 
P76 Maianthemum 

racemosum 
+   +   

P77 Melilotus officinalis  +     
P78 Menispermum 

canadense 
+ + + +  + 

P79 Mitella diphylla  + + + + + 
P80 Monarda fistulosa + +  +   
P81 Moss + + + + + + 
P82 Osmorhiza claytonii + + + +  + 
P83 Oxalis illinoensis      + 
P84 Oxalis stricta + + + + + + 
P85 Oxalis viola + +     
P86 Osmorhiza longistylis      + 
P87 Packera aurea + + + + + + 
P88 Panax quinquefolius  +  +   
P89 Phryma leptostachya + + + +  + 
P90 Phytolacca americana  +   +  
P91 Podophyllum peltatum + + + +  + 
P92 Polygonatum biflorum + +  +   
P93 Polygonum virginianum  +  + + + 
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Spp. 
Code 

Species Ridge 
SLP 

Ridge 
WP 

Ridge 
HW 

Bottom 
SLP 

Bottom 
WP 

Bottom 
HW 

P94 Polemonium reptans    + + + 
P95 Prenanthes altissima  +  +   
P96 Pycnanthemum 

tenuifolium 
+ + +   + 

P97 Ranunculus hispidus   +   + 
P98 Ranunculus recurvatus + + +    
P99 Ranunculus sp   +    
P100 Rudbeckia hirta      + 
P101 Ruellia sp     + + 
P102 Ruellia strepens      + 
P103 Salvia lyrata  +  + + + 
P104 Sanguinaria 

canadensis 
     + 

P105 Sanicula odorata  +     
P106 Scutellaria incana    + + + 
P107 Stachys officinalis   +    
P108 Staphylea trifolia      + 
P109 Stellaria pubera      + 
P110 Symphyotrichum 

turbinellum 
    +  

P111 Taraxacum officinale + + +    
P112 Teucrium canadense      + 
P113 Urtica dioica + +     
P114 Verbena urticifolia +  + +   
P115 Verbesina alternifolia  +  + + + 
P116 Viola palmata    +  + 
P117 Viola sororia + + + + + + 
P118 Viola striata  + + +  + 
P119 Viola triloba + + +    
P120 Zizea aurea   +   + 
A1 Ambrosia artemisiifolia   +   + 
A2 Brassica rapa   +    
A3 Chamaecrista 

fasciculata 
+ + +   + 

A4 Commelina communis +      
A5 Conyza canadensis   + +  + 
A6 Datura stramonium  +   +  
A7 Erigeron annuus + +   +  
A8 Erigeron philadelphicus  + + +   
A9 Impatiens capensis + + + +  + 
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Spp. 
Code 

Species Ridge 
SLP 

Ridge 
WP 

Ridge 
HW 

Bottom 
SLP 

Bottom 
WP 

Bottom 
HW 

A10 Ipomoea sp   +   + 
A11 Lactuca biennis + +   + + 
A12 Lobelia inflata      + 
A13 Pilea pumila  +     
A14 Portulaca oleracea +      
B1 Barbarea vulgaris  +     
B2 Cirsium sp  + +    
B3 Cirsium vulgare    +   
B4 Cynoglossum officinale + + +    
B5 Cynoglossum 

virginianum 
+ +  + + + 

B6 Oenothera biennis   +    
B7 Sanicula acalypha +   +   
B8 Sanicula canadensis + + + + + + 
F1 Dryopteris sp    + + + 
F2 Polystichum 

acrostichoides 
+ + + + + + 

F3 Botrychium dissectum     + + 
F4 Botrychium virginianum + + + + + + 
F5 Cystopteris protrusa +     + 
F6 Onoclea sensibilis + +  +  + 
F7 Polypodium virginianum  + + + + + 
G1 Brachyelytrum erectum + +  +  + 
G2 Chasmanthium 

latifolium 
    + + 

G3 Cinna sp      + 
G4 Danthonia spicata + + +    
G5 Diarrhena americana + + + + + + 
G6 Dichanthelium 

clandestinum 
 +    + 

G7 Elymus hystrix   + + + + 
G8 Elymus virginicus   +   + 
G9 Eragrostis sp    +   
G10 Erianthus 

alopecuroides 
 + +    

G11 Festuca subverticillata      + 
G12 Juncus sp      + 
G13 Luzula multiflora +      
G14 Luzula sp #1      + 
G15 Luzula sp #2      + 
G16 Panicum boscii + + + + + + 
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Spp. 
Code 

Species Ridge 
SLP 

Ridge 
WP 

Ridge 
HW 

Bottom 
SLP 

Bottom 
WP 

Bottom 
HW 

G17 Panicum commutatum + + + + + + 
G18 Panicum dichotomum + + +   + 
G19 Panicum lanuginosum 

var implicatum 
   + + + 

G20 Panicum polyanthes   +   + 
G21 Panicum sp   + +   
G22 Panicum sp #1 + + + + + + 
G23 Panicum sp #10   + + + +  
G24 Panicum sp #11       + 
G25 Panicum sp #12  +      
G26 Panicum sp #2  + +   + 
G27 Panicum sp #4  +      
G28 Panicum sp #5    +    
G29 Panicum sp #6    +   + 
G30 Panicum sp #7  +      
G31 Panicum sp #8   + + +  + 
G32 Panicum sp #9 +      
G33 Panicum villosissimum  + +    
G34 Solidago flexicaulis     + + 
G35 Solidago sp  +   + + 
G36 Scirpus atrovirens      + 
S1 Carex blanda +      
S2 Carex digitellus +      
S3 Carex grayi      + 
S4 Carex hirsutella + + + +  + 
S5 Carex scleria +      
S6 Carex sp  + + +   
S7 Carex sp #1 +  +  + + 
S8 Carex sp #2  + + +  + 
S9 Carex sp #3 +      
S10 Carex sp #4 + +    + 
S11 Carex sp #5 +      
S12 Carex sp #6 + + + +  + 
S13 Cyperus 

psuedovegetus 
   +  + 

IH1 Alliaria officinalis    +  + 
IH2 Microstegium vimineum + + + + + + 
IH3 Polygonum cuspidatum + +  +  + 
NV1 Toxicodendron 

radicans 
+ + + + + + 
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Spp. 
Code 

Species Ridge 
SLP 

Ridge 
WP 

Ridge 
HW 

Bottom 
SLP 

Bottom 
WP 

Bottom 
HW 

NV2 Parthenocissus 
quinquefolia 

+ + + + + + 

NV3 Clematis virginiana + + + + + + 
NV4 Vitis aestevalis + + + +  + 
NV5 Vitis labrusca + +  + + + 
NV6 Dioscorea quaternata + + + + + + 
IV1 Campsis radicans + + + + + + 
IV2 Celastrus orbiculatus  + + + +  
IV3 Lonicera japonica + + + + + + 
IV4 Glechoma hederacea  +  + + + 
IS Bambusa sp    +   
IS2 Berberis thunbergii    +  + 
IS3 Elaeagnus umbellata + + + +  + 
IS4 Lonicera mackii +   +  + 
IS5 Rosa multiflora + + + + + + 
IS6 Euonymus americanus      + 
NS1 Cephalanthus 

occidentalis 
     + 

NS2 Hammamelis virginiana      + 
NS3 Hypericum prolificum  +     
NS4 Hypericum punctatum +     + 
NS5 Hypericum purpureum  +     
NS6 Juniperus communis 

var. depressa 
  +    

NS7 Ligustrum obstusifolium +  +   + 
NS8 Ligustrum vulgare   +    
NS9 Potentilla simplex + + + +  + 
NS10 Rosa carolina + + +   + 
NS11 Rosa setigera      + 
NS12 Rubus allegheniensis  +  +  +  
NS13 Rubus hispidus  +  + +  
NS14 Rubus occidentalis + + + + + + 
NS15 Rubus sp #1 + + + + + + 
NS16 Rubus sp #2 + +   + + 
NS17 Rubus strigosus  +    + 
NS18 Sambucus canadensis + +  +  + 
NS19 Smilax bona-nox +   +   
NS20 Smilax glauca + + + + + + 
NS21 Smilax rotundifolia + + + + + + 
NS22 Smilax tamnoides + +  +  + 
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Spp. 
Code 

Species Ridge 
SLP 

Ridge 
WP 

Ridge 
HW 

Bottom 
SLP 

Bottom 
WP 

Bottom 
HW 

NS23 Vaccinium pallidum +   +  + 
NS24 Vibernum acerifolium + +  +  + 
NS25 Vibernum dentatum + +   + + 
NS26 Vibernum prunifolium +  +    
NS27 Vibernum rufidulum +   +   
NS28 Symphoricarpos 

orbiculatus 
+ +  + + + 

T1 Acer negundo + + + + + + 
T2 Acer rubrum + + + + + + 
T3 Acer saccharum + + + + + + 
T4 Aesculus glabra   +  + + 
T5 Amelanchier arborea +   +  + 
T6 Aralia spinosa  +    + 
T7 Asimina triloba +  + +  + 
T8 Celtis occidentalis + + + + + + 
T9 Cercis canadensis + + + + + + 
T10 Cornus florida + + + + + + 
T11 Cornus racemosa      + 
T12 Cornus stolonifera    +  + 
T13 Carpinus caroliniana + +  +  + 
T14 Carya cordiformis + + + + + + 
T15 Carya glabra + +  +  + 
T16 Carya ovata + + + + + + 
T17 Carya tomentosa + + + + + + 
T18 Corylus americana +    + + 
T19 Cretaegous sp   + +   
T20 Fagus grandifolia + + + + + + 
T21 Fraxinus americana + + + +   
T22 Fraxinus pennsylvanica + + + + + + 
T23 Juglans cinerea + + +    
T24 Juniperus virginiana + + + +  + 
T25 Lindera benzoin + + + + + + 
T26 Liquidambar styraciflua + + +   + 
T27 Liriodendron tulipifera + + + + + + 
T28 Morus rubra + +     
T29 Nyssa sylvatica + + + +  + 
T30 Pinus echinata + +     
T31 Pinus strobus + +     
T32 Pinus virginiana +      
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Spp. 
Code 

Species Ridge 
SLP 

Ridge 
WP 

Ridge 
HW 

Bottom 
SLP 

Bottom 
WP 

Bottom 
HW 

T33 Platanus occidentalis  +  +  + 
T34 Prunus serotina + + + + + + 
T35 Prunus virginiana  +     
T36 Rhus copallinum  + +    
T37 Robinia psuedoaccacia  +     
T38 Salix nigra      + 
T39 Sassafras albidum + + + + + + 
T40 Ulmus alata + +  +  + 
T41 Ulmus americana + + + +  + 
T42 Ulmus rubra + + + + + + 
T43 Diospyros virginiana + + +  +  
T44 Ostrya virginiana + +  +  + 
O1 Quercus alba + + + + + + 
O2 Quercus coccinea +      
O3 Quercus imbricaria + +  + + + 
O4 Quercus marilandica +      
O5 Quercus montana +  + +  + 
O6 Quercus muehlenbergii + +  + + + 
O7 Quercus prinus + +  +   
O8 Quercus rubra + + + + + + 
O9 Quercus stellata +   +   
O10 Quercus velutina + + + + + + 
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Appendix C  Density and Percent Cover of Common Species 

Density (mean stems per ha ± 1 S.E.) of common overstory species by stand type and ELTP. SLP = P. echinata, WP 
= P. strobus, HW = hardwood.  

Species  Ridge   Bottom  

 SLP WP HW SLP WP HW 

Pinus echinata 34.1 ± 9.2 0.1 ± 0.3 0.8 ± 2.4 32.6 ± 7.3 0.0 ± 0.0 0.4 ± 1.2 

Pinus strobus 0.7 ± 3.4 36.7 ± 10.6 1.6 ± 3.4 0.3 ± 0.7 41.0 ± 15.9 1.0 ± 3.2 

Liriodendron tulipifera 2.9 ± 4.5 2.9 ± 3.8 17.3 ± 9.8 2.7 ± 3.6 0.9 ± 1.1 7.3 ± 7.8 

Acer rubrum 2.5 ± 2.4 0.7 ± 1.5 0.1 ± 0.1 0.9 ± 1.2 1.0 ± 1.1 1.7 ± 2.5 

Acer saccharum  1.4 ± 2.3 0.0 ± 0.1 1.4 ± 1.5 2.2 ± 2.4 0.0 ± 0.1 2.1 ± 4.3 

Prunus serotina  0.2 ± 0.5 1.1 ± 2.3 1.8 ± 2.6 0.5 ± 0.7 2.4 ± 2.7 1.2 ± 1.8 

Platanus occidentalis 0.0 ± 0.2 0.0 ± 0.0 2.4 ± 5.8 0.6 ± 1.7 1.4 ± 2.3 3.5 ± 4.0 

Juniperus virginiana 0.3 ± 0.7 0.4 ± 1.0 0.3 ± 0.5 1.8 ± 2.8 0.4 ± 0.9 1.2 ± 2.5 

Fraxinus americana 0.4 ± 1.0 0.6 ± 1.1 0.1 ± 0.2 0.3 ± 0.5 0.1 ± 0.2 0.5 ± 1.0 

Ulmus americana 0.2 ± 0.6 0.0 ± 0.1 1.1 ± 2.3 0.8 ± 1.6 0.0 ± 0.0 0.3 ± 0.5 

Sassafras albidum 0.3 ± 0.5 0.4 ± 1.5 0.1 ± 0.2 0.1 ± 0.1 0.0 ± 0.0 0.4 ± 1.0 

Fraxinus pennsylvanica 0.0 ± 0.0 0.0 ± 0.0 1.3 ± 2.8 0.0 ± 0.0 0.7 ± 1.3 0.5 ± 1.2 

Nyssa sylvatica 0.1 ± 0.4 0.2 ± 0.7 0.7 ± 2.1 0.0 ± 0.1 0.0 ± 0.0 0.1 ± 0.1 

Diospyros virginiana 0.2 ± 0.5 0.2 ± 0.5 0.0 ± 0.1 0.4 ± 0.4 0.2 ± 0.4 0.1 ± 0.2 

Liquidambar styraciflua 0.3 ± 1 0.2 ± 0.9 0.0 ± 0.0 0.6 ± 1.3 0.0 ± 0.0 0.0 ± 0.0 

Quercus alba 0.0 ± 0.0 0.1 ± 0.7 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 
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Species  Ridge   Bottom  

 SLP WP HW SLP WP HW 

Juglans nigra 0.0 ± 0.2 0.0 ± 0.0 0.6 ± 1.1 0.0 ± 0.0 0.0 ± 0.0 0.6 ± 1.2 

Cornus florida 0.1 ± 0.2 0.0 ± 0.0 0.4 ± 0.4 0.1 ± 0.1 0.0 ± 0.0 0.2 ± 0.5 

Ulmus rubra  0.0 ± 0.2 0.1 ± 0.3 0.5 ± 0.9 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.1 

Fagus grandifolia  0.1 ± 0.3 0.0 ± 0.0 0.0 ± 0.1 0.2 ± 0.2 0.0 ± 0.1 0.0 ± 0.0 

Acer negundo  0.0 ± 0.0 0.0 ± 0.1 0.5 ± 1.3 0.0 ± 0.0 0.4 ± 0.5 0.1 ± 0.2 

Quercus velutina  0.0 ± 0.1 0.2 ± 0.8 0.0 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 
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Density (mean stems per ha ± 1 S.E.) of common sapling species by stand type and ELTP. SLP = P. echinata, WP = 
P. strobus, HW = hardwood.  

Species  Ridge   Bottom  

 SLP WP HW SLP WP HW 

Fraxinus americana 293 ± 608 872 ± 1376 211 ± 476 263 ± 590 33 ± 82 273 ± 452 

Fraxinus pennsylvanica 391 ± 1506 504 ± 1242 33 ± 100 138 ± 256 333 ± 631 145 ± 221 

Fagus grandifolia 518 ± 620 72 ± 137 56 ± 133 288 ± 503 50 ± 84 55 ± 151 

Lindera benzoin 266 ± 792 184 ± 434 500 ± 545 63 ± 74 583 ± 1141 236 ± 559 

Acer saccharum 114 ± 202 48 ± 82 633 ± 1486 375 ± 570 183 ± 325 382 ± 634 

Acer rubrum 120 ± 315 212 ± 514 78 ± 199 88 ± 173 50 ± 84 100 ± 332 

Sassafras albidum 91 ± 226 112 ± 224 133 ± 364 0 ± 0 67 ± 163 9 ± 30 

Quercus velutina 139 ± 178 52 ± 142 67 ± 100 25 ± 71 0 ± 0 9 ± 30 

Acer negundo 0 ± 0 20 ± 41 44 ± 133 0 ± 0 533 ± 862 91 ± 192 

Prunus serotina  9 ± 36 96 ± 246 111 ± 203 0 ± 0 33 ± 82 9 ± 30 

Quercus alba 66 ± 112 16 ± 62 67 ± 166 13 ± 35 0 ± 0 9 ± 30 

Liriodendron tulipifera 18 ± 79 76 ± 161 44 ± 73 0 ± 0 0 ± 0 73 ± 179 

Cornus florida 9 ± 36 32 ± 75 111 ± 209 0 ± 0 100 ± 245 64 ± 150 

Elaeagnus umbellata 5 ± 30 88 ± 219 11 ± 33 25 ± 71 17 ± 41 64 ± 180 

Cercis canadensis 9 ± 47 16 ± 80 256 ± 522 0 ± 0 0 ± 0 9 ± 30 
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Species  Ridge   Bottom  

 SLP WP HW SLP WP HW 

Rosa Multiflora 9 ± 60 32 ± 160 144 ± 288 0 ± 0 0 ± 0 64 ± 211 

Ostrya virginiana  36 ± 81 4 ± 20 89 ± 203 50 ± 107 0 ± 0 0 ± 0 

Carpinus caroliniana  16 ± 78 0 ± 0 11 ± 33 38 ± 74 50 ± 122 127 ± 390 

Nyssa sylvatica 20 ± 55 28 ± 121 100 ± 229 0 ± 0 0 ± 0 18 ± 60 

Ulmus alata 16 ± 91 20 ± 82 67 ± 200 50 ± 141 0 ± 0 0 ± 0 
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Percent cover (mean ± S.E.) of common herbaceous-layer species by functional group in three stand types.  

Species/ 
groups 

  Ridge     Bottom   

 SLP WP HW SLP WP HW 

ANNUALS/ 
BIENNIALS 

      

Sanicula canadensis 0.11 ± 0.00 0.65 ± 0.01 0.48 ± 0.01 0.36 ± 0.01 0.15 ± 0.00 4.53 ± 0.06 

Impatiens capensis 0.01 ± 0.00 0.08 ± 0.00 0.13 ± 0.00 0.02 ± 0.00 0.00 ± 0.00 0.80 ± 0.01 

Cynoglossum virginianum 0.01 ± 0.00 0.06 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.08 ± 0.00 0.71 ± 0.02 

 
PERENNIALS 

      

Packera aurea 0.01 ± 0.00 0.09 ± 0.00 0.44 ± 0.01 0.01 ± 0.00 1.17 ± 0.02 16.60 ± 0.21 

Lycopodium dendroideum 4.50 ± 0.17 0.00 ± 0.00 0.11 ± 0.00 2.11 ± 0.06 0.00 ± 0.00 0.40 ± 0.02 

Moss spp. 0.41 ± 0.00 1.59 ± 0.04 2.88 ± 0.04 0.78 ± 0.01 0.97 ± 0.01 1.51 ± 0.02 

Ageratina altissima 0.06 ± 0.00 2.11 ± 0.04 1.54 ± 0.03 0.28 ± 0.00 1.51 ± 0.02 1.80 ± 0.01 

Asarum canadense 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.03 ± 0.00 0.02 ± 0.00 3.91 ± 0.07 
 
FERNS 

      

Polystichum acrostichoides 2.01 ± 0.0374 3.06 ± 0.11 4.38 ± 0.06 4.06 ± 0.05 1.98 ± 0.02 3.57 ± 0.04 

Onoclea sensibilis 0.00 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.03 ± 0.00 0.00 ± 0.00 2.58 ± 0.09 
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Species/ 
groups 

Ridge Bottom 

 SLP WP HW SLP WP HW 

GRAMINOIDS       

Panicum boscii 0.08 ± 0.00 0.27 ± 0.01 1.11 ± 0.02 0.72 ± 0.02 0.01 ± 0.00 5.54 ± 0.14 

Panicum commutatum 0.72 ± 0.03 0.11 ± 0.00 0.36 ± 0.01 0.30 ± 0.01 1.44 ± 0.03 2.05 ± 0.05 

Diarrhena americana 0.00 ± 0.00 0.05 ± 0.00 1.63 ± 0.04 0.01 ± 0.00 0.21 ± 0.00 3.91 ± 0.08 

 
INVASIVES 

      

Rosa multiflora 1.08 ± 0.03 0.46 ± 0.01 11.94 ± 0.10 2.09 ± 0.05 16.08 ± 0.26 14.35 ± 0.21 

Lonicera japonica 2.21 ± 0.03 2.92 ± 0.07 9.04 ± 0.09 10.05 ± 0.10 10.56 ± 0.16 3.74 ± 0.05 

Microstegium vimineum 0.47 ± 0.03 2.79 ± 0.08 2.39 ± 0.04 0.29 ± 0.01 7.03 ± 0.11 4.80 ± 0.09 

Polygonum cuspidatum 0.67 ± 0.04 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.10 ± 0.00 

 
SHRUBS 

      

Lindera benzoin 1.48 ± 0.05 3.11 ± 0.08 11.25 ± 0.21 3.38 ± 0.06 14.5 ± 0.22 4.25 ± 0.06 

Smilax rotundifolia 1.24 ± 0.02 0.11 ± 0.00 1.30 ± 0.02 0.32 ± 0.01 0.08 ± 0.00 0.37 ± 0.01 

Rubus sp. 0.29 ± 0.01 0.81 ± 0.02 1.94 ± 0.05 0.74 ± 0.02 1.04 ± 0.02 2.20 ± 0.04 

Smilax glauca 0.61 ± 0.01 0.24 ± 0.01 2.26 ± 0.05 0.38 ± 0.00 0.15 ± 0.00 0.23 ± 0.01 

Symphoricarpos orbiculatus 0.22 ± 0.01 1.71 ± 0.04 0.00 ± 0.00 0.26 ± 0.01 0.05 ± 0.00 1.20 ± 0.02 

Potentilla simplex 0.07 ± 0.00 0.68 ± 0.01 0.01 ± 0.00 0.06 ± 0.00 0.00 ± 0.00 0.60 ± 0.01 

        
  



 
121 

Species/ 
groups 

  Ridge     Bottom   

 SLP WP HW SLP WP HW 

VINES       
Toxicodendron radicans 17.21 ± 0.15 13.37 ± 0.17 37.77 ± 0.34 6.86 ± 0.12 8.25 ± 0.09 1.73 ± 0.02 

Parthenocissus 
quinquefolia 

1.89 ± 0.03 5.49 ± 0.06 11.09 ± 0.13 1.57 ± 0.01 4.67 ± 0.08 0.92 ± 0.01 

Clematis virginiana 0.02 ± 0.00 0.21 ± 0.01 1.64 ± 0.04 0.02 ± 0.00 0.09 ± 0.00 1.36 ± 0.02 

TREES       

Fraxinus americana 3.44 ± 0.07 5.34 ± 0.07 4.32 ± 0.04 1.99 ± 0.03 0.00 ± 0.00 0.00 ± 0.00 

Fraxinus pennsylvanica 1.08 ± 0.03 5.84 ± 0.17 0.66 ± 0.02 0.72 ± 0.01 8.27 ± 0.13 1.10 ± 0.03 

Acer rubrum 0.67 ± 0.01 1.83 ± 0.03 1.32 ± 0.02 0.10 ± 0.00 0.31 ± 0.00 1.38 ± 0.04 

Acer saccharum 0.65 ± 0.02 0.13 ± 0.00 3.13 ± 0.05 0.56 ± 0.01 0.27 ± 0.00 1.13 ± 0.02 

Fagus grandifolia 1.80 ± 0.03 0.13 ± 0.00 0.20 ± 0.01 1.16 ± 0.02 1.44 ± 0.01 0.23 ± 0.01 

Sassafras albidum 0.71 ± 0.01 0.76 ± 0.01 1.00 ± 0.02 0.02 ± 0.00 0.05 ± 0.001 0.04 ± 0.00 

Quercus velutina 0.91 ± 1.14 0.36 ± 0.49 0.66 ± 1.30 0.09 ± 0.12 0.06 ± 0.10 0.10 ± 0.28 

Prunus serotina 0.22 ± 0.00 0.71 ± 0.01 1.71 ± 0.01 0.21 ± 0.00 1.54 ± 0.03 0.11 ± 0.00 

Cornus florida 0.16 ± 0.00 0.38 ± 0.01 0.16 ± 0.00 0.06 ± 0.00 4.22 ± 0.07 0.25 ± 0.01 

Carya cordiformis 0.49 ± 0.01 0.32 ± 0.01 0.20 ± 0.00 0.37 ± 0.00 0.30 ± 0.00 0.72 ± 0.02 

Ulmus rubra 0.14 ± 0.00 0.27 ± 0.01 3.30 ± 0.06 0.10 ± 0.00 0.35 ± 0.01 0.30 ± 0.01 

Cercis canadensis 0.31 ± 0.01 0.10 ± 0.00 2.07 ± 0.04 0.01 ± 0.00 0.79 ± 0.02 0.27 ± 0.01 
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Species/ 
groups 

  Ridge     Bottom   

 SLP WP HW SLP WP HW 

Nyssa sylvatica 0.19 ± 0.00 0.13 ± 0.00 2.47 ± 0.06 0.08 ± 0.00 0.00 ± 0.00 0.14 ± 0.00 

Celtis occidentalis 0.05 ± 0.00 0.31 ± 0.01 1.84 ± 0.03 0.08 ± 0.00 0.01 ± 0.00 0.06 ± 0.00 

Acer negundo 0.00 ± 0.00 0.22 ± 0.01 0.01 ± 0.00 0.04 ± 0.00 2.94 ± 0.03 1.66 ± 0.04 
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Appendix D  Selected Site Pictures 

 

 

 

Figure 1: Pinus echinata ridge site. 
 

        
   



124 
 

 

Figure 2: Adjacent to Pinus strobus ridge site illustrating a large degree of 
adjacent dieoff. 
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Figure 3: Hardwood ridge site dominated by Liriodendron tulipifera. 
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Figure 4: Pinus echinata bottom site. 
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Figure 5: Pinus strobus bottom site. 
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Figure 6: Hardwood bottom site. 
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