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ABSTRACT 

 

 

 

Angela P. Ortiz Diaz. MSCE, Purdue University, May 2014. Variability in UV Disinfection of 

Municipal Wastewater. Major Professor: Ernest R. Blatchley III. 

 

 

 

Variability in the performance of UV disinfection systems is hypothesized to be attributable to 

variability in the parameters that influence the overall performance. Predictability of process 

performance in UV disinfection systems should be possible, if variability in these input parameters 

can be defined. The objective of this project was to define variability in parameters that are known 

to affect the performance of UV disinfection systems so as to inform design and operation 

conditions for a large-scale UV disinfection system that was recently applied at the Belmont facility 

in Indianapolis, Indiana, and other systems.  The present study focused on quantification of 

variability in several input parameters, including viable E. coli concentration in undisinfected 

secondary effluent, UV254 dose-response behavior of the target organism (E. coli), UV254 

transmittance (UVT254) of the water, total suspended solids (TSS), flow rate (Q), and precipitation. 

These data were subjected to correlation analysis to identify dependence among these parameters, 

and thus have a better understanding of the variability in the performance of this UV system. 

 

In addition, measurements of the actual performance of the existing, full-scale UV disinfection 

system at the Belmont facility were conducted using Ambient Biodosimetry (AB).  This method 

allowed for quantification of E. coli inactivation across the UV system over a range of operating 

conditions.  The results of these experiments indicated that the system consistently exceeds 

treatment requirements, as defined by the Belmont NPDES permit, with a fraction of the existing 

hardware.  This suggests that the existing system at Belmont may be over-designed, and that 

opportunities exist to improve the efficiency of the system’s operation. 



x 

 

In the future, these data will be used in the development of a stochastic model that will predict 

performance variability.  In turn, these model predictions will be used to inform the design and/or 

operation of UV wastewater disinfection systems. 
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CHAPTER 1. INTRODUCTION 

 

 

 

During the 1970s, concerns arose regarding the use of chlorine as a disinfectant because of its 

potential negative environmental and human impacts relating to disinfection by-product (DBP) 

formation, as well as its safe storage and handling. Implementation of UV disinfection in 

wastewater treatment plants (WWTPs) has become a popular alternative disinfection method 

because it is a broad-spectrum antimicrobial agent, it promotes minimal DBP formation, it typically 

has lower overall capital and operational costs than other methods, and it requires a relatively small 

footprint as the reactions of interest are very fast (Whitby & Scheible, 2004). 

 

After the discovery of disinfection by-products and their potential detrimental effects on the biota 

of receiving waters and human health, governments throughout North America were motivated to 

reduce the concentrations of chlorine disinfection by-products in effluent waters (USEPA, 1976). 

This also motivated research efforts in alternative disinfection methods, such as ozone, bromine 

chloride, chlorine dioxide, and UV. As a result of a financial investment from the United States 

Environmental Protection Agency’s Innovative and Alternative Technology program, the 

effectiveness of UV disinfection was demonstrated. And a few years later, the successful 

implementation of a gravity-fed, open channel system with lamps oriented parallel to the direction 

of flow marked the establishment of UV disinfection for wastewater treatment (Whitby & Scheible, 

2004).  

 

As the application of UV disinfection for wastewater continues to expand, it offers several well-

known advantages, including minimal formation of harmful disinfection by-products (DBPs). 

DBPs in final effluent discharge waters have been shown to have negative effects in humans and 

aquatic biota (Lazarova et al., 1999; Das, 2002). Another advantage is the competitive capital and 

operational costs of UV compared to chlorine disinfection, as well as its safer operation and 

handling (Lazarova et al., 1999; Das, 2002). 
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In addition to disinfection, UV irradiation has also been applied in advanced oxidation processes 

(AOP) that are used to treat toxic non-biodegradable contaminants, such as pesticides. The AOPs 

that involve UV generally require relatively high doses (as compared to those required for 

disinfection) in conjunction with a photocatalytic agent to promote the formation of radical 

intermediates, such as hydroxyl radical. The hydroxyl radical is highly reactive, and it will further 

react with contaminants in the water to convert them, to a large extent, into more stable inorganic 

compounds (Kruithof et al., 2002; Zwiener et al., 1995; Glaze et al., 1987). 

 

As more WWT facilities are switching to UV disinfection, there is an increasing need to more 

accurately predict the performance of UV reactor systems. Currently, in the U.S. there are several 

large drinking water and wastewater facilities that are planning to switch to UV disinfection. These 

facilities service large populations, such as the cities of Chicago and New York. The city of 

Chicago, for example, has the Stickney Water Reclamation Plant (WRP), the largest WWTP in the 

world, which serves about 2.38 million people, with a design flow rate of 1.2 billion gallons per 

day (BGD). Treated wastewater from the Stickney facility is discharged to the Chicago Sanitary 

and Ship Canal. This waterway is considered an incidental contact water, and this is, in part, why 

this facility is not currently required to disinfect its effluent (IEPA, 2013; MWRDGC, 2013). The 

Stickney (WRP) will be required to disinfect in the near future.  

 

The Castkill/Delaware UV disinfection facility in the state of New York is currently the largest UV 

disinfection system in the world. Although this is a drinking water facility, the mechanisms of UV 

disinfection are the same for both drinking and wastewater, with final effluent requirements and 

source water quality being the main differences. This facility was designed to treat 2.02 BGD to be 

distributed to the city of New York (Trojan UV 2014). 

 

The Catskill/Delaware UV system is an excellent example of the growing reliance that UV 

disinfection is gaining among utilities and consulting engineers. As more wastewater and drinking 

water treatment facilities look for alternative disinfection processes to be incorporated, UV will 

continue to attract their attention because it has been demonstrated to comply with existing 

disinfection standards, and in many cases it has been demonstrated to be cost competitive with the 

other alternatives (Lazarova et al., 1999; Das, 2002).  

 



3 

 

From the engineering perspective, having a more comprehensive and accurate understanding of the 

behavior of UV disinfection systems is beneficial to the development of UV. Research that 

demonstrates the true capabilities of UV disinfection, including its weaknesses, will be useful for 

future designs of reactor systems, and improve maintenance and operation practices of existing UV 

systems. Moreover, development of improved predictive methods to estimate the performance of 

UV disinfection systems will allow optimization of system designs, while improving system 

reliability and conformance to treatment regulations.  

 

It has been hypothesized that in order to understand the variability in process performance of UV 

reactor systems, an understanding of the variability in other input parameters known to influence 

disinfection performance is crucial; that is, if the variability of input parameters is well understood, 

an accurate prediction of the overall performance of the reactor can be made. 

 

This research project focused on measurement of parameters that are known to affect process 

performance of UV disinfection systems, as well as measurement of actual variability in process 

performance of a full-scale UV system. This study took advantage of the recently installed full-

scale UV disinfection system at the Belmont WWTP located in Indianapolis, Indiana. Data 

collected included UV254 dose-response data of the target organism using undisinfected secondary 

effluent samples, ambient biodosimetry (AB) data from the UV reactor system, UV transmittance 

(UVT254) of the water at the time of sampling, flow rate through the UV system, nominal UV254 

dose delivered as calculated by the PLC system, total suspended solids, and precipitation. These 

data were subjected to correlation analysis to identify dependence among these parameters, and 

thus have a better understanding of the variability in the performance of this UV system. In the 

future, these data will be used in the development of a stochastic model to describe and predict 

variability so as to inform the design and/or operation of UV wastewater disinfection systems. 
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CHAPTER 2. LITERATURE REVIEW 

 

 

 

2.1 Mechanisms of disinfection 

UV radiation achieves inactivation of microorganisms primarily by causing damage to their RNA 

and DNA. UV irradiation causes dimers to form in nucleic acids; these are covalent bonds that form 

between adjacent pyrimidines (thymine and cytosine) on the same DNA or RNA strand, and they 

are the most common damage resulting from UV disinfection (see Figure 1). The result is inhibition 

of the ability to reproduce on the part of the microorganism. Once the microorganism is inactivated, 

it loses its ability to infect its host and cause disease.  UV radiation is absorbed most strongly by 

DNA and RNA nucleotides in the range of 230 nm to 260 nm (Jagger, 1967). This knowledge 

informed selection of UV lamps that are used in disinfection systems. The optimal germicidal 

wavelengths are generally found in the UV-C region of the electromagnetic spectrum, which ranges 

from wavelengths of 200 nm to 280 nm (see Figure 3). 

 

 

Figure 1. Dimerization of pyrimidines in a DNA strand caused by UV irradiation. Source: 

http://en.wikipedia.org/wiki/Pyrimidine_dimer. 
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Figure 2. DNA absorbance spectrum. Source: Jagger (1967). 

 

There is evidence that UV radiation in the UV-B and UV-A spectrum, which is the most abundant 

type of radiation in our atmosphere, can also have germicidal properties. However, radiation in the 

UV-B and UV-A portions of the spectrum is less effective for causing damage to nucleic acids, and 

as such requires a longer exposure time than UV-C radiation at the same fluence rate to achieve a 

given reduction of viable microorganisms in water. Examples of applications of UV-B and UV-A 

for water disinfection are the Solar Water Disinfection (SODIS) (McGuigan et al., 2012) and the 

continuous-flow solar disinfection reactor system developed by Mbonimpa et al. (2012). These 

methods take advantage of ambient solar UV radiation to disinfect water for drinking, and they 

have been typically used or intended for use in developing countries where improved sources of 

water are difficult to access. 

 

 

Figure 3. UV radiation in the electromagnetic spectrum. Source: USEPA UV Disinfection Guidance 

Manual (2006). 
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The dose of UV radiation is defined as the product of the time of exposure (τ) and the imposed 

fluence rate (F) (USEPA, 2006a). The UV dose is typically expressed in mJ/cm2.  More 

specifically, UV dose is the time-integral of the imposed fluence rate: 

 

Eq. 1 

 

Where F(t) = fluence rate history for an irradiated object 

 

   t = time. 

As clarified in the work by Bolton and Linden (2003), the fluence rate is defined as the total 

radiant power incident from all directions onto an infinitesimally small sphere; and, the 

irradiance is defined as the total radiation incident from all directions irradiated from above on an 

infinitesimally small element of surface of area.  

 

In a continuous flow UV reactor, every microorganism or particle present in the water experiences 

a different UV dose by the time it exits the reactor. This is because within the reactor the 

microorganisms and particles travel through different paths; some may travel closer to the lamps 

experiencing an overall higher dose, while others may travel closer to the walls of the reactor 

resulting in an overall lower dose. Therefore, it is clear that continuous flow UV reactors deliver a 

distribution of UV doses (Cabaj et al., 1996). 

 

2.2 Kinetic models 

The kinetics of microbial inactivation achieved by UV radiation, i.e., dose-response behavior, are 

often simulated by fitting with a kinetic model. If a kinetic model accurately describes the 

inactivation behavior of the target organism of interest, it will allow for an accurate prediction of 

inactivation that will result with a given UV dose.  That is to say, the delivery of a specific UV dose 

will result in a predictable inactivation according to the kinetic model that is chosen.  

All kinetic models of UV disinfection relate microbial inactivation to the applied dose. As such, 

UV dose represents the “master variable” in UV disinfection systems. 

Common kinetic models include the Chick-Watson (single-event), Series-event, and Phenotypic 

Persistence and External Shieling (PPES) models. The Chick-Watson kinetic model has been 

widely used in wastewater disinfection. This model is based on the assumption that inactivation of 

𝐷 = ∫𝐹(𝑡) ∙ 𝑑𝑡

𝜏

0
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microorganisms by UV irradiation can be described by a model that is first-order with respect to 

the imposed fluence rate and the concentration of viable organisms (N) (Watson, 1908):  

 

                                      Eq. 2 

 

Where k = Rate constant for inactivation (cm2/mJ) 

F = Fluence rate (mW/cm2)  

N = concentration of viable organisms  

t = Exposure time (s). 

 

Literal interpretation of the Chick-Watson model, as applied for UV disinfection, implies that a 

single photochemical event (e.g., formation of one dimer in a DNA strand) will lead to inactivation. 

The Chick-Watson (single-event) model has been observed to work well for description of the dose-

response behavior of some simple microbes, including some viruses and bacteria (Severin et al., 

1983). However, the dose-response behavior of some bacteria, as well as some higher organisms is 

often not described well by the single-event model. A common deviation from simple first-order 

behavior is displayed by the existence of a “shoulder” in a dose-response relationship (see Figure 

4). 

 

Figure 4. Example of “shoulder” behavior in the UV dose-response of E. coli. Source: 

Sommer (2000). 

 

𝑑𝑁

𝑑𝑡
= −𝑘𝐹𝑁 
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One explanation for this behavior is the need for multiple units of damage to cause inactivation. 

The Series-event model was developed to describe this behavior. The model assumes that all 

organisms within a population accumulate damage as a result of a series of identical photochemical 

events: 

 

Eq. 3 

 

Where Mi represents a microorganisms with i units of damage. A further assumption of this model 

is that organisms will retain viability until they accumulate n units of damage. If each 

photochemical event is assumed to follow first-order kinetics, then the fraction of organisms in a 

population that retain viability will be as follows (Severin et al., 1983; 1984). 

 

 

Eq. 4 

 

 

Where N = Concentration of viable organisms that survive UV exposure 

N0 = Concentration of viable organisms prior to exposure to UV 

k = inactivation rate constant 

F = Fluence rate (mW/cm2) 

t = exposure time (s) 

F·t = UV dose (mJ/cm2) 

n = inactivation threshold  

 

Another common deviation from Chick-Watson behavior is the existence of “tailing” in an 

observed UV dose-response data set. Models that are used to describe this behavior generally 

assume that microbial populations can be described as two sub-populations: one that is susceptible 

to inactivation and another that resists inactivation. The existence of a resistant sub-population has 

been attributed to microbial association with particles and/or population heterogeneity. Based on 

this logic, Pennell et al. (2007), developed the Phenotypic Persistence and External Shielding 

(PPES) kinetic model. 

 

 

𝑀0
ℎ𝜈
→ 𝑀1

ℎ𝜈
→ 𝑀2

ℎ𝜈
→ …𝑀𝑛−1

ℎ𝜈
→ 𝑀𝑛

ℎ𝜈
→ 𝑀𝑛+1

ℎ𝜈
→ … 

𝑁

𝑁0
= 𝑒𝑥𝑝(−𝑘 ∙ 𝐹 ∙ 𝑡)∑

(𝑘 ∙ 𝐹 ∙ 𝑡)𝑖

𝑖!

𝑛−1

𝑖=0
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The PPES model is a combination of the Chick-Watson and Series-Event kinetic models, where 

the sub-population (A0) is assumed to be susceptible to UV exposure, and the second sub-

population (B0) is assumed to be resistant to UV.  Therefore, N0 is the sum of A0 and B0. The result 

is a mathematical expression that accurately describes the “shoulder”, and “tailing” parts of the UV 

dose-response curve that are commonly observed. The expression is as follows:  

 

           Eq. 5 

 

 

 

Where A0 = Microorganism subpopulation assumed to be susceptible to UV 

B0 = Microorganism subpopulation assumed to be resistant to UV 

kA = Inactivation constant for the susceptible subpopulation (cm2/mJ) 

kB = Inactivation constant for the resistant subpopulation (cm2/mJ) 

F·t = UV dose (mJ/cm2) 

 

  

𝑁(𝑡)

𝑁0
=
𝐴0
𝑁0
(𝑒𝑥𝑝(−𝑘𝐴 ∙ 𝐹 ∙ 𝑡)∑

(𝑘𝐴 ∙ 𝐹 ∙ 𝑡)
𝑖

𝑖!

𝑛−1

𝑖=0

) +
𝐵0
𝑁0
∙ 𝑒𝑥𝑝(−𝑘𝐵 ∙ 𝐹 ∙ 𝑡) 
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2.2.1 Segregated Flow Model for Continuous Flow Reactors 

The inactivation by continuous flow UV reactors can be predicted by applying the Segregated Flow 

Model (SFM).    

            

 

Eq. 6 

 

 

Where (
𝑁

𝑁0
)
𝑟𝑒𝑎𝑐𝑡𝑜𝑟

  =  inactivation of microorganisms achieved in flow through reactor 

(
𝑁

𝑁0
)
𝑏𝑎𝑡𝑐ℎ

  =  inactivation of microorganisms achieved in with dose D  

 (UV disinfection kinetics) 

E(D) =  dose distribution 

dD =  differential dose  

E(D)dD =  fraction of particles that receive a dose in a dose interval D to  

  D + dD. 

 

The SFM assumes that the organisms present in water that passes through a reactor do not exchange 

material with each other.  As such, each organism passes through the reactor as a discrete 

(segregated) unit. Under these circumstances, integration of the UV disinfection kinetic model with 

the dose distribution function, over the range of possible doses, yields a prediction of overall 

inactivation achieved by the reactor. The SFM has been shown to yield accurate predictions of 

reactor behavior under conditions when all input parameters can be accurately measured (Naunovic 

et al., 2008). 

 

 

 

 

 

  

(
𝑁

𝑁0
)
𝑟𝑒𝑎𝑐𝑡𝑜𝑟

= ∫ (
𝑁

𝑁0
)
𝑏𝑎𝑡𝑐ℎ

∙ 𝐸(𝐷) ∙ 𝑑𝐷
∞

0
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2.3 Assessment and design tools of UV reactor systems 

Current methods to characterize the design and process performance of large-scale UV disinfection 

systems include biodosimetry, Computational Fluid Dynamics Irradiance Field (CFD-I) models, 

and Lagrangian Actinometry. Of these, biodosimetry is perhaps the most common methodology 

used by operators in WWTPs and drinking water facilities.  

2.3.1 Biodosimetry 

Biodosimetry involves a comparison of the performance of a continuous flow reactor with dose-

response behavior, usually measured using a collimated beam test. It consists of developing a 

standard curve for the UV dose-response behavior of a challenge organism by determining the 

fractional survival of the challenge organism(s) as a function of UV dose. Dose delivery in this 

portion of the test usually involves a collimated UV source.  Ideally, the challenge organism should 

have a similar sensitivity to UV radiation as the target pathogen or regulated microorganism.  

 

The second step consists of testing the continuous flow (large-scale) reactor. A known 

concentration of the same challenge organism is injected at the influent of the reactor, then samples 

from the effluent are analyzed to determine the inactivation response achieved by the reactor, i.e., 

measure surviving organisms. The test conditions are also measured, e.g., flow rate, UVT, lamp 

status, and UV fluence rate, as measured by UV sensors. 

 

The third step is to determine the reduction equivalent dose (RED) by comparing the results from 

the bench-scale and large-scale testing. The inactivation response of the challenge organism 

measured in the continuous-flow reactor is compared with the UV dose-response data to determine 

the RED. RED values are specific to challenge microorganisms used during experimental testing, 

and to test conditions of the full-scale testing (USEPA, 2006a; Cabaj et al., 1996; Qualls & Johnson, 

1983; Blatchley, 1997). The following figure illustrates the process described above. 
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Figure 5. Overview of recommended experimental protocol. Source: USEPA UV Disinfection 

Guidance Manual (2006). 

 

 

The primary advantage of biodosimetry is that it involves direct measurements of the concentration 

of the surviving challenge organism(s). This is beneficial for regulatory agencies; however, it fails 

to give a description of the actual UV dose distribution that a continuous-flow UV reactor system 

delivers.  
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2.3.2 Computational Fluid Dynamics Irradiance Fluence Rate Field 

Computational Fluid Dynamics Irradiance (Fluence Rate) Field (CFD-I) models are used to 

simulate hydrodynamic behavior within a UV reactor, and because of its utility it is becoming more 

prevalent in the design of UV reactors (Wols et al., 2011; Santoro et al., 2005).  

 

CFD uses numerical methods to solve the fundamental nonlinear differential equations (equations 

of motion and continuity, together with a turbulence closure model) and obtain the flow field of the 

water and the motion of particles for a predefined reactor geometry and conditions. Irradiance Field 

models account for the optical qualities of the water, output power of the lamps, and system 

geometry. The results of I-field modeling are integrated with CFD results to predict reactor 

behavior. Figure 6 is an illustration of a velocity field as simulated by CFD. 

 

 

Figure 6. Velocity field CFD simulation. Source: Wols et al. (2012).  

 

As mentioned before CFD-I analyses are performed for set of predetermined conditions, allowing 

simulation for those conditions. However, the results are deterministic, meaning that the CFD does 

not take into account the natural variability observed in UV reactor systems.  
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2.3.3 Lagrangian Actinometry 

Lagrangian Actinometry involves the use of microspheres that have been conjugated to a UV-

sensitive dye. As in biodosimetry, the dose-response behavior of microspheres is first defined by 

exposure to UV under a collimated beam to a range of doses. The response of microspheres is a 

change in in fluorescence intensity (FI) that is measured by flow cytometry (FC). After the UV 

response of microspheres has been determined, microspheres are injected to the influent of 

continuous-flow UV reactors and allowed to flow through. The microspheres are then collected at 

the effluent, separated from the water, and analyzed by FC. Mathematical deconvolution is 

employed to estimate the dose distribution delivered by the reactor (Blatchley et al., 2006). 

To date, Lagrangian Actinometry is the only method available for measurement of UV dose-

distribution of a continuous flow reactor. This method has been used in conjunction with 

biodosimetry and CFD-I methods for validation of a wide range of UV reactor types (Blatchley et 

al., 2008; Wols et al., 2012). 
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2.4 Input parameters that introduce variability in process performance 

The performance of UV disinfection systems is dependent on several factors that cannot be 

controlled and display variability over time. Figure 3 illustrates parameters that are known to 

influence the performance of UV disinfection reactors. Input parameters listed in the green boxes 

display variability, but can be measured and quantified. Parameters in the red box illustrate fixed 

attributes of a given reactor, and parameters in the yellow boxes illustrate attributes of the system 

that depend on other system characteristics, and their variability. Arrows indicate direction of 

dependence among process variables.  
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Figure 7. Parameters that influence the performance of UV disinfection reactors. 
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The microbial response to UV, or UV dose-response behavior, is a measure of the susceptibility of 

the target microorganism to UV radiation. Standardized methods for measurement of UV dose-

response behavior were described previously.  

 

Flow rate variations to a treatment process will show diurnal, seasonal and other variations. 

However, flow rate is often measured in real time; therefore robust flow rate data sets are often 

possible at municipal WWTPs.  

 

UV transmittance also displays variability, and it affects the delivery of UV radiation to water. 

UVT is defined as the percentage of UV (λ = 254 nm) radiation passing through an optical path 

length of a sample. UVT can also be measured in real time; however, in the absence of this 

instrumentation, grab samples can be collected to for measurement of UVT with a conventional 

spectrophotometer.  

  

Total suspended solids (TSS) is a measurement used to describe particles suspended in water. Water 

with high TSS concentration is often observed to shelter aquatic microbes from UV exposure 

(Blatchley et al., 2001).  

2.5 Current regulations 

Current federal and state regulations pertaining to UV disinfection of municipal wastewater in the 

United States are based on limitations on discharge concentrations of target organism(s) and other 

contaminants. Examples of these regulations of limits on effluent quality include those imposed 

through the National Pollutant Discharge Elimination System (NPDES) permits and  the Water 

Recycling Criteria (WRC) Title 22 of the California Code of Regulations. It is relevant to note that 

some water regulations, such as Chapter 62: Domestic Wastewater Facilities of the Florida 

Administrative Code (FAC), recognize the potential “harmful effects of chlorine” and encourage 

“the use of alternative disinfection methods”. 

 

No uniform, standard operational UV dose has been defined for UV systems used to disinfect 

municipal wastewater because there is a great deal of variability associated with the UV 

disinfection process, and it would be arbitrary to assign one operational scheme for all target 

endpoints. However, there have been several recommendations included in federal, regional, or 

state standards that have been published to inform designers and operations personnel. Some of 

these include the Ten States Standards, which recommends a nominal dose for wastewater 
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disinfection of no less than 30 mJ/cm2 (2004); however, no definition of dose or its measurements 

is included in Ten States Standards. The Ultraviolet Disinfection Guidelines for Drinking Water 

and Water Reuse suggests a design RED of 100 mJ/cm2  for water reuse applications based on the 

a 5-log10 inactivation of poliovirus (2012).  

 

Another difficulty with existing regulations is that they fail to recognize the existence or importance 

of the dose distribution that is delivered by all contemporary UV reactors. This is complicated by 

the existence of a wide range of UV “dose” definitions for UV reactors. In general, these 

characteristics of existing regulations effectively mandate conservatism in the design and operation 

of UV disinfection systems. 

 

2.6 Belmont WWTP design features 

The Belmont WWTP is one of two facilities responsible for treating wastewater in Indianapolis, 

Indiana. It has an average design flow of 120 million gallons per day (MGD) and a peak flow 

capability of 300 MGD. The Belmont facility recently underwent a substantial upgrade of its 

treatment hardware and capability.  This upgrade was part of the recent Wet Weather Secondary 

Treatment (WWST) Expansion Project, which includes an Air Nitrification System (ANS). A UV 

disinfection system designed to handle a peak flow of 150 MGD was also installed. In accordance 

with Belmont’s National Pollutant Discharge Elimination System (NPDES) permit, the facility is 

required to comply with limits of viable E. coli including a monthly geometric mean of 125 cfu/100 

mL, and a daily maximum is 235 cfu/100 mL. These disinfection standards are to be complied with 

during the period of April 1 through October 31, annually. Here this period will be referred to as 

the disinfection season; otherwise, it will be specified as the non-disinfection season. During the 

period of November 1 through March 31, the Belmont WWTP it is not required to disinfect (IDEM, 

2013).  

 

The UV disinfection system at Belmont UV system consists of seven channels each with 2 banks 

of UV lamps, each bank has 24 modules, and each module has 8 lamps. The total number of lamps 

per bank is 192. An estimate of the electrical power cost for operation of this system was developed 

based on an assumed operating condition of all seven channels being operated, with all lamps in 

both banks of each channel being operated at full power.   
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A list of assumptions used in developing this estimate of electrical power cost is as follows: 

1. Two banks of UV lamps in operation 

2. Operation at full power equal to 250 watts per lamp 

3. A total of 7 channels in operation 

4. 184 days in the disinfection season (April 1st – October 31st) 

Total number of lamps for the whole system is:  

192
𝑙𝑎𝑚𝑝𝑠

𝑏𝑎𝑛𝑘
× 2

𝑏𝑎𝑛𝑘

𝑐ℎ𝑎𝑛𝑛𝑒𝑙
× 7𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 = 2688 𝑙𝑎𝑚𝑝𝑠 

Cost per kW·hr is $0.06 

2688 𝑙𝑎𝑚𝑝𝑠 × 250 𝑊 ×
1 𝑘𝑊

1000 𝑊
= 672 𝑘𝑊 

672 𝑘𝑊 × 24
ℎ𝑟

𝑑𝑎𝑦
×
$0.06

𝑘𝑊 ∙ ℎ𝑟
= $968/𝑑𝑎𝑦 

$968

𝑑𝑎𝑦
× 184

𝑑𝑎𝑦𝑠

𝑦𝑒𝑎𝑟
= $178,000/𝑦𝑒𝑎𝑟 

 

The Southport WWTP is an additional treatment facility in the city of Indianapolis. This facility is 

similar in size with an average flow rate of 125 MGD and a peak flow of 150 MGD. The Southport 

WWTP is currently undergoing an expansion project to increase its treatment capacity. As with 

Belmont the project will include the installation of a UV disinfection system. 
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CHAPTER 3. METHODS AND MATERIALS 

 

 

 

3.1. UV Dose-Response Experiments 

Sampling and conducting of these experiments began in June of 2012 and finished in June of 2013. 

Secondary effluent samples were collected from a sampling station (see Figure 8) at the Belmont 

WWTP in 1 L glass bottles. The samples were immediately put in coolers that maintained a 

temperature between 1.7°C and 4.4°C.  The analyses were initiated within 30 minutes of collection, 

when the Belmont Field Laboratory was used. When analyses were conducted at Purdue University, 

they were initiated within 2 hours of collection. 

 

 

From each sample, subsamples were placed under a collimated beam in a shallow, well-mixed 

batch reactor and subjected to a range of UV doses (λ = 254 nm). The shallow batch reactors were 

15 cm diameter Pyrex glass petri dishes. For each exposure, 150 mL of sample was poured to 

achieve a depth of ~1.0 cm. A small Teflon-coated stir bar was introduced in the sample to 

accomplish mixing during exposure. This arrangement is illustrated in Figure 9. 

Figure 8. Secondary effluent sampling station 
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Target UV doses chosen included 40, 30, 20, 15, 10, and 5 mJ/cm2. Additionally, one subsample 

received no exposure of UV, which was used as the control to measure N0 (concentration of viable 

E. coli in undisinfected effluent). These values for UV doses were chosen as they are relevant to 

wastewater disinfection applications.  

 

 

 

USEPA Method 1103.1 was applied to quantify viable E. coli concentrations after each exposure 

of UV radiation, and in undisinfected effluent samples. This method allows for a direct bacterial 

count from a water sample based on the development of colonies on the surface of a membrane 

filter. A water sample is filtered through a membrane which retains the bacteria. After filtration, 

the membrane is placed on a growth medium that is selective and differential, and incubated at 

35°C to 44.5°C ± 0.2°C for about 24 hours. Following incubation, the filter is transferred to a filter 

pad saturated with urea substrate. After 15 minutes, yellow, yellow-green, or yellow-brown 

colonies are counted. Membranes that developed more than 100 colonies were classified as too 

numerous to count (TNTC) (USEPA, 2006b).  

The dose was calculated following the protocols established by Bolton and Linden (2003). First the 

incident irradiance (I) of the collimated beam was measured with a radiometer at the center of the 

beam (International Light, model: IL1700). The UVT of the sample was measured with a 

spectrophotometer (Cary, model: 300 Bio). Several correction factors were included to allow 

accurate measurement of the applied UV dose. The corrections included the petri factor, the 

reflection factor, water factor, and divergence factor (Bolton & Linden, 2003).  

Figure 9. Collimated beam set-up at the Belmont WWTP Field Laboratory. 
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The petri factor used to correct the irradiance reading taken at the center of the beam and petri dish 

to more accurately reflect the average incident irradiance over the surface area of the whole petri 

dish.  

The reflection factor accounts for the reflection that takes place when a beam of radiation passes 

from one medium to another.  

The water factor, accounts for the absorbance of radiation that the water sample may have.  

The divergence factor accounts for the divergence of the radiation over the distance from the lamp 

to the suspension. 

Equation 7 expresses the collective effects of the correction factors. 

 

              Eq. 7 

 

Where IR = Irradiance measured with radiometer (mW/cm2) 

R = Reflection coefficient 

L = Vertical distance from the lamp axis to the air:water interface 

ℓ = Liquid depth in the Petri dish (1 cm) 

P = Petri factor (0.846) 

α = 
−𝑙𝑛(𝑇)

𝐴
  where T is the UVT (%) measured with a spectrophotometer, and A is 

the optical path length of the spectrophotometer. 

 

For every day a UV dose-response experiment was performed, additional water quality 

parameters were obtained from the Belmont Monthly Reports. These included TSS in mg/L, 

average flow rate in MGD, and precipitation in inches. 

 

A total of 46 UV dose-response experiments were performed. Due to construction that took place 

at the Belmont WWTP, the sampling location had to be changed, and as a result 19 samples were 

unfiltered secondary effluent samples and 27 were filtered effluent samples 

  

𝐼𝑎𝑣𝑔 =
𝐼𝑅 ∙ (1 − 𝑅)(

𝐿
𝐿 + ℓ

) ∙ 𝑃 ∙ [1 − 𝑒𝑥𝑝(−𝛼ℓ)]

𝛼ℓ
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3.2 Statistical analysis 

Piece-wise regression was applied to the resulting UV dose-response curves to obtain fitting 

parameters of the PPES model. None of the resulting curves in this study displayed a shoulder, but 

tailing was evident in all data sets. Therefore, a modified form of the PPES model was applied for 

regression analysis: 

 

Eq. 8 

 

A piece-wise regression tool was developed using the software SAS, to find the best fit for the 

PPES model parameters kA, kB, and the inflection point of the curve (c), which is equivalent to the 

UV dose in mJ/cm2 for which the persistent E. coli population (B0) remained. Once the value of c 

was obtained, B0 was calculated as follows: 

           Eq. 9 

Where B0 = Microorganism sub-population assumed to be resistant to UV 

 kA = Inactivation constant for the susceptible subpopulation (cm2/mJ) 

 c = UV dose for which the resistant sub-population B0 remains (mJ/cm2)  

The susceptible subpopulation (A0) was calculated by subtracting B0 from N0, which was directly 

measured in the UV dose-response experiments.  

Additionally, Pearson correlation coefficients were calculated between the following parameter 

estimates: 

 PPES model parameters (each of them) vs. daily average flow 

 PPES model parameters vs. TSS 

 PPES model parameters and UVT 

 UVT vs. TSS 

 UVT vs. daily average flow 

 UVT  vs. daily max flow 

 N0 vs. TSS 

 N0 vs. daily average flow 

𝑁(𝑡)

𝑁0
=
𝐴0
𝑁0
∙ 𝑒𝑥𝑝(−𝑘𝐴 ∙ 𝐹 ∙ 𝑡) +

𝐵0
𝑁0
∙ 𝑒𝑥𝑝(−𝑘𝐵 ∙ 𝐹 ∙ 𝑡) 

 

 

𝐵0 = exp (−𝑘𝐴 ∙ 𝑐) ∙ 𝑁0 
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Correlation coefficients are considered statistically significant when the P-value is less than 0.05 

(Schervish, 1996). Parameters that express strong positive or negative correlations coefficients 

can be interpreted as having a significant linear relationship between them. Correlation 

coefficients were calculating using SAS.  

3.3 Ambient Biodosimetry (AB) 

Ambient biodosimetry experiments were performed during the disinfection season and the non-

disinfection season. During the non-disinfection season the WWTP is not required to disinfect to 

comply with the NPDES discharge permit limitations for E. coli.  Therefore, management at the 

Belmont facility allowed manipulation of the UV system without concern of violating the permit. 

This allowed the use of high flow rates or small number of channels to “challenge” the system. For 

some of the AB experiments, a fixed flow rate was diverted to the UV system, and samples were 

collected for different flow conditions. Flow conditions were defined by the number of channels 

open for operation and flow rate. Therefore, the more channels open, the lower the flow rate per 

channel, and vice versa. It is important to mention that due to the design of the system, when the 

system is set to manual operation, the power output of the lamps is automatically fixed to deliver 

full power. So the dose delivered changed based only on the UVT, number of operating channels, 

number of operating lamp banks and flow rate.  

 

The Belmont UV system consists of seven channels, each with two banks of lamps in series, labeled 

A and B for the upstream and downstream locations respectively. As illustrated in Figure 11, 

samples were collected from position I (undisinfected water), position II (downstream of bank A), 

and position III (downstream of both banks A and B). 

 

 

Figure 10. UV disinfection reactor at the Belmont WWTP 
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The samples were collected with plastic buckets, one for each sample location. Water from the 

bucket was transferred into sterile 1 L whirl packs, and immediately placed in a cooler. For most 

of AB experiments the analyses were performed in the Belmont Field Laboratory, and were 

initiated within a 1 hour of collection. When the analysis was done at Purdue University, it was 

initiated within two hours of sample collection. USEPA Method 1103.1 of membrane filtration was 

employed for E. coli quantification, as described previously (2006b). 

 

Bank A 

Bank B 

1 2 3 4 5 6 7 

I 

II 

III 

Figure 11. Schematic representation of the UV reactor of the Belmont WWTP.  The arrow 

illustrates the direction of flow. Seven channels each with two banks of UV lamps. 

I, II, III indicate the locations where water samples were collected. Not to scale. 
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CHAPTER 4. RESULTS AND DISCUSSION 

 

 

 

4.1 Viable E. coli Concentration in Undisinfected Effluent (N0) 

A total of 49 undisinfected effluent samples were collected over a period beginning in July of 2012 

and ending in June of 2013. The concentration of viable E. coli was measured in each sample. 

Figure 12 illustrates these results. 
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Figure 12. Viable E. coli concentrations in the undisinfected water (e.g., before being subjected to       

UV radiation). The two blue lines indicate the beginning and the end of the non- 

disinfection season. 
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The data illustrated in Figure 12 were based on counts from three to nine plates per sample; the 

error bars represent the standard deviation that was measured among the plates counted for each 

experiment. Viable E. coli concentrations tended to be higher during the warmer months than the 

colder months. The seasonal trend of bacterial populations is wastewater effluent has been 

observed before. Figure 13 illustrate data collected from the West Lafayette, IN WWTP. 

  

Figure 13. Fecal coliform concentrations collected in the winter of 1995(Left). Fecal coliform 

concentrations collected in the spring and summer of 1995 (Right). Source: Blatchley 

et al. (1996).  

 

4.2 UV Dose-response Experiments 

Figure 14 provides a graphical summary of bench scale collimated beam UV254 dose-response 

experiments results, which were conducted on undisinfected secondary effluent samples from the 

Belmont WWTP. The data displayed in Figure 14 are the results of UV dose-response experiments 

conducted on the dates included in Figure 12. The results show that the viable E. coli concentration 

was consistently reduced to below the NPDES permit limitations, based on maximum daily and the 

monthly geometric mean limits, with UV254 doses of 15 mJ/cm2 or less. More specifically, doses 

of 15 mJ/cm2 or more, provided by a collimated beam system, have yielded a concentration of 37 

cfu/100 mL or less. Tailing was noted at doses at or above 20 mJ/cm2; inactivation for doses of 20 

mJ/cm2 and greater was small compared with inactivation achieved at lower doses.  Average viable 

E. coli concentrations were 5.0, 4.5, and 3.6 cfu/100 mL, for doses 20, 30, and 40 mJ/cm2 

respectively. 

The data presented in Figure 14 provide strong evidence that a dose of 15 mJ/cm2 will yield 

consistent compliance with the discharge permit limitations that are in place at the Belmont WWTP.  
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This dose is nominally 50% of the “dose” recommendation provided by Ten States Standards.  This 

suggests that systems that are designed to conform to Ten States Standards (and other similar design 

guidelines) may be overdesigned. 
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Figure 14. Viable E. coli concentration in secondary effluent samples from the Belmont WWTP, 

as a function of UV dose from collimated beam dose-response experiments.  A total of 

49 dose-response experiments are included in this graph.  The horizontal red and green 

lines are included to illustrate the NPDES permit limitations for the Belmont facility, 

as defined by a daily maximum and monthly geometric mean of viable E. coli 

concentration, respectively. 

The response behavior of ambient E. coli to UV exposure observed in this study is comparable to 

that reported in previous studies (Pennell et al., 2007; Blatchley et al., 2001). 

To facilitate the comparison across sampling dates, the data presented in Figure 5 are also 

presented in normalized form (N/N0). Figure 15 indicates that a UV dose of 15 mJ/cm2 will 

achieve 2 – 4.5 log10 units of E. coli inactivation. This is a clear illustration of variability of a 

system attribute that is known to affect overall process performance in UV disinfection systems.   
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Figure 15. Fractional inactivation of E. coli (log10-transformed) as a function of UV dose applied 

in collimated beam experiments. 

Figure 16 illustrates variability that has been observed in UVT254 of undisinfected secondary 

effluent samples. For most samples UVT254 was observed to be between 60% to 80% (based on a 

1.0 cm optical path).  Clearly, variations in UVT254 will affect the disinfection performance of a 

UV disinfection system, as this will influence the irradiance field within the reactor. By extension, 

this variation in the irradiance field will affect the dose distribution and disinfection efficacy.  
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Figure 16. Measured UVT254 in undisinfected secondary effluent samples. 

 

The gap in the middle of the data set (Figure 16) is attributed to measurements that were taken with 

a malfunctioning spectrophotometer and therefore were not included in the illustration.  
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4.3 PPES Model fitting 

For each of the UV dose-response curves, the PPES model parameters (kA, kB, A0, and B0) were 

estimated by employing a piecewise regression tool. As explained in Methods and Materials 

section, the regression analysis also yielded an estimate of the inflection point c. Figure 17 

illustrates the regression curve obtained for the one UV dose-response experiment. The plot 

demonstrates that the modified PPES model fits the data adequately with an R2 value of 0.970.  

Regression fits for all UV dose-response experiments performed are included in Appendix A. 

Since the modified PPES is a 4-parameter model, high values for R2 are expected. 
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Figure 17. Fit of PPES model to UV dose-response data for experiment performed on 2/12/2013. 

The parameters kA, kB, and c values are shown. 

Correlations between PPES parameters and measurements of daily average flow rate (Q), 

undisinfected effluent E. coli concentrations (N0), UVT, TSS, and Precipitation (Prec) were 

calculated using the CORR procedure in SAS. Table 1 presents the correlation values and P-values 

for the aforementioned parameters.  

 

 



31 

 

Table 1. Pearson Correlation Coefficients and p-values for PPES model parameters (kA, kB, A0, 

B0, c)  and measured parameters for UV dose-response experiment dates (Q, N0, UVT, TSS, 

Prec). The number of observations was 49. 

 

Parameters that are strongly correlated are highlighted in dark gray and parameters moderately 

correlated are highlighted in light gray. Correlations between two parameters were defined as 

“strong” when the corresponding p-value is less than 0.01, and a “moderate” correlation defined 

  N0 UVT TSS kA kB c A0 B0 Prec 

Q 

Corr 
-0.212 0.454 0.503 0.015 -0.036 -0.133 -0.082 0.0823 0.313 

P-

value 

0.157 0.0015 0.0004 0.922 0.813 0.378 0.587 0.587 0.0342 

N0 

Corr 
-0.382 0.0073 -0.099 0.225 0.319 0.317 -0.317 0.066 

P-

value 

0.0088 0.962 0.515 0.133 0.0310 0.032 0.0319 0.665 

 UVT 

Corr 
0.0536 0.020 -0.119 -0.228 -0.270 0.270 -0.0379 

P-

value 

0.724 0.895 0.430 0.128 0.070 0.0698 0.803 

  

TSS 

Corr 
-0.045 0.001 0.0077 0.0251 -0.0251 0.555 

P-

value 

0.767 0.997 0.960 0.869 0.869 <0.0001 

 

kA 

Corr 
0.144 -0.773 0.094 -0.0941 0.0015 

P-

value 

0.338 <0.0001 0.534 0.534 0.992 

 

kB 

Corr 
-0.280 -0.128 0.128 0.167 

P-

value 

0.0597 0.398 0.398 0.268 

 

c 

Corr 
0.471 -0.471 -0.0451 

 
P-value 

0.001 0.001 0.766 

  
A0 Corr 

-1.000 0.0240 

  
 

P-

value 

<0.0001 0.874 

   

B0 

Corr 
-0.0240 

   
P-value 

0.874 
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when the corresponding p-value was between 0.05 and 0.1 (Fisher, 1938; Stigler, 2008).  The 

analysis based on the 46 observations indicates that the parameters that are strongly correlated are 

Q – UVT (Corr = 0.454, p-value = 0.0015), Q – TSS (Corr = 0.503, p-value = 0.0004), N0 – UVT 

(Corr = -0.382, p-value = 0.0088), TSS – Prec (Corr = 0.555, p-value < 0.0001), kA – c (Corr = -

0.773, p-value < 0.0001),  c – A0 (Corr = 0.471, p-value = 0.001), and c – B0 (Corr = -0.471, p-

value = 0.001). 

Parameters that were moderately correlated included: N0 – c (Corr = 0.319, p-value = 0.031), N0 – 

A0 (Corr = 0.317, p-value = 0.0319), N0 – B0 (Corr = -0.317, p-value = 0.0319), UVT – A0 (Corr = 

-0.270, p-value = 0.0698), UVT – B0 (Corr = 0.270, p-value = 0.0698),  Q – Pec (Corr = 0.313, p-

value = 0.0342). 

Because of the assumptions contained in the PPES model, the parameters that were expected to 

display correlation were N0 – A0, N0 – B0, c – B0, and kA – c, which was confirmed by the analysis. 

The reason to expect these correlations are: 

1. As was mentioned in the Chapter 3 section 2, c is the UV dose for which the persistent E. 

coli population (B0) remains. Therefore, in order to obtain B0 we need to know c. i.e., B0 is 

dependent on c. (see equation 9). 

2.  N0 = A0 + B0         Eq. 10  

Therefore these three parameters may be correlated. 

To illustrate the correlations indicated in Table 1, scatter plots are presented in the figures that 

follow. The plots include the 95% prediction ellipse, which contains 95% of the observed data 

points, and it also indicates region in which a future observation can be expected. Also, the 

prediction ellipse gives an indication of the direction and strength of correlation between two 

parameters. A large ratio of the length of the major to minor axis is an indication of a large positive 

or negative correlation between two variables.  

Discussions follow the figures for those parameters that were found to be strongly correlated and 

moderately correlated. Two parameters are examined in each discussion and possible explanations 

are provided for the correlation observed. Redundancy in these discussions is to be expected as 

many of these parameters are correlated with more than one parameter.  

 



33 

 

4.3.1 Correlations between Q – TSS, Q – Prec and TSS – Prec 

 

 

Figure 18. Scatter plot of TSS (mg/L) vs. Q (MGD), where Corr = 0.503, p-value = 0.0004. 

 

 

Figure 19. Scatter plot of Precipitation (in) vs. Q (MGD), where Corr = 0.313, p-value = 0.0342. 
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Figure 20. Scatter plot of Precipitation (in) vs. TSS (mg/L), where Corr = 0.555, p-value < 0.0001. 

 

Figures 18, 19, and 20 display strong positive correlations between the parameters Q – TSS, Q – 

Prec, and TSS – Prec. This suggests that these parameters influence each other. From experience, 

this correlation is compatible with field observations, that is, when there is a rain event the flow 

rate at the WWTP increases, and in many cases the visual quality of the water tends to decrease.   

The Belmont WWTP reported a TSS value of 127 mg/L on the date 2/26/13. This value is unusually 

high, and as such it lies far from the contour of the prediction ellipse. One explanation for the high 

value of TSS is that the precipitation reported for that same day was coincidentally the highest 

reported for the data set here analyzed, the corresponding precipitation was 1.26 in. 
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4.3.2 Correlations between UVT – Q 

 

 

Figure 21. Scatter plot of UVT (%) vs. Q (MGD), where Corr = 0.454, p-value = 0.0015. 

 

It appears that Q and UVT are positively correlated; as Q increases UVT increases as well. 

Although, the analysis did not yield a correlation between UVT and TSS, and UVT and 

precipitation, it is possible that UVT is indirectly influenced by TSS and precipitation because as 

it is illustrated in Figure 21, Q and UVT are strongly correlated, and it has been shown that Q is 

related to precipitation, and TSS, as discussed in section 4.3.1.   
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4.3.3 Correlation between N0 – UVT, A0 – UVT, B0 – UVT 

 

 

Figure 22. Scatter plot of UVT (%) vs. N0 (CFU/100mL), where Corr = -0.382, p-value = 0.0088. 

 

Figure 22 displays a strong negative correlation between UVT and N0. Although it is not clear what 

could be the cause for this relationship, one hypothesis is that bacteria in the water could contribute 

to absorbance of light; therefore, water with a higher concentration of bacteria (N0) would have a 

lower UVT. 
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Figure 23. Scatter plot of A0 (CFU/100mL) vs. UVT (%), where Corr = -0.270, p-value = 0.0698. 

 

 

Figure 24. Scatter plot of B0 (CFU/100mL) vs. UVT (%), where Corr = 0.270, p-value = 0.0698. 
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Figures 23 and 24 illustrate the correlations of A0 and B0 to UVT. The correlations indicate that, 

just like N0, A0 is negatively correlated to UVT. On the other hand, B0 appears to be positively 

correlated to UVT. The latter correlation would contradict the hypothesis that higher bacterial 

concentrations in the water could contribute to lower UVT. If this hypothesis is true, it cannot be 

physically possible that only the susceptible sub-population (A0) contributes to lower UVT in the 

water, while the persistent sub-population (B0) contributes to higher UVT. However, because of 

the negative correlation between B0 and A0 in the modified PPES model (see Figure 25) this 

relationship would appear to happen.  

To reiterate, it is not that A0 contributes to lower UVT and conversely B0 to higher UVT, but rather 

that this correlation is a consequence of the assumptions of the PPES model (see Equations 9 

and10). 

 

Figure 25. Scatter plot of A0 (CFU/100 mL) vs. B0 UVT (CFU/100 mL) where Corr = -1.00, p-

value < 0.0001. 
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4.3.4 Correlation between N0 – A0 and N0 – B0 

 

 

Figure 26. Scatter plot of N0 (CFU/100mL) vs.A0 (CFU/100mL), where Corr = 0.317, p-value = 

0.0319. 

 

 
Figure 27. Scatter plot of N0 (CFU/100mL) vs. B0 (CFU/100mL), where Corr = -0.317, p-value = 

0.0319. 
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Figures 26 and 27 display moderately strong positive and negative correlations between A0 – N0 

and B0 – N0 respectively. The observed correlations are explained by the negative correlation 

between A0 and B0 (See Figure 25). Additionally, A0 appears positively correlated to N0 because 

all regressions of the modified PPES model yielded a higher values for sub-population A0, and 

lower values for sub-population B0. This is consistent with the observed UV dose-response of E. 

coli, where a bigger fraction of organisms is inactivated with lower doses (5 – 15 mJ/cm2), and a 

smaller fraction is inactivated with high higher dose (> 15 mJ/cm2).  

4.3.5 Correlation between c - kA 

 

 

Figure 28. Scatter plot of kA vs. c (mJ/cm2), where Corr = -0.773, p-value < 0.0001. 

 

Figure 28 show a strong negative correlation between the kA and c. This correlation can be imagined 

as the higher the value of kA, the longer the tail appears in the dose-response curve. The reason is 

that a higher value of kA means that the susceptible sub-population (A0) is inactivated with a lower 

dose(s), and as a consequence c is also lower, being that c is the dose at which the persistent sub-

population (B0) remains. 

 



41 

 

4.3.6 Correlation between N0 – c, A0 – c, and B0 – c 

 

Figure 29. Scatter plot of c (mJ/cm2) vs. N0 (CFU/100mL), where Corr = 0.319, p-value = 0.031. 

 

 

Figure 30. Scatter plot of c (mJ/cm2) vs. A0 (CFU/100mL), where Corr = 0.471, p-value = 0.001. 
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Figure 31. Scatter plot of c (mJ/cm2) vs. B0 (CFU/100mL), where Corr = -0.471, p-value = 0.001. 

 

Figures 29, 30, and 31, illustrate moderately strong correlations of N0, A0, B0, to c. Figures 30 and 

31 show a positive correlation between A0 – c, and a negative correlation between B0 – c 

respectively. It has been stated that c is the dose at which the persistent sub-population (B0) remains 

after inactivation of the susceptible sub-population (A0) has taken place; so it follows that a lower 

value of A0  yields lower values for c, and conversely lower values of B0  yield higher values of c. 

In other words, when the tail appears longer, the sub-population A0 was inactivated with a lower 

dose (c), leaving a higher concentration of susceptible sub-population (B0).  

The correlation between N0 – c (Figure 29), is positive. It was mentioned in section 4.3.4 that from 

experiments, a bigger fraction of organisms are inactivated with lower doses, and a smaller fraction 

is inactivated with high higher dose. That is, A0 is higher than B0, therefore, if most of population 

N0 is composed by A0, and there is a positive correlation between A0 and c, it follows that N0 and 

c would also display a positive correlation. 

All other correlation scatter plots indicating the non-significant correlations are presented in 

Appendix B. 
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4.4 Ambient Biodosimetry Results 

4.4.1 Non-disinfection season 

AB experiments were performed during the disinfection season and the non-disinfection season. 

The experiments performed during the non-disinfection season allowed for alteration of operating 

conditions. The following results were obtained from experiments performed during the non-

disinfection season.  For these experiments, a fixed flow rate was diverted to the UV system from 

the secondary clarifiers and sand filters. Samples were collected at several locations (I, II, III, as 

defined in Figure 11 for each flow condition.  

 

Table 2. AB flow conditions for experiment executed on 3/1/2013 

Flow Condition (Q) Open Channels 
Banks in operation 

per channel 

Sample locations, per 

operating condition, 

per channel 

1 1,2,3,4,5,6,7  A & B I, II, III 

2 1,2,3,4,5 A & B I, II, III 

3 1,2,3 A & B I, II, III 

 

The inactivation accomplished by the Belmont UV system on 3/1/2013 is illustrated on Figures 31, 

32, and 33. Each graph corresponds to a flow condition. The arrows pointing down included in 

some of the plots indicate concentrations of E. coli obtained below the limit of detection. Similarly, 

the arrows pointing up indicate concentrations of E. coli too numerous to count (TNTC) per plate. 

Specifically, if the membrane developed more than 100 colonies per volume filtered, it was 

assigned 100 colonies, and then calculated the equivalent colonies per 100 mL. For example, if 100 

colonies were obtained for a volume of 400 mL, the equivalent colonies per 100 mL is:  

            Eq. 11 

 

This calculation was used across all resulting numbers of colonies, as it is the convention to express 

the colony forming unit per 100 mL of sample. The legend in parenthesis next to each arrow shows 

the volume filtered. The flow rate at the time of collection was Q = 106.7 MGD, UVT = 76.6%, 

and the dose by PLC was 32.62 mJ/cm2. 

Figures 32 through Figure 36 (and others included in Appendix C), indicate that the UV reactor at 

Belmont WWTP consistently complies with NPDES limits. As previously demonstrated in the 

results of UV dose-response experiments, the necessary dose to properly inactivate E. coli to 

𝐶𝑜𝑙𝑜𝑛𝑖𝑒𝑠 𝑝𝑒𝑟 100 𝑚𝐿 =
100 𝑐𝑜𝑙

400 𝑚𝐿
× 100 𝑚𝐿 
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comply with the permit is about 15 mJ/cm2. By inspecting the measured concentrations of the 

surviving E. coli per channel, per flow condition, the majority of the cases it was below 20 cfu/100 

mL, except in a few cases were contamination and/or other sampling errors are suspected to have 

occurred. For instance, during the transportation of the coolers to the laboratory a few times leakage 

of one or more samples occurred inside the cooler. Another possible, but less likely occurrence 

could have been contact between the glove and the sample when it was poured from the bucket into 

the whirl pack.  

As evidenced by Figures 32, 33, and 34 compliance with permit limits was accomplished in all 

samples tested. Moreover, it is noted that compliance was achieved in the samples collected at 

location II (after bank A). These and other results (shown in Appendix C) suggest that the Belmont 

UV system is overdesigned, as it is clearly capable of achieving compliance with just a portion of 

the existing hardware. This implies that the Belmont UV system can be safely and reliably operated 

with a portion of its hardware.      

Condition 1
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Figure 32. AB Experiment performed on 3/1/13. E. coli concentrations per channel for condition 

1. 
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Figure 33. AB Experiment performed on 3/1/13. E. coli concentrations per channel for condition 

2. 
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Figure 34. AB Experiment performed on 3/1/13. E. coli concentrations per channel for condition 

3. 
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Figures 35 and 36 are the compilation of the inactivation achieved at each location. These figures 

show the performance of the reactor in relation to the discharge permit limitations of E. coli 

concentrations. The permit limits are illustrated by the red and green lines, which are maximum 

daily (235 CFU/100 mL) and monthly geometric mean (125 CFU/100 mL) respectively.  
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Figure 35. AB Experiment performed on 3/1/13. E. coli concentrations per channel, for location II 

for each of three flow conditions. 
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Figure 36. AB Experiment performed on 3/1/13. E. coli concentrations per channel, for location III 

for each of three flow conditions. 

 

Figures 35 and 36 illustrate that the reactor reliably achieves inactivation of E. coli well below the 

permit limits shown. It is noted that channel number 4 appears to have a higher concentration of 

surviving E. coli at location III (downstream of bank B) than at location II (downstream of bank 

A). It is unlikely that the bacterial population grew from the moment it exited bank A and while 

being exposed to UV in bank B. There is no clear explanation for this behavior other than the 

possible contamination of the sample. This also appeared in the results for the experiment 

performed on 12/13/13. 

Figures 37 through 41, present the results non-disinfection season experiment performed on 

12/5/13. The flow conditions tested are indicated in Table 3.  
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Table 3. AB flow conditions for experiment executed on 12/5/2013 

Flow Condition (Q) Open Channels 
Banks in operation 

per channel 

Sample locations, per 

operating condition, 

per channel 

1 2,3,4,5,6,7  A & B I, II, III 

2 5, 6, 7 A & B I, II, III 

3 6, 7 A & B I, II, III 

 

The flow rate at the time of collection was 50.80 MGD, UVT was recorded at 68.2%, and the dose 

by the PLC was recorded at the just before sample collection as 165.53 mJ/cm2, and at the end of 

sample collection 91.33 mJ/cm2. 

Figures 37, 38, and 39 present the results for conditions 1, 2, and 3 respectively. Although these 

results are similar to the results of experiment 3/1/13, there is a notable difference in the overall 

performance of the UV reactor; on 3/1/13 the reactor achieved higher inactivation levels than on 

12/5/13.   

There is notable change in inactivation from condition 1 to condition 3. The concentrations of 

surviving E. coli in condition 1 were roughly within the range 0.2 – 24 cfu/100 mL, in condition 2 

they were in the range of 0.3 – 3 cfu/100 mL, and in condition 3 they were within 0.3 – 100 cfu/100 

mL. In other words, as a higher flow rate is imposed in the channels less inactivation is achieved. 

Yet, all inactivation observed complied with the NPDES effluent limits. 

Conditions 1 and 3 (Figures 37 and 38), display higher concentrations of E. coli at location III, in 

channels 2, 3, 6, and 7 which could be attributed to errors in sampling. 
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Figure 37. AB Experiment performed on 12/5/13. E. coli concentrations per channel for condition 

1. 

 

Figure 38. AB Experiment performed on 12/5/13. E. coli concentrations per channel for condition 

2. 
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Figure 39. AB Experiment performed on 12/5/13. E. coli concentrations per channel for condition 

3. 

Just like it was presented for experiment 3/1/13, Figures 40 and 41 are the compilations of the 

achieved in each location. These figures illustrate that the reactor performed up to the standards, 

even in condition 3 where all the available flow was being diverted to only two channels.  

Despite the sampling errors that potentially occurred during this experiment, there is evidence that 

the UV reactor at Belmont reliably performs to meet the disinfection criteria necessary for 

compliance.  
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Figure 40. AB Experiment performed on 12/5/13. E. coli concentrations per channel, for location 

II for each of three flow conditions. 

 

 

Figure 41. AB Experiment performed on 12/5/13. E. coli concentrations per channel, for location 

III for each of three flow conditions. 
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4.4.2 Disinfection season 
The flow conditions for these experiments represented the condition of normal plant operations 

because during this time the Belmont WWTP was required to comply with its NPDES permit. No 

changes in flow condition were allowed. E. coli concentrations were measured by sampling at 

location I, and downstream of each bank in operation (locations II and/or III), for each channel in 

operation. 

The results of five AB experiments performed during the disinfection season are presented. The 

first four experiments presented (Figures 43, 44, 45, and 46) were collected when the UV system 

was being operated with the following operation scheme: one bank of lamps was in operation in 

each channel. Bank A was being operated in channels 2, 3, 4, 5 and 7. Bank B was being operated 

in channels 1 and 6. This operational scheme is illustrated in Figure 42. 

 

 

Figure 42. Schematic of the UV reactor at Belmont WWTP illustrating the operation scheme for 

AB experiment in Figures 43, 44, 45, and 46. The banks that are not crossed out 

represent the operating bank of lamps at the time of collection. 
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Figure 43. AB Experiment performed on 7/11/13. 

Flow rate at the time of collection of experiments 7/11/13 was Q = 69.5 MGD, UVT = 71.4%, and 

PLC Dose = 36.4 mJ/cm2. 

 

Figure 44. AB Experiment performed on 7/23/13. 

Flow rate at the time of collection of experiments 7/23/13 was Q = 67.6 MGD, UVT = 70.3%, and 

PLC Dose = 35.62 mJ/cm2.  
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Figure 45. AB Experiment performed on 8/6/13. 

Flow rate at the time of collection of experiments 8/6/13 was Q = 47.7 MGD, UVT = 68.9%, and 

PLC Dose = 49.38 mJ/cm2.  

 

Figure 46. AB Experiment performed on 10/24/13.  

Flow rate at the time of collection of experiments 10/24/13 was Q = 58 MGD, UVT = 72.4%, and 

PLC Dose = 48.16 mJ/cm2.  
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Figure 50 illustrates AB experiment performed on 9/19/13. This day the UV reactor had both banks 

A and B in operation in all seven channels. Flow rate at the time of collection of experiments 

9/19/13 was Q = 115 MGD, UVT = 63.2%, and PLC Dose = 41.29 mJ/cm2.  

 

 

Figure 47. AB Experiment performed on 9/19/13 

 

The experiment illustrated in Figure 47 was performed during a rain event when the precipitation 

was 1.53 in. This experiment yielded the highest surviving E. coli concentrations of all AB 

experiments performed.  Because the y-axis in Figure 47 is in logarithmic scale, it appears as if the 

discharge permit limits were exceed, but this is in fact not the case with the highest concentrations 

being 100 cfu/100 mL. While this is close to the monthly geometric mean limit of 125 cfu/100 mL, 

it does not exceed the daily maximum limit of 235 cfu/100 mL.  

All the AB experiments shown and others included in Appendix C performed during the 

disinfection season showed comparable results, with the highest concentration of surviving E. coli 

of 100 cfu/100 mL measured in experiment 9/19/13 (Figure 47).  

The motivation for operating one bank during the  AB experiments illustrated by Figures 43, 44, 

45, and 46  is not clear; however, these results further demonstrate that the UV system at Belmont 

WWTP is capable to reliably comply with the NPDES permit with only a portion its hardware.  
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These findings also suggests that this UV system appears to be overdesigned because it  has been 

designed to meet recommended standards that are not do not take into account contemporary 

knowledge of UV disinfection reactors. This means that the system can be operated using a portion 

of its hardware, whether that is operating one bank of lamps at full power, or both banks with only 

a portion of its power. 

 

4.4.3 Correlation between Log10(N/N0) and product UVT · θ (hydraulic detention time) of AB 

experiments 

Figure 48 illustrates the relationship between the inactivation (presented in the form 

log10(N/N0))measured in all AB experiments and the product of UVT and hydraulic detention time 

(θ) in seconds. The inactivation responses presented in Figure 48 correspond to those of the final 

effluent, per channel. For example, if in a given channel banks A and B were operating, the 

inactivation achieved downstream of bank B (location III) is presented.  

 

The hydraulic detention time (θ) presented in Figure 48, corresponds to the time in seconds the 

water was exposed to UV radiation in each the channel. For example, if banks A and B were 

operating in a given channel, the detention time corresponds to the time of exposure to UV by both 

banks of lamps.  

 

 

Figure 48. Log10 inactivation vs. product of UVT and θ corresponding for AB experiments.  
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In general terms, the inactivation response should increase as UVT increases, because of increased 

penetration of UV radiation through water, resulting in greater microbial exposure.  Similarly, an 

increase in (mean) hydraulic detention time should imply greater exposure to UV radiation.  

Following this logic, it was expected that the inactivation response would tend to increase with the 

product of these two parameters. 

 

The purpose of plotting the parameters shown in Figure 48 was to examine the influence the UVT 

and mean hydraulic detention time (θ) on the inactivation response achieved in each channel. The 

data presented in Figure 48 do not exhibit the expected trend, and furthermore it demonstrates that 

the inactivation response achieved by the reactor was highly variable. For example, for 

measurements corresponding to UVT  7 s, the inactivation response varied from roughly 2.5 – 

5.1 log10 units. These results indicate that additional factors contribute to variability of the 

inactivation response, and that these factors need to be investigated. 
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CHAPTER 5. CONCLUSIONS 

 

 

 

UV dose-response experiments indicate that reliable compliance with the NPDES limitations can 

be achieved with a substantially lower dose than the recommended dose(s) by guidelines, such as 

the Ten State Standards. According to the observed dose-response behavior from the collimated 

beam experiments, a UV254 dose of 15 mJ/cm2 is sufficient to reach an inactivation that surpasses 

the required limits.  

The piece-wise regression fit of the PPES model for UV dose-response curves obtained from 

collimated beam experiments, suggest that accurate predictions can be made of the inactivation of 

the ambient E. coli, if the a dose can be guaranteed to be properly delivered, and the values of 

undisinfected populations N0 are known.  The results of these regression analyses also illustrated 

variability that is inherent in the UV254 inactivation response of E. coli. 

Additionally, correlation relationships for a total of 49 UV dose-response experiments yielded that 

there are statistically significant correlations between: 

 Q – UVT (Corr = 0.454, p-value = 0.0015) 

 Q – TSS (Corr = 0.503, p-value = 0.0004)  

 Q – Pec (Corr = 0.313, p-value = 0.0342) 

 N0 – UVT (Corr = -0.382, p-value = 0.0088)  

 TSS – Prec (Corr = 0.555, p-value < 0.0001) 

 kA – c (Corr = -0.773, p-value < 0.0001) 

 c – A0 (Corr = 0.471, p-value = 0.001) 

 c – B0 (Corr = -0.471, p-value = 0.001) 

The analysis also showed that there are moderately strong correlations between: 

 N0 – A0 (Corr = 0.317, p-value = 0.0319) 

 N0 – B0 (Corr = -0.317, p-value = 0.0319) 

 c – B0 (Corr = -0.2681, p-value= 0.0626) 
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 UVT – A0 (Corr = -0.270, p-value = 0.0698) 

 UVT – B0 (Corr = 0.270, p-value = 0.0698)  

 

Ambient Biodosimetry results demonstrate that because the UV reactor system at the Belmont 

WWTP was designed to conform to the current guidelines, it satisfactorily and consistently 

performs to reach E. coli inactivation levels that are well below the NPDES limits using only a 

fraction of the available hardware. This implies that an improved understanding of variability in 

performance of this system (and other systems) may allow for easing of the design criteria, therefore 

improving and optimizing system performance. Such an optimization effort may allow for 

improvement in process reliability, and decreases in capital and operating costs of UV wastewater 

disinfection systems. 
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Appendix A. UV dose-response and PPES regression 

 

 

Figure A1. Unfiltered sample 
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Figure A2. Unfiltered sample 

 

 

Figure A3. Unfiltered sample 
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Figure A4. Unfiltered sample 

 

 

Figure A5. Unfiltered sample 
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Figure A6. Unfiltered sample 

 

 

Figure A7. Unfiltered sample 
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Figure A8. Unfiltered sample 

 

 

Figure A9. Unfiltered sample 
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Figure A10. Unfiltered sample 

 

 

Figure A11. Unfiltered sample 
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Figure A12. Unfiltered sample 

 

 
Figure A13. Unfiltered sample 
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Figure A14. Unfiltered sample 

 

 

 

Figure A15. Filtered sample 
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Figure A16. Filtered sample 

 

 

 

Figure A17. Filtered sample 
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Figure A18. Filtered sample 

 

 

Figure A19. Filtered sample 
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Figure A20. Filtered sample 

 

 

 

Figure A21. Filtered sample 
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Figure A22. Filtered sample 

 

 

 

Figure A23. Filtered sample 
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Figure A24. Filtered sample 

 

 

 

Figure A25. Filtered sample 

 

1/24/13

Dose (mJ/cm
2
)

0 10 20 30 40

R
e
d

u
c
ti
o
n
 L

o
g

1
0
(N

/N
0
)

-3

-2

-1

0 Log inactivation data

PPES model fit curve (R
2
 = 0.986)

kA= 0.772 cm
2
/mJ

k
B
= 0.0372 cm

2
/mJ

c= 6.36 mJ/cm
2

1/31/13

Dose (mJ/cm
2
)

0 10 20 30 40

R
e
d
u
c
ti
o
n
 L

o
g

1
0
(N

/N
0
)

-4

-3

-2

-1

0
Log inactivation data

PPES model fit curve (R
2
 = 0.967)

kA= 0.613 cm
2
/mJ

k
B
= 0.0971 cm

2
/mJ

c= 8.59 mJ/cm
2



77 

  

 

Figure A26. Filtered sample 

 

 

 

Figure A27. Filtered sample 
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Figure A28. Filtered sample 

 

 

Figure A29. Filtered sample 
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Figure A30. Filtered sample 

 

 

Figure A31. Filtered sample 
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Figure A32. Filtered sample 

 

 

Figure A33. Filtered sample 
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Figure A34. Filtered sample 

 

 

 

Figure A35. Filtered sample 
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Figure A36. Filtered sample 

 

 

 

 

Figure A37. Filtered sample 
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Figure A38. Filtered sample 

 

 

 

Figure A39. Filtered sample 
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Figure A40. Filtered sample 

 

 

 

Figure A41. Unfiltered sample 
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Figure A42. Unfiltered sample 

 

 

 

Figure A43. Unfiltered sample 
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Figure A44. Unfiltered sample 

 

 

 

Figure A45. Unfiltered sample 
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Appendix B. Correlation scatter plots 

 

 
Figure B1. Scatter plot of kA (cm2/mJ) vs. kB (cm2/mJ) 

 

 

 
Figure B2. Scatter plot of Q (MGD) vs. kA (cm2/mJ) 



88 

  

 

Figure B3. Scatter plot of Q (MGD) vs. kB (cm2/mJ) 

 

 

 

 

 

Figure B4. Scatter plot of Q (MGD) vs. A0 (cfu/100 mL) 
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Figure B5. Scatter plot of Q (MGD) vs. B0 (cfu/100 mL) 

 

 

 

 

 

Figure B6. Scatter plot of N0 (cfu/100 mL) vs. TSS (mg/L) 
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Figure B7. Scatter plot of N0 (cfu/100 mL) vs. kA (cm2/mJ) 

 

 

 

 

 

Figure B8. Scatter plot of N0 (cfu/100 mL) vs. kB (cm2/mJ) 
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Figure B9. Scatter plot of TSS (mg/L) vs. kA (cm2/mJ) 

 

 

 

 

 

Figure B10. Scatter plot of TSS (mg/L) vs. kB (cm2/mJ) 
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Figure B11. Scatter plot of N0 (cfu/100 mL) vs. Precipitation (in) 

 

 

 

 

 

Figure B12. Scatter plot of TSS (mg/L) vs. A0 (cfu/100 mL) 
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Figure B13. Scatter plot of TSS (mg/L) vs.B0 (cfu/100 mL) 

 

 

 

 

 

Figure B14. Scatter plot of kA (cm2/mJ) vs.A0 (cfu/100 mL) 
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Figure B15. Scatter plot of kA (cm2/mJ) vs.B0 (cfu/100 mL) 

 

 

 

 

 

Figure B16. Scatter plot of kB (cm2/mJ) vs.A0 (cfu/100 mL) 
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Figure B17. Scatter plot of kB (cm2/mJ) vs.B0 (cfu/100 mL) 

 

 

 

 

 

Figure B18. Scatter plot of Precipitation (in) vs.A0 (cfu/100 mL) 
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Figure B19. Scatter plot of Precipitation (in) vs.B0 (cfu/100 mL) 

 

 

 

 

 

Figure B20. Scatter plot of UVT (fraction) vs. TSS (mg/L) 
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Figure B21. Scatter plot of UVT (fraction) vs. kA (cm2/mJ) 

 

 

 

 

 

Figure B22. Scatter plot of UVT (fraction) vs. kB (cm2/mJ) 
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Figure B23. Scatter plot of TSS (mg/L) vs. c (mJ/cm2) 

 

 

 

 

 

Figure B24. Scatter plot of c (mJ/cm2) vs. kB (cm2/mJ) 
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Figure B25. Scatter plot of Precipitation (in) vs. kA (cm2/mJ) 

 

 

 

 

 

Figure B26. Scatter plot of Precipitation (in) vs. kB (cm2/mJ) 

 



100 

  

Appendix C. AB experiments results 

Non-disinfection Season 

 

Table C1. AB  flow conditions for experiment executed on 12/13/2012 

Flow Condition (Q) Open Channels 
Banks in operation 

per channel 

Sample locations, per 

operating condition, 

per channel 

1 1,2  A & B I, II, III 

2 1,2,3 A & B I, II, III 

3 1,2,3,4 A & B I, II, III 

 

 

 

Figure C1. AB Experiment performed on 12/13/12. E. coli concentrations per channel. Condition1. 
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Figure C2. AB Experiment performed on 12/13/12. E. coli concentrations per channel. Condition 

2. 

 

 

Figure C3. AB Experiment performed on 12/13/12. E. coli concentrations per channel Condition 

3. 
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Figure C4. AB Experiment performed on 12/13/12. E. coli concentrations per channel, for location 

II for each of three flow conditions. 
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Table C2. AB flow conditions for experiment executed on 3/7/2013 

Flow Condition (Q) Open Channels 
Banks in operation 

per channel 

Sample locations, per 

operating condition, 

per channel 

1 1,2,3,4,5,6,7  A & B I, II, III 

2 1,2,3,4 A & B I, II, III 

3 1,2,3 A & B I, II, III 

4 1,2 A & B I, II, III 

 

 

 

Figure C5. AB Experiment performed on 3/7/13. E. coli concentrations per channel Condition 1. 
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Figure C6. AB experiment performed on 3/7/13. E. coli concentrations per channel Condition 2. 

 

 

Figure C7. AB experiment performed on 3/7/13. E. coli concentrations per channel Condition 3. 

 

Condition 2

Channel Number

1 2 3 4 5

N
 (

C
F

U
/1

0
0

 m
L

)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Location II

Location III

(<1 col/100 mL)

Condition 3

Channel Number

1 2 3

N
 (

C
F

U
/1

0
0

 m
L

)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Location II

Location III

(<1col/750 mL)
(<1col/500 mL)

(<1col/900 mL)



105 

  

 

Figure C8. AB experiment performed on 3/7/13. E. coli concentrations per channel Condition 4. 

 

 

 

Figure C9. AB Experiment performed on 3/7/13. E. coli concentrations per channel, for location II 

for each of three flow conditions. 
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Figure C10. AB Experiment performed on 3/7/13. E. coli concentrations per channel, for location 

III for each of three flow conditions. 
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Disinfection Season 

 

 

Figure C11. Flow rate at the time of collection of experiments 6/25/13 was Q = 89.7 MGD, UVT 

= 72.5%, and PLC Dose = 31.2 mJ/cm2. Channels in operations were 1, 2, 4, and 5. 

Bank A. 

 

 
Figure C12. Flow rate at the time of collection of experiments 7/2/13 was Q = 122 MGD, UVT = 

68.1%, and PLC Dose = 51.9 mJ/cm2. All channels in operation. Banks A and B. 

Channel Number

1 2 3 4 5

N
 (

C
F

U
/1

0
0

 m
L

)

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

Position II, Bank A

Max. Daily 

Monthly Geom. Mean 

Mean (N0) 

Error bar ( ) of N0

(>100 col/965 mL)

(>100 col/600 mL)

(>100 col/929 mL)

(>100 col/370 mL)

Channel Number

1 2 3 4 5 6 7

N
 (

C
F

U
/1

0
0

 m
L

)

1e-1

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7

Position II

Position III

Max Daily 

Geom. Mean 

Mean (N0) Undisinfected

Error bar ( ) of N0

(>100 col/~500 mL)

(>100 col/~350 mL)

(>100 col/~200 mL)



108 

  

 
Figure C13. Flow rate at the time of collection of experiments 7/9/13 was Q = 81.8 MGD, UVT = 

70.4%, and PLC Dose = 35.5 mJ/cm2. Operation scheme see Figure 42. 

 

 
Figure C14. Flow rate at the time of collection of experiments 7/25/13 was Q = 68.4 MGD, UVT 

= 70.8%, and PLC Dose = 35.1 mJ/cm2. Operation scheme see Figure 42. 
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Figure C15. Flow rate at the time of collection of experiments 8/29/13 was Q = 57 MGD, UVT = 

72.8%, and PLC Dose = 41.6 mJ/cm2. Operation scheme see Figure 42. 

 

 
Figure C16. Flow rate at the time of collection of experiments 9/10/13 was Q = 60.2 MGD, UVT 

= 69.1%, and PLC Dose = 45.15 mJ/cm2. Bank A operating in channels 1, 2, 3, 4, 5, 

and 7. Bank B operating in channel 6. 
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Figure C17. Flow rate at the time of collection of experiments 10/1/13 was Q = 78.4 MGD, UVT 

= 71.9%, and PLC Dose = 30.8 mJ/cm2. Bank A operating channels 2, 3, 4, and 7. 

Bank B operating channels 1, 5, and 6. 

 

 
Figure C18. Flow rate at the time of collection of experiments 10/8/13 was Q = 67 MGD, UVT = 

70.8%, and PLC Dose = 46.6 mJ/cm2. Operation scheme see Figure 42. 
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Figure C19. Flow rate at the time of collection of experiments 10/16/13 was Q = 57.5 MGD, UVT 

= 70.8%, and PLC Dose = 46.3 mJ/cm2. Operation scheme see Figure 42. 
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