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ABSTRACT 

Saksena, Siddharth. M.S.C.E., Purdue University, May 2014. Investigating the Role of 
DEM Resolution and Accuracy on Flood Inundation Mapping. Major Professor: 
Venkatesh Merwade. 
 
 
 
Topography plays an important role in determining the accuracy of flood inundation maps. 

A lot of the current flood inundation maps are created using topographic information 

derived from Light Detection and Ranging (LiDAR) data. Although LiDAR data is very 

accurate, it is expensive, computationally time consuming and not available in several areas 

across the United States and around the world. As a result, coarser resolution DEMs which 

are easily available but less accurate are used for flood modeling. It is essential to 

understand the properties of LiDAR data to create methods to modify coarser resolution 

DEMs and increase their accuracy. These properties can be used to understand how 

elevation errors propagate within a DEM and reduce the impact of errors in coarser 

resolution datasets.  

 

The first objective of this study is to quantify the errors arising from DEM properties such 

as resolution and accuracy on flood inundation maps. The results from these six study areas 

show that water surface elevations and flood inundation area have a linear relationship with 

the DEM resolution and accuracy.
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The second objective of this study is to use the linear relationship between hydraulic 

outputs and the DEM resolution or accuracy to create an approach for developing accurate 

flood inundation maps using less accurate DEMs by modeling the spatial distribution of 

DEM errors. Application of this new approach on USGS NED 30 m resolution DEMs and 

SRTM 90 m resolution DEMs shows significant increase in the accuracy of water surface 

elevations and improvement in predicted flood extents created from coarser resolution 

DEM when compared to results from high resolution accurate DEMs.  

 

A check on the applicability of this approach for different interpolation methods and river 

channel conditions is also made in this study. The new approach thus provides promising 

results in obtaining more accurate flood maps from less accurate topographic data.
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CHAPTER 1. INTRODUCTION 

1.1 Background and Study Objective 

Floods are one of the major natural disasters in the United States accounting to losses worth 

$8.17 Billion (National Weather Service) over the past 30 years. The majority of flood 

inundation maps in the US are prepared by the Federal Emergency Management Agency 

(FEMA) that are useful in identifying flood risk areas. Flood Inundation Mapping involves 

analysis of river flow data, hydrologic/hydraulic modeling and topographic surveys. Water 

surface elevations (WS El.) and flood extents are the two major components of flood 

inundation mapping. Hydraulic modeling is primarily carried out using Hydrologic 

Engineering Center-River Analysis System (HEC-RAS) which has been designed and 

developed by United States Army Corps of Engineers (USACE 2006).  

 

Topography plays a major role in determining the accuracy of hydraulic modeling and 

flood inundation mapping (Brandt, 2005; Cook & Merwade, 2009). Digital Elevation 

Model (DEM) is a raster dataset containing information about the topography of a region 

and is used as a prerequisite to hydraulic modeling. 
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For hydraulic modeling purposes, DEMs are used to determine the active channel cross-

sectional elevations, water surface elevations and flood extents. Resolution and accuracy 

are the two main properties of a DEM that affect hydraulic and hydrologic modeling results 

(Vaze et al., 2010). 

  

The spatial resolution of a DEM refers to the area covered on the ground surface by a single 

cell which suggests that a higher resolution DEM has more number of cells per unit area 

and thus represents the topography more accurately as compared to a coarser resolution 

DEM (ESRI, 2014a). Resolutions of DEMs can affect the parameters and attributes derived 

from them and influence models associated with them (Gallant & Hutchinson, 1997; Haile 

& Rientjes, 2005; Omer et al., 2003). The vertical accuracy of a DEM is the probability 

distribution of digital elevation values measured with respect to the true value. It is 

measured by the amount of linear error in elevation (ESRI, 2014b). The accuracy of a DEM 

directly influences the hydraulic modeling results (Darnell et al., 2008; Fisher & Tate, 

2006). Thus, DEM resolution and accuracy have a significant impact on water surface 

elevations and flood extents. 

 

DEMs obtained from LiDAR data have a high resolution and accuracy and are used 

extensively for hydraulic modeling purposes (Cook & Merwade, 2009; Rayburg et al., 

2009). The water surface elevations and flood maps obtained on using LiDAR data are 

more accurate than the other widely used DEMs present in the world (Charlton et al., 2003; 

Schumann et al., 2008). 
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 But there are several areas within the United States and around the world where LiDAR 

data are still unavailable. The use of LiDAR data is not feasible for some locations due to 

time constraints and cost of acquisition even though they are the most accurate topographic 

data source (Sanders, 2007). 

 

For the areas where LiDAR data are unavailable, it is desirable to study how the hydraulic 

modeling and flood inundation results can be improved using the existing coarser 

resolution and low accuracy topographic datasets. This thesis focuses on the impact of two 

key attributes of topographic data: (1) resolution; and (2) accuracy on hydraulic modeling 

and flood inundation mapping using LiDAR data. The study of these attributes seeks to 

understand their relationships with hydraulic outputs so that these relationships can be 

applied to coarser resolution and low accuracy datasets to obtain better hydraulic modeling 

and flood inundation mapping results. Thus, the two main research objectives of this study 

based on DEM resolution and accuracy are:  

 

(1) Studying the impact of DEM resolution or grid size on water surface elevations and 

flood inundation extents 

(2) Evaluating the impact of DEM errors on water surface elevations and flood 

inundation extents 

 

In order to accomplish these research objectives, the method of DEM resampling and error 

analysis is used. The results of hydraulic analysis can vary significantly for different study 

areas, land use types and river reach lengths.  
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Therefore, six study areas with different topography, land use, reach lengths and flow 

conditions are selected for this study. The thesis also aims to find a threshold for DEM grid 

sizes and errors above which the hydraulic analysis results are unacceptable using these 

study areas.  

 

1.2 Approach 

The objectives of this thesis are accomplished by analyzing the results obtained from flood 

inundation mapping for six reaches of different reach lengths and land use types. Flood 

mapping for these reaches is carried out by 1D HEC-RAS modeling using LiDAR 

topographic datasets. 100-year flow values are calculated using Log-Pearson Type III 

distributions for peak annual observed flows provided by United States Geological Survey 

(USGS).  

 

The first task to attain the objectives of this study involves resampling the LiDAR datasets 

into DEMs of different resolutions and using these datasets for hydraulic modeling. The 

results for the second objective are obtained by introducing elevation errors of different 

magnitudes into the LiDAR DEMs for these reaches. The results are compared with flood 

maps obtained from original LiDAR datasets as base maps.  

 

The assumption with this approach is that the original LiDAR datasets are the most 

accurate topographic datasets even though the predicted flood maps are not completely 

accurate when compared to observed flood depths and extents.  
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However, the high resolution LiDAR datasets offer superior results in estimating the flood 

inundation area and river networks when the cell sizes are less than 10 m (Li & Wong, 

2010; Rayburg et al., 2009). 

 

1.3 Thesis Organization 

This thesis is organized in 7 chapters. Chapter 2 presents a review of previous case studies 

on the effect of topography and DEM resolution on hydraulic modeling. This chapter also 

presents previous studies on DEM error analysis. Chapter 3 presents a description of study 

areas and the data used for this study. Chapter 4 presents the methodology used for 

producing results and analysis techniques used for different variables. The methodology 

used to digitize the different areas is explained first followed by a description of creating 

different topographic datasets which are used for flood mapping. Chapter 5 present the 

results obtained from this study. The results are divided into two sections discussing the 

impact of DEM resolution and DEM error on hydraulic outputs. Chapter 6 discusses the 

application of the obtained results to reduce the impact of DEM resolution and DEM errors. 

This section describes a new approach to improve the predicted water surface elevations 

and flood inundation areas obtained from coarser resolution datasets. Chapter 7 presents 

the summary and conclusions for this study.  
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CHAPTER 2. LITERATURE REVIEW 

2.1 Introduction 

The effect of two attributes on water surface elevations and flood extents are analyzed in 

this thesis; changing the resolution of topographic data, and varying the magnitude of 

vertical error in the elevations to determine the impact of DEM accuracy. DEMs with larger 

grid sizes have less detailed information as they have one elevation value for a larger area. 

DEMs with high resolution or smaller grid sizes represent elevations of smaller areas and 

can better represent the smaller topographic details. Case studies on the effect of resolution 

of topographic data are discussed in Section 2.2. The effect of DEM errors and previous 

case studies discussing the significance of these errors on hydraulic modeling are presented 

in Section 2.3.  

 

2.2 Effect of Topography and DEM Resolution on Hydraulic Modeling 

With the advent of GIS based techniques to obtain channel cross-sections, topographic 

datasets have become essential in flood mapping. The cross-section elevations obtained 

from topographic datasets are used for hydraulic modeling in HEC-RAS to produce water 

surface elevations. Flood extent is obtained by subtracting the topography from the 

interpolated water surface obtained through hydraulic modeling (Tate et al., 2002). 
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This section reviews the past studies that have established the importance of topography 

and DEM resolution.  

 

In order to understand the importance of topography and DEM resolution, it is essential to 

look at the source of the DEMs that are used for hydraulic modeling. The National 

Elevation Dataset (NED) provided by the United States Geological Survey (USGS) are the 

most widely used DEMs in the United States. The NED 30 m resolution DEMs are often 

obtained from cartography or photogrammetry and are of low quality due to the existence 

of artifacts (Gesch et al., 2002). Even though these artifacts are filtered to some extent, 

these are coarser resolution DEMs with lower accuracy.  

 

The DEMs of higher resolution and accuracy are obtained through the LiDAR (Laser 

Interferometry Detection and Ranging) remote sensing technology. The quality of LiDAR 

DEMs depends upon the sampling and filtering methods (Chu et al., 2014). LiDAR 

technology serves as an accurate survey tool for obtaining highly accurate topographic 

datasets (Charlton et al., 2003). However, many places in the United States and around the 

world do not have the resources to obtain LiDAR data, and therefore, DEMs of coarser 

resolutions like USGS DEMs are used for hydraulic modeling where LiDAR DEMs are 

unavailable.  

 

Hydraulic modeling and flood mapping using LiDAR data produces more accurate results 

when compared to other available topographic datasets. This was suggested by comparing 

the performances of four on-line DEMs (LiDAR, NED, SRTM and IfSAR) on flood 
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inundation modeling and the study was carried out for Santa Clara River near Castaic 

Junction in southern California and Buffalo Bayou near downtown Houston in Texas 

(Sanders, 2007). The results of this study clearly show that LiDAR DEMs represent best 

the terrain for flood mapping since they have the highest horizontal resolution and vertical 

accuracy. IfSAR DEMs require further processing to incorporate the vegetation, bridges 

and buildings before use in flood mapping. SRTM DEMs generate the least accurate results 

due to existence of radar speckles but their global availability is significant in flood 

mapping. NED DEMs are more accurate in comparison to SRTM and IfSAR generated 

DEMs but often over-predict the flood inundations. This study however, did not compare 

the performance of LiDAR with surveyed data. 

 

In order to evaluate the performance of LiDAR data when compared to surveyed data, 

Casas et al. (2006) carried out a study of accuracy of topographic dataset sources in 

hydraulic modeling for Ter River near Sant Juliá de Ramis, 5 km downstream of Girona in 

NE Spain which consisted of Digital Terrain Models (DTMs) from three different sources: 

high resolution LiDAR, global positioning system (GPS) survey and vectorial cartography. 

Hydraulic modeling was carried out using HEC-RAS and water surface elevations and 

delineated flooded area were analyzed. The contour-based DTM performed with the least 

accuracy with a variation of 50% in the flood inundation determination. The LiDAR dataset 

for this study area performed with the highest accuracy with less than 1% variation and 

GPS-based DTMs produced maps of less than 8% variation from the observed data. The 

results also showed that the DTM quality and its resolution determine the accuracy of flood 

predictions.  
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The hydraulic modeling for the two studies described above was carried out using HEC-

RAS. These studies showed that the performance of LiDAR DEMs was superior to the 

other available DEMs (USGS, IfSAR and SRTM) as well as DEMs derived from different 

sources (GPS survey, photogrammetry and cartography).  

 

In order to evaluate the performance of topographic datasets using a different hydraulic 

modeling technique, a study on remote sensing technology by Schumann et al. (2007) 

demonstrated the use of synthetic aperture radar (SAR) images of moderate resolution to 

determine the water-line during a flood event. This approach used high resolution LiDAR 

DEMs to extract elevation values for cross-sections across River Alzette situated 

downstream of Luxemburg city in England. A Regression and Elevation-based Flood 

Information Extraction (REFIX) model was developed which used remotely sensed flood 

extents observed during a flood event and linear regression to calculate flood depths. The 

REFIX model compared the water stages obtained from three different topographic dataset 

sources. The results showed that LiDAR datasets had the least RMSE (0.35 m) when 

compared to contour DEM (0.7 m) and SRTM (1.07 m). This study also indicated that 

flood mapping with coarser DEMs for a small area presented a lot of uncertainties and high 

resolution data was required to measure the elevations accurately (Schumann et al., 2008).  

 

From the studies described above, it can be concluded that LiDAR data is the most accurate 

topographic dataset for hydraulic modeling irrespective of the modeling approach. It is 

however essential to develop techniques to increase the accuracy of the other coarser DEMs 

in order to increase their applicability in hydraulic modeling.  
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One of the most important properties of a DEM affecting hydraulic modeling results is its 

resolution. In order to increase the prediction accuracy of DEMs, it is essential to 

understand the importance of DEM resolution on flood mapping. Many studies were 

carried out analyzing the effect of changing DEM resolution on hydraulic modeling which 

concluded that DEM resolution played a significant role in predicting hydraulic outputs.  

 

One of the first studies by Werner (2001) in analyzing the impact of grid size on accuracy 

of predicted flood areas showed that hydraulic controls such as embankments have a 

significant effect on the accuracy of flood extents. Local elevations around the hydraulic 

controls averaged out on using a coarser resolution DEM while the use of higher resolution 

DEMs increased the computational time significantly.  

 

This study suggested that one significant disadvantage of coarser resolutions was the 

inaccuracy in determining correct elevations for bridges, embankments and levees. While 

this problem could be corrected by using field surveyed elevations and locations for 

hydraulic controls, the overall effect of decreasing DEM resolutions on predicted flood 

extents is still significant and further studies were carried out to evaluate this effect.  

 

Haile et al. (2005) studied the effects of changing DEM resolution for an urban city 

Tegucigalpa in Honduras. In this study, a DEM of grid size 1.5 meters was generated using 

LiDAR data and resampled to DEMs with decreasing resolutions up to 15 meters. 2-D 

SOBEK flood model was used to evaluate flood inundation extents.  
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This study concluded that the DEM with the largest grid size predicted maximum inundated 

area and downstream boundary condition had no significant effect on the flood area. The 

averaging of small-scale topographic features and arbitrary delineation of flow direction 

for larger grid sizes were identified as the possible causes for variation in flood area.  

 

This study highlighted the significance of DEM resolution for an urban study area using a 

2-D hydraulic model and suggested the reasons for the lower accuracy of coarser resolution 

DEMs. Since 2-D hydraulic modeling is complex and 1-D HEC-RAS modeling is used 

more frequently in the world, it was desirable to determine the impact of DEM resolution 

for 1-D hydraulic models.  

 

Such a study at Eskilstuna River in Sweden was carried out by Brandt (2005) to show the 

effect of different DEM resolutions on inundation maps using 1-D HEC-RAS. The results 

showed that higher resolution DEMs produced better and more precise flood maps. 

However, all the cross sections used in the hydraulic model were determined from high 

resolution DEMs. Resampled DEMs were used only to calculate the inundated areas after 

the water surface elevations were generated from HEC-RAS. This study also concluded 

that high resolution data produced much better results for small and narrow rivers. For 

bigger and wider rivers (about 20 km long and 300 m wide), coarser resolution data also 

generated fairly close results. The use of 1-D hydraulic modeling was justified for rivers 

with a significantly well-defined valley as there was not much difference in the output of 

1-D and 2-D models for such rivers. 
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For the United States, the effect of DEM resolution was analyzed for Strouds Creek in 

North Carolina and Brazos River in Texas by Cook et al. (2009). The results clearly showed 

that for a steady state flow assumption, the predicted flood inundation extent decreased by 

6% for Strouds Creek on using higher resolution topographic data. The predicted flood area 

increased by 4% for Strouds Creek and Brazos River on doubling the number of cross 

sections which suggested that the cross sections should be placed at strategic locations.  

 

To understand the causes for the over-prediction of flood extents by coarser resolution 

DEMs, a study on the effect of cell resolution on depressions was carried out by 

Zandbergen (2006) for a 6 m LiDAR DEM in Middle Creek, North Carolina. The study 

suggested that the occurrence of depressions in digital elevation models could also affect 

the hydraulic modeling results. Although there were techniques to remove these 

depressions from the DEM such as depression filling and breaching, they were meant for 

depressions caused artificially. For a flat terrain, removal of a real depression can have a 

significant impact on hydraulic predictions. Higher resolution DEMs derived from LiDAR 

data give an accurate estimate of real and artificial depressions and thus contain a large 

number of depressions. The results produced in this study clearly established that DEM 

resolution had a significant impact on the number of depressions. Depressions decreased 

with decreasing resolution following an inverse power relationship. The study also 

concluded that coarser DEMs had a lower number but a higher total volume of depressions 

while DEMs between 30 m and 61 m had minimum area and volume of depressions. A 

scale-dependence of the number of depressions was suggested for high resolution DEMs.  
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All the studies suggested that coarser resolution DEMs over-predicted the flood extents 

and resulted in significant loss of accuracy. Some of these studies also tried to analyze the 

causes of the over-prediction. It was established that coarser DEMs had a significant 

smoothing effect on the cross-sections. But these studies did not try to establish a 

relationship between DEM resolution and hydraulic outputs. If a mathematical relationship 

between the predicted results for different grid sizes of DEMs is established, the accuracy 

of prediction for coarser DEMs can be increased significantly, which is one of the 

objectives of the current study.  

 

2.3 Effect of DEM Accuracy and Error on Hydraulic Modeling 

In order to investigate the role of errors in DEMs, it is essential to understand the sources 

of errors. There are three possible sources of errors which can occur in a DEM: (1) errors 

due to spatial sampling; (2) measurement errors due to positional inaccuracy; and (3) 

random errors including interpolation errors and computer generated numerical errors 

(Burrough, 1986). A lot of methods have been adopted to remove these errors from the 

gridded DEMs but it is difficult to remove them completely.  

 

The focus of the current study is to determine the impact of DEM errors on hydraulic 

modeling and use this knowledge to develop techniques for reducing this impact for coarser 

resolution DEMs. A study by Smith et al. (2004) on the accuracy analysis of gridded Digital 

Surface Models (DSMs) created from LiDAR data highlighted the importance of errors in 

vertical accuracy of data. The results indicated a need to model not only the global errors, 

but also individual errors based on location and magnitude.   
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The analysis suggested that the existence of errors could affect any subsequent analysis 

using DSMs. After establishing that DEM errors can affect the subsequent analysis results 

significantly, it is essential to compare and quantify the magnitude of error occurring in 

different DEMs available for hydraulic modeling. 

 

Gonga-Saholiariliva et al. (2011) conducted a comparative analysis of DEMs derived from 

six different sources (airborne, radar, optical and composite) for Wasatch Mountain Front 

in Utah. These DEMs included a LiDAR (2 m), CODEM (5 m), NED 10 (10 m), ASTER 

DEM (15 m), GDEM (30 m) and SRTM (90 m). The results show that LiDAR DEMs have 

the least errors followed by NED 10 which is generated from composite data sources. 

CODEM and ASTER DEM show high magnitude of errors even after having high ground 

resolutions. This study highlighted the importance of source-study before processing and 

delivering the final product. 

 

Similarly, Hodgson et al. (2003) studied the differences occurring in vertical accuracy 

estimates of LiDAR, IfSAR, NED 10 m and NED 30 m for Swift and Red Bud Creeks in 

North Carolina. All the DEMs over-predicted the average elevations regardless of land use 

types with LiDAR data being the most accurate with an RMSE of 93 cm followed by NED 

10 m (163 cm), NED 30 m (743 cm) and IfSAR (1067 cm). 

 

The results clearly indicate that LiDAR data is currently the most accurate data containing 

the least amount of errors. This is true for DEMs derived from different sources as well as 

different resolutions.  
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However, the accuracy of the other DEMs in hydraulic modeling can be improved if these 

errors can be modeled correctly and removed from the DEMs. This requires studies of 

spatial distribution and source of errors for different DEMs which are presented in Section 

2.3.1 and Section 2.3.2. 

 

2.3.1 Case Studies on Spatial Distribution of DEM Errors 

A significant percentage of DEM errors are random in nature. However, studies have been 

carried out to model these errors and obtain a spatial distribution. Aguilar et al. (2006) tried 

to model DEM errors by conducting a detailed study using linear interpolation of scattered 

sample data in Almería, south-eastern Spain. A model was developed to determine the error 

when randomly scattered data points were linearly interpolated into gridded sample points. 

The model consisted of an empirical error caused due to sampling (information loss) and a 

theoretical error based on error propagation theory. However, this was a theoretical 

scenario and linear interpolation is not used frequently to create DEMs.  

 

Therefore, Aguilar et al. (2010) carried out a follow-up study for 29 datasets in Almería 

using Inverse Distance Weighing (IDW) instead of linear interpolation and developed a 

methodology to model vertical errors occurring in LiDAR datasets. This model expressed 

error as a sum of three components: (1) error in LiDAR data capture from ground points; 

(2) gridding error; (3) filtering of non-terrain objects such as vegetation and buildings. The 

results showed a very good fit between observed and predicted errors (R2=0.9856; 

p<0.001). The model was also validated for two LiDAR datasets including Ordnance 

Survey data for Bristol, UK and Gador data for Almería, Spain.  
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The validation results offered a moderate fit for Bristol and a good model fit for Gador data 

(Spain) which had a rugged morphology. The results of this study were promising but the 

application of the model to different DEM sources is complex and time-consuming. More 

empirical methods are needed to model and remove DEM errors.  

 

Another approach to model the spatial distribution of DEM errors was followed by Carlisle, 

(2005) for an area of 1 km by 2 km in Snowdonia, North Wales. Using GPS-surveys and 

DEM-derived terrain parameters, regression equations were developed to estimate the 

distribution of errors. These distributions depended upon the nature of the terrain, DEM 

resolution and DEM production method. The distribution is used to develop an accuracy 

surface which gives a better description of DEM accuracy.  

 

This study presented the multiple parameters which effected the accuracy of DEMs. The 

development of accuracy-surfaces using these complex parameters is difficult and it 

requires an extensive field survey which is not cost-effective for hydraulic modeling 

purposes.  

 

Another study on estimating spatial distribution of DEM errors using weighted regression 

at Sahilter Hill area, Afyonkarahisar in Turkey and concluded that gross elevation errors 

occurred in DEMs around steeper slopes (Erdoğan, 2010).  

 

Most of the case studies have analyzed the behavior of vertical accuracy of DEMs but not 

studied its effect on water surface elevations and flood extents.  
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Therefore, the models developed in these studies are less useful for hydraulic modeling 

purposes even though they provide a more accurate representation of spatial distribution of 

errors. DEM errors directly affect the accuracy of flood mapping but there are no 

established relationships between DEM errors and hydraulic modeling outputs. 

 

2.3.2 Errors Due to Interpolation and Sampling Technique 

Accuracy of a gridded DEM depends highly on the source (cartographic, photogrammetric 

or radar). The vertical accuracy of a DEM also depends upon the horizontal resolution of 

the topographic data even though there are no established rules to correlate them (National 

Digital Elevation Program, 2004). Similarly, the accuracy of topographic datasets also 

depends on the interpolation techniques used to produce DEMs from scattered sample data. 

It is essential to quantify the amount of errors caused using different interpolation methods 

in order to model DEM errors correctly.  

 

A study to measure the accuracy of interpolation techniques used to derive DEMs was 

carried out for three sites in a mountainous region in northern Laos having steep slopes and 

for three sites with a gentle slope in western France. Inverse distance weighing (IDW), 

kriging, multiquadratic radial basis function (MRBF) and spline were used to create DEMs 

for both high and low point height densities. There were only few differences between the 

interpolation techniques for high sampling densities while kriging performed best for low 

sampling densities. For the three mountainous sites located in Laos where high variation 

of altitude existed, IDW performed better than the other interpolation methods (Chaplot et 

al., 2006).  
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This study suggests that for DEMs created with high density data, the interpolation 

techniques do not have a significant effect on DEM accuracy. However, high sampling 

density datasets are difficult to acquire. For hydraulic modeling, the effect of interpolation 

techniques becomes less significant when LiDAR or USGS DEMs are used but DEM 

accuracy is dependent on interpolation techniques for low sampling density datasets such 

as SRTM.  

 

Another parameter which has an impact on DEM accuracy is survey strategy. A case study 

by Heritage et al. (2009) on measuring the influence of survey strategies and interpolation 

techniques was conducted for a 9900 sq. meter area on River Nent at Blagill in Cumbria, 

UK. Five sampling strategies were compared to study the quality of DEMs: (1) cross-

section; (2) bar-outline only; (3) bar and chute outline; (4) bar and chute outline with spot 

heights; and (5) aerial LiDAR. Interpolation of the sampled data was done using five 

techniques including IDW, kriging, minimum curvature, kriging using variogram and 

triangulation with linear interpolation. The study concluded that DEM error was strongly 

influenced by the sampling technique but there was no significant variance in observed 

error values using different interpolation techniques. This study stated that the error across 

a DEM was not uniform and depended upon local form roughness. This study suggested a 

different approach to model DEM errors as compared to the previous studies which aimed 

at modeling the spatial distribution.  
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In order to produce a continuous river surface, cross-sectional data points are interpolated 

by different interpolation techniques. These techniques often do not account of spatial 

trends in river bathymetry thus producing inaccurate interpolated surfaces (Merwade, 

2009). However, some anisotropic interpolation techniques account for spatial trends but 

are too complex to be used for producing river surfaces.  

 

Merwade (2009) carried out a study to analyze the effects of spatial trends on river 

bathymetry for six river reaches which revealed that removal of spatial trends from the data 

yielded better accuracy of interpolation. RMSE values were calculated to evaluate the 

effect of errors caused due to seven interpolation techniques and about 60% improvement 

was observed in RMSE values after removing spatial trends from the data.  

  

2.4 Summary 

In this chapter, a detailed analysis of effects of DEM resolution and vertical errors was 

presented. The existence of errors occurring due to changing DEM resolutions, sampling 

methods and analysis techniques has been well accounted in these studies. It can be 

concluded that higher accuracy and resolution in DEMs results in better precision in 

hydraulic modeling results. But the overall analysis is not cost-effective and high resolution 

LiDAR data is not easily available for the entire United States and parts around the world.  
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These case studies present different methods to improve the accuracy of DEMs but 

topographic datasets still have a lot of errors associated with them. Most of these studies 

have been presented for one or two study reaches. A detailed analysis of different reaches 

situated in regions of different land use types needs to be carried out for the United States. 

If these errors cannot be removed from these datasets, it is essential to develop techniques 

to reduce their effect in hydraulic modeling.  

 

This thesis adds to the current research by analyzing the effects of these errors and attempts 

to establish a relationship between the outputs obtained through high and coarse resolution 

datasets. There is a need to understand how the magnitude of these errors affects water 

surface elevations and flood extents in order to improve the flood predictions. This study 

focuses on analyzing the hydraulic modeling results after using DEMs of different 

resolutions and different vertical errors for six reaches of different lengths and land use 

types.  
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CHAPTER 3. STUDY AREA AND DATA 

3.1 Introduction 

This section provides an overview of the six river reaches which are used in this study. 

These six reaches include Strouds Creek in North Carolina, Tippecanoe River at Winamac 

in Indiana, St. Joseph River at Elkhart in Indiana, East Fork White River at Bedford in 

Indiana, Clear Creek at Johnson County in Iowa and Brazos River in Texas. A description 

of the data used for flood modeling and model parameters used for hydraulic modeling in 

HEC-RAS is also presented. This includes land use data used for classification of 

Manning’s n values, cross-section and bridge data. All Manning’s n values are extracted 

using land use maps published by National Land Cover Database (NLCD). A detailed 

description of the topographic data used for these sites is also presented in this section.  

 

3.2 Description of River Reaches 

3.2.1 Strouds Creek 

Strouds Creek, a tributary of the Eno River, is a 6.5 km reach located in Orange County of 

North Carolina with a history of high floods. It is the smallest of all the reaches chosen for 

this study with an urban floodplain. The floodplain is characterized by narrow V-shaped 

valleys. The Manning’s n values range from 0.04 to 0.05 for the main channel and 0.1 to 

0.2 for the floodplain. 
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The HEC-RAS project file consists of 50 cross-sections with an average spacing of 130 m 

between the cross-sections and an average width of 960 m. Figure 3.1 presents the Strouds 

Creek study area.  

 

  

Figure 3.1 Strouds Creek study area 

 
3.2.2 Tippecanoe River 

The study reach along the Tippecanoe River at Winamac is 10.4 km long and situated in 

Pulaski County, Indiana contains highly developed floodplains with commercial and 

residential structures. Tippecanoe River flows along northern Indiana before draining into 

the Wabash River at Battleground, Indiana. Tippecanoe River is the major cause of floods 

in the Pulaski County region. 
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 The Manning’s n values range from 0.03 to 0.04 for the main channel and 0.045 to 0.06 

for the flood plain. The HEC-RAS project file consists of 46 cross-sections with an average 

spacing of 69 m and an average width of 780 m. The profile consists of three bridges 

situated at stations 3127 m, 2163.8 m and 179.8 m. Figure 3.2 presents the Tippecanoe 

River study area. 

 

 

Figure 3.2 Tippecanoe River study area 
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3.2.3 St. Joseph River 

St. Joseph River at Elkhart, Indiana is located in northern Indiana and is a part of the St. 

Joseph watershed. The study area is an approximately 11.2 km long reach of this river. The 

city of Elkhart is a large urban community with four major natural disasters reported in the 

past (1908, 1950, 1982 and 1985) with floods being the main cause of damage. The 

Manning’s n values range from 0.03 to 0.04 for the main channel and 0.05 to 0.06 for the 

floodplain. The HEC-RAS project file consists of 52 cross-sections with an average width 

of 2.9 km and average spacing of 214 m. Figure 3.3 presents the St. Joseph River study 

area.   

 

 

Figure 3.3 St. Joseph River Study Area 
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3.2.4 East Fork White River 

The study area along the East Fork White River is a 20.2 km reach situated at Bedford in 

Lawrence County Indiana and is a tributary of the Wabash River. Bedford is an industrial 

town surrounded by farmlands. This study area is characterized by presence of trees and 

vegetation around the river channel which act as natural levees for the study area. The 

Manning’s n values range from 0.035 to 0.04 for the main channel and from 0.05 to 0.06 

for the floodplain. The HEC-RAS files for this reach consist of 56 cross-section with an 

average width of 7.1 km and an average spacing of 360 m. Figure 3.4 presents the East 

Fork White River study area.  

 

 

Figure 3.4 East Fork White River Study Area 
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3.2.5 Clear Creek  

A 39 km long study area along Clear Creek in Johnson County, Iowa was chosen to account 

for variability in Manning’s n values. The entire study area covers two towns: (1) Oxford; 

and (2) Coralville. This reach has large cross-sections spanning across 1.5 km to 2 km on 

both sides. The average cross-sectional spacing is 452 m and the total number of cross-

sections is 86. The Manning’s n values range from 0.03 to 0.07 along the main channel and 

from 0.04 to 0.12 along the floodplain. Figure 3.5 presents the Clear Creek study area.  

 

 

Figure 3.5 Clear Creek Study Area 
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3.2.6 Brazos River 

A 60 km long reach is chosen along Brazos River located in Fort Bend County in Texas 

which is the largest reach chosen for this study. This reach has 46 cross-sections with an 

average width of 12.2 km and average spacing of 1.3 km. The study area consists of flat 

terrain with relatively shallow main channel and meandering bends and thus a significant 

amount of flow is routed through the flood plain. Brazos River has recorded major floods 

with a significant loss to life and property and in order to protect the areas surrounding this 

reach, levees are provided across both sides of the main channel for some regions. The 

Manning’s n values range from 0.03 to 0.042 for the main channel and from 0.06 to 0.12 

for the floodplain with an agricultural land cover around the area.  

 

Figure 3.6 presents the Brazos River study area.  
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Figure 3.6 Brazos River Study Area 

 

3.3 Description of Flow Data 

For this study, 100-year return period flow data is used for hydraulic modeling (Federal 

Emergency Management Agency, 2003). The 100-year flow values for Tippecanoe River, 

Clear Creek, St. Joseph River and East Fork White River are obtained by modeling the 

annual peak flow values obtained from the time series data provided by the United States 

Geological Survey (USGS) gage stations.  
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These gage stations were located at the upstream end of the channel reach. Log Pearson 

Type III streamflow modeling approach is used to calculate flow values (Hydrology 

Subcommittee of U.S. Department of the Interior Geological Survey, 1982). The flow data 

for Brazos River is provided by the Fort Bend County and the flow data for Strouds Creek 

is provided by the North Carolina Floodplain Mapping Program (NCFMP).  

 
Table 3.1 presents the 100-year steady-state flow rates for all the study areas measured in 

cubic meters per second. 

 
Table 3.1 Description of flow data 

Study Area 100-year Flow value Station Reach Length 
  (cubic meters/second) (meter) (kilometer) 

Strouds Creek 103 6,513.1 6.5 
Tippecanoe River 366 10,357.2 10.4 
St. Joseph River 606 11,152.2 11.2 

East Fork White River 3,673 20,207.3 20.2 
Clear Creek 287 39,043.5 39.0 

Brazos River 3,061 59,940.9 59.9 
 

 
3.4 Description of LiDAR Data 

Topographic datasets generated using LiDAR data are used for all the study areas. A 6 m 

resolution LiDAR for Strouds Creek in North Carolina is provided by NCFMP. The 

LiDAR data for four sites viz. Tippecanoe River (3 m resolution), St. Joseph River (3 m 

resolution), East Fork White River (3 m resolution) and Clear Creek (1 m resolution) 

provided by the USGS Indiana Water Science Center. A 3 m horizontal resolution LiDAR 

is provided for the Brazos River by Fort Bend County in Texas.
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CHAPTER 4. METHODOLOGY 

4.1 Introduction 

In this chapter, a detailed methodology for calculating water surface elevations and creating 

flood inundation maps is presented for the six study areas. Hydraulic/hydrologic modeling 

using Geographic Information System (GIS) involves three steps: (1) pre-processing of 

data; (2) model execution; and (3) post-processing and visualization of results. Terrain pre-

processing for all the sites is carried out using the HEC-GeoRAS (Ackerman, 2009) 

extension within ArcGIS. Flow data are added to the HEC-RAS project files as a part of 

model execution and the data obtained through HEC-RAS is exported to ArcGIS for post-

processing to obtain flood maps (Merwade, 2012; Tate & Maidment, 1999). These 

processes are repeated for all study areas using different topographic datasets as inputs 

during terrain pre-processing.  

 

4.2 Description of 1-D HEC-RAS 

HEC-RAS is an open source hydraulic modeling software developed by the United States 

Army Corps of Engineers (USACE, 2010) and is used extensively for steady and 

unsteady flow modeling in river channels. River reaches generally do not behave as a 

single channel which is an assumption for 1-D hydraulic modeling in HEC-RAS. 
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However, during a 100-year flow condition, the main channel and the floodplain act as a    

single channel as there are no storage areas in the flood plain and the flow in the flood 

plain is parallel to that in the main channel (Jung & Merwade, 2011). Hydraulic 

simulations are carried out from one cross-section to the other while the water surface 

elevations are interpolated between the two cross sections to generate an entire surface. 

Equation 4.1 presents the energy equation used to compute the depth of water for one 

cross-section using the depth obtained for another cross-section 
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Where Y1 and Y2 are depths of water from two adjacent cross-sections, Z1 and Z2 are 

elevations of the channel invert measure from the datum, V1 and V2 are the average 

velocities, α1 and α2 are velocity weighting coefficients, g is the gravitational acceleration 

and he is the energy head loss.  

 

The conveyance from the main channel, right overbank and left overbank are calculated 

separately and then added to yield the total conveyance. Incremental conveyance values 

are obtained using Equation 4.2 
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Where Q is the total conveyance, n is the Manning’s roughness coefficient, R is the 

hydraulic radius, A is the flow area and Sf is the slope.  



32 
 

 

Computations in HEC-RAS require geometry data files, upstream flow data and boundary 

conditions as input. The geometry data files are exported from ArcGIS for this study and 

the boundary conditions are kept constant within a reach for all the topographic datasets. 

Wonkovich (2007) emphasized that cross-sections of equal width and similar spacing 

should be digitized across the channel to reduce the effects of sudden width changes. The 

cross-sections for all the study areas were digitized following this principle.  

 

4.3 Terrain Pre-processing Using ArcGIS 

This step is carried out to create the geometry files which are used as input in HEC-RAS 

where the hydraulic modeling takes place. Topographic datasets are used to extract 

elevations for river centerline, bank lines, flow paths, bridges and cross-sections. These 

features are digitized within ArcGIS using the HEC-GeoRAS extension.  

 

Cross-sections are cut across the entire reach to capture all inundated areas since modeling 

is carried out for 100-year flows and may result in water being predicted as inundated 

outside the floodplain. DEMs and aerial photographs of the study area are overlaid and 

used as spatial reference to create the river centerline, flow paths, banks, bridges and cross-

section layers. Two cross-sections are placed both upstream and downstream of bridges. In 

addition to these features, areas representing zero flow velocity called ineffective flow 

areas and regions with no flow and water called blocked obstructions are digitized using 

aerial photographs (Merwade, 2012).  
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Figure 3.7, Figure 3.8 and Figure 3.9 show the terrain pre-processing maps for all the study 

areas.  

 

 

Figure 3.7 Terrain Pre-Processing for Strouds Creek and Tippecanoe River 
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Figure 3.8 Terrain Pre-processing for St. Joseph River and East Fork White River 
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Figure 3.9 Terrain Pre-processing for Brazos River and Clear Creek 

 
After digitizing these features, Manning’s n values are assigned to the cross-sections. These 

values are extracted using land use data provided by NLCD. After this, different 

topographic datasets are used to extract elevations and the file is exported into HEC-RAS. 

A detailed description of the topographic datasets is presented in the next section.  
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4.4 Description of Topographic Datasets 

To understand the relationship between grid size and DEM errors with water surface 

elevations and flood extents, different topographic datasets are used to extract elevations 

using HEC-GeoRAS in ArcGIS. This leads to creation of geometry files with different 

elevations for river centerline, cross-sections, flow lines, bridges, ineffective flow areas 

and blocked obstructions. The methodology to establish the relationship between DEM 

resolution and hydraulic outputs is described in Section 4.3.1 and the relationship between 

DEM errors and hydraulic outputs is discussed in Section 4.3.2.  

 

4.4.1 Effect of DEM Resolution on Hydraulic Outputs 

The original LiDAR dataset is resampled into different grid sizes using the Data 

Management Toolbox in ArcGIS for all the study areas. Resampling is a technique of 

changing the proportions of a discrete raster into a continuous raster and subsequently 

interpolating it into a discrete raster of different grid size (Parker et al., 1983).  

 

Resampling datasets into larger grid sizes often leads to loss in quality and accuracy of the 

dataset. Resampling in ArcGIS can be done through three methods: (1) nearest neighbor; 

(2) bilinear; and (3) cubic. For this analysis, the nearest neighbor technique is used which 

assigns the new point a value equal to that of its nearest neighbor. This technique is useful 

since it does not change the original elevations of the existing points (Simon, 1975).  

For Strouds Creek, the original 6 m resolution LiDAR is resampled into different grid sizes 

of 9-, 12-, 15-, 18-, 21-, 24-, 27-, 30-, 33-, 36-, 48-, 60-, 70-, 80-, 90- and 100 m.  
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These DEMs are used to extract elevations into different layers using HEC-GeoRAS and 

then export these layers into HEC-RAS to create 17 geometry files including the original 

LiDAR. For Tippecanoe River, the original 3 m resolution LiDAR is resampled to generate 

DEMs of grid size 6-, 9-, 12-, 15-, 18-, 21-, 24-, 27-, 30-, 33-, 36-, 48-, 60-, 70-, 80-, 90- 

and 100 m thus creating 18 geometry files. Similarly, 18 geometry files are created for St. 

Joseph River, Brazos River and East Fork White River using the 3 m resolution LiDAR 

DEMs.  

 

4.4.2 Effect of DEM Error on Hydraulic Outputs 

Root Mean Squared Error (RMSE) is a widely used statistic for measuring the error 

between actual and estimated values. It is used to report a single global value of error in 

elevations for the entire DEM (Fisher & Tate, 2006). For this study, RMSE is used to 

evaluate the difference in accuracy between the original LiDAR data and its resampled 

DEMs. It should be noted that the cause of error in DEMs is not limited to resampling 

errors. However, this study aims to quantify the amount of error occurring in different 

DEMs and understand how these errors effect the overall estimation of hydraulic outputs.  

 

The RMSE is calculated as the square root of the sum of squares of elevation difference 

between the resampled DEM and the original LiDAR for each point divided by the total 

number of points (Z. Li, 1988). This analysis shows the variation of RMSE with grid size. 

The RMSE values are calculated using the following equation  
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Where Zil is the elevation value for the ith point extracted from a LiDAR DEM, Zir is the 

elevation value for the ith point extracted from a resampled DEM, n is the total number of 

points for which elevation values are extracted and RMSEr is the root mean squared error 

for a resampled DEM when compared to a LiDAR DEM. To analyze these DEMs, a point 

shape file is overlay on the base (LiDAR) dataset and elevation values are extracted to each 

point in the shape file using the base DEM. This process is carried out for the same points 

representing elevations corresponding to different resolution resampled datasets. 

 

 A Root Mean Squared Error (RMSE) comparison of DEMs is an appropriate way of error 

estimation. However, since RMSE results in only one value per DEM, it is essential to 

measure the spatial variability. This analysis involves adding these RMSE values to the 

original LiDAR DEM to understand the effect of adding errors to a DEM. This analysis is 

carried out because the DEMs contain errors due to other factors apart from resolutions. 

For Strouds Creek study area, random raster datasets containing errors are created using 

the RMSE values and added to the original raster using the Raster Calculator in ArcGIS. 

 

DEM accuracy measurements standards are provided in a document called “National 

Standards for Spatial Data Accuracy” (NSSDA) published by the US Federal Geographic 

Data Committee (FGDC, 1998). These guidelines state that the DEM errors follow a 

normal distribution. For an open terrain, a normal distribution of error is a fair assumption 

and the residual errors lie within 95 % confidence intervals (Flood, 2004).  
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Using these guidelines, past studies on estimating the accuracy of DEMs have assumed a 

normal distribution of errors (Aguilar et al., 2007), however, this assumption does not hold 

true for non-open terrain for which the error distribution not normal and the effect of 

outliers is significant (Aguilar et al., 2008). The random error datasets for this study are 

also created using normal distribution assumption with the mean of the distribution equal 

to the RMSE. The standard deviation (SD) for these raster datasets is calculated by 

selecting a set of points in the flood plain. The standard deviations in elevations 

corresponding to these set of points are used in creating the normal error datasets (Aguilar 

et al., 2005). 

 

The datasets are also resampled to 9-, 12-, 15-, 18-, 21-, 24-, 27-, 30-, 36-, 48-, 60- and 80 

m and added to the resampled DEMs. Thus the new DEMs are resampled and also contain 

errors. Using this approach, 12 variations of the original LiDAR datasets are obtained 

which contain normal errors equal to RMSE values obtained from all the resampled DEMs 

of Strouds Creek. After creation of all the topographic datasets and creation of geometry 

files, hydraulic modeling is carried out in HEC-RAS which is described in Section 4.4. 

 

4.5 Hydraulic Modeling using 1-D HEC-RAS 

Resampled DEMs including LiDAR resulted in 18 different geometry files for St. Joseph 

River, Tippecanoe River, East Fork White River and Brazos River while 17 geometry files 

were created for Strouds Creek. Thus a total of 89 geometry files were created to measure 

the effect of grid size on hydraulic outputs. Twelve additional geometry files were created 

to by adding normal errors for Strouds Creek.  
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Thus, a total of 101 hydraulic simulations were run for six study areas. The 100-year flow 

values were used as steady-flow input into HEC-RAS. All the other data including 

boundary conditions, ineffective flow areas, land use and blocked obstructions remain 

unchanged for all simulations within a reach. Since HEC-RAS permits the use of only 500 

points for a given cross-section, the number of points across every cross-section were 

filtered using the cross-section filter tool in HEC-RAS. The obtained water surface 

elevations were exported into ArcGIS for creating flood maps.  

 

4.6 Creation of Flood Maps 

The HEC-RAS output file is imported into ArcGIS using HEC-GeoRAS for creating flood 

inundation maps. The topographic datasets are subtracted from Triangular Irregular 

Networks (TIN) created using the water surface elevations resulting in a water depth raster. 

The areas with water depth less than zero are removed to obtain a flood depth map. The 

areas with water depth greater than zero are considered to be flooded (Merwade, 2012; 

Noman et al., 2001; Omer et al., 2003; Tate et al., 2002). The area of flood extent is 

calculated by converting the flood depth raster into a polygon shape file and adding the 

areas of all the polygons. The flood inundation area values are exported into Excel to 

analyze the effect of grid size and DEM errors.  
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CHAPTER 5. RESULTS 

5.1 Introduction 

The results from hydraulic modeling using HEC-RAS and flood inundation mapping using 

HEC-RAS outputs in ArcGIS are presented in this chapter. To establish a relationship 

between hydraulic outputs and grid size, average water surface elevations and flood 

inundation extents for all the study areas are presented. The average water surface 

elevations have been calculated as an average of all cross-section station across the entire 

channel.  

 

Inundation area refers to the total area predicted as inundated and is calculated by adding 

the total number of inundated cells and multiplying by the area of one cell. The percentage 

change in inundation area is presented using the original LiDAR DEM generated results as 

base values. These values are also presented for 12 topographic datasets containing errors 

for Strouds Creek to analyze the effect of DEM errors on average water surface elevations 

and inundation area.  

 

5.2 Effect of DEM Resolution on Hydraulic Outputs 

The first objective of this study is to determine a relationship between DEM resolution and 

flood inundation mapping. 
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This relationship can be applied to other coarser DEMs where LiDAR data is unavailable. 

The study areas are classified into two different groups based on the land use characteristics 

and size to account for different characteristics. Strouds Creek, Tippecanoe River and St. 

Joseph River are study areas with urban land use and small size. East Fork White River 

and Brazos River are large study areas with agricultural and forest land use. The water 

surface elevations, flood inundation area and percentage change in inundation area for all 

the topographic datasets are evaluated and compared with the grid sizes. For each study 

area, cross-sections along one station are presented for the original LiDAR and a 100 m 

resolution resampled DEM.  

 

5.2.1 Study Areas with Small Size and Urban Land Use 

Table 5.1 presents the average water surface elevations (WS El.), inundation area and 

percentage change in inundated area for DEMs of increasing grid size or decreasing 

resolution for the Strouds Creek study area.  
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Table 5.1 Hydraulic outputs for Strouds Creek 

Grid Size Avg. WS El. 
Inundation 

Area 
% change 

(meter) (meter) (km2)   

6 (LiDAR) 164.276 0.363 0.00 
9 164.343 0.372 2.42 
12 164.398 0.389 7.00 
15 164.543 0.393 8.19 
18 164.601 0.403 10.85 
21 164.743 0.421 15.76 
24 164.815 0.421 15.97 
27 164.943 0.447 23.00 
30 165.070 0.441 21.33 
33 165.194 0.481 32.35 
36 165.348 0.492 35.45 
48 165.786 0.523 43.84 
60 166.308 0.604 66.36 
70 166.669 0.613 68.86 
80 166.750 0.687 89.22 
90 167.290 0.703 93.52 

100 167.240 0.635 74.79 
 

The results of the table show that water surface elevations increase with increasing grid 

size. The LiDAR DEM has a water surface elevation of 164.2 m while the 100 m grid size 

DEM has a water surface elevation of 167.2 m thus a difference of about 3 m is observed. 

A similar trend occurred for inundation area with about 74.8 % rise in the inundated area 

from a LiDAR DEM to a 100 m resolution DEM. 

 

The results of hydraulic modeling and flood inundation mapping for Tippecanoe River 

study area are presented in Table 5.2.  
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Table 5.2 Hydraulic outputs for Tippecanoe River 

Grid Size Avg. WS El. 
Inundation 

Area 
% change 

(meter) (meter) (km2)   

3 (LiDAR) 210.902 2.937 0.00 
6 210.915 2.942 0.17 
9 210.935 2.957 0.68 
12 210.976 2.975 1.31 
15 210.986 2.997 2.05 
18 210.845 2.880 -1.95 
21 211.058 3.012 2.55 
24 211.073 3.051 3.88 
27 211.055 3.047 3.73 
30 211.065 3.031 3.20 
33 211.171 3.100 5.56 
36 211.335 3.242 10.39 
48 211.310 3.243 10.40 
60 211.396 3.343 13.82 
70 211.652 3.562 21.28 
80 211.753 3.795 29.20 
90 212.042 4.261 45.08 

100 212.029 4.189 42.63 
 

The water surface elevations increase with grid size for Tippecanoe River as well. The 

original 3 m LiDAR DEM predicts a water surface elevation of 210.9 m while the 100 m 

resolution DEM has a water surface elevation of 212.0 m with difference of about 1.1 m. 

The percentage change in inundation area is not significant up to a resolution of about 33 

m but a change in inundation area of about 42.63 % occurs for a 100 m resolution DEM. 

 

Table 5.3 presents the average water surface elevations, inundation area and percent 

inundated for the St. Joseph River study area. 
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Table 5.3 Hydraulic outputs for St. Joseph River 

Grid Size Avg. WS El. 
Inundation 

Area 
% change 

(meter) (meter) (km2)   

3 (LiDAR) 221.275 3.156 0.00 
6 221.316 3.198 1.34 
9 221.329 3.206 1.61 
12 221.470 3.298 4.50 
15 221.408 3.263 3.39 
18 221.434 3.297 4.48 
21 221.457 3.331 5.55 
24 221.506 3.391 7.46 
27 221.561 3.392 7.48 
30 221.545 3.397 7.65 
33 221.589 3.489 10.56 
36 221.568 3.384 7.23 
48 221.761 3.640 15.35 
60 221.893 3.698 17.18 
70 221.973 3.805 20.59 
80 222.211 3.950 25.16 
90 221.927 3.739 18.47 

100 222.017 3.851 22.04 
 

The results from hydraulic modeling for St. Joseph River show that there is difference of 

0.75 m between the water surface elevations generated from LiDAR and 100 m DEM. The 

percentage change in the inundated area between LiDAR and 100 m DEM is 22.04 % 

which is smaller than the percentage change observed form Strouds Creek and Tippecanoe 

River. This is because St. Joseph River has deeper and wider cross-sections thus the 

majority of the water is conveyed through the channel itself and only some of it passes 

through the flood plain. 
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Figure 5.1, Figure 5.2 and Figure 5.3 shows the cross-sections for LiDAR DEM versus the 

100 m DEM across one station for Strouds Creek, Tippecanoe River and St. Joseph River. 

  

Figure 5.1 Cross-section station 6152.8 across Strouds Creek for (a) LiDAR; (b) 

resampled 100 m DEM 

 

  

Figure 5.2 Cross-section station 269.5 across Tippecanoe River for (a) LiDAR; (b) 

resampled 100 m DEM 
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Figure 5.3 Cross-section station 4736.0 across St. Joseph River for (a) LiDAR; and (b) 

resampled 100 m DEM 

 

The cross-section comparison for the three areas show the effect of DEM resampling as 

significant amount of the topographic features are lost after resampling a LiDAR DEM to 

a 100 m grid size DEM because of river channel smoothing. The 100 m resampled DEMs 

do not represent the channel cross-sections accurately due to DEM smoothing. The effect 

of DEM resampling is more pronounced for Strouds Creek which is the smallest study area. 

This highlights the importance of DEM resolution for smaller study areas. The overall 

channel bed elevation also increases when the resolution of DEM is reduced. This is also 

one reason for the increase in water surface elevations when the grid size of the DEMs is 

increased.  

 

Figure 5.4, Figure 5.5 and Figure 5.6 show the relationship between average water surface 

elevations and inundation area with grid size for Strouds Creek, Tippecanoe River and St. 

Joseph River.  
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Figure 5.4 Grid size versus (a) avg. WS El.; and (b) inundated area for Strouds Creek 

 

  

Figure 5.5 Grid size versus (a) avg. WS El.; and (b) inundated area for Tippecanoe River 
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Figure 5.6 Grid size versus (a) avg. WS El.; and (b) inundated area for St. Joseph River 

 

The results clearly show that both average water surface elevations and inundation area 

have a linear relationship with grid size for all three study areas. The predicted linear 

equations between average water surface elevations and grid size have an R2 greater than 

90 % for the three study areas. The inundated area is also related to grid size with a linear 

equation with R2 greater than 90 % for the three reaches. The high R2 values suggest a very 

good linear fit between hydraulic outputs and DEM resolution.   

 

There were some anomalies in the water surface elevations and predicted areas for the 90 

m resolution DEM for St. Joseph River. This could be due to the presence of certain areas 

for which more than one cell was inundated for a 90 m DEM while only one cell was 

inundated for a 100 m DEM because of a slight change in elevation during resampling. 
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Figure 5.7, Figure 5.8 and Figure 5.9 present the comparison between flood inundation 

maps for Strouds Creek, Tippecanoe River and St. Joseph River created using (a) original 

LiDAR; (b) 30 m resampled DEM; (c) 60 m resampled DEM; and (d) 100 m resampled 

DEM. 

 

 

Figure 5.7 Flood maps generated from different resolution DEMs for Strouds Creek 
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Figure 5.8 Flood maps generated from different resolution DEMs for Tippecanoe River 
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Figure 5.9 Flood maps generated from different resolution DEMs for St. Joseph River 

 

The quality of flood maps decreases as the resolution is reduced for the three study areas 

which is apparent from the figures. A 100 m resolution DEM has a single elevation value 

for a 10000 m2 area. For a small reach like Strouds Creek, a 100 m resolution DEM results 

in loss of river attributes as shown by the flood maps. The inundated area increases as even 

a little inundation in a cell causes an increase of 10000 m2 in the predicted area which 

causes a significant difference for smaller study areas.  
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The flood maps generated using DEMs of different resolutions clearly show that for a small 

study area like Strouds Creek, a higher resolution DEM best represents the terrain and 

predicts more precise flood maps. The 100 m DEM flood maps is just a scattered set of 

cells showing inundation while the LiDAR represents the extent of flooding across the river 

channel and the floodplain in the best manner.  

 

There is no significant variation between the flood maps generated from LiDAR and 30 m 

resolution DEMs for Tippecanoe River and St. Joseph River. The 60 m and 100 m 

resolution DEMs predict inundated areas which are not predicted as inundated using the 

LiDAR and 30 m DEM. The flood maps obtained from a 100 m DEM do not give an 

appropriate description of river and flood plain morphology.  

 

5.2.2 Study Areas with Large Size and Agricultural Land Use 

East Fork White River and Brazos River are comparatively bigger reaches with wider and 

deeper channels as compared to Strouds Creek, Tippecanoe River and St. Joseph River. 

Both these reaches have an agricultural land use with flat flood plains. Brazos River is 

characterized by presence of levees for downstream end of the study area while East Fork 

White River has large trees and vegetation around the main channel which act as natural 

levees.  

 

Table 5.4 presents the hydraulic outputs versus grid size for East Fork White River.  
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Table 5.4 Hydraulic outputs for East Fork White River 

Grid Size Avg. WS El. 
Inundation 

Area 
% change 

(meter) (meter) (km2)   

3 (LiDAR) 155.062 18.393 0.00 
6 155.082 18.418 0.14 
9 155.084 18.419 0.14 
12 155.107 18.433 0.22 
15 155.107 18.428 0.19 
18 155.121 18.475 0.44 
21 155.134 18.459 0.36 
24 155.158 18.489 0.52 
27 155.176 18.480 0.47 
30 155.199 18.544 0.82 
33 155.223 18.566 0.94 
36 155.244 18.546 0.83 
48 155.350 18.650 1.40 
60 155.437 18.805 2.24 
70 155.583 18.989 3.24 
80 155.654 18.766 2.03 
90 155.822 18.934 2.94 

100 155.840 18.979 3.18 
 

The results show that there is a 0.8 m variation in predicted average water surface 

elevations from LiDAR and 100 m DEM. The change in inundated area is about 3.18 % 

which is the smallest change between all the study areas. There are no significant changes 

in predicted inundation areas for DEMs up to 36 m grid size. This is due to the presence of 

trees around the river banks which stop the inundation from reaching the floodplain and as 

a result, most of the flow is routed through the main channel. Table 5.5 presents the 

hydraulic outputs versus grid size for Brazos River.  

 
 



55 
 

 

Table 5.5 Hydraulic outputs for Brazos River 

Grid Size Avg. WS El. 
Inundation 

Area 
% change 

(meter) (meter) (km2)   

3 (LiDAR) 22.727 162.290 0.00 
6 22.726 162.304 0.01 
9 22.747 164.349 1.27 
12 22.749 164.436 1.32 
15 22.771 166.159 2.38 
18 22.779 166.942 2.87 
21 22.791 169.248 4.29 
24 22.808 169.304 4.32 
27 22.824 170.628 5.14 
30 22.832 172.388 6.22 
33 22.841 174.112 7.28 
36 22.905 177.916 9.63 
48 22.922 177.580 9.42 
60 22.983 181.818 12.03 
70 23.018 184.665 13.79 
80 23.116 188.506 16.15 
90 23.066 190.101 17.14 

100 23.201 191.924 18.26 
 

The results for Brazos River show that water surface elevations do not change significantly 

with grid size for Brazos River with a difference of only 0.5 m between results obtained 

from LiDAR and 100 m DEM. This is due to the relatively flat floodplain for Brazos River. 

Since the river channel is not too deep, most of the water flows through the floodplain 

resulting in larger flood extents and less variation in water surface elevations. The 

inundation area however, increases significantly on increasing grid size with a change of 

18.26 % between the predicted inundation values between LiDAR and the 100 m DEM. 
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Figure 5.10 and Figure 5.11 show the comparison between LiDAR and 100 m DEM for 

one cross-sections station across East Fork White River and Brazos River. 

 

 

Figure 5.10 Cross-section Station 19206.5 across East Fork White River for (a) LiDAR; 

(b) resampled 100m DEM 

  

Figure 5.11 Cross-section station 33160.7 across Brazos River for (a) LiDAR; and (b) 

resampled 100 m DEM 

 

The study area for East Fork White River has natural levees around it which results in less 

variation in the extent of inundation. The main channel is deeper and smoother than the 

other reaches and thus the effect of resampling is not significant for the main channel.  
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Since the floodplain is characterized by presence of trees, the overall difference in 

predicted water surface elevations is also less between the LiDAR and 100 m DEM.  

 

The width of the cross-sections for Brazos River is about 7.6 km and there is a significant 

smoothing effect of the old stream beds and ridges for such a large reach. Figure 5.11 shows 

that three small channel regions which were present in the LiDAR cross-section are 

converted into a single channel for a 100 m DEM. However, the overall profile of the cross-

section does not change much because even for a 100 m DEM, the width of the cross-

section is much more than the horizontal resolution, the channel terrain is represented fairly 

even with a 100 m DEM. 

 

Figure 5.12 and Figure 5.13 shows the relationship between grid size and hydraulic outputs 

for East Fork White River and Brazos River. 

 

 

Figure 5.12 Grid size versus (a) avg. WS El.; and (b) inundated area for White River  
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Figure 5.13 Grid size versus (a) avg. WS El.; and (b) inundated area for Brazos River 

 

There is a linear relationship between average water surface elevations and grid size even 

for larger study areas such as East Fork White River and Brazos River as shown by high 

R2 values greater than 95 %. The inundation area is also linearly related with grid size with 

R2 greater than 90 %. The variations in land use types also does not affect the linear 

relationship significantly suggested by the fact that this relationship is true for Strouds 

Creek and St. Joseph River study areas which have an urban land use and East Fork White 

River and Brazos river which have a relatively flat and agricultural floodplain.  

 

Figure 5.14 presents a comparison of flood maps generated using (a) LiDAR; (b) 30 m; (c) 

60 m; and (d) 100 m DEMs for a part of East Fork White River. 
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Figure 5.14 Flood maps generated from different resolution DEMs for White River 

 

The predicted inundation extents for East Fork White River do not change significantly. 

This is also due to presence of trees around the main channel and existence of deeper 

channels which route most of the flow thus producing flood maps representing the 

inundated areas fairly well even for larger DEMs. 

 

Figure 5.15 presents a comparison of flood maps generated using (a) LiDAR; (b) 30 m; (c) 

60 m; and (d) 100 m DEMs for a part of Brazos River. 
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Figure 5.15 Flood maps generated from different resolution DEMs for Brazos River 

 

The comparisons for Brazos River show less significant changes in the overall quality of 

the flood maps and extents on using coarser resolutions DEMs. The main channel and flood 

plain morphology is also not effected significantly. However, there is a difference of about 

30 km2 in the inundation areas obtained from the LiDAR and a 100 m DEM which is an 

over-estimation even though the percentage change in inundated area is not large.  
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5.3 Effect of DEM Error on Hydraulic Outputs 

5.3.1 RMSE of Elevations versus Grid Size 

To measure the amount of error present in the resampled DEMs with respect to the original 

LiDAR DEMs, RMSE for different grid sizes of DEMs is presented below. This estimation 

has been carried out for Tippecanoe River, St. Joseph River and Strouds Creek because of 

the urban land use and terrain with high slope. The results for RMSE versus grid size are 

shown in Table 5.6.  

 
Table 5.6 RMSE versus grid size 

  Strouds Creek Tippecanoe River St. Joseph River 
Grid Size RMSE  RMSE RMSE 

(m) (m) (m) (m) 
        
6  0.166 0.145 
9 0.348 0.190 0.167 
12 0.424 0.262 0.230 
15 0.467 0.294 0.261 
18 0.489 0.350 0.306 
21 0.608 0.385 0.338 
24 0.692 0.437 0.380 
27 0.749 0.462 0.404 
30 0.798   0.440 
36 0.961     
48 1.211     
60 1.481     
80 1.879     

 

The results show that RMSE values for the three study areas show that RMSE values are 

directly related to the shape and slope of the valley since Strouds Creek had the largest 

RMSE and the highest slope.  
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The size of the study area also affected the RMSE values since it is directly related to the 

number of points chosen for analysis in the flood plain as the RMSE values were calculated 

for the entire topographic dataset. The number of points for which RMSE values were 

calculated were 160,238 for Strouds Creek, 1,865,634 for Tippecanoe River and 5,044,902 

for St. Joseph River. The magnitude of RMSE decreases when the number of points are 

increased.  

 

The RMSE for the 9 m DEM was reported as 0.347 m for Strouds Creek, 0.19 m for 

Tippecanoe River and 0.167 m for St. Joseph River. These values clearly show that the 

global RMSE values decrease on increasing the size of the topographic dataset. This can 

be explained because the maximum error in elevations for DEMs occurs in measuring the 

river main channel elevations. The percentage area of the river in the DEM for Strouds 

Creek is higher than Tippecanoe River and St. Joseph River hence the RMSE is also high.  

 

Figure 5.16 shows the relationship between RMSE and grid size for St. Joseph River, 

Tippecanoe River and Strouds Creek. 
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Figure 5.16 RMSE versus grid size for (a) St. Joseph River; (b) Tippecanoe River; and 

(c) Strouds Creek 

 

The graphs clearly show the linear relationship of RMSE with grid size for both St. Joseph 

River and Tippecanoe River with high R2 values of 0.99. The slope and intercept of the 

curve are higher for Tippecanoe River which suggests that the rise in RMSE is higher for 

a smaller topographic dataset. The graphs also suggest that the amount of error increases 

linearly on increasing the grid size. This means that the accuracy of a DEM decreases on 

decreasing the resolution.  
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This graph for Strouds Creek shows that DEM resolution has a significant effect on the 

amount of error in a DEM. The RMSE for a 9 m DEM was 0.34 m as compared to 2.01 m 

for an 80 m DEM. This suggests that DEM errors can have a significant impact on 

hydraulic predictions for a small study area due to decrease in accuracy of predicted 

elevations.  

 

5.3.2 Effect of Error Introduction in DEMs on Hydraulic Outputs 

To test the relationship between hydraulic outputs and DEM accuracy, 12 topographic 

datasets were created for Strouds Creek for which errors following a normal distribution 

were added. The results obtained from the hydraulic analysis for Strouds Creek using 

topographic datasets containing errors are presented in Table 5.7.  

 

Table 5.7 Hydraulic outputs for DEMs with error (Strouds Creek) 

Grid Size Avg. WS El. Inundation Area % change 

(meter) (meter) (km2)   

6 164.276 0.363 0.00 
9 164.587 0.351 -3.35 
12 164.694 0.340 -6.50 
15 164.796 0.369 1.64 
18 165.020 0.353 -2.89 
21 165.028 0.355 -2.16 
24 165.202 0.378 4.16 
27 165.631 0.434 19.59 
30 165.070 0.429 18.11 
36 166.269 0.485 33.43 
48 166.877 0.567 55.96 
60 167.232 0.611 68.31 

80 168.164 0.773 112.70 
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The results from the hydraulic analysis show that existence of errors has a significant 

impact on the predicted hydraulic outputs. There is an increase in average water surface 

elevations obtained from the LiDAR and 100m DEM with error of about 3.6 m which is 

very large for a small reach such as Strouds Creek. The predicted inundation area has a less 

significant impact due to addition of errors for resolutions up to 24 m. However, the 

predicted area on using the LiDAR is 0.36 km2 while this value increases to up to 0.77 km2 

for a 100 m DEM which is an increase of about 112.7 %. The percentage change in 

inundated area is observed to be negative for four DEMs. This is due to the spatial 

variability occurring in DEMs of smaller grid sizes on addition of errors that follow a 

normal distribution. 

 

Since these errors are random in nature, the additions can cause significant changes for 

cells with smaller size thus creating a large number of small spikes in the channel 

representation. These small spikes can cause the depth of main channel to increase leading 

to an overall decrease in the inundation extent. However, the variations in the predicted 

inundation areas are very small for DEMs with smaller cell sizes.  

 

Figure 5.17 shows the relationship between average water surface elevations and 

inundation area obtained from DEMs containing errors with grid size for Strouds Creek. 

Figure 5.17 also presents a comparison with the results obtained from only resampled 

DEMs which were presented in Section 5.2.1 for Strouds Creek.  
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Figure 5.17 Grid size versus (a) avg. WS El.; and (b) inundated area for Strouds Creek 

 

The graphs show that a linear relationship exists between water surface elevations and grid 

size even after addition of errors. The increase in the water surface elevations with grid 

size is higher for DEMs with errors with a higher slope and intercept values for the curve 

with errors. The inundation area for the original LiDAR DEM is 0.36 km2 and for the 100 

m resampled DEM is 0.635 km2. The inundation area for a 100 m DEM containing error 

is 0.772 km2 which suggest that an increase of 0.137 km2 of inundated area takes place due 

to the addition of errors which shows that the errors have a significant role in determining 

the precision of flood maps.  

 

The addition of errors to resampled DEMs with smaller grid sizes initially leads to a 

decrease in predicted inundation area. This is due to the small cell size for higher resolution 

DEMs.  
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Even though the mean of the errors added to these DEMs is small, the small grid size 

accounts to a larger spatial variability between the cells thus reducing the inundation extent. 

But for larger grid sizes, the amount of error is very high and results in high estimation of 

water surface elevations and inundation extents.  

 

Figure 5.18 shows the cross-sections for station 6512.8 obtained from topographic datasets 

of different resolution and magnitude of errors.  

 

 

 

Figure 5.18 Cross-section station 6512.8 for (a) LiDAR; (b) 12 m DEM with error;  

(c) 30 m DEM with error; and (d) 80 m DEM with error 
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From Figure 5.18, it is evident that there is a significant loss in the river profile due to the 

existence of DEM errors. The errors added to the original LiDAR DEM follow a normal 

distribution, which can be seen from the fact that the 12 m, 30 m and 80 m DEMs have 

substantial changes in the elevations across the entire cross-section. These spikes are the 

main cause of increase in the flood inundation area. The cross-section obtained from the 

100 m DEM completely misrepresents the main channel and the floodplain. This is due to 

the existence of errors with a high magnitude and standard deviation throughout the entire 

topography. Figure 5.19 shows a part of the flood maps for Strouds Creek developed from 

DEMs with different magnitude of error and resolution.  

 

 

Figure 5.19 Flood maps generated from (a) LiDAR; (b) 12 DEM with error;  

(c) 30 m DEM with error; and (d) 80 m DEM with error 
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The flood maps show that addition of errors results in an increase in flood extents. The 

original LiDAR DEM is inundated mostly around the main channel while the 100 m 

resolution DEM with error predicts inundation for a larger area in the floodplain. The 

magnitude of error added to the 100 m resolution DEM results in large variations in 

elevations which show higher depth of inundation for some parts of the river channel while 

no inundation for certain parts of the main channel itself. 

 

5.4 Summary of Results 

To analyze the effect of DEM resolution on hydraulic outputs, LiDAR data for five study 

areas is resampled to coarser resolutions varying from 6 m to 100 m. The average water 

surface elevations and inundation area for all the sites have a linear relationship with grid 

size (R2 > 90 %). The variation in hydraulic outputs with DEM resolution is more 

significant for study areas with urban land use. The impact of DEM resolution on hydraulic 

outputs is more significant for smaller river reaches.  

 

Resampling of higher resolution DEMs to coarser resolutions results in smoothing of 

floodplain and decreases the accuracy of predicted hydraulic outputs. The presence of 

artificial and natural levees reduces the impact of DEM resolution on inundation area 

significantly as observed for East Fork White River. The impact of DEM resolution is also 

influenced by the slope of the river channel and spatial variability in elevations which is 

observed for Strouds Creek.  The predicted flood extents for Brazos River do not increase 

significantly because of the relatively flat terrain and large size of the study area.  

 



70 
 

 

In order to evaluate the relationship between DEM accuracy and hydraulic outputs, RMSE 

values are calculated for three study areas. The results show that DEM error increases 

linearly with grid size (R2 > 90 %). DEMs containing errors are generated for Strouds 

Creek to analyze the effect of DEM error on hydraulic outputs. The hydraulic outputs are 

highly influenced by the existence of errors. The predicted average water surface elevations 

and inundation areas increase linearly with DEM errors. The flood maps generated using 

the datasets containing errors have significant differences when compared to LiDAR 

results.  

 

These results explain the poor performance of coarser DEMs such as USGS NED 30 m 

and SRTM when compared to LiDAR data. The hydraulic modeling results for these 

datasets are affected by their coarse resolution and existence of DEM errors. Thus DEM 

resolution and DEM errors are the main cause of differences in the accuracy of prediction 

of hydraulic outputs. In order to improve the performance of coarser DEMs containing 

errors, it is essential to use the relationships obtained in this study and apply them to these 

topographic datasets. Chapter 6 discusses the application of the obtained relationships to 

coarser DEMs with errors to improve the hydraulic modeling results for study areas where 

LiDAR data are not available.  
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CHAPTER 6. DISCUSSIONS 

6.1 Introduction 

In order to understand the effect of two key attributes of a DEM (resolution and accuracy), 

the concept of resampling and DEM error was used for hydraulic modeling. The results 

from hydraulic analysis show that the water surface elevation and flood inundation area 

have a linear relationship with grid size and DEM error. This relationship is well 

established after analysis of five study areas with different reach lengths and land use types. 

On plotting WS El. and inundation area versus grid size, high R2 values (greater than 90%) 

are obtained for all study areas. This suggests that the coarser resolution DEMs over-

predict the water surface elevations and inundation area. This approach also suggests that 

DEMs with larger grid sizes do not take into account the smaller depressions or elevations 

that occur within a study area.  

 
The second objective of this study is to use the linear relationship of DEM resolution and 

accuracy with hydraulic outputs to improve the results of hydraulic modeling for areas 

where LiDAR data is unavailable. These linear relationships were determined for LiDAR 

data by resampling and introduction of errors. If these linear relationships hold true for 

LiDAR generated DEMs, they can be applied to coarser resolution DEMs obtained from 

other sources with lesser accuracy such as USGS NED 30 m and SRTM 90 m DEMs to 

improve the hydraulic modeling results.
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This chapter discusses the application of these relationships to other coarser DEMs. Since 

the objective is to improve the hydraulic modeling results for these DEMs, the accuracy of 

the analysis is defined relative to the original LiDAR DEMs for all the study areas. The 

aim of this analysis is to get similar modeling results as LiDAR data from coarser DEMs 

with more errors.  

 
6.2 Development of New Analysis Approach 

The quality of a DEM in predicting water surface elevations and flood inundation area can 

be defined by its resolution and magnitude of errors (DEM accuracy). These hydraulic 

outputs have been calculated for original LiDAR data with high resolution and accuracy 

for all study areas. For this study, the objective is to obtain similar water surface elevations 

and flood inundation area from coarser DEMs. The results obtained from DEM resampling 

and error analysis from LiDAR data are analyzed and used to develop a new approach to 

predict water surface elevations and flood extents using coarser DEMs. Using resampled 

coarser resolution DEMs obtained from LiDAR data and the linear relationship, hydraulic 

outputs are predicted for higher resolution DEMs. Similarly, the principle of linear 

propagation of DEM errors with grid size is used to predict improved hydraulic outputs 

from DEMs containing higher magnitude of errors.  

 

Based on this principle, if water surface elevations obtained from only coarser resampled 

DEMs (30 m-80 m resolution) are used to develop the linear relationship with grid size, 

the R2 values obtained are still significantly high (greater than 90%).  
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The linear relationship obtained by WS El. of coarser resolutions DEMs is used to predict 

the WS El. for higher resolution DEMs. This linear relationship with a positive slope 

suggests that increasing grid size values over-predict the water surface elevations when 

compared to the results obtained from high resolution LiDAR. An increasing slope also 

suggests that the equation of the line obtained by using only higher grid size values can be 

used to predict WS El. for smaller grid sizes. This relationship can be obtained for coarser 

resolution DEMs containing errors and used to predict water surface elevations for higher 

resolution DEMs containing less significant or no errors.  

 

Thus, a new approach to predict hydraulic outputs for higher resolution datasets using the 

results from coarser resolution datasets is developed. A similar approach is developed to 

predict hydraulic outputs for higher accuracy datasets using lower accuracy datasets. This 

approach is applied to coarser resolution DEMs obtained from LiDAR data resampling and 

to DEMs containing errors also obtained from LiDAR data using the principle of normal 

error distribution. Section 6.3 presents a detailed testing, analysis and application of the 

new approach for LiDAR data. Once this approach is validated for LiDAR data, it is 

applied to USGS NED 30 m and SRTM 90 m DEMs so that the hydraulic modeling results 

obtained from these datasets can be improved relative to the LiDAR data.  

 

6.3 Testing and Application of the New Approach 

The analysis is carried out to check if results similar to LiDAR DEMs with high resolution 

and accuracy can be obtained from coarser resolution and lesser accuracy DEMs. The 

predicted results are compared to the original LiDAR DEMs which are the base scenarios.  



74 
 

 

The new approach is applied to the Clear Creek to check the suggested hypothesis. For this 

study area, the original LiDAR DEM is resampled to grid sizes of 30-, 48-, 70-, and 80 m 

and the methodology described in Chapter 4 is followed to obtain water surface elevations. 

The results for Clear Creek are presented in Table 6.1.  

 
Table 6.1 Hydraulic outputs for Clear Creek 

Grid Size Avg. WS El. Inundation Area % change 

(meter) (meter) (km2)   

1 213.508 17.470 0.00 
30 213.948 19.019 8.87 
48 214.307 19.958 14.24 

70 214.999 21.278 21.80 

80 214.983 21.343 22.17 
 

The average WS El. and inundation area obtained using the 30-, 48-, 70-, and 80 m DEMs 

are used to obtain a relationship and predict the average WS El. and inundated area for the 

original LiDAR. Figure 6.1 shows the equation for Clear Creek which is used to predict 

the average WS El. and inundated area for the original LiDAR DEM.  

 

 

Figure 6.1 Grid size versus (a) avg. WS El.; and (b) inundated area 

213.288
(LiDAR)

y = 0.0227x + 213.27
R² = 0.9594

213.0

213.5

214.0

214.5

215.0

215.5

0 10 20 30 40 50 60 70 80

W
S 
El
. (
m
)

Grid Size (m)

Avg. WS El. (m)

17.638
(LiDAR)

y = 0.0493x + 17.588
R² = 0.9747

16.5

17.5

18.5

19.5

20.5

21.5

22.5

0 10 20 30 40 50 60 70 80

In
u
n
d
at
io
n
 A
re
a 
(k
m

2
)

Grid Size (m)

Inundation Area (km2)



75 
 

 

The predicted average WS El. and inundation area are compared to the hydraulic outputs 

obtained from the original LiDAR DEM for Clear Creek and the results are presented in 

Table 6.2 

 

Table 6.2 Comparison between observed and predicted results for Clear Creek 

Data Grid Size LiDAR Predicted % error
  (meter) (base) (new approach) (<1%) 

Avg. WS El. (m) 1 213.508 213.288 0.103 

Inundation Area (km2) 1 17.470 17.638 -0.960 

 

The results suggest that it is possible to apply the new approach to predict the average WS 

El. and inundated area for original LiDAR DEMs using resampled coarser resolution 

DEMs. The practical applicability of this approach is however less significant in predicting 

flood maps if only the average WS El. and inundation areas are predicted.  

 

6.3.1 Prediction of Water Surface Elevations 

In order to predict better flood maps from coarser resolution DEMs, more accurate 

prediction of WS El. across all cross-section stations is required and not just the average 

water surface elevations. The results do suggest that decreasing the resolution of DEMs 

results in over-prediction of hydraulic outputs and the effect of the errors that occur during 

resampling can be minimized by using the suggested technique. This approach was further 

tested for the entire cross-sections instead of comparing only the average WS El. for five 

study areas. 
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To predict WS El. for every cross-section station, a linear regression model was developed 

with river station and grid size as input parameters and water surface elevations as output. 

Using linear regression, water surface elevations corresponding to original LiDAR DEM 

grid size for every station across a reach were predicted using results obtained from coarser 

resolution DEMs. However, using linear regression across an entire reach resulted in the 

prediction of a linear water surface profile which is not true for most of the study areas. To 

obtain the true water surface profile for a reach, the WS El. corresponding to resampled 

30-, 48-, 60-, 70- and 80 m grid sizes for each cross-section station within a reach were 

analyzed.  

 

The results suggested that a linear relationship existed between WS El. and grid size for 

most of the cross-section stations and not just the average WS El. for the entire reach with 

only a few outliers. The slope and intercept of the line between WS El. and grid size 

obtained from coarser resolution DEMs were calculated separately for each cross-section 

station. These parameters were used to predict the WS El. for the original LiDAR DEM. 

Table 6.3 illustrates the data and parameters used to obtain WS El. for 6 out of 86 cross-

section stations for Clear Creek.  
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Table 6.3 Prediction of WS El. for LiDAR using coarser resolution data 

Clear Creek* Cross-section Station  
Grid Size 35738.2 35011.6 17206.2 17191.6 4881.2 174.6 

30 228.72 228.95 215.44 215.59 203.16 198.05
48 229.23 229.67 215.53 216.06 204.05 198.90
60 229.21 229.69 216.01 216.44 204.32 198.89
70 229.49 229.66 216.53 216.87 204.92 199.21
80 229.30 229.71 216.68 217.16 205.22 198.85
              

Slope 0.012 0.014 0.028 0.032 0.041 0.017 
Intercept 228.47 228.75 214.45 214.58 201.97 197.79

R2 0.72 0.66 0.91 0.99 0.99 0.60 
LiDAR (base) 228.30 228.68 214.74 214.91 203.16 198.75

Predicted (new) 228.49 228.76 214.48 214.61 202.01 197.80
                                                           * All WS El. are in meter 

 

The slope and the intercept are obtained for all cross-section stations and WS El. are 

predicted for each cross-section station for the original LiDAR DEMs. The predicted WS 

El. versus original LiDAR (base) WS El. for all cross-section stations are presented for 

Brazos River, Clear Creek, East Fork White River, St. Joseph River, Tippecanoe River and 

Strouds Creek in Figure 6.2. The LiDAR (base) WS El. are plotted on the x-axis and the 

predicted WS El. are plotted on the y-axis. A comparison between the two is presented 

along the straight line Y=X.  
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Figure 6.2 Predicted WS El. versus original LiDAR (base) WS El. along the line Y=X  
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The graphs show that the predicted WS El. for Brazos River, Clear Creek, East Fork White 

River and Strouds Creek match very well with the original LiDAR results. The 

comparisons between predicted and LiDAR (base) WS El. for St. Joseph River show that 

the predicted WS El. are under-predicted for some cross-section stations. The predicted 

WS El. for Tippecanoe River for some cross-section stations do not match well with the 

LiDAR results but the overall variation in the LiDAR and predicted data is not significant.  

 

The results show that it is possible to use this approach to accurately predict water surface 

elevations for original LiDAR datasets using hydraulic outputs generated from coarser 

resolution datasets. This suggests that if the new approach is applied to DEMs for regions 

where LiDAR data is unavailable, the results of hydraulic modeling can be improved 

significantly. For these regions, coarser resolution DEMs can be resampled to obtain the 

linear relationship which can be used to predict water surface elevations. The results would 

be improved estimates of water surface elevations as the values would be closer to the high 

resolution LiDAR results. 

 

To estimate the accuracy of the predicted data, RMSE of water surface elevations is 

calculated using the LiDAR outputs as base values and the WS El. generated using 

resampled coarser resolution datasets as predicted data. The RMSE values for each study 

area are presented in Table 6.4. 
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Table 6.4 RMSE between observed and predicted WS El. for six study areas 

Study Area Reach Length RMSE Datasets Used Avg. Slope
  (km) (m) (grid size in m)   

Brazos River 59.9 0.08 30, 36, 48, 60, 80 0.00009 
Clear Creek 39.0 0.66 30, 48, 60, 70, 80 0.00079 

East Fork White River 20.2 0.10 30, 36, 48, 60 0.00001 
St. Joseph River 11.1 0.55 30, 48, 70, 80 0.00018 

Tippecanoe River 10.4 0.26 30, 36, 60, 70 0.00025 

Strouds Creek 6.5 0.75 30, 48, 60, 80 0.00562 
 

The RMSE values suggest this approach performs significantly well for Brazos River and 

East Fork White River. Both these study areas are characterized by relatively flat terrain as 

shown by the average slope values. The magnitude of the RMSE for all study areas is 

directly affected by the variation in the WS El. across the entire reach and the reach length. 

Strouds Creek being a small reach but with a high average slope has the highest RMSE 

followed by Clear Creek. The overall results suggest that this approach predicts 

significantly accurate water surface elevations when compared to LiDAR data for all cross-

section stations.  

 

In order to check if a similar water surface profile is obtained from the predicted WS El., 

Figure 6.3 presents the water surface profiles for original LiDAR (base) WS El. and 

predicted WS El. for Brazos River, Clear Creek and East Fork White River. The water 

surface profile is presented relative to the minimum channel elevation (Min. Ch. El.). 
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Figure 6.3 Water surface profiles for (a) Brazos River; (b) Clear Creek; (c) East Fork 

White River 
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The difference between a high resolution LiDAR DEM and a DEM obtained from any 

other data source such USGS NED 30 m and SRTM is the resolution of the dataset and the 

amount of elevation error in measurements. If the effect of resolution and error on hydraulic 

outputs is reduced, then the results obtained from these coarser DEMs can be significantly 

improved. The application of the new approach on coarser DEMs has provided improved 

estimates on hydraulic outputs and the impact of DEM resolution has been reduced. 

 

The next step involves testing the applicability of this approach to improve the predicted 

water surface elevations obtained from DEMs containing error. In order to test this, the 

linear relationship technique was applied to DEMs containing random errors with a normal 

distribution. These datasets were produced for Strouds Creek and slope and intercepts using 

the relationship between WS El. and grid size were evaluated using 30-, 36-, 48-, 60- and 

80 m resampled DEMs containing errors. For each cross-section station, slope and 

intercepts were calculated using linear regression and predicted WS El. were compared to 

the results from original LiDAR DEM.   

 

Figure 6.4 shows the predicted WS El. using 30 m DEM containing errors and the predicted 

WS El. using the new approach versus the results from the original LiDAR DEM. The 

results from 30 m resampled DEM containing errors are shown to present the improvement 

in the results obtained using the new approach.  
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Figure 6.4 Predicted versus LiDAR (base) WS El. for Strouds Creek along Y=X 

 

The results show that this approach can be used to improve the predicted WS El. obtained 

from coarser resolution topographic data containing errors. The RMSE (LiDAR base) of 

WS El. using 30 m resampled DEM with error is reduced from 5.37 m to 0.68 m using the 

new approach. Since these errors follow a normal distribution, there are certain cross-

sections stations which contain sudden depressions and changes in elevations. These cross-

section stations are removed from the regression equation to reduce the effect of outliers.  

 

The WS El. generated using 30 m resampled DEM with error are clearly over-predicted 

when compared to original LiDAR (base) results. Using the new approach, the predicted 

WS El. are significantly closer to the LiDAR (base) results. Thus it can be concluded that 

the new approach can be applied to coarser resolution DEMs containing errors to improve 

the hydraulic modeling results. 
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Figure 6.5 presents the comparison between predict water surface profiles generated using 

the new approach, 30 m resampled DEM with error and the original LiDAR DEM for 

Strouds Creek.  

 

Figure 6.5 Water surface profile comparison for (a) predicted (new approach); (b) LiDAR 

(base); and (c) 30 m resampled DEM with error 

 

The water surface profile shows that a good fit is obtained between the predicted WS El. 

using LiDAR (base) and the new approach. There are a few depressions and sudden 

changes in elevations in the predicted WS El. due to the existence of extreme values of 

normal errors even after the removal of outliers. This approach, however, certainly reduces 

the impact of DEM errors on the predicted water surface profile.  

 
6.3.2 Prediction of Flood Maps 

It has been established that the effect of DEM resolution and errors on predicted water 

surface elevations can be minimized using the new approach.  
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However, in order to predict more accurate flood maps relative to the LiDAR data from 

coarser resolution topographic data containing errors, it is essential to apply the predicted 

WS El. obtained using the new approach in developing flood maps. Since one of the 

objectives of this study was to minimize the effect of errors on flood inundation maps, 

further analysis was done by creating flood maps using ArcGIS from the predicted water 

surface elevations. The predicted WS El. are exported to GIS and are used to generate a 

TIN datasets which are converted into grid data using nearest neighbor interpolation 

technique. The final step in creating flood maps involves subtracting the topographic 

datasets from the generated water surface elevation DEM to obtain flood inundated area 

(Merwade, 2012; Tate et al., 1999).  

 

Water surface raster are generated for Tippecanoe River and Clear Creek by exporting the 

WS El. calculated using the new approach into ArcGIS and flood maps are created by 

subtracting the coarse resolution 30 m resampled DEMs from the generated water surface 

raster. These flood maps are created solely from coarser resolution topographic datasets. 

In order to compare the flood maps developed with the new approach with original LiDAR 

generated maps, three quantitative indices are calculated: (1) inundation area; (2) % change 

in inundation area; and (3) F-statistic (Bates & De Roo, 2000; Cook & Merwade, 2009; 

Horritt & Bates, 2001). The F-statistic for Tippecanoe River and Clear Creek is calculated 

using Equation 6.1.  

 

ܨ ൌ 100 ∗ ൬
஺೚೛

஺೛ା஺೚ି஺೚೛
൰           Equation 6.1 
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Where Ao is the observed area of inundation (original LiDAR), Ap is the predicted area of 

inundation (new approach) and Aop is the intersection of observed and predicted areas.  

 

Table 6.5 presents the results of the comparison between flood maps created using 

resampled 30 m DEM, new approach and original LiDAR DEM for Tippecanoe River and 

Clear Creek.  

 

Table 6.5 Comparisons of flood maps for Tippecanoe River and Clear Creek 

  LiDAR New Approach Resampled 30 m 

Study Area (base) Area 
% 

change
F-Stat Area 

% 
change 

F-Stat

  (km2) (km2)   (%) (km2)   (%) 

Tippecanoe River 2.94 2.80 -4.73 80.23 3.13 6.61 87.85 

Clear Creek 17.47 16.64 -4.73 87.44 18.76 7.40 81.49 
 

The results suggest that the flood inundation areas created using the new approach are 

under-predicted (4.73 % less) for both Tippecanoe River and Clear Creek. The flood 

inundation areas obtained using the 30 m resampled DEM are over-predicted and the 

percentage change for the new approach is less for both areas. An F-statistic of 100 suggests 

that there is complete match between the observed and predicted flood maps. For Clear 

Creek, the F-statistic value improved from 81.49 % to 87.44 % when the new approach is 

applied to the water surface elevations however, the F-statistic value reduces from 87.85 % 

to 80.23 % for Tippecanoe River. This result highlights the importance of modeling DEM 

errors present in the 30 m resampled dataset.  
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Since the final step to generate flood maps in ArcGIS requires the input of the original 

topographic datasets, errors in these datasets can cause under-prediction of the inundated 

areas. Even though the water surface elevations are predicted accurately when compared 

to LiDAR results, the flood inundation maps can be improved only if the errors occurring 

in the coarser resolution datasets are modeled and removed before subtracting the water 

surface profile. If accuracy of the elevation data is improved, the resultant flood maps could 

be more accurate when compared to the maps produced using the original LiDAR datasets. 

 

6.4 Validation and Estimation for Different Topographic Datasets 

The main objective of this study is to analyze the relationship of DEM resolution and 

accuracy with hydraulic outputs. Studies in the past have concluded that high resolution 

LiDAR data is the most accurate topographic data (Charlton et al., 2003; Gonga-

Saholiariliva et al., 2011; Hodgson et al., 2003; Smith et al., 2004). The application of 

LiDAR generated DEMs in hydraulic modeling has suggested that these datasets are very 

accurate in predicting water surface elevations and flood inundation maps (Casas et al., 

2006; Cook et al., 2009; Haile et al., 2005; Sanders, 2007; Schumann et al., 2008). The 

hydraulic modeling around the world is still largely carried out using other coarser 

resolution and lower accuracy datasets because of the cost of acquisition and lack of 

availability of LiDAR data.  

 

In order to improve the accuracy of hydraulic results obtained from the widely used coarser 

DEMs when compared to LiDAR results, relationships between hydraulic variables and 

DEM attributes were developed in this study.  
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These relationships were obtained using resampling and error analysis of LiDAR data. The 

application of these relationships to topographic datasets generated from other data sources 

is discussed in this section. 

 

The linear relationship between WS El. and grid size has been well established for 

resampled DEMs created from LiDAR datasets. However, it is essential to check if the 

other topographic datasets have the same relationship. USGS NED 30 m DEMs are one of 

the most widely used topographic datasets in the United States being open source and easily 

accessible. SRTM datasets are also widely used in the world even though, they are less 

accurate than LiDAR and USGS DEMs. Section 6.3.1 presents the analysis and application 

of the new approach for USGS 30 m NED DEMs while Section 6.3.2 presents the analysis 

and application for SRTM 90 m resolution DEMs.  

 

6.4.1 USGS NED 30 m Resolution DEMs 

In order to establish the relationship between WS El. and DEM resolution for USGS NED 

DEMs, study areas on Strouds Creek, Tippecanoe River, St. Joseph River and East Fork 

White River were used. NED 30 m DEMs were resampled into DEMs of larger grid sizes 

and average water surface elevations were calculated using HEC-RAS. Figure 6.6 shows 

the relationship of USGS DEMs with grid size and presents a comparison between USGS 

DEMs and LiDAR datasets for four study areas.  
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Figure 6.6 WS El. versus grid size for USGS and LiDAR DEMs 

 

Figure 6.6 shows that average WS El. and DEM resolution have a linear relationship for 

USGS DEMs. However, the average water surface elevations for USGS DEMs are 

different as compared to LiDAR DEMs. For Strouds Creek, Tippecanoe River and St. 

Joseph River the average WS El. are higher for USGS DEMs when compared to LiDAR 

suggesting the existence of positive elevation errors while the USGS DEMs for East Fork 

White River contain negative elevation errors.  
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The existence of these errors is the main cause of over-prediction or under-prediction in 

water surface elevations and inundation areas for USGS DEMs when compared to LiDAR 

generated hydraulic outputs. After establishing the linear relationship for USGS DEMs, 

Strouds Creek and East Fork White River study areas are chosen for analysis to reduce the 

impact of DEM errors using the new approach presented in Section 6.2.  

 

The USGS NED 30 m DEMs are coarse resolution topographic datasets containing 

elevation errors when compared to the LiDAR DEMs. The analysis for resampled DEMs 

containing errors was carried out for Strouds Creek and the results were presented in 

Section 5.3. It was observed that RMSE has a linear relationship with grid size. Using this 

relationship, RMSE values for larger grid sizes can be predicted if the RMSE values for 

smaller grid sizes are known. The RMSE for USGS 30 m DEMs was calculated using 

LiDAR datasets as base values for Strouds Creek and East Fork White River. Using this 

value and the linear relationship between RMSE and grid size, RMSE values for coarser 

resampled USGS DEMs are predicted. The increase in WS El. for coarser resolution DEMs 

was attributed as an effect of resampling and existence of elevation errors in Section 5.3.  

 

The hypothesis is that if the 30 m USGS DEM contains an error of known RMSE value, a 

DEM of grid size larger than 30 m would contain an RMSE equal to the predicted RMSE 

using the linear relationship. The results in Section 5.3 show that the effect of these errors 

can be reduced by predicting WS El. using the new approach which involves developing a 

relationship between predicted WS El. of resampled DEMs containing errors and grid size.  
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The predicted RMSE values obtained using the linear relationship are used to create error 

raster with grid sizes 36-, 48-, 60- and 80 m. These error raster are added to the resampled 

USGS DEMs with grid sizes greater than 30 m to obtain new topographic datasets with 

containing errors. The error raster are created using the normal distribution approximation. 

After adding these errors, the new topographic datasets are used to create geometry files 

using HEC-GeoRAS which are exported into HEC-RAS to obtain water surface elevations. 

These datasets now have similar attributes to the DEMs created for Strouds Creek 

containing errors in Section 4.3. 

 

The modeled WS El. from these datasets are used to predict water surface elevations for 

all cross-section stations using the approach described in Section 6.1. These water surface 

elevations are then compared with the original LiDAR generated results.  

 

Figure 6.7 presents a comparison of the predicted WS El. using the new approach and the 

original USGS DEMs with the original LiDAR (base) DEMs for East Fork White River 

and Strouds Creek. 
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Figure 6.7 LiDAR (base) versus predicted WS El. for (a) East Fork White River and (b) 

Strouds Creek 

 

Figure 6.7 shows a comparison along the line Y=X where Y corresponds to the predicted 

WS El. obtained from the new approach and original USGS DEM while X corresponds to 

the WS El. obtained from the original LiDAR. The results show that the impact of errors 

on WS El. is reduced significanlty for East Fork White River using the new approach and 

the predicted WS El. are more closer to the original LiDAR values when compared to the 

USGS 30 m DEM. For Srouds Creek, there is less significant increase in the accuracy of 

predicted WS El., however, this is also due to the small magnitude of errors in the 30 m 

USGS DEM for Strouds Creek. To quantify and compare the performance of the predicted 

WS El. and USGS WS El. with the LiDAR results, RMSE of WS El. is calculated using 

all cross-section stations as observed points. Table 6.6 presents the RMSE in WS El. for 

East Fork White River and Strouds Creek. 
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Table 6.6 RMSE of predicted and USGS WS El. 

Study Area USGS RMSE Predicted RMSE 
% Reduction in 

RMSE 
(WS Elevations) (m) (m)   
Strouds Creek 0.93 0.59 36.65 

East Fork White River 0.87 0.52 40.36 
 

The results show that there is a significant reduction in the RMSE of WS El. for both East 

Fork White River (40 %) and Strouds Creek (36 %). This suggests that there is an 

improvement in the predicted WS El. using the new approach when compared to the 

LiDAR data. Thus, a coarse resolution topographic dataset such as a 30 m USGS DEM 

containing a known magnitude of error can be modeled to obtain higher accuracy in 

predicting WS El. using the new approach.  

 

Flood maps are produced using the predicted WS El. for East Fork White River and Strouds 

Creek and compared to the original USGS flood maps. Table 6.7 presents the inundated 

areas, % change in inundation and F-statistic for these datasets when compared to the 

original LiDAR outputs. Figure 6.8 shows the inundation extents for (a) predicted flood 

maps; (b) original USGS flood maps; and (c) LiDAR (base) flood maps.  

 

Table 6.7 Comparison of flood maps for East Fork White River and Strouds Creek 

  LiDAR New Approach Original USGS 

Study Area (base) Area 
% 

change
F-Stat Area 

% 
change 

F-Stat 

  (km2) (km2)   (%) (km2)   (%) 

White River 18.39 18.03 -1.96 91.46 17.45 -5.14 88.72 

Strouds Creek 0.36 0.38 3.73 65.68 0.45 25.17 61.80 
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Figure 6.8 Inundation extents for East Fork White River and Strouds Creek 

 

The results for East Fork White River show that both the predicted flood maps obtained 

using the new approach and the original USGS DEM under-predict the inundation area. 

However, the percentage change in inundation area is reduced from 5.14 % for USGS DEM 

to 1.96 % for the new predicted flood map. The F-statistic comparison also shows an 

improvement in the intersected areas for the predicted flood map (91.46 %) when compared 

to the original USGS flood map (88.72 %). For Strouds Creek, both the predicted flood 

map and the original USGS flood map over-predict the inundation area. The percentage 

change in inundation area is reduced from 25.1 % for USGS DEM to 3.7 % for the new 

predicted flood map. The F-statistic comparison for Strouds Creek shows an improvement 

in the intersected areas for the predicted flood map (65.6 %) when compared to the original 

USGS flood map (61.8 %).  



95 
 

 

A part of the flood map for East Fork White River is shown in Figure 6.8 which highlights 

the improvement in the predicted inundated areas. Both the predicted and USGS DEM 

under-predict the flood extents, however, the predicted flood map using the new approach 

gives a more accurate representation of inundated areas for regions where the UGSS DEM 

shows no inundation and the LiDAR DEM shows inundation. For Strouds Creek, both the 

predicted and USGS DEM over-predict the inundation extents, however, the predicted 

flood map gives a more accurate representation of inundated areas for regions where the 

USGS DEM shows inundation and the LiDAR DEM shows no inundation. These results 

show that it is possible to reduce the impact of DEM resolution and DEM errors on WS El. 

and flood extents for USGS DEMs using the new approach.  

 

6.4.2 SRTM 90 m Resolution DEMs 

SRTM DEMs contain a significant amount of errors when compared to LiDAR DEMs and 

do not predict the hydraulic outputs accurately. However, LiDAR datasets are not available 

globally which justifies the importance of improving the accuracy of SRTM DEMs in 

predicting flood maps. In order to evaluate the performance of the new approach on SRTM 

DEMs, Brazos River, the largest study area and Strouds Creek, the smallest study area are 

chosen for analysis. The RMSE for these DEMs is calculated using the LiDAR data points 

as base values. After calculating the RMSE, the linear relationship of RMSE with grid size 

is used to create resampled datasets containing errors. These datasets are used to check the 

relationship between WS El. and grid size which is shown in Figure 6.9.  
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Figure 6.9 WS El. of SRTM DEMs versus grid size for (a) Strouds Creek and (b) Brazos 

River 

 

After confirming that a linear relationship exists between WS El. and grid size, the results 

are used to predict WS El. for each cross-section station using the new approach. The 

original SRTM DEMs for Brazos River and Strouds Creek have positive elevation errors 

and highly over-predict the WS El. and flood extents. After applying the new approach to 

model these errors, the original SRTM WS El. and predicted WS El. are compared to the 

LiDAR outputs as shown in Figure 6.10.  
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Figure 6.10 LiDAR (base) versus predicted WS El. for (a) Strouds Creek and (b) Brazos 

River 

 

The comparisons show that the original SRTM WS El. are highly inaccurate and over-

estimated however the predicted WS El. using the new approach are comparatively more 

accurate and closer to the base LiDAR WS El.  

 

Table 6.8 shows the comparison in the RMSE of WS El. for Brazos River and Strouds 

Creek. 

145

155

165

175

185

145 155 165 175 185
P
re
d
ic
te
d
 W

S 
El
. (
m
)

LiDAR WS El. (m)

Y=X Predicted SRTM original srtm

15

17

19

21

23

25

27

29

31

15 17 19 21 23 25 27 29 31

P
re
d
ic
te
d
 W

S 
El
. (
m
)

LiDAR WS El. (m)

y=x Predicted SRTM Original SRTM

b)

a)



98 
 

 

Table 6.8 RMSE of SRTM and predicted WS El. 

Study Area SRTM RMSE Predicted RMSE 
% Reduction in 

RMSE 
  (m) (m)   

Brazos River 2.72 1.33 51.05 

Strouds Creek 8.77 3.06 65.14 
 

The results show a significant improvement in the RMSE of WS El. for both Brazos River 

(51.05 %) and Strouds Creek (65.14 %). This suggests that the impact of DEM errors on 

WS El. has been substantially reduced using the new approach. The predicted WS El. are 

used to generate flood maps and are compared with the original SRTM generated flood 

map. Table 6.9 presents the comparison between inundation area, % change in inundation 

and F-statistic for Brazos River and Strouds Creek. 

 

Table 6.9 Comparison of flood maps for Brazos River and Strouds Creek 

  Observed New Approach Original SRTM 

Study Area LiDAR  Area 
% 

change
F-Stat Area 

% 
change 

F-Stat

  (km2) (km2)   (%) (km2)   (%) 

Brazos River 150.07 117.95 -21.41 59.75 99.08 -33.98 56.86 

Strouds Creek 0.36 0.98 168.97 15.41 1.25 245.03 15.98 
 

The results show that both the predicted flood map and SRTM flood map do not perform 

well in predicting the inundation extents for Brazos River with F-statistic values of 59.75 % 

for predicted flood map and 56.86 % for original SRTM flood map. However, the original 

SRTM flood map under-predicts the inundation area by 33.98 % while the predicted flood 

map under-predicts the inundation area by 21.41 % when compared to LiDAR data. 
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Similarly, for Strouds Creek, the F-statistic for predicted flood is 15.41 % as compared to 

15.98 % for SRTM flood map. However, there is an increase in inundation of 245.03 % for 

SRTM flood map and an increase of 168.97 % for predicted flood map when compared to 

the LiDAR results. Figure 6.11 shows the inundation extents for Brazos River and Strouds 

Creek. 

 

 

Figure 6.11 Inundation extents for Brazos River and Strouds Creek 
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The predicted inundation extents for Brazos River show a 33.98 % under-prediction of 

inundation area by the original SRTM flood map while the predicted flood map using the 

new approach reduces the under-prediction of the inundation area when compared to 

LiDAR results. It is evident from the F-statistic that even though there is an under-

prediction in inundation area, the extent of inundation is better attributed by the new 

approach. Both the original SRTM and new approach perform poorly in estimating the 

inundation extents for Strouds Creek.  

 

However, from these results it can be inferred that the WS El. predicted using the new 

approach are more accurate than the original SRTM DEM. The flood maps for both the 

study areas are inaccurately represented because of the spatial distribution of errors added 

to the topographic datasets. In order to predict the inundation extents more accurately, the 

distribution of errors has to be modeled correctly. For a small study area such as Strouds 

Creek, a highly variable error distribution is difficult to be removed using the normal 

distribution assumption. The predicted flood map for Strouds Creek consists of random 

depressions and elevations that are caused due to removal of errors with a normal 

approximations. For points in a flat terrain, these depressions cause the water depth to 

become greater than zero and these areas are predicted as inundated.  

 

It is essential to understand the spatial distribution of DEM errors in order to predict flood 

maps more accurately for smaller reaches such as Strouds Creek. The impact of these 

depressions is less significant for Brazos River because of the size of the study area.  
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However, if an appropriate method is used to model these errors, then it would become 

possible to predict flood maps and obtain similar results as the LiDAR DEMs by using the 

new approach to reduce the impact of errors even for coarser resolution topographic 

datasets like SRTM. In order to improve the accuracy in estimating flood maps from 

coarser resolution topographic datasets, some recommendations are presented in Chapter 

7.  

 

The linear relationship between hydraulic outputs and DEM attributes exists for all the 

study areas, reach length, topographic datasets and land use types. The main reasons for 

this relationship are the linear propagation of DEM errors and terrain-smoothening due to 

resampling. However, this relationship could be effected by the choice of resampling 

technique. For this study, nearest neighbor resampling technique was used for all the 

datasets. While the nearest neighbor resampling technique smooths the elevations in a 

topographic dataset, it is essential to evaluate the relationships between hydraulic outputs 

and DEM attributes for other resampling methods. This analysis is discussed in Section 6.5.  

 
6.5 Comparison of Resampling Techniques 

Topographic datasets are generated from observed elevation points using different 

sampling techniques. The influence of sampling technique on topographic datasets was 

tested by Heritage et al. (2009). However, it is essential to determine the effect of 

resampling techniques on hydraulic variables. The resampling of DEMs for the application 

of the new approach was done using the nearest neighbor technique.  
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In order to check the applicability of this approach for different interpolation methods, 

average water surface elevations were calculated for resampled DEMs using bilinear and 

cubic resampling techniques for Brazos River and East Fork White River. These water 

surface elevations were plotted versus grid size to determine the relationship between water 

surface elevations and DEM resolution for bilinear and cubic interpolation methods. 

 
 Figure 6.12 shows the results for Brazos River and East Fork White River and also presents 

the comparisons between nearest neighbor, bilinear and cubic interpolation methods. 

 
 

 

 

Figure 6.12 Avg. WS El. versus grid size for (a) Brazos River and (b) East Fork White 

River 
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The comparisons show that average water surface elevations generated by resampled 

topographic datasets using both bilinear and cubic interpolation techniques have a linear 

relationship with grid size. This suggests that it is possible to use any resampling method 

to predict water surface elevations using the new approach. There is insignificant variation 

in the average water surface elevations derived from bilinear and cubic interpolation 

methods, however the nearest neighbor results are higher than bilinear and cubic results. 

This may be because the original LiDAR datasets are created from spatial interpolation of 

observed points using nearest neighbor sampling technique.  

 

6.6 Incorporation of River Bathymetry 

Although LiDAR data is highly accurate, it is based on the principle of reflection of laser 

pulse from the ground surface. Therefore, the LiDAR data does not provide an accurate 

representation of river channel elevations because of the poor reflection from the water 

surface. A more accurate representation of the river terrain can be obtained by 

incorporating the river bathymetry into the LiDAR data using field survey (Merwade et al., 

2008). The integrated DEM produced using this technique has similar attributes to the 

LiDAR data except for the main river channel. Since this technique can be used even for 

coarser DEMs, it is essential to check if the linear relationship between hydraulic outputs 

and DEM resolution exists for integrated DEMs.  

 

In order to determine the impact of river bathymetry on WS El. and inundation area, DEMs 

are created from the original LiDAR by integrating the river bathymetry obtained from 

field survey data into the LiDAR.  
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The field survey data for St. Joseph River and Tippecanoe River is provided by USGS. To 

evaluate the amount of error in channel bathymetry, elevations are extracted from the 

LiDAR and USGS DEMs into the field data points and RMSE is calculated using the field 

surveyed elevations as observed data. Table 6.10 show the difference in average elevations 

and the RMSE for St. Joseph River and Tippecanoe River. 

 

Table 6.10 Average Elevation and RMSE for St. Joseph River and Tippecanoe River 

  Average Elevation (m) RMSE (m) 

Study Area Field Data LiDAR USGS  LiDAR USGS 

            

St. Joseph River 216.19 218.30 222.09 2.33 6.67 

Tippecanoe River 205.58 206.77 209.82 1.24 5.02 
 

The results show that river bathymetry has a significant impact on DEM accuracy. For St. 

Joseph River, the RMSE for LiDAR DEM is 2.33 m and 6.67 m for USGS DEM. Similarly 

for Tippecanoe River, the RMSE for LiDAR DEM is 1.24 m and 5.02 m for USGS DEM. 

Since the global RMSE values for both the DEMs are significant, the application of the 

new approach on DEMs integrated with river bathymetry is required.  

 

Figure 6.13 shows the relationship between average WS El. and grid size for DEMs 

integrated with river bathymetry for St. Joseph River.  
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Figure 6.13 Avg. WS El. versus grid size for Bathymetry LiDAR for St. Joseph River 

 

Figure 6.13 shows that the linear relationship between WS El. and grid size exists even for 

integrated DEMs. This suggests that the impact of errors on WS El. and inundation area 

can be reduced significantly for coarse resolution topographic data by incorporating the 

river channel bathymetry and using the new approach to model WS El.  

 

Table 6.11 shows the comparison between flood maps generated from LiDAR DEM with 

and without river bathymetry for St. Joseph River and Tippecanoe River.  

 

Table 6.11 Comparison of flood maps for St. Joseph River and Tippecanoe River 

Study Area Bathymetry_LiDAR LiDAR % change F-Statistic 

  (km2) (km2)    (%) 

St. Joseph River 2.16 3.16 46.22 67.76 

Tippecanoe River 2.94 3.58 21.80 80.08 
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There is a significant reduction in inundated area after incorporating channel bathymetry 

into the LiDAR DEMs with a 46.2 % change for St. Joseph River and 21.8 % change for 

Tippecanoe River. Figure 6.14 illustrates this change by comparing the inundation extents 

for LiDAR DEMs with and without river bathymetry. 

 

 

Figure 6.14 Inundation Extents for (a) St. Joseph River and (b) Tippecanoe River
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CHAPTER 7. SUMMARY AND CONCLUSIONS 

7.1 Effect of DEM Resolution on Hydraulic Outputs 

The first objective of this study was to establish a relationship between hydraulic outputs 

and DEM resolution. This is accomplished using LiDAR DEMs for five study areas by 

resampling LiDAR DEMs into different grid sizes and obtaining water surface elevations 

and flood inundation areas using ArcGIS and HEC-RAS. For a given flow and boundary 

conditions, the average water surface elevations and grid size have a linear relationship 

with a positive slope which is illustrated by high R2 (>90%) for all study areas. This 

suggests that water surface elevations for all cross-section stations increase with decreasing 

DEM resolution. This may be due to the smoothening effect on topography, high slope 

gradients and loss of information about depressions. The change in water surface elevations 

is less significant up to 20 m resolution but increases significantly for larger grid sizes.  

 

The predicted flood inundation areas for all the sites increase with decreasing DEM 

resolution. This suggests that DEMs of coarser resolution over-predict the flood extents. 

The total inundation area and grid size also have a linear relationship with a positive slope. 

The difference in predicted inundation area between the original LiDAR and 100 m 

resolution DEM is largest for Strouds Creek (74.8 %) and smallest for East Fork White 

River (3.18 %). 



 
  107 

The quality of flood maps also decreases with increasing grid size for all study areas. These 

results highlight the importance of DEM resolution in flood mapping especially for smaller 

river reaches and river reaches with high slope gradients.  

 

7.2 Effect of DEM Error on Hydraulic Outputs 

This topic addresses the impact of elevation errors on water surface elevations and 

inundation areas. A comparison of RMSE with grid size shows that the amount of error 

increases with decreasing DEM resolution. The RMSE versus grid size comparisons for 

three sites suggests a linear relationship with high R2 (> 90%). The water surface elevations 

and inundation areas have a linear relationship with DEMs of different resolutions and 

magnitude of errors. This relationship suggests that a coarse resolution DEM contains more 

errors in elevations as compared to higher resolution LiDAR DEMs.  

 

The existence of these errors results in over-prediction of both water surface elevations and 

inundation areas for Strouds Creek. The average water surface elevations are over-

predicted about 3.65 m and inundation areas about 112.7 % for a DEM containing errors 

of grid size 80 m when compared to the original LiDAR results. The errors that were added 

to these DEMs were based on the assumption of normal distribution. Since a lot of studies 

have focused on modeling the spatial distribution of DEM errors but no certain 

relationships have been established, the third objective of this study aims to reduce the 

impact of these errors on hydraulic outputs and not try to model the errors.  
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7.3 Development of a New Approach to Reduce the Impact of Errors 

Both DEM resolution and DEM errors have a significant impact on hydraulic outputs. In 

order to reduce this impact and to predict more accurate water surface elevations and flood 

maps, the relationship of these attributes with grid size and errors developed in this study 

is used. It is assumed that if the smallest grid size DEM (cell size approaching zero) is used 

to predict flood maps, the results would be highly accurate. It is speculated that since the 

water surface elevations increase with grid size and the small grid size DEMs predict 

hydraulic outputs with higher precision, the water surface elevations obtained using the 

larger grid sizes can be used to predict water surface elevations for smaller grid sizes.  

 

To validate this hypothesis, the coarse resolution DEMs are used to develop the linear 

relationship between water surface elevations and grid size for Clear Creek. This 

relationship is used to model water surface elevations for all cross-section sections for a 

higher resolution DEM. These modeled results are compared to the outputs generated using 

high resolution LiDAR DEMs for all six study areas. The results show that the predicted 

water surface elevations are very accurate relative to LiDAR results which can be seen by 

the low RMSEs for all the sites. These water surface elevations are then used to predict 

flood maps. The effect of DEM errors on water surface elevations is also reduced using 

this approach. Instead of using only resampled DEMs to develop the linear relationship, 

resampled DEMs containing errors are used. The results for Strouds Creek show that 

significantly improved estimates of water surface elevations are produced using coarse 

resolution topographic data containing errors.  
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To further evaluate the applicability of this approach for predicting better flood maps from 

coarse resolution datasets, USGS 30 m DEMs and SRTM 90 m resolution DEMs are used. 

The application of the new approach to both these datasets shows a significant 

improvement in accuracy of water surface elevations when compared to LiDAR DEMs. 

There is a reduction of 36.6 % in the RMSE of water surface elevations for USGS DEMs 

modified using the new approach for Strouds Creek and a 40.3 % reduction in RMSE for 

East Fork White River. The flood maps generated using these water surface elevations also 

perform significantly better than the original USGS DEMs.  

 

The accuracy of water surface elevations for coarse resolution SRTM DEMs is also 

increased significantly for Strouds Creek with a reduction of 65 % in the RMSE and 51 % 

for Brazos River. Since the SRTM DEMs contain large amount of elevation errors, the 

normal distribution assumption of errors does not produce significantly better results in 

predicting flood maps. 

 

To check if the linear relationship between water surface elevations and grid size exists for 

DEMs which are not resampled using nearest neighbor technique, both bilinear and cubic 

interpolation methods are applied to the DEMs. The results show that for grid size up to 

100 m resolution, the linear relationship is not affected by the interpolation technique.  

 

Incorporating river bathymetry into the DEMs increases the accuracy of flood maps (Cook 

et al., 2009). However, to check if the new approach is applicable to DEMs that are 

integrated with river bathymetry, a further study is carried out.  
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The linear relationship between water surface elevations and grid size is still valid for 

DEMs integrated with river bathymetry. Thus it is established that this approach can be 

used to model water surface elevations for DEMs obtained from any source, sampling 

technique, resolution (up to 100 m established for this study) and magnitude of errors.  

 

7.4 Future Work and Recommendations 

From this study, it can be established that the new approach can be applied to coarse 

resolution topographic data to improve the predicted water surface elevations and flood 

inundation areas. Since LiDAR data is not available for the entire United States, coarser 

resolution topographic datasets which are available easily can be used with the new 

approach to significantly improve the hydraulic modeling results obtained from these 

datasets. The expected water surface elevations and inundation areas for any area can be 

known using the relationships obtained in this study. However, in order to predict the 

inundation extents with precision, further analysis is required on the removal of errors from 

the DEMs. Even a high resolution dataset such as a LiDAR does not contain an accurate 

representation of the main channel bathymetry.  

 

Future work on hydraulic modeling and flood inundation mapping should consider the 

optimum representation of the spatial characteristics of DEM errors. Even if it is possible 

to predict water surface elevations more accurately using the new approach, without an 

accurate spatial representation of DEM errors, it is difficult to obtain more accuracy in 

predicting flood extents.  
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Further studies may look into the application of the rating relationships developed between 

vertical elevation errors and spatial variability by Heritage et al. (2009).  

 

For this study, there was no change in the boundary conditions, calibration parameters, 

Manning’s n. This was done to account for the changes in water surface elevations only 

due to topography. The analysis of the results of this study can be used to develop 

guidelines for flood mapping. For small study areas with urban land use, the USGS 30 m 

DEMs represent the terrain fairly accurately. For such study areas, if the river bathymetry 

is integrated into a USGS DEM and the approach developed in this study is used to predict 

water surface elevations, the resulting flood maps would be highly accurate as compared 

to the original USGS DEMs. Thus the cost of acquisition of LiDAR DEMs for such study 

areas can be saved.  

 

For large study areas with a relatively deep main river channel, most of the flow is routed 

through the main channel. For these study areas, a coarse resolution DEM integrated with 

river bathymetry can be coupled with the new approach to predict water surface elevations. 

For such areas, the standard deviation in the DEM errors is not significant for the flood 

plain and thus the normal approximation may be applied to the errors to obtain more 

accuracy in flood inundation maps.  

 

From the DEM error analysis for this study, it is noted that the existence of errors is more 

significant for high elevation regions in the flood plain and low elevation regions in the 

main river.  
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The effect of errors in the main channel can be reduced with the integration of channel 

bathymetry while the errors in the flood plain can be reduced using the new approach but 

further analysis is required to ascertain this fact. This study is based on a steady-state 

assumption of flow and one-dimensional hydraulic modeling using HEC-RAS. Two-

dimension hydraulic models should also be used in future studies to determine the effect 

of DEM resolution and DEM errors on water surface elevations and flood inundation maps. 
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