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ABSTRACT

Magee, Mark E. M.S.M.E., Purdue University, May 2014. Exhaust Thermal Manage-
ment using Cylinder Deactivation and Late Intake Valve Closing. Major Professor:
Gregory M. Shaver, School of Mechanical Engineering.

Progressively stricter emission regulations have compelled diesel engine manufac-

turers to develop new technologies that reduce harmful pollutants like NOx and soot.

While manufacturers have previously been able to meet these regulations through the

use of on engine technology such as exhaust gas recirculation and multiple pulse injec-

tions, exhaust after treatment systems such as diesel particulate filters and selective

catalytic reduction systems have become necessary to meet recent stricter policies.

While these after treatment systems are incredibly effective at reducing harmful emis-

sions, to operate effectively the system needs to be above a certain temperature level

typically between 250 and 300◦C. Many methods such as additional fueling or electri-

cal heaters have been explored and used to increase the temperature of the exhaust

gases passing through these systems to heat them faster or maintain temperature.

The effect of cylinder deactivation, CDA, and late intake valve closing, LIVC,

on raising exhaust gas temperatures was studied by performing load sweeps at 1200

RPM. The effect of CDA, CDA and LIVC, and CDA meeting specific NOx targets was

analyzed. At low loads, CDA proved to be effective at raising exhaust temperature as

well as providing an improvement in brake thermal efficiency, BTE. At higher loads,

exhaust gas temperatures were also improved, but with a fuel consumption penalty.

The introduction of LIVC in combination with CDA increased exhaust temperatures

above 250◦C, but did not improve BTE. The last sweeps, which targeted low NOx

emissions, required the use of EGR and were able to raise temperatures above 250◦C

across all loads while meeting the targets. While meeting the targets, BTE was only

improved at low loads.
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The sweeps demonstrated that CDA and CDA combined with LIVC can be an

extremely effective technology for raising exhaust gas temperatures even at low loads

where exhaust temperatures are usually lowest. In many cases, an improvement in

BTE can be accomplished as well.
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1. INTRODUCTION

1.1 Motivation

With the growing concern over the effect of greenhouse gases on the environ-

ment, diesel engine emission regulations have become more stringent world wide.

Organizations such as the United States Environmental Protection Agency, EPA, or

the European Union, have further tightened these regulations each year as shown in

Fig.1.1.

Figure 1.1. EPA and Euro Emissions Regulations for Heavy Duty [1].

These regulations govern the amount of carbon monoxide, CO, unburned hy-

drocarbons, HC, nitrogen oxides, NOx and particulate matter, PM. NOx and PM
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emissions are notably higher in diesel engines than gasoline engines, and the reduc-

tions of these compounds remains a significant challenge in the engine manufacturing

community. With previous, less restrictive regulations, NOx and PM standards could

be met through the use of in cylinder technology such as exhaust gas recirculation,

EGR, and high pressure common rail injection systems. However, to meet the most

recent requirements of NOx and PM, the use of sophisticated aftertreatment systems

is necessary.

To operate efficiently and effectively, these systems must be maintained at suffi-

ciently high operating temperatures. The catalysts and other compounds used in the

conversion process often need to be at temperatures above 250 or 300◦C. However,

at low load conditions such as idle, an engine cannot create sufficiently hot exhaust

gases to heat up these systems. For example, the exhaust gas outlet temperature for

a 6.7L Cummins ISB engine is shown in Fig. 5.1. Below the black line, temperatures

are below 250◦C. While it appears to only be a small portion of the map, through

a drive cycle, an engine will spend a significant portion of its time in this lower re-

gion especially more urban applications like delivery trucks where there is frequent

starting and stopping. In these low temperature situations, manufacturers currently

use techniques such as additional fueling to increase the exhaust gas temperatures

or electric heaters placed directly on the aftertreatment systems. However, a flexi-

ble valve system can be leveraged to modulate the airflow through the engine and

increase exhaust temperatures by decreasing air to fuel ratio, AFR. This method of

increasing exhaust gas temperatures can also possibly be done with no fuel penalty

or even improve fuel consumption.

1.2 Literature Review

Most modern diesel engines come equipped with a sophisticated aftertreatment

system consisting of some combination of a diesel particulate filter, DPF, diesel oxi-

dation catalyst, DOC, lean NOx trap, LNT, and selective catalytic reduction, SCR.
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Figure 1.2. Exhaust Gas Temperature for a Cummins 6.7L ISB Engine.

Fig. 1.3 is an example of the system used with the Cummins ISV engine platform.

A DPF is used to trap soot particles in a filter significantly reducing the tailpipe PM

emissions; however, after a period of time, the filter can become clogged which causes

excess back pressure on the engine.This degrades engine performance, and the pro-

cess of regeneration is required. Passive regeneration relies on the temperature of the

exhaust stream out of the engine to sufficiently oxidize the soot in the filter. In active

regeneration, the exhaust temperature is increased through the use of additional fuel

or other devices which when combined with excess oxygen in the exhaust will oxidize

the soot particles in the filter. Active regeneration has become a commonly used pro-

cess as a result of its controllability, but it also comes with a fuel penalty as very high

temperatures on the order of 400 or 500◦C are required for effective regeneration [2].

A DOC is used to reduce the hydrocarbon, carbon monoxide, and sulfur oxides

produced by a diesel engine. With the assistance of various catalysts, the unburned

hydrocarbons and CO react with the excess oxygen in the exhaust to produce CO2
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Figure 1.3. Aftertreatment System Used with a Cummins ISV Engine.

and H2O while similar reactions occur with the sulfur compounds in the exhaust to

produce less harmful variants. The oxidation reactions inside the DOC are exother-

mic, and can significantly raise exhaust temperatures [3].

A lean NOx trap and SCR system both aim to reduce the NOx emissions of

the engine. The high temperatures during diffusion combustion can produce large

amounts of nitrogen oxides which have been shown to adversely affect the environment

especially contributing to the formation of smog. While NOx traps have proved

effective in the past, with the extremely low regulations now enforced, the highly

effective SCR systems are being used by many engine manufacturers. SCR systems

rely on the injection of urea along with catalysts to convert NOx to N2 and H2O. While

these systems are extremely effective, they must operate at temperatures typically

above 250◦C as shown in Fig.1.4. If the system is not operating at peak efficiency,

the required NOx emissions will not be met. In addition, if there is not sufficient

temperature in the exhaust stream, when the urea is injected, it will not fully vaporize,

and deposit directly on to the catalyst potentially producing more harmful emissions

[4], As shown previously, a diesel engine often operates at speeds and loads where the
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Figure 1.4. NOx Conversion Efficiency vs. Catalyst Temperature [5].

temperature of the exhaust does not meet the requirements for the aftertreatment

systems discussed above. Therefore, a significant effort has been made to create

strategies that can be used to heat up the catalysts faster or maintain the required

temperatures.

1.2.1 Current Aftertreatment Thermal Management Strategies

Bouchez and Dementhon [6] investigated several strategies to increase exhaust

temperatures in a multi cylinder diesel engine for regeneration of a diesel particulate

trap. In cases where there was little EGR present nominally, increasing the amount of

EGR flow was shown to be extremely effective in increasing exhaust gas temperatures.

Increasing the amount of EGR in cylinder decreased the amount of air trapped in

cylinder which increases exhaust temperatures. Opening the turbocharger waste gate

was also found to be effective as a result of decreasing AFR. By opening the waste gate,

less energy is supplied to the turbine which reduces the amount of air driven by the
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compressor through the engine. They also used retarded injection timing as a means

to increase exhaust temperatures, but this came with a fuel consumption penalty

associated with late injections. Lastly, a post injection coupled with a diesel oxidation

catalyst, DOC, raised the temperature of the gases entering the DPF. The post

injection resulted in an increase in hydrocarbon concentration, which upon entering

the DOC, the exothermic reaction further heated the exhaust gases.

Parks et. al. [7] also explored the use of in cylinder methods for aftertreatment

thermal management composed of a DOC and DPF. The methods included additional

fuel injected early and late in the combustion process across all cylinders and in only

one cylinder, and injection of fuel directly into the exhaust stream. Each process

was conducted on a DPF whose temperature was 150 or 300◦C. They found that

at 150◦C the injection of extra fuel early in the combustion cycle slightly increased

exhaust temperatures. However, with the system at such low temperatures, the DOC

was unable to oxidize the fuel injection late in cylinder or in the exhaust pipe. With

the aftertreament system at 300◦C, all of the methods were effective in raising exhaust

temperatures with the largest increase seen with injection of fuel directly upstream

of the DOC. In all cases, fuel penalties were observed with the highest penalties

associated with additional fuel introduced into the system.

Signgh et. al. [8] used post injections and upstream fuel injection to improve

exhaust thermal management. Late post injections proved effective in raising the

exhaust temperatures especially at high load, but early post injections did not have a

significant effect. As in [7], the late post injection delivered additional hydrocarbons to

the DOC. Using upstream fuel injection in the exhaust system, the resulting oxidation

increased exhaust temperatures as shown in.

Singh et. al. [8] studied injecting fuel upstream of a DOC to increase exhaust

temperatures before a DPF as a means of active regeneration. When the excess fuel

reaches the DOC, the hydrocarbons are oxidized, and the exothermic nature of the

reaction can cause a large increase in exhaust temperatures. Utilizing a Cummins

ISM engine, this process was conducted with a DPF loaded with various amounts of
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soot ranging from 1.1 to 4 g/L. When the fuel was injected upstream of the DOC,

the resultant increase in exhaust temperatures was able to produce a 99% conversion

efficiency in the DPF. While this method demonstrates another effective technique

in increasing exhaust temperatures, the additional injection of fuel comes with a fuel

consumption penalty for the vehicle.

Kim et. al. [9] used an electrical heater to improve cold start performance of DOC,

SCR, and DPF aftertreatment system. The resistive heater was directly upstream

of the DOC in an effort to increase the DOC catalyst temperature more quickly so

that additional hydrocarbon oxidation could be used to heat the SCR. The system

used the additional hydrocarbon injection to reduce the time required to heat up the

SCR during start up. The electrical heater was used to increase the DOC temper-

ature to 250◦C which was the minimum temperature for hydrocarbon injection. As

expected the amount of temperature increase was proportional to the power given to

the electrical heating system and was able to reduce the time needed for warm up.

Pfahl et.al. [10] also used electrical heating to improve cold start performance and

were able to produce similar results reducing the heat up time of the DOC by 100

seconds. Akiyoshi et. al. [11] used a burner fed by vehicle fuel placed upstream of the

aftertreatment system as another method to directly increase exhaust temperatures.

Cavina et. al. [12] swept start of main injection to determine the direct effect on

exhaust gas temperatures. As injection timing was increased, exhaust temperatures

increased with a maximum of 50◦C when injection was advanced 15 degrees, but the

advanced timing also increased fuel consumption as much as 15%.

Honardar et. al. [13] used main injection timing and increased post injection

quantity at warm and cold conditions. At warm conditions, when main injection

was placed later in the cycle, a 30◦C increase in exhaust gas temperature was ob-

served but came with a penalty in fuel consumption. At cold conditions meant to

mimic start-up, an increase of approximately 80◦C was achieved; however, there was

a more severe fuel consumption penalty than during warm conditions likely due to

inefficient combustion. At warm conditions, the use of an increased post injection
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resulted in significantly higher exhaust temperatures. The maximum post injection

quantity could improve temperatures by almost 200◦C, but there is a direct decrease

in efficiency corresponding to the additional fueling used in the post injection. At the

cold conditions, only a 180◦C improvement could be achieved.

An effective method for raising exhaust temperatures is reducing the air to fuel

ratio of the engine which can be achieved through the use of a VGT, variable valve

systems, or direct use of an intake throttle. Cavina et. al. [12] used VGT modulation,

and intake throttling to improve thermal management. By opening the VGT, it was

observed that exhaust temperatures could be raised resulting from a reduction in

air to fuel ratio. When the VGT was opened 30%, a 30◦C increase was observed,

and unlike injection timing, open the VGT improved fuel consumption up to 6%.

This improvement came from a reduction in pumping work. Using an intake throttle

reduced AFR much like opening the VGT which produced a maximum temperature

increase of 40◦C. Intake throttling improved fuel consumption by as much as 15% by

again reducing the pumping work.

Mayer et. al. [14] investigated the use of intake throttling as a means for DPF

regeneration. A throttle was placed at various locations in the engine air path as a

means to decrease the air to fuel ratio and increase exhaust gas temperatures. When

the throttle is placed before the compressor inlet, exhaust gas temperatures were

increased to 750K from temperatures as low as 450K, but with a fuel consumption

penalty as a result of increased pumping work. Similar results were observed when

the throttle was placed after the compressor. Finally, a throttle was placed before

the turbine of the turbocharger, and while there was an increase in exhaust tempera-

tures, there was also a more severe fuel consumption penalty, and also concern about

increased temperature of engine components which could lead to engine damage.

Huang et. al. [15] used intake throttling to improve cold start performance of an

aftertreatment system. At idle, a throttle was closed 90% of the way and was able

to increase turbine inlet temperatures from approximately 175◦C up to 190◦C. With

the addition of a retarded main injection, turbine inlet temperatures were increased
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farther to approximately 215◦C. Honardar et. al. [13] used a throttle directly after

the compressor outlet to modulate airflow through the engine were able to increase

exhaust temperatures by as much as 35◦C in both warm and cold conditions; however,

the increased intake manifold pressure caused by the throttle increased pumping work,

reducing efficiency.

Gehrke et. al. [16] using a variable valve actuation system on a single cylinder

engine and were able to increase exhaust temperatures by 60K using early intake

valve timing and 120K using late intake valve closing with minimal fuel consumption

penalties. LIVC produces higher exhaust temperatures as a result of the heating of

charge in the intake manifold. By closing the intake valve later, some of the heated

charge in the cylinder gets pushed back into the intake manifold. Both cases reduced

the air to fuel ratio raising exhaust gas temperatures. Early exhaust valve opening

was also examined and it could also raise exhaust temperatures, but there was a fuel

consumption penalty as a result of lost expansion work.

While many studies such as [17], [18–20] have considered the implementation and

fuel economy benefits of CDA, very few have explored the use of cylinder deactivation

as a means of increasing exhaust gas temperatures. In addition, a large majority of

the development has been for spark ignition engine platforms with little development

targeted toward diesel engines.

1.3 Experimental Set-Up

The experiments presented were performed on a Cummins 2010 6.7L ISB engine.

As shown in Fig.1.5, it is an in-line six cylinder engine with four valves per cylinder,

and a geometric compression ratio of 17.3:1. The engine comes equipped with a high

pressure cooled EGR system, and a variable geometry turbocharger, VGT. These

two systems in combination control the amount of fresh air and EGR delivered to the

cylinders. For this set of experiments, the VGT was downsized to increase air flow

control authority at lower speeds and loads.The engine also comes equipped with
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Table 1.1. Nominal Engine Parameters.

Parameter Value Units

No. of Cylinders 6 —

Valves per Cylinder 4 —

Firing Order 1,5,3,6,2,4 —

Maximum Injection Pressure 1800 bars

Bore Diameter 107 mm

Stroke 124 mm

Connecting Rod Length 192 mm

Compression Ratio 17.3 —

Intake Valve Opening 340 aTDC CAD

Intake Valve Closing 565 aTDC CAD

Exhaust Valve Opening 200 bTDC CAD

Exhaust Valve Closing 20 aTDC CAD

Intake Valve Diameter 29.27 mm

Exhaust Valve Diameter 29.4 mm
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Figure 1.5. Schematic of a Modern Diesel Engine.

a high pressure common rail injection system capable of multiple pulse injections.

Table1.1 summaries the standard engine parameters.

The engine utilizes a fully flexible VVA system produced by Team Corporation,

and a simplified schematic is shown in Fig. 1.7. The hydraulic power supply provides

high pressure hydraulic oil to an electronic servo valve. The servo valve control signal

is generated within a program uploaded to a dSPACE data acquisition and control

system, and sent to the servo valve through a power amplifier. The servo valve moves,

shuttling high pressure hydraulic oil to one side of the piston actuator. The actuator

presses on the intake valve crosshead, a bridge that connects the intake valve pair.

The intake valves move with the actuator. No rigid connection exists between the

actuator and the valve crosshead. To ensure contact, the valve springs provide upward

return force to maintain contact. Fig 1.6 shows the VVA system located above the

engine head. The VVA system acts on both the intake and exhaust valves and is able

to modify the opening and closing timings and peak lift for each valve pair.
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Figure 1.6. Picture of Experimental Engine Setup.

The experimental engine data is acquired using a dSPACE system. The dSPACE

system collects data from the engine electronic control module, ECM, such as the

fueling and timing commands as well as ECM sensor measurements. The ECM data

is gathered from an open architecture ECM that allows direct read and write access

to the memory locations. The dSPACE system also collects data from additional

temperature, pressure, flow and emissions measurements instrumented on the engine

test bed. Fresh air mass flow rate is measured using a laminar flow element, LFE,

device. The engine charge flow is calculated using the LFE fresh air flow measurement

and the measured EGR fraction. Emission gas analyzers are used to measure the

composition of the exhaust gases as well as the concentration of CO2 in the intake

manifold. Cambustion NDIR Fast CO2 analyzers were utilized during this testing.

EGR fraction is computed using the intake and exhaust manifold CO2 measurements.
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Figure 1.7. Schematic of Variable Valve Actuation System.

An universal exhaust gas oxygen (UEGO) sensor is mounted in the exhaust pipe

shortly after the turbine outlet as shown in Fig. 1.5.

To implement CDA, the fueling is cut from cylinders 4, 5, and 6. Then the

intake and exhaust valves are shut such that fresh charge is trapped in the cylinder.

However, as the engine runs, since the piston rings to not create a perfect seal, the

charge leaks past the rings. In order to keep oil from being drawn into the cylinder,

the intake valve is opened every 100 cycles to recharge the cylinder and maintain

positive pressure.

1.4 Contributions

Utilizing a fully flexible valve actuation system, the ability of cylinder deactiva-

tion and late intake valve closing to significantly increase exhaust gas temperatures
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was experimentally demonstrated. Cylinder deactivation while typically applied to

gasoline and other spark ignited engines was applied to a diesel engine platform for

both efficiency improvements and exhaust thermal management. Additionally, late

intake valve closing was applied to the active cylinders combining two novel engine

operating technologies.

1.5 Outline

Chapter 2: EFFECT OF CYLINDER DEACTIVATION ON EXHAUST

GAS TEMPERATURES examines the effect of cylinder deactivation on raising

exhaust gas temperatures by air to fuel ratio reduction. Additionally, the effect of

cylinder deactivation on engine efficiency is also examined. At 1200 RPM, a load

sweep was conducted in cylinder deactivation mode, and then compared with stan-

dard engine operation at each load.

Chapter 3: EFFECT OF CYLINDER DEACTIVATION AND LATE

INTAKE VALVE CLOSING ON EXHAUST GAS TEMPERATURES ex-

amines the combined effect of cylinder deactivation and late intake valve closing on

raising exhaust gas temperatures by air to fuel ratio reduction. At 1200 RPM, load

sweeps were conducted in cylinder deactivation mode with different LIVC timings,

and then compared with standard engine operation at each load..

Chapter 4: CYLINDER DEACTIVATION RANGE MEETING NOx

EMISSION TARGETS examines the operating capability of cylinder deactivation

when meeting designated NOx emission targets. These targets represent the engine

out emission standards that would be expected of a production engine. At 1200

RPM, a load sweep was conducted in cylinder deactivation mode, and EGR was

used to lower NOx emissions. The sweeps are then compared with standard engine

operation at each load with similar NOx emissions.

Chapter 5: CONCLUSIONS AND FUTURE WORK projects the ablility

of CDA and LIVC to increase exhuast gas temperatures across the operating range of
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the engine. This projection helps to examine the capability of cylinder deactivation

and late intake closing as an exhuast thermal managment technique.Additionally,

future work that would further the understanding of these technologies is described.
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2. EFFECT OF CYLINDER DEACTIVATION ON EXHAUST GAS

TEMPERATURES

A fundamental characteristic of conventional diesel engine operation is the control of

load through fueling quantity only with no throttling applied to airflow through the

engine. This leads to lean combustion environments especially at low loads where

AFR can be as high as 80 or 100 at idle conditions. As a result, exhaust gas tem-

peratures are well below the desired 250◦C threshold as shown previously in Fig. 5.1.

Cylinder deactivation and late intake valve closing can both be used to throttle airflow

through the engine bringing AFR closer to stoichiometric conditions raising exhaust

gas temperature.

2.1 Effect of Air to Fuel Ratio on Exhaust Gas Temperatures

Many factors affect exhaust gas temperatures including injection timing and rail

pressure, the dominant factor is air to fuel ratio. The ratio of air and fuel drives

the amount of heat release during the combustion reaction with the hottest tem-

peratures occurring when the mixture is of stoichiometric proportions. When AFR

equals one, the reaction is said to be stoichiometric and results in the highest product

temperatures as shown in Eq.2.1,

CxHy + AFR(O2 + 3.76N2)→ xCO2 +
y

2
H2O + (AFR− x− y

4
)O2

+(3.76AFR)N2, (2.1)

which is the generic combustion reaction for a hydrocarbon fuel. Typically, the effect

of AFR on product temperature is characterized by adiabatic flame temperature.
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Assuming that the reaction occurs in a fully adiabatic system, the enthalpy of the

reactants equals the enthalpy of the products as shown in Eq.2.2,

HReactants = HProducts. (2.2)

Using the standard reference temperature of 298◦K and using the lower heating value

of the fuel in place of the heat of formation of products and reactants, Eq.2.2 can be

rearranged to Eq.2.3,

LHVFuel = 3.76AFRCp,N2(Tf − 298) + (AFR− x− y

4
)Cp,O2(Tf − 298)

+
y

2
Cp,H2O(Tf − 298) + xCp,CO2(Tf − 298), (2.3)

where Tf is the adiabatic flame temperature. Using this relationship, the effect of

AFR on adiabatic flame temperature is shown in Fig. 2.1, and it can be seen that as

AFR decreases, adiabatic flame temperature increases. As the temperature during

combustion in cylinder increases, the temperature of the exhaust products also in-

creases. This relationship demonstrates why AFR is the parameter with the strongest

effect on exhaust gas temperatures.

Figure 2.1. Adabatic Flame Temperature as a Function of Air to Fuel Ratio.

To further demonstrate the relationship between AFR and exhaust gas temper-

atures, experimental data was gathered across a variety of engine speeds and loads
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and engine operating modes such as late intake valve closing, LIVC, early intake valve

closing, EIVC, early exhaust valve opening, EEVO, and CDA. The data is shown in

Fig. 5.3, and a monotonic relationship is apparent. The outliers are cases with very

high EGR rates. The relationship between AFR and TOT can be approximated by

Figure 2.2. Experimental Turbine Outlet Temperature vs. Air to Fuel Ratio.

a third order polynomial, and while this is not a perfect fit, it allows for the approx-

imation of trends resulting from AFR modulation as a result of CDA and LIVC.

2.2 Effect of Cylinder Deactivation on AFR

Air flow through an engine can be modeled by the speed density equation shown

in Eq.5.2,

Wair =
ηvPimVdN

nRTim
, (2.4)
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where Wair is the airflow through the engine,ηv is the volumetric efficiency of the

engine,Pim is the intake manifold pressure,Vd is the engine displacement, N is the

engine speed, n is the number of revolutions per cycle, R is the universal gas con-

stant for air, and Tim is the intake manifold temperature. Cylinder deactivation is

sometimes called variable displacement engine because when a number of cylinders

are shut, the effective displacement is reduced to only the active cylinders. In the

case of this study, where three of the six cylinders are shut, the engine displacement

is halved. It can be seen by examining Eq.5.2 that if all the other terms are held

constant and the engine displacement is halved, the total airflow through the engine

is also halved.

At the same time, to maintain torque, the total fueling delivered to the engine

remains the same with double the fuel entering the active cylinders. Therefore, if the

total fueling to the engine is maintained, by reducing the airflow through the engine,

the AFR is halved as well as shown in Eq.2.5,

AFR3Cylinder =
Wair,3Cylinder

Wfuel,3Cylinder

=
1
2
Wair,6Cylinder

Wfuel,6Cylinder

. (2.5)

Using the previously established relationship between AFR and TOT, it can be shown

that cylinder deactivation has a significant effect on increasing TOT.

2.3 Load Sweeps at 1200RPM Utilizing CDA

To study the effect of CDA outline above, at 1200RPM, beginning at 50ft-lbs,

engine load was stepped by 50 ft-lbs until an engine limit was reached. These limits

could be low AFR, high TIT, or a variety of other mechanical limitations summarized

in Table2.1. Throughout the sweep, no EGR was used so that the effect of CDA and

LIVC on the air flow process could be more clearly defined.
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Table 2.1. Mechanical Operating Constraints.

Parameter Value

Turbine Inlet Temperature < 760◦C

Compressor Outlet Temperature < 230◦C

Turbocharger Speed < 193 kRPM

Peak Cylinder Pressure < 2500 PSI

Exhaust Manifold Pressure < 120 inHg (gauge)

Pressure Rise Rate < 100 bar/sec
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2.3.1 Exhaust Temperature Effects

The resulting turbine out temperatures from load sweep are shown in Fig. 2.3 as

well as equivalent 6 cylinder operation temperatures. As shown, the maximum load

able to be achieved in CDA at 1200RPM was 390 ft-lbs. At this point, the turbine

inlet temperature reached the prescribed limit as shown in Fig. 2.4. As discussed

previously, this increase in exhaust gas temperatures is driven by a decrease in AFR

as shown in Fig. 2.5. At low loads such as 50 and 100 ft-lbs, air to fuel ratios are

very high ranging between 90 and 50. This is a common occurrence in low load

diesel operation where there is no standard regulation on airflow. These conditions

correspond to the lowest TOT seen during engine operation whereas at higher loads,

the margin for decreasing AFR is much smaller. At higher loads, AFR can already be

as low as 20 or 25 which limits the maximum achievable load in cylinder deactivation.

In Fig. 2.3, cylinder deactivation proves extremely effective in increasing TOT with

Figure 2.3. Turbine Outlet Temperature vs. Torque at 1200 RPM in
Cylinder Deactivation.
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Figure 2.4. Turbine Inlet Temperature vs. Torque at 1200 RPM in
Cylinder Deactivation.

a maximum increase of approximately 150◦C at loads above 150 ft-lbs. The smallest

increase in TOT is seen at 50 ft-lbs where CDA only produced approximately 100◦C

change. This discrepancy in TOT increase can be explained by examining the change

in AFR in Fig. 2.5. At low loads, CDA reduces the AFR by half; however, the AFR is

still too high to elicit large increases in combustion temperatures as shown previously

in Fig. 2.1. At higher loads, the resulting AFR are sufficiently low that while it is

a smaller relative change in AFR, a significant increase in TOT is achieved. From

Eq.2.5, the decrease in AFR is caused by the reduction in engine displacement from

6 cylinders to 3 cylinders thereby reducing the airflow through the engine shown in

Fig. 2.6. At low loads, the reduction in airflow is approximately half or even more

in some cases; however, at higher loads there is a linear increase in airflow with load.

This increase is a result of closing the variable geometry turbocharger to raise intake

manifold pressure and drive more air into the cylinder. This was necessary to keep
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Figure 2.5. Air to Fuel Ratio vs. Torque at 1200 RPM in Cylinder Deactivation.

AFR from being reduced to far too a point where the engine would hit a mechanical

constraint or run rich. In the case of 390 ft-lbs, the VGT was leveraged as far as

possible, but there was no longer sufficient authority to increase airflow to keep TIT

low.

2.3.2 Engine Performance Effects

Another important aspect of evaluating engine performance during CDA is the

changes in thermal efficiency of the engine. While increasing thermal energy entering

the after treatment is the primary goal of this study, maintaining or improving the

thermal efficiency of the engine is always a target for novel engine technologies. Brake

thermal efficiency, BTE, is defined as

BTE =
FuelPowerin
BrakePowerout

, (2.6)
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Figure 2.6. Airflow vs. Torque at 1200 RPM in Cylinder Deactivation.

where FuelPowerin is the total fuel power that enters the engine, and BrakePowerout

is the power produced by the engine at the crankshaft. Fig. 2.7 shows the changes in

BTE across the same load sweep. At lower loads, there is an improvement in BTE,

but at higher loads, BTE during CDA actually decreases the efficiency of the engine.

To further examine why a dichotomy between low and high loads exists, additional

efficiencies are defined. BTE can be decomposed into open cycle, OCE, closed cycle,

CCE, and mechanical efficiency, ME, shown as,

BTE = OCE ∗ CCE ∗ME. (2.7)

To define OCE, CCE, and ME, several mean effective pressures, MEP, must be de-

fined. MEP is a normalized measure of work done by the engine, and can be used to

define work done during different portions of the 4 stroke cycle. Gross indicated mean

effective pressure, GIMEP, is the work done by the piston during only the compression

and expansion strokes. This work directly captures the engine’s ability to convert the
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Figure 2.7. Normalized Brake Thermal Efficiency at 1200 RPM in
Cylinder Deactivation.

chemical energy of the fuel into mechanical energy seen by the crankshaft. Fig. 2.8

shows the area of the logP-logV diagram which corresponds to GIMEP. Fig.2.9 shows

the area of the logP-logV diagram which corresponds to net indicated mean effective

pressure, NIMEP, which is the entire area underneath the logP-logV curve. NIMEP

is the work done by the engine during the engine 4 stroke process including the intake,

compression, expansion, and exhaust strokes. By including the work done during the

intake and exhaust strokes, the work done by the piston on the cylinder charge is

captured. This work is often defined as pumping mean effective pressure, PMEP, and

is illustrated in Fig.2.10. Two additional MEP’s often used in engine performance are

brake mean effective pressure, BMEP, and friction mean effective pressure, FMEP.

BMEP is the normalized power output from the engine at the crankshaft. FMEP is

the friction work done on the engine as the work is transfered from the piston to the
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Figure 2.8. LogP-LogV Diagram - Gross Indicated Mean Effective
Pressure, GIMEP.

Figure 2.9. LogP-LogV Diagram - Net Indicated Mean Effective Pressure, NIMEP.
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Figure 2.10. LogP-LogV Diagram - Pumping Mean Effective Pressure, PMEP.

crankshaft. FMEP also includes any accessory loads on the engine. As defined in

Eq.2.10,

OpenCycleEfficiency =
NIMEP

GIMEP
=
GIMEP − PMEP

GIMEP
, (2.8)

open cycle efficiency, OCE, is the ratio between the net indicated mean effective pres-

sure, NIMEP, and gross indicated mean effective pressure, GIMEP. CCE is defined as

the ratio of GIMEP to fuel power which captures the efficiency of converting chemical

fuel power into mechanical piston work,

ClosedCycleEfficiency =
GIMEP

FuelPower
. (2.9)

Lastly, mechanical efficiency is defined as the ratio between BMEP and engine NIMEP

which captures the amount of friction produced in various engine components as well

as any accessory loads on the engine,

MechanicalEfficiency =
BMEP

NIMEP
=
NIMEP − FMEP

NIMEP
. (2.10)

Using these definitions, it can be observed that OCE is the measure of the pumping

work done by the engine. If the engine does less work to get the charge in and out of
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the cylinders, open cycle efficiency will be higher whereas if a large amount of piston

work goes into intake and exhaust, OCE will be lower. Fig.2.11 shows that at low

loads, OCE is higher in CDA whereas at higher loads it is comparable with 6 cylinder

operation. The decrease in OCE at high loads can be attributed to raising Pim in

order to drive the required airflow. By raising the pressure across the engine, more

pumping work is required as demonstrated in Fig.2.12. The other major component

Figure 2.11. Normalized Open Cycle Efficiency at 1200 RPM in
Cylinder Deactivation.

of BTE, CCE can determine the effectiveness of fuel combustion. Fig.2.13 shows the

comparison of CCE, and it can be observed that at low loads, the CCE in CDA is

slightly better than 6 cylinder operation, but becomes much worse as load increases.

One of the primary drivers in the CCE decrease is the late main injection timings

shown in Fig.2.14. As the load gets higher, later and later injections are used to keep

BSNOx emissions within reason. Since no EGR is used, the most effective way to

maintain BSNOx emissions is to push injection timings farther and farther after TDC.
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Figure 2.12. PMEP at 1200 RPM in Cylinder Deactivation.

Additionally, the increase in cylinder temperatures promotes more heat transfer from

the cylinder taking away from the piston work during expansion.

To summarize, at 1200RPM, the maximum achievable load in CDA was 390 ft-lbs

and limited by turbine inlet temperature constraints. CDA was effective in signifi-

cantly raising TOT across the load range as a result of decreased AFR caused by the

reduction in engine displacement. When compared to 6 cylinder operation, BTE is

improved at lower loads but does not offer any efficiency gains at moderate and high

loads. The primary driver in BTE improvement at low loads is improved open cycle

efficiency performance since the improvement in CCE between 3 and 6 cylinder is

small. At high loads, OCE is lowered in an effort to drive sufficient airflow through

the engine, and CCE is penalized by late SOI timings and heat transfer.
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Figure 2.13. Normalized Closed Cycle Efficiency at 1200 RPM in
Cylinder Deactivation.
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Figure 2.14. Main Injection Timing at 1200 RPM in Cylinder Deactivation.
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3. EFFECT OF CYLINDER DEACTIVATION AND LATE INTAKE VALVE

CLOSING ON EXHAUST GAS TEMPERATURES

While CDA proved to be effective at increasing exhaust gas temperatures across a

load sweep at 1200RPM by reducing the air to fuel ratio, at lower loads, there is

still some AFR margin available that could be used to further increase turbine outlet

temperatures. To further reduce AFR, late intake valve closing, LIVC can be used

in conjunction with CDA to reduce air flow through the engine. This combination

could increase exhaust gas temperatures to the desired 250◦C threshold even at ex-

tremely low load conditions where standard 6 cylinder operation produces very low

temperatures.

3.1 Effect of Opening VGT on AFR

One of the first ways further AFR reduction can be gained after entering CDA is

to simply open the VGT which will decrease the intake manifold pressure. From the

speed density equation,

Wair =
ηvPimVdN

nRTim
, (3.1)

the reduction in Pim will drive less air into the cylinder. Depending on the initial

starting position of the VGT, the method can cause a significant reduction in AFR,

and at higher loads, it is necessary to keep the VGT squeezed in order to run at those

conditions.

3.2 Effect of Cylinder Deactivation and LIVC on AFR

Like CDA, the LIVC affects AFR by reducing the airflow through the engine;

however, where cylinder deactivation accomplishes this by reducing the displacement
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of the engine, LIVC directly affects the volumetric efficiency of the engine. By closing

the intake valve late, some of the charge originally inducted into the cylinder is pushed

back out into the intake manifold reducing the amount of charge trapped. In the case

of no EGR, the amount of air trapped in cylinder is reduced which reduces the air to

fuel ratio.

The effect of late and early intake valve closing on volumetric efficiency can be

captured by sweeping IVC from the nominal timing of 565 CAD. The results of such

a sweep in 6 cylinder operation is shown in Fig. 3.1. With the VVA system installed

on the engine, IVC timing can be delayed up to 675 CAD which will reduce the

volumetric efficiency from 0.92 to approximately 0.70. As with CDA, the effect of

Figure 3.1. Volumetric Effieiency vs. Intake Valve Close Timing.

reducing volumetric efficiency can be captured by the speed density equation. Much

like the reduction in engine displacement, the reduction in volumetric efficiency causes

a proportional decrease in engine airflow.

One of the major differences between reducing AFR through CDA or LIVC is

the tunable nature of LIVC whereas CDA is a binary on-off system. In this study,
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Table 3.1. Load Sweeps Performed.

Sweep Number Conditions

1st Sweep CDA+Open VGT

1st Sweep CDA+Open VGT+LIVC625

1st Sweep CDA+Open VGT+LIVC645

1st Sweep CDA+Open VGT+LIVC655

1st Sweep CDA+Open VGT+LIVC675

cylinder deactivation is either 3 or 6 cylinders so the overall displacement is either

6.7L or 3.35L, but LIVC can be as small as 1 degree late or 110 degrees late. By

combining these two functions, a greater degree of flexibility is gained in modulating

exhaust gas temperatures.

To examine the effect of different CDA and LIVC timings, several load sweeps

were conducted, and are outlined in Table 3.1. Beginning with the previous sweep

with only CDA, at each load where AFR could be lowered, the VGT was maximally

opened. If the AFR could be further reduced, IVC timing was increased to 625 CAD,

and this process was repeated until the maximal timing of 675 CAD was achieved.

3.2.1 Exhaust Temperature Effects

Fig. 3.2 shows the results from the sweeps described. Up to 250ft-lbs, the VGT

could be opened up to decrease AFR although, as seen in Fig. 3.3, this only provided

a slight decrease in AFR as the VGT was fairly open to start, although the small

change produced significant increases in TOT at higher loads. Above 250ft-lbs, the

VGT needed to remain closed in order to run at the higher loads. IVC can be

increased to 625 CAD up to 200 ft-lbs, 645 CAD up to 150 ft-lbs, 655 CAD up to 100

ft-lbs, and at 50 ft-lbs, the maximum timing of 675 CAD could be used. In each case,

advancing LIVC later and later reduces AFR further and further increasing TOT. At

50-ftlbs, the latest LIVC timing can be used in combination with CDA to increase

TOT from 150◦C to 250◦C demonstrating that it is possible to raise TOT up to the
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Figure 3.2. Turbine Outlet Temperature vs. Torque at 1200 RPM in
Cylinder Deactivation and LIVC.

desired limit even at the lowest baseline TOT. As discussed previously, the reduction

in AFR is a result of reduced airflow through the engine as shown in Fig. 3.4. Opening

the VGT has the most significant effect at higher loads where the VGT was more

closed than at lower loads. At lower loads, LIVC reduces airflow further as timing

progresses by reducing the volumetric efficiency. As discussed in Eq. 5.2, this decrease

in volumetric efficiency decreases the airflow through the engine. Fig. 3.5 shows

the volumetric efficiency for each sweep, and the volumetric efficiency in cylinder

deactivation is based on the three active cylinders. Cylinder deactivation improves

volumetric efficiency over 6 cylinder operation, but when LIVC is introduced, the

volumetric efficiency can be decreased as far as approximately 0.80 at the latest

timing.
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Figure 3.3. Air to Fuel Ratio vs. Torque at 1200 RPM in Cylinder
Deactivation and LIVC.

Figure 3.4. AirFlow vs. Torque at 1200 RPM in Cylinder Deactivation and LIVC.
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Figure 3.5. Volumetric Efficiency vs. Torque at 1200 RPM in Cylin-
der Deactivation and LIVC.

3.2.2 Engine Performance Effects

As shown in Chapter 2, at low load cases, the reduction in airflow through the

engine can improve the engine’s ability to ”breathe”, and improve BTE. Therefore,

it would be expected that with the introduction of LIVC at low loads, the engine

efficiency could be improved even further. However, as shown in Fig. 3.6, LIVC

appears to hurt engine efficiency, and in the case of 100 ft-lbs, even bring efficiency

back to 6 cylinder levels. To determine the factors behind this drop off, a similar

analysis is performed examining open and closed cycle efficiency. Fig.3.7 shows the

open cycle efficiency for each sweep versus torque, and it can be observed that as LIVC

timing is increased, the open cycle efficiency decreases somewhat unexpectedly. By

examining the pumping work versus torque as in Fig.3.8, it can be seen that in cylinder

deactivation and with an open VGT, the pumping work is extremely low to begin with,

and changing LIVC timing only has a moderate effect on pumping. This can also be

seen in a plot of intake manifold pressure as in Fig.3.9. At lower loads IMP is relatively
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Figure 3.6. Normalized BTE vs. Torque at 1200 RPM in Cylinder
Deactivation and LIVC.

close to atmospheric conditions even in 6 cylinder operation, and once the engine

enters CDA, IMP drops even farther almost to atmospheric. Therefore, when LIVC is

introduced, it has an extremely muted effect on IMP which is seen in the little change

in pumping work. So while LIVC reduces the charge trapped in the cylinders thereby

reducing airflow, it does not have a significant effect on IMP which takes away any

OCE improvement. Fig. 3.10 shows closed cycle efficiency versus torque and shows

that at lower loads, LIVC makes only small changes in CCE. However, at higher loads,

CCE is drastically reduced as LIVC is pushed later and later. The primary driver of

this reduction is a reduced effective compression ratio, ECR, caused by LIVC timing

as shown in Fig.3.11. At the latest timing, ECR is as low as 13.5:1 at 50 ft-lbs, and

at 150 ft-lbs, ECR is decreased to approximately 16:1. The reduction in compression

ratio decreases the overall pressure and temperature inside the cylinder which reduces

combustion efficiency directly resulting in a decreased closed cycle efficiency. While

BSNOx was not the primary focus of the CDA+LIVC study, an interesting trend
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Figure 3.7. Normalized OCE vs. Torque at 1200 RPM in Cylinder
Deactivation and LIVC.

Figure 3.8. PMEP vs. Torque at 1200 RPM in Cylinder Deactivation and LIVC.
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Figure 3.9. IMP vs. Torque at 1200 RPM in Cylinder Deactivation and LIVC.

Figure 3.10. Normalized CCE vs. Torque at 1200 RPM in Cylinder
Deactivation and LIVC.
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Figure 3.11. ECR vs. Torque at 1200 RPM in Cylinder Deactivation and LIVC.

develops between BSNOx and LIVC as shown in Fig.3.12. When LIVC timing is

advanced, BSNOx emissions decrease at all loads. The BSNOx reduction comes from

the same reduction in ECR that drove CCE down. The reduction in ECR reduces

the peak temperatures during combustion which is one of the primary factors in NOx

formation. By lowering this temperature, less NOx is formed.

To summarize, at 1200RPM, the maximum achievable load in CDA with the

addition of LIVC can be increased to 625 CAD up to 200 ft-lbs, 645 CAD up to 150

ft-lbs, 655 CAD up to 100 ft-lbs, and at 50 ft-lbs, the maximum timing of 675 CAD

could be used. The higher loads were limited by turbine inlet temperature constraints.

LIVC was effective in raising TOT higher across the load range as a result of decreased

AFR caused by the reduction in volumetric efficiency. When compared to CDA only

operation, BTE does not improve due to a reduction in both open cycle efficiency and

close cycle efficiency. LIVC does not provide an improvement in OCE because IMP

is almost atmospheric to start so there is almost no margin for PMEP gains. CCE

is decreased with LIVC use because of the reduction in ECR reduces combustion
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Figure 3.12. BSNOX vs. Torque at 1200 RPM in Cylinder Deactivation and LIVC.

efficiency, but the ECR reduction also results in a reduction in BSNOx emissions.

Therefore, CDA+LIVC can improve after treatment performance by simultaneously

reducing engine out NOx emissions as well as providing sufficient heat to the after

treatment system even at low loads.
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4. CYLINDER DEACTIVATION RANGE MEETING NOX EMISSION TARGETS

The previous chapters demonstrated the capability of cylinder deactivation and cylin-

der deactivation and LIVC to increase TOT to heat up the after treatment systems.

Both cases proved successful, and when CDA is solely applied, at low loads, the

efficiency of the engine is improved. In the previous studies, control of emissions,

specifically BSNOx, was not a primary concern; however, to become a commercially

viable system, cylinder deactivation must be able to meet BSNOx requirements. To

investigate the performance of cylinder deactivation while meeting such constraints,

three load sweeps as performed in Chapter 2 were performed, but this time a spe-

cific BSNOx level was targeted across each sweep. The targets were 1.5, 3, and 4

g/hp-hr which represent typical engine out NOx emissions from commercially avail-

able engines. The main lever used to produce these BSNOx levels was exhaust gas

recirculation which was not used previously. A similar analysis will be used first ex-

amining the ability to increase TOT to heat the after treatment and then examining

the effect on engine efficiency.

4.1 Exhaust Temperature Effects

Fig.4.1 shows the results of the sweep conducted, and as previously shown, CDA

is successful in raising turbine out temperature. The 6 cylinder baseline to which

the results are compared also uses EGR and has BSNOx emissions between 3 and 4

g/hp-hr although none of the results presented (3 or 6 cylinder) are optimized results.

There is a small amount of variation in TOT at each load between the different BSNOx

targets. This will be shown to be a result of the different EGR fractions required to

meet them. At 1.5 g/hp-hr, the maximum achievable load was approximately 300

ft-lbs. At 3 g/hp-hr, the maximum achievable load was approximately 315 ft-lbs,
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Figure 4.1. TOT vs. Torque at 1200 RPM in Cylinder Deactivation
with NOx Targets.

and at 4 g/hp-hr, the maximum achievable load was approximately 325 ft-lbs. As

the NOx target is decreased, more EGR is required which decreases AFR (shown in

Fig.4.3) increasing TIT (shown in Fig.4.2) which was the limiting factor in all three

cases. When EGR is combined with cylinder deactivation, AFR is decreased further

because the EGR displaces the air trapped in cylinder so the charge flow stays the

same, the airflow decreases (shown in Fig.4.4) leading to lower AFR. This effect is

clearly visible in Fig.4.3 at 50 ft-lbs where AFR decreases as the NOx target is lowered

corresponding to higher EGR fractions. Above 150 ft-lbs, the AFR is consistently less

than twenty which produces minimum turbine outlet temperatures of 400◦C at 150

ft-lbs. Even at lower load cases such as 50 ft-lbs, the minimum TOT is approximately

250◦C which is the minimum threshold for after treatment heating.
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Figure 4.2. TIT vs. Torque at 1200 RPM in Cylinder Deactivation
with NOx Targets.

4.2 Engine Performance Effects

Examining the effect of meeting NOx targets in Fig.4.5, it can be seen that the

previous trends hold when EGR is introduced into engine operation. At 50 ft-lbs,

there is an improvement in BTE even as the NOx target gets smaller. However, at

high loads, there is a reduction in BTE, and as the NOx target gets smaller, the

efficiency gets worse. Fig.4.6 shows that a portion of the BTE improvement at 50

ft-lbs is an improvement in open cycle efficiency. At this low load, the exhaust and

intake manifold pressures are both close to atmospheric even with the VGT slightly

closed to drive EGR. However, this improvement disappears at high loads where

higher EGR fractions are required. To meet the requirements, the VGT is closed

to build up exhaust manifold pressure driving EGR flow as shown in Fig.4.7. The

closed cycle efficiency of the engine is shown in Fig.4.8, and follows a similar trend

as open cycle efficiency. At 50 ft-lbs, there is an improvement in CCE caused by

main injection placement in CDA closer to top dead center, TDC, position as shown
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Figure 4.3. AFR vs. Torque at 1200 RPM in Cylinder Deactivation
with NOx Targets.

in Fig.4.9. As the centroid of the heat release rate approaches TDC, combustion

becomes more efficient combustion improving CCE. From 150 ft-lbs and above, there

is a drastic reduction in CCE. This can be attributed to the EGR required, and

very late main injection timings that are required at higher loads. EGR reduces

combustion efficiency acting as a heat sink during the reaction, and as just described,

the extremely late injection timings place the heat release centroid far from TDC

reducing CCE. When such high EGR rates are used, especially at higher loads, the

AFR can be pushed low enough to create excess soot or PM. As shown in Fig.4.10,

at higher loads although the NOx targets are reached, the soot limit of 1.5 FSN is

violated or approached. This could make using CDA at higher loads difficult.

To summarize, at 1200RPM, the maximum achievable load in CDA at a NOx

target of 1.5 g/hp-hr was 300 ft-lbs, 3 g/hp-hr was 315 ft-lbs, and 4 g/hp-hr was 325

ft-lbs. To meet these NOx requirements, EGR was introduced. The higher loads were

limited by turbine inlet temperature constraints. CDA was extremely effective raising
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Figure 4.4. Air Flow vs. Torque at 1200 RPM in Cylinder Deactiva-
tion with NOx Targets.

TOT higher across the load range as a result of decreased AFR caused the reduction

in airflow cause by CDA and the use of EGR. When compared to 6 cylinder operation,

BTE improves only at 50 ft-lbs from both improved open cycle efficiency and close

cycle efficiency. At higher loads, OCE performance degrades as the VGT must be

squeezed maximally to drive sufficient EGR. CCE is reduced due to the combustion

efficiency reduction from EGR and late main injection timings used to meet NOx

targets. Additionally, at high loads, the high amounts of EGR used increase smoke

production. Therefore, when considering relevant NOx targets, CDA can improve

after treatment performance up to approximately 300 ft-lbs, but there will be an

efficiency penalty above 50 ft-lbs.
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Figure 4.5. Normalized BTE vs. Torque at 1200 RPM in Cylinder
Deactivation with NOx Targets.

Figure 4.6. Normalized OCE vs. Torque at 1200 RPM in Cylinder
Deactivation with NOx Targets.
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Figure 4.7. EMP vs. Torque at 1200 RPM in Cylinder Deactivation
with NOx Targets.

Figure 4.8. Normalized CCE vs. Torque at 1200 RPM in Cylinder
Deactivation with NOx Targets.
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Figure 4.9. SOI vs. Torque at 1200 RPM in Cylinder Deactivation
with NOx Targets.

Figure 4.10. FSN vs. Torque at 1200 RPM in Cylinder Deactivation
with NOx Targets.



51

5. CONCLUSIONS AND FUTURE WORK

5.1 Exhaust Gas Temperature Increase Projection across Operating Map

The previous sweeps have demonstrated the capability of CDA and LIVC to mod-

ulate airflow through the engine and decrease AFR, but the focus of this study was

only at 1200RPM. To better understand the ability of CDA and LIVC as exhaust

thermal management techniques, it is desirable to predict the increased exhaust gas

temperatures at all speeds and loads especially at lower loads. Using the relation-

ships previously established between CDA, LIVC, and engine airflow as well as the

fit between AFR and TOT, it is possible to create such a projection.

As shown previously, Fig. 5.1 shows the turbine outlet temperature for a stock

Cummins ISB engine, and below the black line are the speed and load space where

the temperature is below 250◦C. This region is where CDA and LIVC could be most

effective in raising temperatures as the engine operates in extremely lean conditions

as shown by the corresponding air to fuel ratios shown in Fig. 5.2. Using CDA and

LIVC to reduce the air flow could enable the engine to operate above 250◦C in the

whole region. To project the possible increase in TOT, the relationship previously

established (shown in Fig. 5.3) between AFR and TOT is used. The outliers below

the fitted line are the result of very high EGR fractions, typically those above 30%,

and therefore, this projection be skewed in cases where these fractions are used.

However, as the plot shows, the outliers only represent a small portion of the engine

operating space, which should not adversely effect the TOT increase projections. So

if the modified AFR can be determined, then the increase in TOT can be determined

as well.

The modified AFR is

AFRCDA,LIV C =
AirFLowCDA,LIV C

FuelF low
, (5.1)
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Figure 5.1. Exhaust Gas Temperature for a Cummins 6.7L ISB Engine.

where AirF lowCDA,LIV C is the modified airflow through the engine and Fuel Flow is

the stock fuel flow of the engine. While CDA and LIVC have shown to be capable

of modulating engine efficiency and therefore fueling, when compared to the change

in airflow, the change in fueling will not have a significant effect on AFR. Therefore,

the stock engine fueling is used to calculate AFR. To calculate the decreased airflow

through the engine, the speed density equation is again employed,

Wair =
ηvPimVdN

nRTim
. (5.2)

The first method of decreasing AFR would be to open the variable geometry tur-

bocharger to reduce the intake manifold pressure to atmospheric conditions which

can be represented by setting Pim equal to ambient pressure. By deactivating half

of the cylinders, CDA will reduce the engine displacement, Vd, by half. Lastly, at

the latest IVC timing, it was observed that the volumetric efficiency, ηv, of the ac-

tive cylinders was approximately 0.8. With the remaining parameters, Tim, R, and n
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Figure 5.2. AFR for a Cummins 6.7L ISB Engine.

known, the airflow can be calculated and used in the AFR calculation shown above.

The resulting TOT is calculated, and the resulting increased turbine outlet tempera-

tures are shown in Fig. 5.4. It can be seen that the entire region that was previously

250◦C or less is now well above the limit. This prediction shows that the combination

of CDA and LIVC can be used to increase the exhaust temperatures to desirable lev-

els across the operating range of the engine thus proving to be an extremely effective

thermal management technique.

However, above 150 to 200ft-lbs, the turbine outlet temperatures are above 600◦C

which can potentially damage engine components. In these cases, the AFR has been

reduced too far and produces undesirable temperature increases. This effect can

also been seen in the previous sweeps where air flow had to be increased in order

to increase load. These limits could potentially be mitigated by deactivating less

cylinders. By deactivating only one or two cylinders at higher loads, the air flow
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Figure 5.3. Experimental Turbine Outlet Temperature vs. Air to Fuel Ratio.

through the engine could be increased to maintain AFR and avoid the turbine inlet

temperature limits. This study only considered deactivation of 3 cylinders, but the

range of the thermal efficiency benefits could possibly be extended if other CDA

configurations were considered.

5.2 Summary and Future Work

Modern aftertreatment systems require high exhaust temperatures to operate effi-

ciently, and low load conditions often do not produce sufficient thermal energy. While

many techniques are currently used, modulation of airflow through the engine is one

of the most effective. Cylinder deactivation and LIVC can be used to reduce airflow

through the engine at levels not achievable with another technology like VGT. The

effect of cylinder deactivation and late intake valve closing on the exhaust thermal

management and engine performance of a mid size in-line 6 cylinder diesel engine was
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Figure 5.4. Exhaust Gas Temperatures Utilizing CDA and LIVC for
a Cummins 6.7L ISB Engine.

examined. In cylinder deactivation operation, cylinders 4,5, and 6 were cut leaving

the engine effectively operating as an in line 3. At 1200 RPM, a series of load sweeps

were conducted to identify the effects at low and high load conditions. The primary

focus of the study was the ability to increase exhaust temperatures, especially at low

loads, the maximum achievable loads, and the effect on engine efficiency.

The first set of sweeps only utilized cylinder deactivation without EGR. The max-

imum achievable load in CDA was 390 ft-lbs and limited by turbine inlet temperature

constraints. CDA was effective in significantly raising TOT across the load range as a

result of decreased AFR caused by the reduction in engine displacement. When com-

pared to 6 cylinder operation, BTE is improved at lower loads but does not offer any

efficiency gains at moderate and high loads. The primary driver in BTE improvement

at low loads is improved open cycle efficiency performance since the improvement in

CCE between 3 and 6 cylinder is small. At high loads, OCE is lowered in an effort to
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drive sufficient airflow through the engine, and CCE is penalized by late SOI timings

and heat transfer.

Even with the engine displacement reduced by half, there was still AFR margin up

to 200 ft-lbs that could be farther reduced. In each case, the VGT was opened all the

way until the intake manifold pressure was almost atmospheric. If there was still AFR

margin, intake valve closing time was advanced, reducing the volumetric efficiency of

the engine. In CDA, LIVC can be increased to 625 CAD up to 200 ft-lbs, 645 CAD

up to 150 ft-lbs, 655 CAD up to 100 ft-lbs, and at 50 ft-lbs, the maximum timing of

675 CAD could be used. The higher loads were limited by turbine inlet temperature

constraints. LIVC was effective in raising TOT higher across the load range as a result

of decreased AFR caused by the reduction in volumetric efficiency. When compared

to CDA only operation, BTE does not improve due to a reduction in both open

cycle efficiency and close cycle efficiency. LIVC does not provide an improvement

in OCE because IMP is almost atmospheric to start so there is almost no margin

for PMEP gains. CCE is decreased with LIVC use because the reduction in ECR

reduces combustion efficiency, but the ECR reduction also results in a reduction in

BSNOx emissions. Therefore, CDA+ LIVC can improve after treatment performance

by simultaneously reducing engine out NOx emissions as well as providing sufficient

heat to the after treatment system even at low loads.

Finally, a series of sweeps were conducted trying to satisfy specific BSNOx targets.

The maximum achievable load in CDA at a NOx target of 1.5 g/hp-hr was 300 ft-lbs, 3

g/hp-hr was 315 ft-lbs, and 4 g/hp-hr was 325 ft-lbs. To meet these NOx requirements,

EGR was introduced. The higher loads were limited by turbine inlet temperature

constraints. CDA was extremely effective raising TOT higher across the load range as

a result of decreased AFR due the combined effect of CDA and EGR. When compared

to 6 cylinder operation, BTE improves only at 50 ft-lbs from both improved open cycle

efficiency and close cycle efficiency. At higher loads, OCE performance degrades as

the VGT must be squeezed maximally to drive sufficient EGR. CCE is reduced due to

the combustion efficiency reduction from EGR and late main injection timings used
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to meet NOx targets. Additionally, at high loads, the high amounts of EGR used

increase smoke production. Therefore, when considering relevant NOx targets, CDA

can improve after treatment performance up to approximately 300 ft-lbs, but there

will be an efficiency penalty above 50 ft-lbs.

While these results have shown the ability of CDA and LIVC to increase exhaust

temperatures and in some cases improve brake thermal efficiency, the sweeps were not

optimized results. Further investigation at a given speed and load could improve the

results especially effiency presented previously. At 300 ft-lbs, initial BTE improve-

ment efforts are shown in Fig. 5.5 for both 6 cylinder and 3 cylinde modes in the

1.5 to 4g NOx range. It can be seen that some small changes in engine inputs can

Figure 5.5. Improved BTE vs. Torque at 1200 RPM in Cylinder
Deactivation with NOx Targets.

improve engine performance in both cases. However, even with some optimization, at

300 ft-lbs, BTE still cannot be improved. In addition, particulate matter and hydro-

carbon emissions, resulting from the low AFR, are significantly higher which is also
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undesirable. As stated previously, at these high loads deactivation only one or two

cylinders maybe more effective than deactivating three as done here. Further studies

should include investigation of cylinder deactivation of one, two, and three cylinders

at different speeds and loads. This investigation would help establish an operating

map where CDA and LIVC could be used for improving thermal management and

efficiency. With such a map created, transient operation with CDA and LIVC should

be investigated including transition in and out of different operating modes.
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