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ABSTRACT 

Qin, Yi. M.S.M.E., Purdue University, May 2014. A Novel Three Degree-of-Freedoms
Oscillation System of Insect Flapping Wings. Major Professor: Xinyan Deng, School of 
Mechanical Engineering. 

We propose an oscillation system to replicate the dynamic behavior of flapping wings, 

inspired by insect flight muscles. In particular, we study the flight of the fruit fly 

Drosophila virilis. We model the wing as a rigid body with three degree-of-freedom, 

described by three Euler angles: the stroke angle, the rotation angle and the deviation 

angle. Insect flight muscles are separated into two types: power muscles and control 

muscles. One actuator and one torsional spring at the stroke angle act as the power 

muscles. Two torsional springs at the rotation angle and the deviation angle mimic the 

control muscles. A dynamic model, using a blade-element model and a quasi-steady 

model to calculate aerodynamic forces and moments, is set up for analysis of the 

system’s performance. Using non-dimensional analysis, we are able to identify the 

dynamic behavior of the system through four coefficients: stroke stiffness coefficient, 

rotation stiffness coefficient, deviation stiffness coefficient and input torque coefficient.

We use the dynamic model to explore a large coefficients space of the oscillation system. 

We find that tuning deviation stiffness coefficient and rotation stiffness coefficient

generates four different types of wing trajectories. Among them, the one with a high 

deviation stiffness coefficient and a mediate rotation stiffness coefficient produces



ix 

high lift and high power loading. Its wing trajectory is quite similar to the wing trajectory 

in actual insects. Furthermore, a hybrid optimization algorithm (a genetic algorithm and a 

Nelder-Mead simplex algorithm) is implemented to find the optimal stiffness coefficients.

Through these coefficients, the system minimizes power loading while still providing 

enough lift to maintain a time-averaged constant altitude over one stroke cycle. The 

results of this optimization indicate that the flapping wing with nonzero deviation 

achieves a better aerodynamic performance than the wing with zero deviation. The 

oscillatory property of this system does not only explain how insects use flight muscles to 

tune wing kinematics, but it also allows for design simplifications of the wing driving 

mechanism of flapping micro air vehicles. 
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CHAPTER 1. INTRODUCTION 

1.1 Background 

Throughout the past decades, flapping wing insects attract a lot of attention due to 

their exceptional flight stability and maneuverability (Dickinson, et al., 1999; Fry, et al., 

2003; Lentink and Dickinson, 2009; Hedrick, 2009). Many analytical and experimental 

investigations are made to figure out the mechanisms of aerodynamic force production in 

flapping insect wings (for reviews, see Lehmann, 2004; Sane, 2003; Viieru, et al., 2006).

Concepts of flapping flight originated from biology researches inspire the spark of the 

creation of engineers. They show huge interest in development of flapping wing micro air 

vehicle (MAVs) that present a large leap forward in agility and maneuverability from 

traditional fixed and rotary MAVs. However, how to achieve a complex wing trajectory 

is a myriad of technological and conceptual challenges in designing flapping MAVs.

Several have achieved free flight, ranging from larger bird-sized (Pornsin-Sirirak, et al., 

2001; Breugel, et al., 2008) to smaller insect-sized vehicle (Croon, et al., 2012; Keennon, 

et al., 2012; Ma, et al., 2013). Among these successful designs, two frequent simplifying 

assumptions are made. One is that the rotation of the wing is passively assisted by the 

wing inertia and/or aerodynamic forces, i.e. only the leading edge of the wing is actively 

controlled. The other is that the stroke plane is flat, i.e. the wing flaps back and forth in a 

plane showing a line wing tip trajectory, and does not deviate vertically. There are two 
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reasons for these assumptions: (1) passive rotation and zero deviation greatly simply the 

actuation mechanism, and (2) simplified wing motions can generate enough lift. Any

attempt to achieve complex wing motions such as figure-of-eight or oval shapes, induce

additional and unexpected mechanism, thus fail to generate enough lift to support the 

weight (Banala and Agrawal, 2005; Finio, 2010; Seshadri, et al., 2012).  

(A) (B) 

Figure 1.1. Wing tip trajectories for bumble bees in hovering flight. (A) shows the oval 
shape for the bumbles Bombus hortorum, and (B) shows the figure-of-eight for the 
bumble bee Bombus lucorum. Adapted from (Ellington, C. P., 1984b). 

Even though these assumptions seen to be a reasonable approximation, insects and 

hummingbirds do reveal complex wing tip trajectories. Remarkably diversity of wing tip 

trajectories has been reported in the ladybird Coccinella 7-punctata, the crane-fly Tipula 

obsolete, the crane-fly Tipula paludosa, the hover-fly Episyrphus balteatus, the drone-fly 

Eristalis tenax, the honey bee Apis mellifera, the bumble bee Bombus hortorum and the 

bumble bee Bombus lucorum (Ellington 1984b; Brodsky, 1994;). Oval shapes and figure-

of-eight shapes for bumble bees are shown in Figure 1.1. Biology studies shown that flies 
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may rapidly change wing kinematics during steering behavior, resulting in the alteration 

of wing tip trajectories (Tu and Dickinson, 1996). Additionally recent theoretical fluid 

dynamics studies of flapping-wing flight have shown that wing trajectories with nonzero

deviation may be more efficient in terms of the power (Berman and Wang, 2007). Since 

real autonomous flights of current flapping wing MAVs are limited by the energy sustain, 

any improvement in power consumption is of vital important. Thus, the starting point of 

this study is to explore a potential mechanism that has capability of generating complex 

wing trajectories. 

1.2 Flight Muscles 

To figure out how different wing trajectories are generated in insects, it is necessary 

to understand the physical structure and the functionality of their flight muscles first. 

Many flying insects employ two types of muscles: synchronous and asynchronous

(Dudley, R., 1999). Here, we will review the physical structure and functionality of each 

group. 

As the naming suggests, each contraction of synchronous flight muscle is 

synchronized with the action of nerve impulse, as is the case in vertebrate skeletal muscle

(Dudley, R., 1999). These muscles are placed vertically to the long axis of the insects, as 

shown in Figure 1.2(1). One attached to the wing is called elevator muscle, and the other

attached to the floor of the thorax structure is called depressor muscle (Hill et al. 2012). 

Contraction of the elevator muscles raises the wings, and contraction of the depressor 

muscles drives the wing down. Synchronous flight muscles are found in some insects, 
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such as locusts and dragonflies, which usually flap at a relative low frequency with a 

large wing (Dudley, R., 1999).  

Figure 1.2. Synchronous and asynchronous flight muscles. (1) The cross section of the
flight muscle of a dragonfly is portrayed. Synchronous flight muscles attach directly to 
the wing. (2) The cross section and longitudinal section of the flight muscle of a housefly
are portrayed. Asynchronous flight muscles attach to the thorax and are arranged 
perpendicular to each other. Contractions of muscles are in red color, and relaxed 
muscles are in pink. Adapt from (Hill et al. 2012). 

Some insects including flies, bees, and beetles not only use synchronous flight 

muscles, but also use asynchronous flight muscles, of which contractions are not 

synchronized with the nerve impulse. Asynchronous flight muscles are not directly 

attached to the wings, and are primarily responsible for power generation. The 

mechanical energy from asynchronous flight muscles is to excite a resonant flapping 
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motion through a transmission system connecting the thorax and the wing hinge. 

Asynchronous muscles are also called as power muscles. When operating against inertial 

load of the air moved by the wings, these muscles act as a self-sustaining oscillator that 

may execute several stroke cycles for every electrical stimulus received (McMahon, 

1984). Additionally, these muscles can act as springs that conserve the kinetic energy 

during flapping, and were considered to increase the power efficiencies (Tu and 

Dickinson, 1994; Dickinson and Lighton, 1995). Figure 1.2(2) shows the generalized 

morphology of power muscle in housefly. Two opposing pairs of power muscles are 

attached to the thorax structure rather than the wings, with one placed vertically and the 

other longitudinally. Contraction of the vertical muscles pull down on the roof of the 

thorax and deform its sides, causing the wings to move up through the transmission 

system. When the longitudinal depressor muscles contract, the roof of the thorax bulges 

up, resulting to move the wings down (Hill et al. 2012).  

On the other hand, synchronous flight muscles in these insects, also called as 

controller muscles, act as a transmission system that determines how the mechanical 

energy produced by the power muscles is transformed into wing motion (Tu and 

Dickinson, 1997). The mechanism of the transmission system is really complex.

Biologists found that there were 18 pairs of small muscles that were responsible for the 

fine control of wing motion (Williams and Williams, 1943; Wisser and Nachtigall, 1984;

Tu and Dickinson, 1997). Among these controller muscles, only small parts were 

identified their roles. Tu and Dickinson (1996) conducted experiments on blowflies using

high speed videography techniques and electromyograms to record the wing kinematics 

and muscle activation signals simultaneously. It was found that the blowfly changed its 
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wing trajectory from a figure-of-eight pattern when the first and second basalare control 

muscles were inactive, to an oval shape pattern, when these muscles were activated, as 

shown in Figure 1.3. Changes in activation phase tuned the stiffness of muscle, resulting 

in the alteration of the wing trajectory.  

 

Figure 1.3. Controller muscles acts to steer and direct the power produced by the power 
flight muscles. Adapted from (Tu and Dickinson, 1996). 

1.3 Scope and Outline of Thesis 

In this study, we investigate simple and effective mechanisms of flight muscle that 

are potentially used in real insects, thereby providing inspiration for flapping wing MAVs 

design. The remainder of the thesis is organized as followers. Chapter 2 presents the 

mechanism of a flapping wing oscillation system, as well as models of insect flight 

muscles. Using a blade-element model and a quasi-steady model, a dynamic model is 
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then developed. In Chapter 3, we use these models to explain how different wing 

trajectories are generated by the interaction between aerodynamic moments and elastic 

moments of the system. Chapter 4 presents a hybrid optimization algorithm combining 

aspects of a genetic algorithm and a Nelder-Mead simplex algorithm. With this algorithm, 

we find the optimal wing kinematics that maximizes the power efficiency while still 

providing enough lift to fly. Finally, Chapter 5 concludes this work. 
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CHAPTER 2. DYNAMIC MODELING OF FLAPPING WINGS 

In this chapter, we describe the mechanism of a flapping wing oscillation system, as 

well as mathematical models for calculating forces, torques, and power consumption.  

2.1 Coordinate Definitions 

We assume that an insect’s wing is a rigid plate and is allowed to rotate through each 

of its three Euler angles: the stroke angle φ , the rotation angle ψ  and the deviation angle

θ . Figure 2.1 shows coordinate systems and Euler angles for a basis description of the 

rigid wing kinematics. Upstroke is the ventral-to-dorsal motion of the flapping wing, and 

downstroke is the dorsal-to-ventral motion. A left wing is shown at its downstroke. OXYZ

is a body-fix coordinate system. oxyz is a frame fixed on the wing. They share the same 

origin O that is the base of the wing. We assume that the insect body is vertical. We 

define Z is the vertical direction, X is the forward direction of the insect, and Y is the 

perpendicular to the forward direction in the horizontal plane. XY plane is called the 

stroke plane of the wing. y is along the leading edge of the wing and the positive direction 

is defined from the root of the wing to the wing tip. The positive z -axis is along the wing 

chord and from the trailing edge to the leading edge. Finally, x -axis is defined by the 

right-hand rule. First, the  -axes rotate with the stroke angle . The axis of 

rotation is the positive Z -axis, and  is defined as either the angle between the  -axis 

 ′′x ′′y ′′z φ

φ ′′y
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Figure 2.1. Coordinate systems and Euler angles, shown for a left wing and vertical-body 
orientation. All origins of the coordinate systems share the same point, O. They are 

shown offset only for charity. Local angular velocities  ω x ,  
ω y  and  ω z  are plotted in 

light blue. Spirals in red represent flight muscles at each Euler angle, which will be 
discussed in Section 2.2. 

and the Y -axis or the angle between the -axis and the X-axis.  is zero where the wing 

is at its mid-stroke position. In Figure 2.1,  is shown with a negative value. Then, the 

-axes rotate with the deviation angle , defined as either the angle between the 

-axis and the  -axis or the angle between the  -axis and the  -axis, where the 

ψ

ψ

φ

φ

θ

θ

ωx

ωy

ωz

′′x φ

φ

′x ′y ′z θ

′′y  ′y  ′′z  ′z
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axis of rotation is  -axis.  is zero where the leading edge of the wing is at the stroke 

plane. Finally, the  -axes rotate with the rotation angle . is defined as either the 

angle between the  -axis and the  -axis or the angle between the  -axis and the  -

axis, rotating about the  -axis. The coordinate systems in Figure 2.1 correspond to 

positive values of  and . The resultant eulerian rotation matrix is 

 Rbw = RZ φ( )RX θ( )RY ψ( ) ,  (2.1)

where 

  

RZ φ( ) =
cosφ −sinφ 0
sinφ cosφ 0

0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

, (2.2)

  

RX θ( ) =
1 0 0
0 cosθ −sinθ
0 sinθ cosθ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

’ (2.3)

  

RY ψ( ) =
cosψ 0 sinψ

0 1 0
−sinψ 0 cosψ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

. (2.4)

The wing motion is the sum of three rotational motions along each Euler angle. The 

angular velocity of the wing is given by 

   ωω = φ e ′′z +θ e ′x +ψ ey , (2.5)

where   e ′′z ,   e ′x , and   e ′′y  are denoted as the unit vectors along  ′′z  –axis,  -axis, and y –

axis.   ex ,   ey , and   ez  are denoted as the unit vectors of the wing-fixed coordinate system

oxyz. In the wing-fixed coordinate system oxyz, it becomes 

′x θ

 xyz ψ ψ

 x  ′x  z  ′z

 y

φ ψ

 ′x
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  ωω =ω xex +ω yey +ω zez , (2.6)

where 

  ω x = −φ cosθ sinψ +θ cosψ , (2.7)

  
ω y = φ sinθ +ψ , (2.8)

  ω z = φ cosθ cosψ +θ sinψ . (2.9)

2.2 Model of Flight Muscles 

As discussed in the previous section, there are two physiologically and functionally 

different classes of flight muscles: power muscles and control muscles (Dickinson and Tu, 

1997).  We model the power muscles as one actuator and one torsional spring at the 

stroke angle. The actuator provides a high level of mechanical energy required to drive 

the wing. The control muscles are modeled as two torsional springs at the rotation angle 

and at the deviation angle respectively. Overall, it is a three degree-of-freedom (DOF) 

system, consisting of one actuator and three torsional springs. 

We model the input torque   M input  as a sinusoidal form. It can be written as 

   M input t( ) = Mmaxcos 2π f t( )e ′′z , (2.10)

where f is the driving frequency. Three torsional springs are attached to each Euler angle, 

as shown in Figure 2.3. ,  and  are denoted as the elastic torques 

of the stroke angle , the deviation angle  and the rotation . They are given by 

   Mφ ,spring = kθθ e ′x , (2.11)

   Mφ ,spring    Mθ ,spring    Mψ ,spring

φ θ ψ
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, (2.12)

. (2.13)

where  
kφ ,  kθ , and  

kψ  are stiffness value of torsional springs of ,  and . Therefore, 

the total torque of torsional springs is 

. (2.14)

2.3 Wing Morphology 

Wing dynamics characteristics have a strong dependence on the detailed shape mass 

distribution of a wing. A concise mathematical description of the wing is necessary. The 

commonly used definitions in (Ellington, 1984a) provide a method of parameterizing a 

wing using key dimensional components integral to the wing. Figure 2.2 illustrates a 

wing platform. 

The dimensionless spanwise distance from the root is 

  
r̂ = r

R
, (2.15)

where R is the wing’s base-to-tip length. The chord profile is 

  
ĉ r̂( ) = c r( )

c
. (2.16)

where  c  is the mean chord, that is defined as the area of wing divided by the wing length. 

Radius of kth moments of wing area is defined as 

  
r̂k

k = ĉ r̂( )
0

1

∫ r̂ kdr̂ . (2.17)

   Mθ ,spring = kθθ e ′x

   Mψ ,spring = kψψ ey

φ θ ψ

   Mspring = Mφ ,spring + Mθ ,spring + Mψ ,spring
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Figure 2.2. Wing platform morphological parameters. Differential elements for spacewise 
and chordwise integration are shown. 

The higher moments can simply be expressed as function of the position of the centroid 

(Ellington, 1984a): 

  r̂2 = 0.929 r̂1( )0.732
  (2.18)

and    r̂3 = 0.900 r̂ 1( )0.581
. (2.19)

Given only   r̂1 , the entire shape of a wing is defined by the Beta distribution as 

  
c r̂( ) = r̂ p−1 1− r̂( )q−1

B p,q( ) , (2.20)

where the Beta distribution   B p,q( ) , p and q are 

  
B p,q( ) = r̂ p−1 1− r̂( )q−1

dr̂
0

1

∫ , (2.21)
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p = r̂1

r̂1 1− r̂1( )
r̂2

2 − r̂1
2 −1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

, (2.22)

  
q = 1− r̂1( ) r̂1 1− r̂1( )

r̂2
2 − r̂1

2 −1
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

. (2.23)

We assume that the wing mass is uniformly distributed over the wing platform. The 

mass density of the wing is 1200  kg m−3 , and the thickness of the wing is  4.5×10−4  mm 

(Wainwright et al., 1982; Combes and Daniel, 2003). As the thickness of the wing is very 

small, the moments and products of inertia of the mass of a wing, respect to the wing-

fixed coordinate system oxyz, is given by 

  

I =

Ixx Ixy Ixz

I yx I yy I yz

Izx Izy Izz

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

, (2.24)

where 

  
Ixx = ρwh y2 + z2( )∫∫ dydz , (2.25)

  
I yy = ρwh x2 + z2( )∫∫ dxdz ≈ ρwh z2∫∫ dxdz , (2.26)

  
Izz = ρwh x2 + y2( )∫∫ dxdy ≈ ρwh y2∫∫ dxdy , (2.27)

  
Ixy = I yx = −ρwh xy∫∫ dxdy ≈ 0 , (2.28)

 
I yz = Izy = −ρwh yz∫∫ dydz , (2.29)

  
Ixz = Izx = −ρwh xz∫∫ dxdz ≈ 0 . (2.30)

The details of morphological parameters are list in Table 2.1.  
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Table 2.1. Morphological parameters used for simulation. 

Symbol Description Value 

R wing length 3 mm 

AR aspect ratio 6.19 mm 

 c   mean chord length  0.97 mm 

 h   wing thickness  4.5×10−4  mm  

 ρw  wing mass density 1200  kg m−3   

  r̂1   radius of 1st moments of wing area 0.4500 

  r̂2   radius of 2nd moments of wing area 0.5178 

 mw   wing mass  1.6×10−6 g 

 Ixx   moment of inertia of the wing about the  axes  
 6.77 ×10−6 g mm2  

 
I yy   moment of inertia of the wing about the  axes 

 9.53×10−7 g mm2  

 Izz   moment of inertia of the wing about the  axes 
 5.82×10−6 g mm2  

 
I yz   product of inertia of the wing 

 1.64×10−6 g mm2  

2.4 Blade-Element Model 

Blade-element model assumes that the total instantaneous force on a wing can be 

computed as the sum of forces acting on a set of infinitesimal chordwise strips. The 

forces can be calculated using the quasi-steady aerodynamic model derived from 

dynamically scaled flapping robots (Dickinson et al., 1999). Since the quasi-steady 
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aerodynamic model assumes the aerodynamic performance is independent before and 

after the instant, wing-wing interactions (Weis-Fogh, 1973), wing capture effects 

(Dickinson et al., 1999) and other unsteady phenomena are not included. Another 

approach for calculation of forces on wings is computational fluid dynamics (CFD) (Mao 

and Tang, 2002a). By solving three-dimensional incompressible unsteady Navier-Stokes 

equations numerically, CFD gets the solution of unsteady aerodynamic forces. However, 

CFD is computationally costly and can only be carried out with known wing kinematics.

The chief advantage of blade-element model is its simplicity and rapid computation. It

captures the primary dynamic properties of the system, and provides a feasible method to 

perform studies that require a large number of evaluations of some flight characteristic.

Therefore it is widely used in parameters studies, such as flight control (Hedrick and 

Daniel, 2006), energy minimization (Berman and Wang, 2007) and preliminary design of 

flapping-wing micro air vehicle (Cheng, et al. 2013). 

In blade-element model, the instantaneous forces generated by a thin, flapping wing 

may be represented as the sum of four force components: 

  Faero = Ftran + Frot + Fam + Fwc , (2.31)

where   Ftran  is the translational force,   Frot is the rotational force,   Fam  is the force due to 

the inertia of the added mass of the fluid, and   Fwc  is the force created by wake capture. 

Translational force estimates are quasi-steady approximations adapted from thin airfoil 

theory (Dickinson, et al., 1999.). Rotational lift can be explained in terms of the added air 

circulation induced by the rotation of the wing around its axis (Sane and Dickinson, 

2002.). The added air mass force is generated by the inertia of the airflow generated by 
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unsteady wing motion. As the wing translates, it generates airflow in the same direction 

and any change in the wing’s motion causes the airflow to impart a moment on it thereby 

inducing rotation (Sedov, 1965.). This force is hard to approximate analytically in three-

dimensional fashion, therefore it is omitted from the dynamical model. The wake capture 

effect is an unsteady phenomenon occurring when the wing traverses vortices and air 

circulation generated by its motion prior to the direction change. As the wake capture 

effect cannot be modeled using the quasi-steady aerodynamic model, this force is not 

included in any calculations below. It should be noted that the obtained results from 

quasi-steady aerodynamic model are underestimated. In the following calculation, we 

consider two force components estimated from quasi-static aerodynamic model, and 

Equation 2.31 is simplified to: 

  Faero = Ftran + Frot . (2.32)

Aerodynamic forces and moments acting on a wing section are functions of local wing 

velocity and local angle of attack (AoA) α . The local wing velocity is (ignore the

spanwise velocity) 

  vlocal = ω xex +ω zez( )× r ey = −r ω zex + r ω xez . (2.33)

Components of the local wing velocity along x direction and z direction can be written as 

 vx r( ) = −rω z   (2.34)

and 

 vz r( ) = rω x . (2.35)

Local angle of attack  is defined as the angle between the wing chord and the 

direction of local velocity (Figure 2.3), which is given by 

α
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,

 (2.36)

where  

. (2.37)

                       

                      
Figure 2.3. An illustration of wing’s local angle of attack. Wing cross sections are 
portrayed. These lines represent the wing chord, and the dots represent the leading edges. 
Four different cases of local angle of attack are shown. Case (I) is   vx (r) > 0  and 

vz (r) > 0 . Case (II) is vx (r) < 0  and   vz (r) > 0 . Case (III) is   vx (r) < 0  and   vz (r) < 0 . Case 

(IV) is   vx (r) > 0  and   vz (r) < 0 . 

  

α =

π
2
− β vx r( ) > 0 and vz r( ) > 0

− π
2
+ β vx r( ) < 0 and vz r( ) > 0

3π
2

+ β vx r( ) < 0 and vz r( ) < 0

π
2
− β vx r( ) > 0 and vz r( ) < 0

⎧

⎨

⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪

  
β = atan2 vz r( ), vx r( )⎡⎣ ⎤⎦

α

β

α

β

α

β

α

β
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2.4.1 Translational Force 

The local translational force   dFtran r( )  acting on a wing section at spanwise location r

is decomposed into drag and lift components, which is given by 

  dFtran r( ) = dFD r( ) + dFL r( ) , (2.38)

where   dFD r( )  and   dFL r( )  are drag and lift components. We denote   etran r( )  as the unit 

vector of the direction of the translational force. The drag is defined along the opposite 

direction of the local wing velocity, and the direction of the lift is orthogonal, as shown in 

Figure 2.4. The unit vector of the direction of drag can be written as 

  
eD r( ) = −

vlocal r( )
vlocal r( ) . (2.39)

The unit vector of the direction of lift is 

, (2.40)

where 

. (2.41)

Next, the drag and the lift are given by (Dickinson et al., 1999): 

 r( )  (2.42)

(2.43)

  
eL r( ) = −Ry γ( ) vlocal r( )

vlocal r( )

γ =
− π

2
vx r( ) > 0

π
2

vx r( ) < 0

⎧

⎨
⎪⎪

⎩
⎪
⎪

   
dFD r( ) = 1

2
CD α( )ρairc r( )dr vlocal r( ) 2

eD

= 1
2

CD α( )ρairc r( )r 2dr ω x
2 +ω z

2( )eD r( ),
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(2.44)

(2.45)

(A) 

 
(B) 

 
Figure 2.4. An illustration of translational forces. Wing cross sections are portrayed. 
These lines represent the wing chord, and the dots represent the leading edges. Case (A) 

is   vx (r) > 0 . Case (B) is   vx (r) < 0 . 

dFL r( ) = 1
2

CL α( )ρairc r( )dr vlocal r( ) 2
eL r( )

= 1
2

CL α( )ρairc r( )r 2dr ω x
2 +ω z

2( )eL r( ),

α

α

α

α
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where  is the air density, that is , and  and  are the 

translational lift and drag coefficients, respectively. Their expressions are given by 

(Dickinson, et al., 1999): 

  CD α( ) = 0.225+1.58sin 2.13α − 7.2( ) ,  (2.46)

  CL α( ) = 1.92−1.55cos 2.04α − 9.82( ) ,  (2.47)

where α  is in degree. Integrating these chordwise strips results in the translational force 

for the wing: 

   
Ftran = dFD r( ) + dFL r( )⎡⎣ ⎤⎦0

R

∫ . (2.48)

The location of the center of pressure of   dFD r( )  and   dFL r( )  at each wing section is 

   rcop,tran r,α( ) = rey − zcop,tran r,α( )ez , (2.49)

where α  is in degree, and   
zcop,tran is the chordwise location of center of pressure (Dickson, 

et al., 2006). It is given by: 

  
zcop,tran r,α( ) = c r( ) d̂cop α( )  (2.50)

and 

  
d̂cop α( ) = 0.82

π
α + 0.05 . (2.51)

Then, drag and lift aerodynamic moments are given by: 

dMD r( ) = rcop,tran r,α( )× dFD r( )  (2.52)

and  

   dML r( ) = rcop,tran r,α( )× dFL r( ) . (2.53)

ρair  1.23×10−6 g mm−6

 CD α( )  CL α( )
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Integrating Equation 2.52 and Equation 2.53 lead to 

   
MD r( ) = d MD r( )

0

R

∫ = rcop,tran r,α( )× dFD r( )
0

R

∫  (2.54)

and 

   
ML r( ) = d ML r( )

0

R

∫ = rcop,tran r,α( )× dFL r( )
0

R

∫ . (2.55)

Finally the translational moment is 

  Mtran = MD + ML . (2.56)

2.4.2 Rotational Force 

The model for rotational forces is that of a thin wing flapping at low α , with the 

rotational forces arising from a coupling of translation and rotation. Experiments (Sane 

and Dickinson, 2002) have shown that the rotational force is a function of the 

instantaneous rotation rate and the location of the rotational axis. The rotational force on 

the wing has the form 

   
dFrot = Crotρair vlocal r( ) ω y c r( )2

dr , (2.57)

where  is the rotational coefficient. Its expression is given by (Sane and Dickinson, 

2002): 

, (2.58)

where is a non-dimensional term defined by the position of the axis of rotation. The 

leading edge corresponds to a value of 0, whereas the trailing edge corresponds to a value 

of 1. A value of 0.75 represents the critical axis around which the wing generates no force 

 Crot

  Crot = π 0.75− ẑ0( )

  ẑ0
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as it rotates. In our model, the rotational axis is along the leading edge, and . The 

rotational force acts perpendicular to the wing surface. The direction of the unit vector of 

the rotational force is illustrated in Figure 2.5, and it has the form: 

. (2.59)

 

 

Figure 2.5. An illustration of rotational forces. Wing cross sections are portrayed. These 
lines represent the wing chord, and the dots represent the leading edges.  

  ẑ0 = 0

  
erot = sign ω y( )ex

ωy
ωy

ωy
ωy
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Finally, the rotational force is given by  

   
dFrot = Crotρair vlocal r( ) ω y c 2R r̂

0

1

∫ ĉ r̂( )2
dr̂ erot . (2.60)

The rotational force, describe previously, is included in the calculation of 

aerodynamic forces, but not included in the calculation of aerodynamic moments. The 

primary reason is that there are no direct measurements of the center of pressure of these 

rotational forces. The prediction of rotational moment could not be realized. Future 

investigations are needed for calculation of the center of pressure of these rotational 

forces. 

2.4.3 Rotational Damping Moment 

Whitney and Wood (2010) have found that the translational and rotational 

aerodynamic forces failed to predict a rotational damping moment exerted on the wing. 

To calculate this moment, the relative velocity due to rotation of the wing is considered. 

The relative air velocity is zero at the rotational axis that is along the leading edge, and 

increases away from it, as shown in Figure 2.6. The rotational damping force has the 

form: 

, (2.61)

where  is the rotational damping force coefficient. Andersen et al. (2005) used a value 

of 2, because this is the theoretical result of rotational drag on a flat plate subjected to 

normal flow. This value here is taken to be 5, as experiments (Whitney and Wood, 2010) 

   
d 2Frd r, z( ) = − 1

2
Crdρair ω y ω ydr z z dz ex

 Crd
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demonstrate that this value led to the best agreement between measured and predicted 

passive-rotation trajectories. 

 

Figure 2.6. Relative velocity profile by the pure rotation of the wing. Wing cross sections 
are portrayed. These lines represent the wing chord, and the dots represent the leading 
edges.  

The acting point of the rotational damping force is 

  rrot r( ) = rey + zez . (2.62)

We then have the rotational damping moment: 

   d
2Mrd r, z( ) = rrot r( )× d 2Frd r, z( ) . (2.63)

Integrating Equation 2.63 leads to 

   
Mrd = rrot r( )× d 2Frd r, z( )

−c r( )
0

∫0

R

∫ = Mrd
y ey + Mrd

z ez . (2.64)

ψ

ωy
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2.5 Equation of Motion 

The insect wing is modeled as a rigid body with three Euler angle. In the wing-fixed 

coordinate system oxyz, the equations of motion of the wing can be written as 

   I ⋅ωω +ω × Ι ⋅ω = Maero + Mgravity + Mspring + M input , (2.65)

where the first term and the second term   I ⋅ωω +ω × Ι iω  are the inertial moment. The 

aerodynamic moment   Maero  is given by 

  Maero = Mtran + Mrd . (2.66)

The gravity moment  is given by 

, (2.67)

where is denoted as the vector of center of mass in the wing-fixed coordinate system

oxyz and  is denoted as the gravity.  is given by 

, (2.68)

where mm, and mm.  is given by 

, (2.69)

where g = 9.81 m/s2. 

Substituting all the know quantities into Equation 2.65, we obtain the following 

nonlinear ordinary differential equations (ODEs): 

    

Ixxω x + Izz − I yy( )ω yω z + I yz ω y
2 −ω z

2( ) = ex ⋅Mgravity + ex ⋅Maero

+ex ⋅ kφφ e ′′z + kθθ e ′x + kψψ ey( ) + ex ⋅ Mmax cos 2π f t( )e ′′z ,
  (2.70)

  Mgravity

  Mgravity = rg × Fg

  rg

  Fg   rg

  rg = rcomey − ccomez

  rcom = 1.5   ccom = 4.85
  Fg

  Fg = mwg eZ
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I yyω y + I yzω z + Ixx − Izz( )ω xω z − I yzω xω y = ey ⋅Mgravity + ey ⋅Maero

+ey ⋅ kφφ e ′′z + kθθ e ′x + kψψ ey( ) + ey ⋅ Mmax cos 2π f t( )e ′′z ,
  (2.71)

    

Izzω z + Izyω y + I yy − Ixx( )ω xω y + Izyω xω z = ez ⋅Mgravity + ez ⋅Maero

+ez ⋅ kφφ e ′′z + kθθ e ′x + kψψ ey( ) + ez ⋅ Mmax cos 2π f t( )e ′′z .
  (2.72)

2.6 Dimensional Analysis 

After we get the equation of motion, dimensional analysis is used to reduce the 

number of variables and to get an insight into the possible mathematical structure of this 

oscillatory system. In Equation 2.65, the independent variable is time t, and the 

dependent variables are φ , θ  and ψ . Then we replace each of them with a quantity 

scaled. We set 

  
t = t̂

f
, (2.73)

 φ = 2π φ̂ , (2.74)

 θ = 2π θ̂ , (2.75)

 ψ = 2π ψ̂ . (2.76)

where f is the driving frequency of the input torque in Equation 2.10. Equation 2.54, 2.55, 

2.64 and 2.66 show 

   Maero ∝ωω 2 . (2.77)

Substituting Equations 2.73 – 2.76 into Equations 2.70-2.72 and simplifying, we have the 

non-dimensional ODEs: 
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ω̂ x +
2π Izz − I yy( )

Ixx

ω̂ yω̂ z +
2π I yz

Ixx

ω̂ y
2 −ω̂ z

2( )
= 1

2π Ixx f 2 ex ⋅Mgravity +
2π
Ixx

ex ⋅ M̂aero

+ 1
Ixx f 2 ex ⋅ kφφ̂ e ′′z + kθθ̂ e ′x + kψψ̂ ey( ) + 1

2π Ixx f 2 ex ⋅ Mmax cos 2π t̂( )e ′′z ,

  (2.78)

    

I yy

Ixx

ω̂ y +
I yz

Ixx

ω̂ z +
2π Ixx − Izz( )

Ixx

ω̂ xω̂ z −
2π I yz

Ixx

ω̂ xω̂ y =

1
2π Ixx f 2 ey ⋅Mgravity +

2π
Ixx

ey ⋅ M̂aero

+ 1
Ixx f 2 ey ⋅ kφφ̂ e ′′z + kθθ̂ e ′x + kψψ̂ ey( ) + 1

2π Ixx f 2 ey ⋅ Mmax cos 2π t̂( )e ′′z ,

  (2.79)

Izz

Ixx

ω̂ z +
Izy

Ixx

ω̂ y +
2π I yy − Ixx( )

Ixx

ω̂ xω̂ y +
2π I yz

Ixx

ω̂ xω̂ z =

1
2π Ixx f 2 ez ⋅Mgravity +

2π
Ixx

ez ⋅ M̂aero

+ 1
Ixx f 2 ez ⋅ kφφ̂ e ′′z + kθθ̂ e ′x + kψψ̂ ey( ) + 1

2π Ixx f 2 ez ⋅ Mmax cos 2π t̂( )e ′′z .

  (2.80)

The expressions of    M̂aero  can be found in Appendix A. From Equation 2.78-2.80, four

coefficients can be obtained to represent the dynamic property of the system. They are 

stroke stiffness coefficient, deviation stiffness coefficient, rotation stiffness coefficient

and input torque coefficient, which are given by 

  
k̂φ =

kφ
Ixx f 2 , (2.81)

  
k̂θ =

kθ
Ixx f 2 , (2.82)
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k̂ψ =

kψ
Ixx f 2 , (2.83)

  
M̂max =

Mmax

2π Ixx f 2 . (2.84)

From Equation 2.78-2.80, it can be seen that motions at Euler angles φ , θ  and ψ  are 

coupled. The motion at the stroke angle contributes to inertial torques at the rotation 

angle and at the deviation angle and vice versa. 

2.7 Lift-to-Weight Ratio and Forces Coefficients 

The total lift on the wing is calculated by transforming the aerodynamics force   Faero

back into the inertial coordinate frame, in which   ez  is the unit vector in the vertical 

direction. We define  FZ  as the magnitude of   ez  component of the total force that is given

by

  Fz = Faero ⋅eZ . (2.85)

In order to make a non-dimensional measure of the vertical force on an insect, we will 

subsequently quantify an insect’s lift by , lift-to-weight ratio, which is given by 

  
L =

2FZ

mg
, (2.86)

where  Fz  is the average value of aerodynamic lift  during one wingbeat, and m is the 

total weight of the insect. If   L ≥1 , the insect is able to produce enough lift to fly.

Aerodynamic forces are quantified in the similar way. Aerodynamic force coefficients are 

given by 

 FZ
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CF ,aero =

2Faero ⋅eZ

mg
, (2.87)

   
CF ,tran =

2Ftran ⋅eZ

mg
, (2.88)

   
CF ,rot =

2Frot ⋅eZ

mg
. (2.89)

2.8 Hovering Efficiency 

Power loading and disk loading are widely used as direct indicators of the lift thrust 

efficiency and the power consumption in a hovering helicopter (Leishman, 2006). Disk

loading of a hovering helicopter is the ratio of its weight to the total main rotor disc area. 

It is determined by dividing the total helicopter weight by the rotor disc area, which is the 

area swept by the blades of a rotor. The disk loading can be defined as 

 
DL =

FZ

Ae

, (2.90)

where  Ae  is denoted as the effective disk area. It is defined as the projected swept area of 

the lifting surfaces in the horizontal plane. For a flapping wing concept, the effective disk 

area is defined on the basis of the net swept area in the stroke plane over one complete 

wing stroke (Ellington, 1984b). So we have 

  Ae = ΦR2 , (2.91)

where Φ  is the magnitude of the stroke angle during one flapping motion. The higher the

disk loading, the more power needed to maintain the speed of the flapping motion. 

Helicopters and other rotorcraft are generally designed to hover with the lowest possible 
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power required (and hence lowest fuel burn) for a given gross weight, that is a high 

power loading is required (Leishman, 2006). The input power required to drive the wing 

is given by 

   
Pinput = Mmaxcos 2π f t( )φ . (2.92)

The power loading can be defined as: 

 
PL =

Fz

Pinput

. (2.93)

PL  is denoted as the average value of the power loading during one wing beat. 

2.9 Stroke Cycle 

We use stroke cycle to represent the wing’s position during one wingbeat. The stroke 

cycle is defined as: 

, (3.1)

where  is denoted as the non-dimensional time in the nth wing beat when the stroke 

angle reach the minimum value, and  is the non-dimensional time ranged between 

 and .  is the non-dimensional period from  to . That is 

. The stroke cycle is less than 0.5, representing the wing is in the 

downstroke, and it is in the range of 0.5 to 1 for the upstroke.  

  
τ =

t̂n − t̂φ ,min,n

t̂c

  
t̂φ ,min,n

  ̂tn

t̂φ ,min,n   
t̂φ ,min,n+1   ̂tc   

t̂φ ,min,n   
t̂φ ,min,n+1

t̂c = t̂φ ,min,n+1 − t̂φ ,min,n
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CHAPTER 3. SIMULATION OF FLAPPING WINGS 

In this chapter, a dynamic simulation is set up. Solutions of non-dimensional ODEs 

are solved by ode45 in MATLAB. To calculate lift-to-weight ratios and power loadings,

we take data for the fruit fly from Weis-Fogh (1973), which were derived from studies of 

tethered flight (Vogel, 1966). Insect mass was 2 mg and the flapping frequency was 240 

Hz. Finally a large parametric space is explored to predict how the wing trajectory 

change as stiffness coefficients change. The results also identify the wing trajectory 

pattern that may be considered better aerodynamic performance. 

3.1 Numerical Simulation of Nonlinear Differential Equations 

We use MATLAB’s nonstiff ode45 solver to solve ODEs numerically. Ode 45 solve 

is based on an explicit Runge-Kutta formula (Dormand and Prince, 1980). Other solvers, 

such as nonstiff ode23, nonstiff ode113 and stiff ode15s, are also implemented in the 

simulation, and they return numerical results within relative tolerances of  10−5 . The state 

vector in ode 45 is  

  
xode = φ θ ψ ω x ω y ω z

⎡
⎣⎢

⎤
⎦⎥

T

. (3.2)

The initial condition of the state vector    xode, initial  is 
  0 0 0 0 0 0⎡⎣ ⎤⎦

T
. The wing 

was positioned vertically at mid-stroke at the initial condition. No input torque ramp-up 
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was simulated, instead, the wing was accelerated from complete still to a steady state 

trajectory by the input torque at full speed. In the simulation, the wing is driven to flap 

for 40 wingbeats. The first 30 wingbeats is for getting rid of the effect from the initial 

condition. The solution for wing’s Euler angles and angular velocities is obtained from 

the simulation results in the last 10 wingbeats. Then, we use the solutions and data for the 

fruit fly to calculate lift-to-weight ratios, power loadings, and aerodynamic force 

coefficients.  An illustration of the simulation process is shown in Figure 3.2. 

Figure 3.1. An illustration of the simulation process. 

3.2 Parameter Space Search 

In this section, we systematically vary rotation stiffness coefficient  and deviation 

stiffness coefficient . Stroke stiffness coefficient and input torque coefficient are 

constant values in parameter space search. Stiffness value of the stoke angle is designed 

Ode45 
solver

Stiffness 
coefficeints,
input torque
coefficient.

Wing 
kinematics

power  loading, 
lift-to-weight
ratio, aerodynamic 
force coeffieints.
Fourier analysis.
Wing trajectory 
plotting.

Data of
the fruit fly

Non-dimensional
equations

  
k̂ψ

  k̂θ
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to achieve its approximate resonant motion. We assume that the wing is only one degree-

of-freedom with stroke angle. Its approximate resonant frequency is given by: 

  
2π f =

kφ
Izz

. (3.3)

Substituting Equation 3.3 into Equation 2.80, stroke stiffness coefficient 
  
k̂φ  becomes 

  
k̂φ =

2π( )2
Izz

Ixx

. (3.4)

From Table 2.1, 
  
k̂φ  = 33.92. All values of  in the range 17-27 could provide energy

for system generating enough lift to fly. Rotation stiffness coefficient  ranges from 2 

to 20, incremented by 2. Deviation stiffness coefficient  ranges from 30 to 2010, 

incremented by 20. Total number of simulated cases in the parameter space is 1000.

Minimum values are selected when the systems couldn’t generate a stable oscillatory 

flapping motion. The maximum value of  is selected when the rotation amplitude is 

less than 10 degrees under the driving of the input torque with a coefficient   M̂max  = 21.

The maximum value of  is selected when the rotation amplitude is less than 4 degrees.  

After we get the simulation results, contour plots are generated using a cubic 

interpolation fitting method. Note that ranges in contour plots are smaller than ranges in 

simulation. Figure 3.2 shows the contour of lift-to-weight ratio and mean power loading

as functions of deviation stiffness coefficient and rotation stiffness coefficient. We can 

see that the area of high lift and high power loading coincide for the parameters spanned 

  M̂max

  
k̂ψ

  k̂θ

  
k̂ψ

  k̂θ
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(a) 

(b) 

Figure 3.2. Contours of lift-to-weight ratio (a) and mean power loading (b) as functions 
of deviation stiffness coefficient and rotation stiffness coefficient. Dark shades indicate 
large values. 
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here. Contours of lift-to-weight ratio and mean power loading can be divided into four 

regions, as shown in Figure 3.3. One (region 1) is where the deviation stiffness 

coefficient  is less than 200 and the rotation stiffness coefficient  is less than 4. 

Lift-to-weight ratios in this region are larger than 1.0, and mean power loadings are about 

0.15. However, the wing shows an erratic wing trajectory. The other one (region 2) is 

where  is between 200 and 600. Almost no lifts are generated in this region, and mean 

power loadings are almost zero. The biggest region (region 3) is where  is between 600 

and 2010 and  is larger than 6. Mean power loadings are about 0.25 s/m and lift-to-

weight ratios are about 1.4. The last one (region 4) is where  is large 1000 and 2010 

and  is less than 6. This region has low lift-to-weight ratios and low mean power 

loadings. 

Figure 3.3. Four regions in contour of lift-to-weight ratio as functions of deviation 
stiffness coefficient and rotation stiffness coefficient. Dark shades indicate large values. 

  k̂θ   
k̂ψ

  k̂θ

  k̂θ

  
k̂ψ

  k̂θ

  
k̂ψ

Deviation Stiffness Coefficient

R
ot

at
io

n 
St

if
fn

es
s 

C
oe

ff
ic

ie
nt

 

 

0 200 400 600 800 1000 1200 1400 1600 1800 2000

2

4

6

8

10

12

14

16

18

20

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6



37 

Table 3.1. Table of stiffness coefficients, lift-to-weight ratio and mean power loading in 

selected cases. 

Symbol R1 R2 R3 R4 

  
k̂φ  

33.92 33.92 33.92 33.92 

  M̂max  
21 21 21 21 

70 210 1410 1800 

2 14 8 4 

 PL  (s/m)
 

0.1573 0.0658 0.3141 0.1350 

 L   
1.35 0.12 1.56 0.59 

Four cases (R1, R2, R3 and R4) are selected from each region, of which stiffness 

coefficients are list in Table 3.1. Wing trajectories of four cases are shown in Figure 3.4. 

Wing kinematics and aerodynamic force coefficients are plotted in Figure 3.5. We can 

see that only the wing in case R3 track an acceptable flapping trajectory, and trajectories

in other three cases exhibits erratic. Case R1 has a large lift-to-weight ratio (L = 1.35), 

but a relative small power loading. The rotation angle exceeds 120 degrees and the 

deviation angle is between 17.3 and 49 degrees, due to the low rotation stiffness 

coefficient and the low deviation stiffness coefficient. Aerodynamics lift is positive at the 

beginning of the upstroke and the downstroke, and it is negative near the end of the 

upstroke and the downstroke. However, this pattern hasn’t been reported by biology 

  k̂θ

  
k̂ψ
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(a) (b) 

 

Downstroke Downstroke 

 

Upstroke Upstroke 

 

Figure 3.4. Wing trajectories of four cases. Wing cross section snapshots are portrayed 
and spaced 0.025/1 apart over the 40th stroke cycle. These lines represent the wing chord, 
and the dots represent the leading edges. The blue lines indicate the downstroke, and the 
red ones indicate the upstoke.  
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(c) (d) 

 

Downstroke Downstroke 

 

Upstroke Upstroke 

 

Figure 3.4: continued. 
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(a) (b) 

 

(c) (d) 

 

Figure 3.5. Wing kinematics and aerodynamic force coefficient versus stroke cycle 
during 40th stroke cycle. Case R1 is plotted in blue lines. Case R2 is plotted in red lines. 
Case R3 is plotted in green lines. Case R4 is plotted in black lines. The white region 
indicates the downstroke, and the grey region indicates the upstroke. (a) shows stroke 
angle v.s. stroke cycle, (b) shows rotational angle v.s. stroke cycle and (c) shows 
deviation angle v.s. stroke cycle. (d) shows aerodynamic force coefficient v.s. stroke 
cycle. 
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studies. The wing trajectory in Case R2 is non-symmetrical. Figure 3.6 shows wing 

trajectories of case R2 and case R3 from 31th to 40th stroke cycles. Trajectories don’t 

show any stable property. Aerodynamics force is always in the non-effective direction, 

rather than vertically up. The stoke amplitude of case R3 is 72.2 degrees and the rotation 

amplitude is 64.0 degrees. The maximum value of the deviation is 7.9 degrees. As the 

wing maintains an effective AOA, aerodynamic lift is generated during the upstroke and 

the downstroke. When the wing is accelerating, no much force is generated. A peak 

appears near the end of the stroke, and the wing is decelerating. In Figure 3.5(d), the 

aerodynamic lift of case R3 is still above zero even at the beginning and near the end of 

the upstroke and the downstroke. Case R4 has a small rotation stiffness coefficient and a 

large deviation stiffness coefficient. The lift-to-weight ratio is only 0.59, as the wing 

couldn’t have an effect AOA during flapping. It hasn’t been reported by biology studies, 

neither. 

Since the amplitude of the stroke angle has a direct relationship with the generation of 

aerodynamic lift, it is of interest to see how the amplitude of stroke angle changes at the 

stable region. Figure 3.7 shows the contour of amplitude of the stroke angle as functions 

of deviation stiffness coefficient and rotation stiffness coefficient, where  is between 

610 and 2000. Other contours of amplitude of the stroke angle, the rotation angle and the 

deviation angle where  is between 30 and 2010 and  is between 2 and 20 are in 

Appendix B. We can see that the area of high lift and large amplitude coincide for the 

parameters spanned. The amplitude is larger than 75 degrees, when  is larger 1600 and 

is between 6 and 10. 

  k̂θ

  k̂θ   
k̂ψ

  k̂θ

k̂ψ
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(a) (b) 

 

Figure 3.6. Wing trajectories portrayed from 31th to 40th stroke cycles. The dots 
represent the leading edges. (a) shows case R2. (b) shows Case R3. 

Figure 3.7. Contours of amplitude of the stroke angle as functions of deviation stiffness 
coefficient and rotation stiffness coefficient. Dark shades indicate large values. 

It is summarized that (1) a low deviation stiffness coefficient and a low rotation 

stiffness coefficient show erratic wing trajectories; (2) The case with a high deviation 

stiffness coefficient and a mediate rotation stiffness coefficient can produce sufficient lift 
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to support the weigh while achieving higher power loading. Its wing trajectory is close to 

the wing trajectory in actual insect.  
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CHAPTER 4. OPTIMIZATION OF FLAPPING WINGS 

Given the dynamic model of the oscillation system described in the previous sections, 

we optimize stiffness coefficients of torsional springs. We first introduce the optimization 

algorithm, a hybrid algorithm of a genetic algorithm and a Nelder-Mead simplex 

algorithm. Then two different categories are investigated. Category A includes two 

optimization parameters, which are stroke stiffness coefficient , and rotation stiffness 

coefficient . In this situation, deviation stiffness coefficient  is set 50000 to limit the 

motion in the deviation angle. Category B considers the effect of the deviation angle, 

where optimization parameters are ,  and . We denote x as the state vector in 

optimization. n is the number of variables in x. For category A, 
   
x = k̂φ k̂ψ k̂θ

⎡
⎣⎢

⎤
⎦⎥

T

and n = 3. For category B, 
   
x = k̂φ k̂ψ

⎡
⎣⎢

⎤
⎦⎥

T

 and n = 2. Input torque coefficient   M̂max  is 

varied from 17 to 27. Compared these two categories, we can get an insight of how 

different wing trajectories are generated and figure out what kind of wing trajectories

patterns achieves a higher hovering efficiency. 

  
k̂φ

  
k̂ψ   k̂θ

  
k̂φ   

k̂ψ   k̂θ
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4.1 Optimization Technique 

Classical algorithms, such as gradient methods, Newton’s method, conjugate gradient 

methods and quasi-Newton methods are not suitable in this situation, as it is difficult to

calculate the derivatives. The genetic algorithm and the Nelder-Mead simplex algorithm, 

which use only objective function values and do not require derivatives, are applicable to 

this optimization problem. The optimization procedure is a hybrid of these two 

algorithms. The genetic algorithm is started with a population of parameter sets that are 

then evolved to be grouped in a globally minimal basin. The genetic algorithm can reach 

the region near an optimum point relatively quickly, but it may be take many function 

evaluations to achieve convergence. To avoid this situation, the genetic algorithm is run 

for a small number of generations to get near the optimum point. The solution from the 

genetic algorithm is not global optimum, and it is then used as an initial point for the 

Nelder-Mead simplex algorithm that is faster and more efficient for the local search of 

the basin. We validate all of the results by multiple runs of the algorithm. 

As presented above, biology studies have found that the stiffness of the system could 

be changed somewhat by the action of small accessory muscles in the thorax (Nachtigall 

and Wilson, 1967; Josephson, 1981; Tu and Dickinson, 1996). Stiffness coefficients of 

each Euler angle, which are , and , are chosen as optimization parameters. The 

ranges of , and  are shown in Table 4.1. They are selected based results in 

Section 3.2. The problem also is constrained by the physical limitations on the parameters 

listed in Table 4.1. A wide range is available to the insect under these constraints, and a 

selection of possible wing kinematics is shown in Figure 4.1. 

  
k̂φ   

k̂ψ   k̂θ

  
k̂φ   

k̂ψ   k̂θ
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Table 4.1. Table of optimized parameters and their ranges. 

Symbol Description Min Max 

stroke stiffness coefficient 20 200 

  k̂θ
deviation stiffness coefficient 30 7000 

  
k̂ψ rotation stiffness coefficient 2 50 

 
φ

max  
 stroke amplitude 0  π 2  

 
θ

max  
deviation amplitude 0  π 2  

 
ψ

max  
rotation amplitude 0  π 2  

The objective function is defined to find the minimum of the power usage while the 

wing still produce enough lift to maintain hovering flight. It should be note that the 

objective function in the genetic algorithm is different from the one in the Nelder-Mead 

simplex algorithm. The genetic algorithm could effectively handle the discontinuous 

function, but it would become very slowly convergent when facing the function with 

nonlinear inequality constraints. The Nelder-Mead simplex algorithm couldn’t handle this 

unconstrained and discontinuous optimization, especially if the solution occurs near the 

discontinuity. Therefore different objective functions are designed for the genetic 

algorithm and the Nelder-Mead simplex algorithm to increase the efficiency of the hybrid 

algorithm. 

  
k̂φ
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Figure 4.1. A selection of possible wing kinematics. Wing cross section snapshots are 
portrayed and spaced 0.025/1 apart over the one stroke cycle. These lines represent the 
wing chord, and the dots represent the leading edges. The blue lines indicate the 
downstroke, and the red ones indicate the upstoke.  
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Considering the constraints, the optimization in the genetic algorithm is converted 

into a more tractable problem by defining the objective function,  
fga  by: 

  
fga = −PL+ χΘ 1− L( ) + χΘ ζ − Maxζ( )

ζ∈γγ
∑ + χΘ Minζ −ζ( )

ζ∈γ
∑   (3.5)

where Θ ( )  is the Heaviside step function, that is a discontinuous function whose value 

is one for positive argument and zero for negative argument. ζ  is in parameters set γγ . 

From Table 4.1, we have 
  
γγ = φ

max
, ψ

max
, θ

max{ } . Note that γγ  is not a set of 

optimization parameters, but results from ode45 solvers.  
Maxζ  is denoted as the 

maximum value of ζ , and  
Minζ  is denoted as the minimum value of . χ  is positive, 

real parameters which specify the strength of the penalty for violating the lift and 

physical constraints. We set χ  = 2000. The results from the genetic algorithm suggest

that the optimal motions are that they produce just above enough lift to hover L = 1, 

which is near the edge of the discontinuity in the Heaviside step function. Therefore we 

couldn’t use the same object function in the next optimization phase. For the Nelder-

Mead simplex algorithm, the optimization problem should be continuous in the space. 

The objective function is defined as: 

 fNM = −PL   (3.6)

with the lower bound constraint 

 
Minζ ≤ζ   (3.7)

and the nonlinear inequality constraint: 

  L ≥1 . (3.8)

ζ
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The reason to choose the lower bound constraints instead of the dual bound constraints 

will be discussed in Section 4.3. The detail of how to setup the genetic algorithm and the 

Nelder-Mead simplex algorithm are present in the following section. 

4.2 Genetic Algorithms Setup 

A genetic algorithm (GA) is a method for solving both constrained and unconstrained 

optimization problems based on a natural selection process that mimics biological 

evolution. The beginning of genetic algorithms is credited to John Holland, who 

developed the basic ideas in the late 1960s and early 1970s. Since its conception, genetic 

algorithms have been used widely as a tool in computer programming and artificial 

intelligence (Holland, 1992; Kora, 1992; Mitchell, 1996), optimization (Davis, 1987; 

Jang, et al., 1997; Then and Chong, 1994), neural network training (Kozek, 1993), and 

many other areas. The genetic algorithm differs from classical algorithms, such as 

Newton’s method and gradient method, in several respects. First, it doesn’t use 

derivatives of the objective function. Second, it uses operations that are random at each 

iteration. Third, it searches from a set of points rather than a single point. 

Suppose that we wish to solve an optimization problem that is to find the minimum 

value of   fga x( ) , where  x ∈Ω . In category A, 
   
x = k̂φ k̂ψ

⎡
⎣⎢

⎤
⎦⎥

T

, and in category B, 

x = k̂φ k̂ψ k̂θ
⎡
⎣⎢

⎤
⎦⎥

T

. The process of genetic algorithms is shown as follows. We start 

with an initial set of points in Ω , denoted   P 0( ) , called the initial population. We then 

evaluate the objective function at points in   P 0( ) , and create a new set of points   P 1( ) . At 
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each step, the genetic algorithm selects individuals from the current population  P k( )
based on the notion of “survival of the fittest”, and uses operations, called crossover and 

mutation, to produce the next generation   P k +1( ) . The purpose of the crossover and 

mutation operation is to create a new population with an average objective function value 

that is higher than that of the previous population. Over successive generations, the

population evolves toward an optimal solution. In the following section, we discuss the 

details of the algorithm. 

The first step is the identification of appropriate representation scheme including the 

choice of chromosome length, alphabet and encoding. The genetic algorithm does not 

work directly with points in the set , but rather with an encoding of points in . We 

need to map  onto a set consisting of string of symbols, all of equal length. These 

strings are called chromosomes. Each chromosome consists of elements from a chosen 

set of symbols, called the alphabet. The chromosomes are chosen as binary strings, and 

the alphabet is the set  0,1{ } . We denote by  
Lga  the length of chromosome (i.e., the 

number of symbols in the strings). The default data type in MATLAB is double-precision 

binary floating-point that is 64 bits. We set the relative tolerances of all parameters  10−7

in the genetic algorithm and use a simple binary representation scheme with length  = 

32n. 32 bits of each chromosome encode one optimization variable. The interval

20, 200⎡⎣ ⎤⎦  for ,  2, 50⎡⎣ ⎤⎦  for  and  30, 7000⎡⎣ ⎤⎦  for  are mapped onto the interval

0, 232 −1⎡⎣ ⎤⎦  via a simple translation and scaling, respectively. The integers in the interval 

 
Lga

  
k̂φ   

k̂ψ   k̂θ



51 

are then expressed as binary 32-bit strings. This defines the encoding of each 

component 
  
k̂φ ,   k̂θ  and 

  
k̂ψ . The chromosome is obtained by juxtaposing the  32-bit 

strings.  

Once a suitable representation scheme has been chosen, the next step is to define the 

population size. The population size, which we denote by , specifies how many 

individuals there are in each generation. With a large population size, the genetic 

algorithm searches the solution space more thoroughly, thereby reducing the chance that 

the algorithm will return a local minimum that is not a global minimum. However, a large 

population size also causes the algorithm to run more slowly. We choose Nga = 10n . 

Then the first population   P 0( )  of chromosomes is initialized through a random selection 

with a uniform distribution in the range. We then apply the operations of crossover and 

mutation on the population. During each iteration k of the process, we evaluate the fitness

g x k( )( )  of each member   x
k( )  of the population  P k( ) . Note that the fitness function

g x k( )( ) , a fitness measure on the set of chromosomes, is different from the objective 

function 
  
fga x k( )( ) . After the fitness of the entire population has been evaluated, we form 

a new population   P k +1( )  in two stages. The first stage is called selection and the 

second one is called evolution. 

In the first stage, we define the fitness function, and then apply an operation called 

selection. The fitness function is to converts the raw fitness scores that are returned by the 

objective function to values in a range that is suitable for the selection operation. The 

0, 232 −1⎡⎣ ⎤⎦
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selection function uses the scaled fitness values to select the parents of the next 

generations, and assigns a higher probability of selection to individuals with higher 

scaled values. The range of the scaled values affects the performance of the genetic 

algorithm. If the scaled values vary too widely, the individuals with the highest scaled 

values reproduce too rapidly, taking over the population pool too quickly, and preventing 

the genetic algorithm from searching other areas of the solution space. On the other hand, 

if the scaled values vary only a little, all individuals have approximately the same chance 

of reproduction and the search will progress very slowly. 

The fitness scaling function, called rank method, is applied here, which scales the raw 

scores based on the rank of each member instead of its score. We get 

    

g x k( )( ) =
1
r

1+ 1
2
+ + 1

n

N , (3.9)

where r is the rank of the member in the sorted scores. The scaled score of the most fit 

member is proportional to 1, the scaled score of the next most fit is proportional to  1 2 , 

and so on. A member with rank r has scaled score proportional to   1 r . The sum of the 

scaled values over the entire population equals the number of the population size. Rank 

fitness scaling removes the effect of the spread of the raw scores from the objective 

function.  

The selection scheme called roulette-wheel scheme is applied in our optimization 

problem. A set  M k( ) , called the mating pool with N elements, is formed from  P k( )
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using a random procedure as follows: Each point m k( )  in  M k( )  is equal to x k( )  in  P k( )
with probability 

    

Pmating m k( )( ) =
1
r

1+ 1
2
+ + 1

n

. (3.10)

This means that chromosomes are selected into the mating pool with probabilities 

proportional to their fitness values. 

In the second stage we apply the crossover and mutation operations. The crossover 

operation takes a pair of chromosomes, called the parents, and gives a pair of offspring 

chromosomes. The operation involves exchanging substrings of the two parent 

chromosomes. Pairs of parents for crossover are chosen form the mating pool randomly, 

such that the probability that a chromosome is chosen for crossover is  pc . Here we set

pc = 2 N ga . Additionally, we assume that whether or not a given chromosome is chosen 

is independent of whether or not any other chromosome is chosen for crossover. A 

chromosome can be selected more than once as a parent, in which case it contributes its 

string to more than one child.  

Once the pairs of the parents for crossover have been determined, the crossover 

operation is applied. There are many types of possible crossover operations. The one we 

used here is the scattered crossover (Goldberg, 1989). A random binary vector is created 

according to a uniform distribution. The first substring is selected where the vector is a 1 

from the first parent, and the second substring is selected where the vector is a 0 from the 

second parent.  The first child is formed through combining these two substrings. Two
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left substrings form the second child. For example, p1 and p2 are parents and c1 and c2 

are children. Parents are 

  p1= A B C D⎡⎣ ⎤⎦ , (3.11)

  p2 = a b c d⎡⎣ ⎤⎦ . (3.12)

If the random binary vector is  1 0 1 1⎡⎣ ⎤⎦ , the first child is given by 

  c1= A b C D⎡⎣ ⎤⎦ . (3.13)

The second child is 

  c2 = a B c d⎡⎣ ⎤⎦ . (3.14)

After the crossover operation, we replace the parents in the mating pool by their offspring. 

In this way, the mating pool has been modified but maintains the same number of 

elements. 

Next, we apply the mutation operation, which takes each chromosome from the 

mating pool and randomly changes each symbol of the chromosome with a given 

probability  pm . In the case of the binary alphabet, this change corresponds to 

complementing the corresponding bits; that is, we replace each bit with probability  pm

from 0 to 1, or vice versa. Typically, the value of  pm  is very small. We choose   pm = 0.01 . 

We can see that only a few chromosomes will undergo a change due to mutation, and of 

those that are affected, only a few of the symbols are modified. The mutation operation 

plays only a minor role in the genetic algorithm relative to the crossover operation. 
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After the selection and evolution stages, the final  M k( )  is the new population

P k +1( ) . We then repeat the procedure of selection, crossover and mutation, iteratively 

until the stopping criterion is met. Two stopping criterions are implemented, and the 

genetic algorithm would stop when either one is satisfied. On stopping criterion is to stop 

when the fitness for the best-so-far chromosome does not change significantly from 

iteration to iteration. The tolerance is set to  10−8 . The other criterion is to stop when the 

algorithm reaches the maximum number of iterations, which is 50 here.  

Overall, the genetic algorithm iteratively performs the operations of crossover and 

mutation on each population to produce a new population until a chosen stopping 

criterion is met. A flowchart illustrating the genetic algorithm is shown in Figure 4.2. It is 

summarize as follows: 

1. Set   k := 0 . Generate an initial population  P k( ) . 

2. Evaluate  P k( ) . 

3. Scale the evaluation. 

4. If the stopping criterion is satisfied, then stop. 

5. Select  M k( ) from  P k( ) . 

6. Evolve  M k( )  to form   P k +1( ) . 

7. Set   k := k +1 , go to step 2. 
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Figure 4.2. Flowchart for the genetic algorithm. 

4.3 Nelder-Mead Simplex Algorithm Setup 

The method originally proposed by Spendley, Hext, and Himsworth (1962) was 

improved by Nelder and Mead (1965) and it is now commonly referred to as the Nelder-
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No
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Stop
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M(k)

Evolution

Fitness 
scaling

P(k+1)

k :=k+1
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Mead simplex algorithm. A contemporary view of the algorithm is provided by Lagarias 

et al. (1998). 

The Nelder-Mead simplex algorithm is a derivative-free method that uses the concept 

of a simplex. In category A, 
   
xi = k̂φ k̂ψ

⎡
⎣⎢

⎤
⎦⎥

T

. In category B, 
   
xi = k̂φ k̂ψ k̂θ

⎡
⎣⎢

⎤
⎦⎥

T

. A 

simplex is a geometric object determined by an assembly of n+1 points,   x0 ,   x1 ,  ,   xn , 

in the n-dimensional space such that 

    
det x0 x1 xn

1 1 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
≠ 0 . (3.15)

This condition ensures that two points in  R  do not coincide, three points in   R2  are 

not collinear, four points in   R3  are not coplanar, and so on. Thus, the simplex is a line 

segment in  R , in   R2  it is a triangle, while a simplex in   R3  is a tetrahedron; in each case 

it encloses a finite n-dimensional volume. 

We now present how to modify the simplex stage by stage. First, a transformation of 

the variable is built to implement lower and upper bound constraints. After getting the 

unconstraint variables in the new space, we setup the optimization engine, which is the 

simplex modification. Then general linear inequality constraints and nonlinear inequality 

constraints are implemented as penalty functions, to make sure that the objective function 

would never be evaluated outside of the supplied constraints. 

We begin by implementing lower and upper bound constraints by the careful use of 

transformations of the variables. The idea is to insert a wrapper function about the 

original objective function. There are several classes of bound constraints we might 

consider. They are lower bound constraints 
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  xmin ≤ xi , (3.16)

upper bound constraints 

  xi ≤ xmax , (3.17)

and dual constraints 

  xmin ≤ xi ≤ xmax , (3.18)

where   xmin  is the vector of minimum values   xi  can achieve, and   xmax  is the vector of 

maximum values. The bounded variables are transformed such that the simplex 

modification handles a fully unconstrained problem. Difference transformation functions 

can be designed here. In the case of a variable bounded on the lower end by  xmin , we 

choose to use the transformation 

    xi = xmin + xi
2 , (3.19)

where variable    xi  is fully unconstrained and is always non-negative. Likewise, a pure 

upper bound constraint is implemented as 

    xi = xmax − xi
2 . (3.20)

Clearly, xi  can never rise about   xmax . The dual bounded variable is handled by a 

trigonometric transformation: 

    
xi = xmin +

1
2

sin xi( ) +1( ) xmax − xmin( ) . (3.21)

In this case, we enforce the requirement that   xmin ≤ xi ≤ xmax . An artifact of the 

transformations used here is the creation of multiple solutions to a problem that at one 

time may well have had a unique solution. While the presence of multiple local solutions 
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is often a problem for an optimizer, each of these introduced solutions is fully equivalent.

It maybe not matter which one is found in the last. To alleviate this problem, we only 

consider the lower bound constraints in the Nelder-Mead simplex algorithm and 

implement Equation 4.11. 

We next select the initial set of n+1 points that are to form the initial simplex. A way 

to set up a simplex is to start with an initial point and generate the remaining points of the 

initial simplex as follows (Jang et al. 1997): 

    xi = x0 + λiei , (3.22)

where    i = 0,1, , n  and   ei  are unit vectors the natural basis of  Rn . The positive constant 

coefficients  λi  are selected in such a way that their magnitudes reflect the length scale of 

the optimization problem. We choose   λi = 0.05 . 

Next, we evaluate  fNM  at each point    xi , and order the n+1 vertices from lowest 

function value to highest 

    fNM p0( ) ≤ fNM p1( ) ≤ ≤ fNM pn( ) , (3.23)

where     p0 , p1, , pn  is a order list for each simplex. In category A, 
   
pi = k̂φ k̂ψ

⎡
⎣⎢

⎤
⎦⎥

T

. In 

category B, 
   
pi = k̂φ k̂ψ k̂θ

⎡
⎣⎢

⎤
⎦⎥

T

.   denote the objective function value corresponding 

to the point   pi .   p0 ,    pn−1 , and   pn  are the points of the simplex for which  fNM  is largest, 

next largest, and smallest.  

We denote   pg  as the centroid of the best n points that is given by 
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pg =

pg

ni=0

n−1

∑ . (3.24)

We then reflect the worst vertex,   pl , in   pg  using a reflection coefficient to obtain the 

reflection point 

  
pr = pg + pg − pn( ) . (3.25)

We proceed to evaluate  fNM  at   pr  to obtain 
   fNM ,r = fNM pr( ) . 

If   
fNM ,0 ≤ fNM ,r < fNM ,n−1 , then the point   pr  replace   pn  to form a new simplex, and 

we terminate the iteration. We proceed to repeat the process. Thus, we compute the 

centroid of the best n vertices of the new simplex and again reflect the point with the 

worst function  value in the centroid obtained for the best n points of the new simplex.

However, if   
fNM ,r < fNM ,0 , so that the point   pr  becomes the smallest function value 

among the points of the simplex, this direction is a good one and the algorithm should do 

expansion operation. In this case, we use an expansion coefficient to obtain 

   
pe = pg + 2 pr − pg( ) . (3.26)

The operation yields a new point on the line   pn pg pr  extended beyond   pr . If

fNM ,e < fNM ,r , the expansion is declared a success and   pn  is replaced by   pe  in the next 

simplex. On the other hand, if   
fNM ,e ≥ fNM ,r , the expansion is declared a failure and   pn  is 

replaced by   pr . 

Finally, if   
fNM ,r ≥ fNM ,n−1 , the reflexed point   pr  would constitute the point with 

largest function value in the next simplex. Then in the next step it would be reflected in
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pg , probably an unfruitful operation. In this case, a contraction operation is applied. If

fNM ,n−1 ≤ fNM ,r < fNM ,n , we obtain contract 
  

pr − pg( )  with a contraction coefficient to 

obtain 

   
pc = pg + 0.5 pr − pg( ) . (3.27)

This operation is called the outside contraction. If   
fNM ,r ≥ fNM ,n , then   pn  replaces   pr  in 

the contraction operation and we get 

   
pc = pg + 0.5 pn − pg( ) . (3.28)

This operation is called the inside contraction. If, in either case,   
fNM ,c ≤ fNM ,n , the 

contraction is declared a success, and the   pn  is replaced by pc  in the next simplex. 

If   
fNM ,c > fNM ,n , the contraction is considered as a failure. In this situation, the shrink 

operation is applied. A new simplex is formed by retaining   p0  only and halving the 

distance from   p0  to every other point in the simplex. The shrink operation produces the n

new vertices of the new simplex according to the formula 

   vi = ps + 0.5 pi − ps( ) , (3.29)

where    i = 0,1, , n . The vertices of the new simplex are   p0 ,   v1 ,  ,   vn  which is used in 

the next iterative loop.  

We also need to consider the nonlinear inequality constraints   L ≥1 . If the operation 

of the simplex modification would have tried to evaluate the objective function outside 

the bounds, the infinity value is returned to  fNM , rather than the value from the objective 
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function. These constraints are implemented as penalty functions. In this way, the 

objective function will be always evaluated inside of the supplied constraints. The 

process above stop until the diameter of the simplex is less than the specified tolerance, 

which is  10−8 . 

We summarize the Nelder-Mead simplex algorithm as follows. 

1. Transform the variables into unconstraint conditions. 

2. Form the initial simplex. 

3. Order according to the values at the vertices. 

4. If the stopping criterion is satisfied, then stop. 

5. Calculate the center of gravity of all points except the best point. 

6. Reflection.  

7. If the reflected point is better than the second worst, but not better than the best, then 

obtain a new simplex by replacing the worst point with the reflected point, and go to 

step 3.  

8. If the reflected point is the best point so far, go to step 7. 

9. If the reflected point is not better than the second worst, go to 8. 

10. Expansion.  

11. If the expanded point is better than the reflected point, then obtain a new simplex by 

replacing the worst point with the expanded point, and go to step 3. 

12. Else, then obtain a new simplex by replacing the worst point with the reflected point, 

and go to step 3. 

13. Contraction. 
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14. If the reflected point is better than the worst, the contraction point is got by outside 

contraction. Else the contraction point is got by inside contraction. If the contraction 

is better than the worst, replace the worst point, and go to step 3. Else go to step 9. 

15. Shrinkage. 

16. Replace all but the best points with the ones created in the shrinkage operation. Then 

go to step 3. 

4.4 Optimization Results 

For each category, the input torque coefficient range from 17 to 27 with a 2 spacing 

which adds up to a total of 12 cases. The reason we choose this interval is that the lift-to-

weight ratio is greater than 1 only when   M̂max >16.8  for category B. If   M̂max <16.8 , the 

optimization algorithm couldn’t find any point of which the objective function (Equation 

4.1) is less than 0. Solutions of wing kinematics from optimization are fit using Fourier 

series to analyze response frequencies, angle amplitudes and phase offsets for 

characterizing wing kinematics. Fourier series of φ , θ  and ψ  are given by 

  
φ = φ0 + φi sin ωφ i t̂ +αφ i( )

i=1

3

∑ , (3.30)

  
θ = θ0 + θ i sin ωθ i t̂ +αθ i( )

i=1

3

∑ , (3.31)

  
ψ =ψ 0 + ψ i sin ωψ i t̂ +αψ i( )

i=1

3

∑ . (3.32)

ωφ , ωθ  and ωψ  are response frequencies of φ , θ  and ψ .  
ωψ =ωφ = 2π  corresponds to 

a typical oval shape motion, and  
ωψ = 2ωφ = 4π  corresponds to a typical figure-of-eight 
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motion. Note that all trajectories we obtained here are figure-of-eight pattern. This 

oscillation system doesn’t generate any oval shape trajectories. The response frequency 

of φ  is always equal to the driving frequency of the input torque, that is,  
ωφ = 2π .  

We define the stroke-deviation phase offset  and the stroke-rotation phase offset 

as: 

(3.33)

and 

. (3.34)

Data from the optimization results are listed in Table 4.2 and Table 4.3. Primary 

parameters of wing kinematics are picked from Fourier series and listed in Table 4.4 and 

Table 4.5, including frequencies, the firsts term and the first Fourier series of φ , ψ  and 

θ . Other series are listed in the Appendix C. We could easily conclude that 6 cases in 

category A have the almost same optimum wing trajectory, and there is a similar 

conclusion in category B. The optimal wing motion in category B is a figure-8 shaped 

with a large stroke deviation ( ). Additionally, optimal motions are such that they 

produce nearly above enough lift to hover, and not more (to within   mg ×10−15
 ). The lift-

to-weight ratios are equal to 1 no matter what the input toque coefficient is. Since 

additional lift production requires an increase in power consumption, the inequality 

constraint placed upon the optimization acts more like an equality constraint (  as 

opposed to ).  

βθ

βψ

βθ =αθ1 −αφ1

 
βψ =αψ 1 −αφ1

  L = 1

  L ≥1
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Table 4.2. Optimization parameters with zero deviation. 

Symbol A1 A2 A3 A4 A5 A6 Average 

 17 19 21 23 25 27  

 61.21 92.85 113.68 133.55 149.07 167.03  

 21.6 21.3 21.5 21.1 21.9 21.6 21.5 

 50000 50000 50000 50000 50000 50000  

 PL  (s/m) 
0.3326 0.3318 0.3308 0.3302 0.3293 0.3290 0.3306 

L 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Table 4.3. Optimization parameters with nonzero deviation. 

Symbol B1 B2 B3 B4 B5 B6 Average 

 17 19 21 23 25 27  

 69.74 97.82 120.24 138.58 155.98 172.47  

 10.56 10.9 11.31 11.60 11.66 11.68 11.29 

 1212.0 1231.0 1388.6 1424.4 1438.4 1482.8  

 PL  (s/m) 
0.3473 0.3522 0.3546 0.3563 0.3571 0.3573 0.3541 

L 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  M̂max

  
k̂φ

  
k̂ψ

  k̂θ

  M̂max

  
k̂φ

  
k̂ψ

  k̂θ
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Additionally, the average value of the power loading of the cases without the 

deviation is 0.3306 s/m, and the value with the deviation is 0.3541 s/m. In category A, the 

power loadings range from 0.3326 s/m to 0.3290 s/m as   M̂max  increase. Similar 

performance exists in category B. The power loadings stay between 0.3473 s/m and 

0.3513 s/m. The wing trajectories with nonzero deviation show 7% increase of power 

loading compared to those with zero deviation. the deviation Many current flapping 

micro air vehicles (MAV) have limited flight times due to the limited capacity end 

density of available small-scale power supplies. It is no doubt that the future of MAV 

depends heavily on improvement of energy sources. Thus this is potentially a favorable 

feature from the point of view of MAV design and operation.  

The oscillatory flapping motions are symmetric in all the cases, and the absolute 

values of  φ0  and  ψ 0  are less than 0.002. The average values of  φ1 , the amplitude of the 

first Fourier series, are 55.66 degrees for category A and 55.55 degrees for category for 

category B. It is of interest to find that these values are within the observed range of 

stroke amplitudes in fruit flies. Some studies suggest that the wing trajectory pattern with 

a large stroke amplitude and a lower flapping frequency is preferred (Berman and Wang, 

2007). This makes sense, as the translational aerodynamic force contributes the most part 

of the lift the insect need. A larger stroke amplitude allows a larger percentage of the 

period to be spent in the mid-stroke, where the translational aerodynamic lift is generated. 

However if the flapping frequency stays constant, a larger power consumption is required 

for a larger stroke amplitude. Under the driving of input torque with a constant frequency 

240 Hz, the optimized wing pattern is not the one with 90 degrees stroke, but the one with 
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55 degrees stroke angel. The insect maybe limits its stroke amplitude by tuning the 

stiffness of its muscle to achieve a high power efficient wing trajectory pattern. The 

relationship of input power coefficient and stroke stiffness coefficients is shown in Figure 

4.3. The stroke stiffness coefficients from the optimized results increase linearly as the

input torque coefficient increases. The stroke stiffness coefficient with non-zero deviation 

is slight greater than the one with zero deviation. 

 

Figure 4.3. Stroke stiffness coefficients versus input torque coefficient. Case A3 is plot in 
red line and case B3 is plot in blue line. 

The average values of , the amplitude of the first Fourier series, are 53.62 degrees 
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54 degrees during flapping could maintain a relative constant angle of attack. All of the 

optimal wing motions in 12 cases are delay rotation.  

Table 4.4. Selected Fourier coefficients for optimization wing kinematics results with 
zero deviation. 

Symbol A1 A2 A3 A4 A5 A6 Average 

ωφ  
6.2832 6.2832 6.2832 6.2832 6.2832 6.2832 6.2832 

ωψ  
6.2832 6.2832 6.2832 6.2832 6.2832 6.2832 6.2832 

 φ0 (deg) -0.0217 -0.0075 -0.0050 -0.0037 -0.0038 -0.0034 -0.0075 

 ψ 0 (deg) -0.0026 -0.0049 -0.0071 -0.0091 -0.0113 -0.0097 -0.0075 

 φ1 (deg) 54.78 55.41 55.76 56.11 56.01 55.90 55.66 

 ψ 1 (deg) 52.72 53.58 53.68 54.40 53.54 53.81 53.62 

 
αφ1 (deg) -163.53 -149.42 -144.90 -135.70 -132.02 -127.88  

βψ (deg) -102.25 -103.31 -103.29 -104.34 -103.05 -103.76 -10.3.33 

 θmax (deg) 0.1500 0.1540 0.1567 0.1591 0.1609 0.1607 0.1569 

 θmin (deg) -0.0150 -0.0155 -0.0160 -0.0157 -0.0153 -0.0161 -0.0156 
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Table 4.5. Selected Fourier coefficients for optimization wing kinematics results with 
nonzero deviation. 

Symbol B1 B2 B3 B4 B5 B6 Average 

ωφ  
6.2832 6.2832 6.2832 6.2832 6.2832 6.2832 6.2832 

ωψ  
6.2832 6.2832 6.2832 6.2832 6.2832 6.2832 6.2832 

ωθ  
12.566 12.566 12.566 12.566 12.566 12.566 12.566 

 φ0 (deg) -0.0280 -0.0164 -0.0095 -0.0093 -0.0088 -0.0090 -0.0135 

 ψ 0 (deg) 0.0003 0.0005 0.0019 0.0062 0.0107 0.0131 0.0055 

 θ0 (deg) 2.8 2.7 2.4 2.3 2.3 2.2 2.45 

 φ1 (deg) 56.12 55.63 55.65 55.40 55.23 55.24 55.55 

 ψ 1 (deg) 55.13 54.82 55.23 54.91 54.77 54.91 54.96 

 θ1 (deg) 3.75 3.72 3.29 3.22 3.20 3.12 3.38 

 
αφ1 (deg) -157.62 -144.38 -136.74 -131.51 -127.38 -124.02  

βψ (deg) -110.33 -108.14 -107.06 -105.64 -104.75 -104.30  

βθ (deg) -14.03 0.54 9.48 16.49 21.79 25.76  

It should be noted that although small changes exist between cases in each category, 

the wing kinematics, forces, and powers resulting from the optimization procedure do not 
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differ qualitatively. We pick the case A3 M̂max = 21, k̂φ = 113.68, k̂ψ = 21.5, k̂θ = 50000( )
from the category A and the case B3 

  
M̂max = 21, k̂φ = 120.24, k̂ψ = 11.31, k̂θ = 1388.6( )

from the category B to investigate the effect of the deviation in the following discussion. 

Wing tip trajectories of optimized wing motions of case A3 and case B3 are shown in 

Figure 4.4. 

The details of the kinematics for optimized wing motions of case A3 and B3 are 

shown in Figure 4.5. The stroke angle during one wing beat is shown in Figure 4.5 (a). 

We can see that the trajectories of stroke angles for case A3 and case B3 are almost the 

same. The trajectories of rotation angles are different, as shown in Figure 4.5 (b). As we 

discuss in previous sections, aerodynamic forces and moments acting on a wing section 

are functions local angle of attack α , which is defined as the angle between the wing 

chord and the direction of local velocity. In the case B3, the local velocity consists of two 

components, one due to the translational motion and the other due to the motion of the 

deviation. This indicates the motion of the deviation effect the local angle of attack. The 

maximum value of the rotation angle in case B3 is slightly greater than the one in case 

A3. The trajectories of deviation angels are shown in Figure 4.5 (c). Case A3 shows 

almost zero deviation, as the value of the stiffness coefficient is 50000. The deviation 

angles are relative small, less than 1 degrees, at the beginning and near the end of the 

stroke.  
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(a) (b) 

 
Downstroke Downstroke 

 
Upstroke Upstroke 

 

Figure 4.4. Wing trajectories, downstroke phases and upstroke phases of optimized wing 
motions. Wing cross section snapshots are portrayed and spaced 0.025/1 apart over the 
40th stroke cycle. (a) is case A3 and (b) is case B3. The black arrows indicate magnitude 
and direction of instantaneous forces on the wing. 
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(a) (b) 

 
(c) (d) 

 

Figure 4.5. Wing kinematics and aerodynamic force coefficient for optimized wing 
motions versus stroke cycle over the 40th stroke cycle. Wing kinematics of case A3  is 
plot in solid blue lines, and wing kinematics of case B is plot in dash red lines. The white 
region indicates the downstroke, and the grey region indicates the upstroke. (a) shows
stroke angle v.s. stroke cycle, (b) shows rotational angle v.s. stroke cycle and (c) shows
deviation angle v.s. stroke cycle. (d) shows aerodynamic force coefficient v.s. stroke 
cycle. 
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CHAPTER 5. CONCLUSION 

This study worked towards an integrative understanding of biology system of insect 

flight muscle, and tried to answer how these muscles drove a flapping wing and how 

complex fancy wing trajectories were generated. It proposed a simple and effective wing 

actuation mechanism of flapping micro air vehicles. We started from the two distinct 

classes of insect flight muscle: power muscles and control muscles, based on which a 

three DOF oscillation system was developed. The wing was driven under only one 

actuator, with three torsional springs that were attached on three Euler respectively. The 

dynamics of the system was then studied using a blade-element model and a quasi-steady 

model. Four coefficients are defined using non-dimensional analysis. They are stroke 

stiffness coefficient, rotation stiffness coefficient, deviation stiffness coefficient and input 

torque coefficient. Simulations showed that tuning stiffness coefficients generated

different wing trajectories. A high deviation stiffness coefficient and a mediate rotation 

stiffness coefficient produced high lift while achieving high power loading. Additionally, 

an optimization was developed to find optimal wing kinematics that minimized power 

consumption and provided enough lift to maintain a time-averaged constant altitude over 

one stroke cycle. The results of this optimization show that the flapping wing with 

nonzero deviation was better in terms of power. Future work will involve mechanical 

designs of this oscillation system with three torsional springs. 
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Appendix A Non-dimensional Aerodynamic Moment 

In the wing-fixed coordinate system oxyz, it can be shown that the aerodynamic 

moment along x axis is given by: 

   
Maero

x = ex × rcop,tran r( )
0

R

∫ × dFD r( ) + ex × rcop,tran r( )
0

R

∫ × dFL r( ) , (A.1)

where  

   
dFD r( ) = 1

2
CD α( )ρair c r( )r 2 ω z +ω x( )dr eD , (A.2)

   
dFL r( ) = 1

2
CL α( )ρair c r( )r 2 ω z +ω x( )dr eL . (A.3)

The aerodynamic moment along y axis is given by: 

   
Maero

y = ey × rcop,tran r( )
0

R

∫ × dFD r( ) + ey × rcop,tran r( )
0

R

∫ × dFL r( ) + Mrd
y , (A.4)

where 

  
Mrd

y = − 1
8

Crdρair ω y ω yc
4R ĉ r̂( )4

0

1

∫ dr̂ . (A.5)

The aerodynamic moment along z axis is given by: 

   
Maero

z = ez × rcop,tran r( )
0

R

∫ × dFD r( ) + ez × rcop,tran r( )
0

R

∫ × dFL r( ) + Mrd
z , (A.6)

where 

  
Mrd

y = − 1
6

Crdρair ω y ω yc
3R2 ĉ r̂( )3

0

1

∫ r̂ dr̂ . (A.7)
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Non-dimensional angular velocities are 

  
ω̂ x =

ω x

2π
, (A.8)

  
ω̂ y =

ω y

2π
, (A.9)

  
ω̂ z =

ω z

2π
. (A.10)

Dividing equation A.1, A.4 and A.5 by   2π f 2Ixx  and simplifying yields non-dimensional 

aerodynamic moments: 

   

Maero
x = 2π ex × rcop,tran r( )× 1

2
CD α( )ρair c r( )r 2 ω̂ z + ω̂ x( )dr eD

⎡

⎣⎢
⎤

⎦⎥0

R

∫

+2π ex × rcop,tran r( )× 1
2

CL α( )ρair c r( )r 2 ω̂ z + ω̂ x( )dr eL

⎡

⎣⎢
⎤

⎦⎥0

R

∫ ,
  (A.11)

   

Maero
y = 2π ey × rcop,tran r( )× 1

2
CD α( )ρair c r( )r 2 ω̂ z + ω̂ x( )dr eD

⎡

⎣⎢
⎤

⎦⎥0

R

∫

+2π ey × rcop,tran r( )× 1
2

CL α( )ρair c r( )r 2 ω̂ z + ω̂ x( )dr eL

⎡

⎣⎢
⎤

⎦⎥0

R

∫

−2π 1
8

Crdρair ω̂ y ω̂ y c 4R ĉ r̂( )4
dr̂

0

1

∫ ,

  (A.12)

   

Maero
z = 2π ez × rcop,tran r( )× 1

2
CD α( )ρair c r( )r 2 ω̂ z + ω̂ x( )dr eD

⎡

⎣⎢
⎤

⎦⎥0

R

∫

+2π ez × rcop,tran r( )× 1
2

CL α( )ρair c r( )r 2 ω̂ z + ω̂ x( )dr eL

⎡

⎣⎢
⎤

⎦⎥0

R

∫

−2π 1
6

Crdρair ω̂ y ω̂ y c 3R2 ĉ r̂( )3
r̂ dr̂

0

1

∫ .

  (A.13)

Finally, we obtain 

  Maero
x = 2π M̂aero

x , (A.14)



83

Maero
y = 2π M̂aero

y , (A.15)

  Maero
z = 2π M̂aero

z , (A.16)

   

M̂aero
x = ex × rcop,tran r( )× 1

2
CD α( )ρair c r( )r 2 ω̂ z + ω̂ x( )dr eD

⎡

⎣⎢
⎤

⎦⎥0

R

∫

+ex × rcop,tran r( )× 1
2

CL α( )ρair c r( )r 2 ω̂ z + ω̂ x( )dr eL

⎡

⎣⎢
⎤

⎦⎥0

R

∫ ,
  (A.17)

   

M̂aero
y = ey × rcop,tran r( )× 1

2
CD α( )ρair c r( )r 2 ω̂ z + ω̂ x( )dr eD

⎡

⎣⎢
⎤

⎦⎥0

R

∫

+ey × rcop,tran r( )× 1
2

CL α( )ρair c r( )r 2 ω̂ z + ω̂ x( )dr eL

⎡

⎣⎢
⎤

⎦⎥0

R

∫

− 1
8

Crdρair ω̂ y ω̂ y c 4R ĉ r̂( )4
dr̂

0

1

∫ ,

  (A.18)

   

M̂aero
z = ez × rcop,tran r( )× 1

2
CD α( )ρair c r( )r 2 ω̂ z + ω̂ x( )dr eD

⎡

⎣⎢
⎤

⎦⎥0

R

∫

+ez × rcop,tran r( )× 1
2

CL α( )ρair c r( )r 2 ω̂ z + ω̂ x( )dr eL

⎡

⎣⎢
⎤

⎦⎥0

R

∫

− 1
6

Crdρair ω̂ y ω̂ y c 3R2 ĉ r̂( )3
r̂ dr̂

0

1

∫ .

  (A.19)
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Appendix B Contour Plots 

Figure B.1. Contours of amplitude of the stroke angle as functions of deviation stiffness 
coefficient and rotation stiffness coefficient. Dark shades indicate large values. 
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Figure B.2. Contours of amplitude of the rotation angle as functions of deviation stiffness 
coefficient and rotation stiffness coefficient. Dark shades indicate large values. 

Figure B.3. Contours of amplitude of the deviation angle as functions of deviation 
stiffness coefficient and rotation stiffness coefficient. Dark shades indicate large values. 
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Appendix C Fourier Series 

Complete Fourier coefficients for 12 cases are list in Table B.1 and Table B.2. For 

each category, the input torque coefficient range from 17 to 27 with a 2 spacing which 

adds up to a total of 12 cases. 

Table B.1. Fourier coefficients for optimization wing kinematics results with zero 

deviation  

Symbol A1 A2 A3 A4 A5 A6 

(deg) 56.31 57.06 57.40 57.86 57.57 57.50 

(deg) -56.31 -57.04 -57.36 -57.81 -57.51 -57.43 

(deg) -0.0217 -0.0075 -0.0050 -0.0037 -0.0038 -0.0034 

(deg) 54.78 55.41 55.76 56.11 56.01 55.90 

(deg) -163.53 -149.42 -144.90 -135.70 -132.02 -127.88 

(deg) 0.0164 0.0203 0.0235 0.0263 0.0291 0.0310 

(deg) 89.19 122.51 140.88 150.44 152.89 154.37 

(deg) 1.90 2.17 2.25 2.49 2.32 2.47 

(deg) -70.81 -24.84 0.15 20.84 33.77 47.83 

(deg) 53.13 54.13 54.32 55.22 54.36 54.79 

(deg) -53.20 -54.24 -54.46 -55.38 -54.54 -55.00 

(deg) -0.0026 -0.0049 -0.0071 -0.0091 -0.0113 -0.0097 
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Table B.1. Continued. 

Symbol A1 A2 A3 A4 A5 A6 

(deg) 52.72 53.58 53.68 54.40 53.54 53.81 

(deg) 94.22 107.25 114.80 119.96 124.92 128.35 

(deg) 0.0246 0.0225 0.0256 0.0281 0.0316 0.0336 

(deg) -41.02 4.18 15.13 16.70 22.85 25.06 

(deg) 2.13 2.48 2.66 2.93 2.94 3.15 

(deg) -170.01 -128.99 -105.28 -87.42 -73.07 -60.82 

(deg) 0.1500 0.1540 0.1567 0.1591 0.1609 0.1607 

(deg) -0.0150 -0.0155 -0.0160 -0.0157 -0.0153 -0.0161 

ω̂φ  6.283 6.283 6.283 6.283 6.283 6.283 

ω̂ψ  6.283 6.283 6.283 6.283 6.283 6.283 

Table B.2. Fourier coefficients for optimization wing kinematics results with non-zero 

deviation  

Symbol B1 B2 B3 B4 B5 B6 

(deg) 57.73 56.35 56.51 55.89 55.44 55.28 

(deg) -57.73 -56.35 -56.51 -55.89 -55.44 -55.28 

(deg) -0.0280 -0.0164 -0.0095 -0.0093 -0.0088 -0.0090 

(deg) 56.12 55.40 55.65 55.40 55.23 55.24 
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Table B.2. Continued. 

Symbol B1 B2 B3 B4 B5 B6 

(deg) -157.62 -144.38 -136.74 -131.51 -127.38 -124.02 

(deg) 0.0158 0.0160 0.0184 0.0203 0.0216 -0.0224 

(deg) 99.99 126.98 150.16 159.99 166.18 165.76 

(deg) 2.42 2.32 2.39 2.27 2.20 2.23 

(deg) -44.27 5.50 32.53 54.77 73.04 87.25 

(deg) 56.79 57.63 58.65 58.94 59.38 59.90 

(deg) -56.81 -57.66 -58.71 -59.00 -59.43 -59.94 

(deg) 0.0003 0.0005 0.0019 0.0062 0.0107 0.0131 

(deg) 55.13 54.82 55.23 54.91 54.77 54.91 

(deg) 92.06 107.48 116.15 122.72 127.70 131.50 

(deg) 0.0248 0.0175 0.0237 0.0490 0.0657 0.0652 

(deg) -59.57 -26.97 68.32 94.78 104.05 107.13 

(deg) 0.66 1.59 2.18 2.66 3.09 3.47 

(deg) -71.04 -37.72 -23.81 -3.24 12.53 23.53 

(deg) 6.55 6.52 5.87 5.83 5.86 5.81 

(deg) -1.17 -1.43 -1.31 -1.38 -1.50 -1.53 

(deg) 2.8 2.7 2.4 2.3 2.3 2.2 

(deg) 3.75 3.72 3.29 3.22 3.20 3.12 

(deg) -171.64 -143.83 -127.21 -144.92 -150.45 -98.11 
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Table B.2. Continued. 

Symbol B1 B2 B3 B4 B5 B6 

(deg) 0.67 0.87 0.74 0.76 0.80 0.79 

(deg) -54.93 15.24 51.51 81.67 104.70 120.54 

(deg) 0.4673 0.6786 0.8241 0.97 1.11 1.19 

(deg) 6.10 81.00 149.19 -167.70 -136.29 -107.23 

ω̂φ  6.283 6.283 6.283 6.283 6.283 6.283 

ω̂ψ  6.283 6.283 6.283 6.283 6.283 6.283 

ω̂θ  12.566 12.566 12.566 12.566 12.566 12.566 
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