

The Summer of Undergraduate Research Fellowship (SURF) Symposium 4 August 2016 Purdue University, West Lafayette, Indiana, USA

The Influence of Thermal Conditions on the Thermomechanics of Particulate-Composite, Mock Explosive Samples under Near-**Resonant Excitation**

Jaylon B. Tucker, Allison R. Range, Jeffery F. Rhoads School of Mechanical Engineering, Purdue University, IN 47907, USA

ABSTRACT

Vapor detection is one of the most effective ways to find hidden plastic-bonded explosives in the field today. In recent years, it has been demonstrated that providing near-resonant vibratory excitation to explosives dramatically increases their vapor pressure, allowing for easier detection. Unfortunately, there currently exists a limited understanding of the thermomechanics of energetic material. This study seeks to help fill this technical void by exploring the thermomechanics of mock plastic-bonded explosives using direct mechanical excitation with varying thermal conditions. Using two different ambient thermal boundary conditions (insulated geometric boundaries and boundaries with free convection), a 7" by 10" by 0.5" HTPB/Ammonium Chloride particulate-composite plate was tested by fixing it to an electrodynamic shaker and vibrating the sample at low frequencies (under 1000 Hz). Vibratory and thermal data was collected using a Polytec scanning laser Doppler vibrometer and a FLIR infrared camera. It was determined that insulating boundary conditions, allow the mock energetic material temperature to increase significantly as compared to the convective boundaries under near-resonant excitation. Future work will investigate alternate thermal boundary and initial conditions, as well as alternate mock energetic materials.

KEYWORDS

Energetic, Vibratory Excitation, Insulation