1

The Summer Undergraduate Research Fellowship (SURF) Symposium 4 August 2016 Purdue University, West Lafayette, Indiana, USA

Fluid flow thermometry using thermographic phosphors

Gabriel J. Fenoglio, Humberto J. Detrinidad, Aman Satija, Alex D. Casey, Robert P. Lucht, and Terrence R. Meyer School of Mechanical Engineering, Purdue University

ABSTRACT

Phosphor thermometry is a non-intrusive thermometry technique that allows for spatially and temporally resolved surface temperature measurements. The thermographic method has been employed in a number of applications that include combustion, sprays, and gas flows. In the current work, we investigate the implementation of thermographic phosphors in liquid flows, which is of interest in a wide range of applications in heat transfer, fluid mechanics, and thermal systems. Zinc oxide doped with Zinc (ZnO:Zn) was the phosphor employed for experimentation due to its high emission intensity and insolubility. In order to explore this application, the phosphor powder was uniformly dispersed in water using a magnetic stirring rod. The phosphor was excited by the third harmonic 355 nm output of a Nd:YAG laser, and the luminescence was examined using a fiber-coupled spectrometer. Analysis of the spectral data showed a significant redshift as the temperature approached boiling point. Further characterization of effects of temperature and experimental parameters such as ZnO:Zn concentration on the luminescence signal was performed.

KEYWORDS

Phosphor thermometry, fluid flow, zinc oxide, laser diagnostics