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ABSTRACT 

Jellicoe, Michaela. M.S., Purdue University, May 2014. Underground Natural Gas 
Storage: An Examination of Property Values in Indiana. Major Professor: Michael 
Delgado. 
 
 
 Recent years have seen increased discussion of issues related to natural gas, 

generally focusing on perceived risks associated with natural gas extraction. One aspect 

of natural gas extraction that has received little attention is the impact of natural gas 

storage on surrounding areas. Further, recent advances in horizontal drilling and 

hydraulic fracturing extraction techniques have greatly increased production of natural 

gas wells, and will likely increase demand for natural gas storage. Like other natural gas 

wells, underground storage wells have the potential for environmental and amenity 

impacts. The impacts of these risks may be reflected by a reduction in the values of 

nearby properties. This thesis tests the hypothesis that properties located on or near 

natural gas storage fields have relatively lower values, holding everything else constant. 

To test the hypothesis that natural gas storage facilities bear statistically significant 

environmental and amenity risks, this analysis uses a semi-log hedonic property model 

through which to assess the impact of natural gas storage proximity and intensity on 

property values. The model also explores interaction effects of natural gas storage with 

public water, and allows for nonlinear effects. The dataset consists of a sample of 1,512 

single-family residential property sales in 16 counties across the State of Indiana from 

2004 to 2013. In addition to property sales data, the dataset includes housing 

characteristics such as size of the house, size of the property, year of construction, 

measures of building quality, distance to the nearest street, census block demographics, 

and in particular public water. 
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Results indicate that both distance to the nearest natural gas storage well and distance 

to the nearest observation well have significantly nonlinear impacts on housing values, 

both indicating that housing values generally increase by approximately 9.2 to 10.03 

percent with further distance from storage activity. The results also indicate housing 

values decrease by approximately 0.43 percent with increased intensity of storage 

activities. Additionally, the results demonstrate that homes without access to public water 

see statistically significant impacts of larger magnitude than homes with public water due 

to increased intensity of underground natural gas storage activities. 
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CHAPTER 1. INTRODUCTION 

Over the past few years discussion regarding issues related to natural gas have 

increased dramatically. Generally the discussion has focused on the risks of hydraulic 

fracturing. Other sectors of the natural gas industry have received little attention to date, 

including underground natural gas storage. Yet, underground natural gas storage has 

potential risks, including both health, environmental, and amenity impacts. Using the 

hedonic property method, I test the hypothesis that the risks of underground natural gas 

storage activities may be reflected by a decrease in property values of nearby properties. 

Recent advances in the extraction of natural gas have made activities relating to 

natural gas a topic of growing public discourse. Advances in hydraulic fracturing have 

been essential in increasing natural gas extraction, especially in the United States. 

Hydraulic fracturing requires large quantities of water, which are mixed with various 

chemicals and are pumped into the ground at very high pressures. Films like Gasland and 

The Promised Land have pulled issues related to hydraulic fracturing and the natural gas 

industry in general into the public eye, as have articles that have appeared in publications 

like the N ew York Times and Forbes. The Los Angeles Times published an article in 

February 2014 discussing a potential ban on hydraulic fracturing in Los Angeles due to 

concerns about drinking water safety and the potential for seismic activity from hydraulic 

fracturing activities. In March 2014, Forbes published an article about seismic activity in 

Ohio occurring near hydraulic fracturing activities, which were temporarily suspended 

until the safety of the activities could be assured. Media reports like these have increased 

public awareness of issues related to the natural gas industry. 

Technological advances, such as advances in hydraulic fracturing, have made 

previously economically unrecoverable sources of unconventional natural gas 

economically feasible. Prior to these advancements unconventional sources of natural 
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gas, in which the natural gas is trapped in the tight pore spaces of deep underground 

formations, could not be extracted without prohibitively significant costs. From 1998 to 

2008 unconventional natural gas production increased almost 65 percent (Arthur, Bohm 

and Layne 2008). One important unconventional natural gas resource is shale reservoirs. 

Just one of the shale resources, the Marcellus Shale is estimated to contain enough 

natural gas to provide 20 years of supply to the United States (Skone and Booz Allen, Inc 

2012). Between all of the shale gas reservoirs across the United States, the U.S. 

EnergyInformation Administration (US EIA) estimates 827 Trillion cubic feet of natural 

gas are recoverable given currently available technology (National Energy Technology 

Laboratory 2011).  

After the natural gas is extracted from the underground formation through wells, 

pipelines transport it to processing plants, where it is prepared for consumption. Then, 

natural gas is transported via pipeline for immediate consumption, or for underground 

storage (U.S. Energy Information Administration 2013). At the underground storage 

field, natural gas is injected into underground formations, such as an abandoned or 

otherwise useless aquifer, salt cavern, or most commonly a depleted natural gas or oil 

reservoir (U.S. Energy Information Administration 2004). The stored gas is then 

available for re-extraction at a later time. The primary purpose of the network of 

underground natural gas storage wells is to provide an inventory of harvested natural gas 

that can be used to meet peak demand. Demand for natural gas is traditionally seasonal, 

with peaks occurring during the winter heating season; but production in natural gas is 

not seasonal. Storage is used by the industry to meet times of high demand and plays an 

important role in the supply chain of the natural gas industry.   

Now, as natural gas production increases, the demand for underground storage 

fields may also increase. It is possible that the quantities of natural gas produced during 

periods of low consumer demand could exceed the available storage capacity, given the 

possible increases in production. In addition, with harsh winters like that of 2013-2014, 

demand for natural gas could exceed available supplies from storage and production 

during the winter leading to a potential for increases in demand for storage capacity. A 

recent (March 2014) Chicago Sun-Times article reports that levels of natural gas in 
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storage are lower than they have been since 2008 because of high demand during the 

winter.  

Underground natural gas storage is used throughout the United States, with 

clusters of storage located in the consuming markets on the East Coast and in the 

Midwest. One state within the Midwest region that has underground natural gas storage 

fields is Indiana. The US EIA estimated, in 2012, a total storage capacity of 110,749 

Million cubic feet of natural gas stored in depleted gas reservoirs and aquifers, known as 

underground storage fields. Figure 1.1 shows a map of underground storage wells used to 

inject and withdraw natural gas into storage fields as well as observation wells used to 

monitor storage fields across the state of Indiana. The counties covered by this analysis 

appear in grey shading in the figure. A typical storage field can encompass hundreds or 

thousands of acres underground, depending on the structure of the formation. Above 

ground, a storage field has several wells to inject and withdraw the gas, as well as a 

multitude of observation wells. A well used for underground storage includes the 

aboveground valve assemblies of the wellhead, compression facilities, electric 

equipment, pipeline facilities and processing equipment, and storage fields also have 

underground gathering lines (Federal Energy Regulatory Commission 2013). 

Many of the wells and storage fields in Indiana are located in rural areas; however 

there are some that can be found within city limits or just beyond.  Figures 1.2 and 1.3 

show two comparative examples of storage fields in Indiana. Figure 1.2 is an image of 

the storage field located in Clark County, Indiana. The imagery shows that the storage 

field is located close to a few housing developments. The storage field shown in Figure 

1.3 is located in Monroe County, Indiana. This storage formation is located a few miles 

outside of Bloomington, Indiana, which can be seen in the lower left corner of the image. 

The shadowed area in the image is a representation of the boundaries of the depleted 

reservoir used to store the natural gas. Figure 1.2 does not show boundaries for the 

storage field because the natural gas at this facility is stored in an aquifer formation. The 

symbols representing the storage wells provide clues to the boundaries of the aquifer 

storage formation. Many of the storage fields in Indiana were established as early as or 

earlier than the 1960s.  
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Figure 1.1 Underground Natural Gas Storage and Observation Wells in Indiana 
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Figure 1.2 Underground Natural Gas Storage Wells in Clark Co., 
Indiana 

Figure 1.3 Underground Natural Gas Storage in Monroe Co., 
Indiana 
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Media attention directed at natural gas extraction activities has heightened 

awareness on the potential for environmental risks, especially regarding ground and 

surface water contamination. Like the extraction of natural gas, underground storage 

poses inherent environmental risks, including:  

• migration of the natural gas out of the formation posing the possibility of 

migration into groundwater sources (Miyazaki 2009); 

• failure of well casings and cement that protects the formations above and below 

the well from contamination (this risk could increase as the well ages) (Miyazaki 

2009); 

• slow leakage from the wellhead (known as off-gassing), including possible 

methane emissions (U.S. Environmental Protection Agency 2013); 

• penetration of the formation by another well, including a water well. 

In addition, there are also some amenity impacts due to the infrastructure 

associated with the storage field: 

• natural gas pipelines require (noisy) compressor stations in order to keep the lines 

pressurized (Federal Energy Regulatory Commission 2013); 

• wellheads provide slight visual impacts. 

 Miyazaki cites several cases of natural gas migration, leakage and wellhead or 

well casing failure that resulted in consequences of varying severity. One case cited 

occurred in Kansas in 2001: natural gas migrated out of the formation, which resulted in 

two fatalities and a lawsuit seeking damages for losses in property values and business. 

Although regulatory agencies and regulations are in place in order to prevent cases like 

the instance in Kansas, underground natural gas storage facilities still pose environmental 

risks and amenity impacts.  

Increased attention on the environmental and health risks of natural gas extraction 

may increase the perception of risk related to other aspects of the natural gas industry 

among the public and homeowners, including underground natural gas storage. These 

environmental and amenity externalities may be reflected in the property values of nearby 

homes. The perception of risk, or an amenity impact like noise, can mean that one house 

associated with the risk will have a lower value than a house that is imperceptibly 
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different except for that associated risk. For example, a house located close to a noisy 

compressor station associated with underground natural gas storage may be less desirable 

than a home of equal quality and attributes not located close to a compressor station. 

Perceived risk from living above a storage field, even without the presence of a well or 

visible compressor station, could reduce property values.  

These different sources of environmental risk or damage provide an opportunity 

for analysis. First, I hypothesize that properties located over the storage field have lower 

property values, relative to properties not located over the field. Second, I conjecture that 

properties located near underground storage well sites have lower values, relative to 

properties located at a distance.  

The negative externalities posed by both the storage wells and fields can be 

determined through the use of a hedonic pricing analysis. Hedonic pricing analysis is a 

method commonly used to estimate a value for goods that are not sold in a market; these 

goods can include environmental quality or air quality. Recently, Heintzelman and Tuttle 

(2012) used this method to quantify the impact on nearby properties of wind turbines. 

According to hedonic theory, a property is a bundle of attributes, including bedrooms, 

square footage, acreage, distance to the nearest street, and even proximity to underground 

natural gas storage fields. Using a quasi-experimental framework with real market data 

on property sales and information on property attributes it is possible to use econometric 

theory to decompose the value of the property into estimates for the value of each 

attribute holding all others constant. In particular it is possible to estimate the impact of a 

treatment variable such as proximity to a well site on property values, holding all other 

attributes constant. 

I use a semi-log hedonic price function to estimate the impact of proximity to 

underground natural gas storage fields and wells on property values in Indiana. Indiana is 

an ideal location for assessment of the impacts of underground natural gas storage 

because storage activities are relatively isolated from other natural resource extraction 

activities. This is not true of other areas with heavy concentration of natural gas activities, 

like in Pennsylvania. This isolation reduces the econometric burdens of identifying any 

potential negative externalities. My data include a set of 1,512 residential property sales 
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between 2004 and 2013 in 16 counties across Indiana. In addition to data on housing 

attributes I also collect data on underground natural gas storage, oil extraction and natural 

gas extraction well locations. Using the locations of wells and housing transactions 

throughout Indiana, proximity measures and intensity measures are calculated using 

ArcGIS mapping tools. These proximity and intensity measures are the treatment 

variables used in the hedonic price analysis, they include the distance from each housing 

transaction to the nearest storage field and well site, and the count of all wells within a 

two-mile radius. Regressions that use the housing sales, attributes, and treatment 

variables allow me to identify any differences in home values induced by proximity to 

storage wells or fields, or by intensity of well activity, while controlling for other 

confounding factors.  

A more thorough understanding of the risks and benefits associated with the 

underground storage of natural gas may aid policymakers as the demand for storage rises. 

Further quantifying the externalities associated with underground natural gas storage 

provides an important measure of one aspect of natural gas production that has yet to 

receive much attention. Finally, understanding the negative externalities of natural gas 

storage could be of interest to policymakers working to maintain up-to-date regulations 

for environmental protection.  
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CHAPTER 2. PRIOR LITERATURE 

Little economic literature exists on the impact of externalities associated with 

underground natural gas storage. Despite that underground natural gas storage is a 

common practice, to my knowledge no prior study examines the impact of these activities 

on nearby properties. The recent technological advances in extracting underground 

sources of natural gas have increased attention on the natural gas industry and the risks 

associated with natural gas extraction. In order to gain further understanding about the 

impacts of natural gas extraction and provide policymakers with a more complete picture 

of natural gas extraction recent econometric literature has examined the impacts of 

hydraulic fracturing activities on nearby property values. However, these recent studies 

have not yet broached on the subject of underground natural gas storage, therefore the 

prior literature available focuses on natural gas extraction activities rather than 

underground storage activities. With the increasing attention on the environmental and 

amenity impacts of natural gas extraction it is important to extend these studies into the 

other aspects of the natural gas industry, particularly underground natural gas storage.  

Given the increases in production due to unconventional natural gas extraction, 

the natural gas industry will have to adapt in order to respond to these changes, including 

response regarding underground natural gas storage. The literature that focuses on the 

impacts of natural gas and oil extraction activities on housing values use similar methods 

to this study, and although natural gas extraction and underground natural gas storage 

differ in many ways they are both part of the same overall industry. In addition to the 

literature on natural gas extraction and hydraulic fracturing, Guignet (2013) studies the 

impact of leaking underground storage tanks on nearby property values. Using the 

hedonic method Guignet (2013) finds that homes near leaking underground storage tanks 

whose private wells were tested for contamination saw an 11 percent decrease in value.
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Hedonic models are commonly applied to issues relating to energy, environmental 

quality and amenity impacts. These models have been used to study the impact on 

property values of nuclear power plants (Gamble and Downing 1982), petroleum 

refineries (Flower and Ragas 1994), hog operations (Palmquist, Roka and Vukina 1997), 

water quality (Leggett and Bockstael 2000), and wind power facilities (Heintzelman and 

Tuttle 2012). Each of these studies finds differing magnitude and significance of impacts 

on property values. Gamble and Downing find no significant impact on nearby property 

values due to proximity and visibility of nuclear power plants. When studying the impact 

of hog operations on property values, Palmquist, Roka and Vukina find a very localized 

impact, which decreases as the saturation of hog operations increases. Flower and Ragas 

find differing impacts from different refineries. They find that properties near one 

refinery with larger surrounding buffer zones see almost no negative impacts or only 

temporary impacts due to “environmental events”. In contrast they find that properties 

near a more visible refinery see a significant long-lasting negative effects after an event 

(Flower and Ragas 1994). When applying a hedonic model to the impact of water quality 

in the Chesapeake Bay on nearby property values Leggett and Bockstael find that 

improving water quality could result in a benefit of over $12 million across all properties 

in the study. Heintzelman and Tuttle’s examination of the impact of wind power facilities 

on property values finds significant negative impacts.  

 Recently some econometric literature has focused on the impacts of hydraulic 

fracturing on property values, due to the increased attention on the natural gas industry. 

Gopalakrishnan and Klaiber (2014) examine the impact of unconventional shale gas 

extraction and hydraulic fracturing activities on home values in Washington County, 

Pennsylvania. They hypothesize that there is the potential for both real and perceived 

environmental risks due to shale gas extraction, which may be capitalized into home 

values. Within their study they look at the risk for groundwater contamination, noting 

that shale gas extraction uses large quantities of water and that the byproduct of this 

water use contains many different contaminants, and additionally that there are growing 

concerns over methane leakage. The authors also examine land use patterns. Shale gas 

activities primarily occur on agricultural lands, the land use patterns of surrounding 
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properties can influence homebuyer’s expectations for future shale gas activity. 

Gopalakrishnan and Klaiber hypothesize that by including land use pattern data in their 

study they can determine the specific impact of the perceived risk of future shale gas 

activity on home values.  

 This study uses a dataset of 3,646 single-family home sales between 2008 and 

mid-2010. The authors chose Washington County because of the population density of 

the area combined with the proximity to shale gas activities. They also gather information 

on both drilling and permitting for shale gas extraction within the county. The permitting 

data allows Gopalakrishnan and Klaiber to look at the early stages of shale gas extraction, 

with the theory that the positive impacts of shale extraction should be capitalized in the 

later stages of extraction, which would allow them to differentiate between the positive 

impacts and the negative impacts of the activities. Their study employs a Box-Cox 

regression to assist with model specification, which leads them to use a square-root 

transformation throughout their regressions. They also use several different explanatory 

variables for the treatment effect, including the total number of shale wells and an 

interaction between the number of shale wells and the proximity to a major highway. 

 Gopalakrishnan and Klaiber find that for shale gas activity within one mile of a 

property and the activity occurring no more than six months before the sale of the 

property the housing attributes have the expected signs. Additionally they find that homes 

located nearer to major roadways are impacted at a larger magnitude. They find that the 

variable for the count of shale gas wells is significant and negative. The marginal 

reduction in home value for one additional shale well within one mile of a property and 

with permitting within six months of the home sale is $3,596.47. In addition, homes with 

private well water and properties with agricultural land surrounding the property 

experience a larger negative impact. They find a negative marginal willingness to pay 

between $4,244.75 and $8,288.27 for homes with well water, depending on the 

percentage of surrounding agricultural lands. In order to explore the spatial and temporal 

range of the impact they vary the spatial buffer between 0.75 miles and two miles and the 

time period between six months and 12 months. They find that the impact is largest when 

the wells are located closer to the property and the permits are acquired within six months 
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of the sale. The impact becomes insignificant when the buffer exceeds one mile or the 

permit was acquired within a year of the home sale. 

Another recent study examining property value impacts of hydraulic fracturing is 

the work by Muehlenbachs, Spiller and Timmins (2012) examining externalities 

associated with shale gas development – in particular those associated with potential and 

perceived risk from groundwater contamination. In order to quantify the impact of shale 

gas activity as capitalized into housing values their paper uses the hedonic pricing model. 

Their study also focuses on Washington County, Pennsylvania from 2004 to 2009, 

culminating in a dataset of 19,055 housing sales. Beyond data describing the 

characteristics of the house, Muehlenbachs, Spiller and Timmins also collect census data, 

data on the Public Water Service Areas in the county and data on permitted wells within 

the county. The authors use two models, a triple-difference estimator and a simple cross-

section, property-fixed effects regression in order to differentiate the risk of groundwater 

contamination from other externalities and estimate the effect of shale gas activity on 

properties that depend on different water sources. Their model is designed to control for 

unobserved variables, the property-fixed effects control for temporally-varying sources of 

unobserved variables and the triple-difference estimator is used to control for time-

varying unobserved variables. The authors use very specific treatment and control groups 

in order to separate negative externalities associated with shale gas activity from any 

positive amenities. 

 The authors define a specific geographic buffer range of 2,000-meters distance 

from permitted wells for their study, since the authors presume that the proximity effects 

are localized. At this buffer range they assume there is no further effect from the wells on 

the housing transaction. In addition, the authors create a small homogenous geographic 

area by looking only at houses 1,000 meters on either side of the public water source 

border. These geographic definitions allow the authors to create subsamples for use with 

the triple-difference estimator. Their results conclude that there is a general increase in 

property values in proximity to shale gas wells of up to 11 percent for homes within 

2,000 meters of a shale gas well. However, they also find that houses without public 

water receive an overall negative impact, and this impact becomes more pronounced 
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when cities are excluded from the dataset. Their results show a decrease in property 

values of about 24 percent for homes using private sources of drinking water. They do 

note that gas companies tend to locate in areas with lower property values, which can 

cause the negative proximity effects of groundwater dependent homes to be more 

pronounced. Their general conclusion is that there is an overall positive impact due to 

shale gas development, most likely caused by lease payments, but there are quantifiable 

negative impacts on property values for homes relying on groundwater. 

 Boxall, Chan and McMillan (2005) conduct another study researching the impact 

of oil and gas facilities on residential property values. Prior to this study all reports on the 

impact of oil and gas facilities were consultant reports for the industry. Their study 

employs the hedonic model to quantify the impact of oil and gas facilities, particularly 

“sour” gas production, on residential housing values. They focus on these impacts in 

Central Alberta, Canada, where “sour” gas is commonly produced and which experienced 

an expansion in the oil and gas industry at the time. “Sour” gas is gas that contains over 

one percent of hydrogen sulfide. Residents located near the oil and gas facilities may 

experience both amenity, and health and safety risks associated with sour gas.  

The authors employ a hedonic price analysis with the spatial error model in order 

to quantify any potential impacts. They use a double log specification as well as two 

health risk and two amenity specifications. Additionally the authors incorporate spatial 

dependency into their model using a spatial lag model and a spatial error model. Their 

study focuses on 30 townships and parts of six others around Calgary, this region has oil 

and gas facilities ranging in density from sparse to thick. The authors use a dataset of 532 

housing transactions, but they do note that their attribute data lacks information on 

additional buildings, which could detract from the explanatory power of their regressions. 

Boxall, Chan and McMillan use a four kilometer buffer range around each property in 

order to determine treatment variables, including the number of natural gas wells within 

the buffer range and the number of sour gas wells specifically. They established this four 

kilometer buffer based on evidence from energy experts that it is the maximum range of 

impact extending from oil and gas facilities. In order to examine the impacts from health 

risks the authors determine the number of emergency response zones each property is 
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located within, an index representing the possible volume of escaped hydrogen sulfide, 

and an index for the annual volume of hydrogen sulfide gas flared at flaring oil batteries 

within four kilometers of each property. Using these treatment variables and 

methodology the author’s results strongly suggest that oil and gas facilities have 

significant negative impacts on the values of nearby rural residential properties. These 

negative impacts can reduce property values between four and eight percent. Both 

amenity and hazard attributes were found to have negative effects. They also find that the 

sour gas wells have a higher impact than other wells.  

 Much of the prior literature focuses on examining any negative externalities 

associated with oil and gas facilities, however Weber (2012) examines the potential 

positive impacts of the industry. Weber employs a difference-in-difference approach to 

study the economic gains associated with natural gas booms. In order to fully understand 

the impacts his data covers a long time period, 1999 to 2008, which attempts to capture 

all of the economic impacts from initial infrastructure development through the 

production process and the impact of royalty payments and tax revenue. Weber also uses 

a large geographic region for the study, including all counties experiencing natural gas 

booms in Colorado, Wyoming and Texas, resulting in data from 188 counties. Prior to 

this study previous work employed input-output methodology across an entire state to 

examine the economic impacts of oil and gas facilities. Weber focuses on regions 

experiencing natural gas booms and employs a more precise method for examining the 

economic impacts. Using this methodology Weber finds that the natural gas booms are 

associated with higher growth in total employment, and wage and salary income. Weber 

does note that oil and gas production is associated with temporary workers, and this could 

be an impact not captured within the results. Also, the increased tax revenue from the 

natural gas boom could provide benefits to residents through reductions in taxes as well 

as increases in public services. 

 One piece of literature that employs hedonic methods to estimate the impact of 

petroleum product storage on property values is Guignet (2013), which estimates the 

welfare impact of groundwater pollution caused by leaking underground storage tanks. 

This paper, although not addressing natural gas storage in underground formations, does 
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address the possible negative externalities associated with groundwater contamination 

from the storage of products such as gasoline. In order to disentangle the price associated 

with a leaking storage tank as compared to the other amenities and disamenities 

associated with underground storage tanks Guignet uses home and neighborhood 

attributes, neighborhood fixed effects, and also uses data on both leaking and non-leaking 

storage tanks. This study employs a spatial difference-in-difference model using a dataset 

of 132,840 housing transactions from three Maryland counties from 1996 to 2007. The 

results of this study indicate that a leaking underground storage tank has little effect on 

nearby housing values, and this remains the same when the house relies on a private well. 

 One important contribution of this paper to the literature though is that Guignet 

uses both proximity and property specific measures of contamination and buyer 

information. Prior literature primarily uses proximity as a proxy for environmental 

quality, Guignet hypothesizes that proximity may not be the best measure of 

environmental quality. In his study he gathers information on which homes had 

groundwater well tests as well as correspondence from the Maryland Department of 

Environmental Quality. Using both proximity and the more specific measures of 

environmental quality Guignet finds that the results vary greatly depending on the 

measure of environmental quality used. This piece of literature indicates that when 

information about a household’s level of information on a perceived risk or disamenity is 

available it could be a better measure to use in order to quantify environmental quality. 

Based on the findings of this literature I use both proximity and a measure for intensity in 

order to examine the impact of underground natural gas storage on nearby home values. 
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CHAPTER 3.  BACKGROUND 

3.1 The Natural Gas Industry 

Underground natural gas storage is a key aspect of the natural gas industry. After 

natural gas is extracted from underground formations containing hydrocarbons, it is 

processed to remove water and other non-hydrocarbons from the natural gas; it is then 

transported by pipeline to consumers. Figure 3.1 demonstrates, in general, the steps 

involved in the natural gas industry, from extraction through consumption. Traditionally 

demand for natural gas has been seasonal, with peaks in demand occurring in the winter 

when natural gas is used for heating, but production of natural gas is not seasonal. In 

order to compensate for the timing differences between supply and demand, the natural 

gas industry started using underground formations to store excess supplies of natural gas 

when demand was low for later use when demand is high. As the natural gas industry has 

evolved the market has discovered more uses for underground storage of natural gas 

beyond providing a supply during peak demand periods.   

 

Figure 3.1 The Natural Gas Industry (U.S. Energy Information Administration 2013)
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Oil and gas production has been occurring in the United States since the 1800s 

(Arthur, Bohm and Layne 2008). Underground natural gas storage has been an important 

aspect in the natural gas industry since the early 1900s (Federal Energy Regulatory 

Commission 2004). Recent technological advancements in natural gas extraction have 

made large resources of natural gas contained in unconventional reservoirs economically 

feasible for extraction. These advancements and increases in production have increased 

public attention on the natural gas industry as a whole. Both natural gas extraction and 

underground natural gas storage have amenity and environmental impacts, which can 

have impacts on homeowner perceptions and on property values. 

 
 
 

3.2 Unconventional Natural Gas and Hydraulic Fracturing 

Oil and gas reservoirs have been in production throughout the United States since 

the 1800s. The first natural gas well drilled in the country was in the Devonian Shale, in 

1821 (Arthur, Bohm and Layne 2008). Today unconventional gas reservoirs are an 

important part of energy production. From 1998 to 2008 unconventional natural gas 

production increased almost 65 percent (Arthur, Bohm and Layne 2008).  Shale gas is an 

important unconventional natural gas resource found throughout the country, and until 

recent technological advances, extraction of these resources was not economically 

feasible. The natural gas in shale formations is trapped in tight spaces in the rock, and 

unlike natural gas reservoirs extracted in the past, the natural gas molecules do not flow 

through these formations, significantly reducing ease of extraction. Recent advances in 

the technologies used in natural gas extraction have made these shale gas formations 

easier and cheaper to extract, and now shale gas is a growing and important economically 

feasible resource. 

Four technological advances have been essential in making shale gas extraction 

the fast growing industry it is today. Hydraulic fracturing is the use of highly pressurized 

fluids in order to stimulate oil and gas reservoirs through the creation of microscopic 

fractures. Advances in hydraulic fracturing have made well stimulation more efficient 

and effective. The ability to drill long horizontal fractures have allowed for much greater 
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exposure to the target area. In addition the advancement of “slickwater” fracturing fluids 

require less power to pump huge volumes of highly pressurized water over the long 

distances of the horizontal wells. Also, the development of multi-well pads allow for 

more than one wellbore on a well pad, which increases the ability to access the natural 

gas resources within the shale formations (Cornell University Cooperative Extension 

2011). 

Conventional gas reservoirs have gas stored in the pore spaces between the 

individual grains of the rock. In these wells the pore spaces connect, allowing the fluids 

to flow more freely. The flow of the gas between pores is an essential aspect of the 

production of natural gas (Sjolander, et al. n.d.). Horizontal and vertical fractures occur 

naturally within these formations, which increase the productive ability of these 

reservoirs. Natural gas wells are drilled into a gas bearing formation with the hope of 

intersecting the naturally occurring fractures, so that the gas can flow freely into the 

wellbore and up to the surface.  

Unconventional gas reservoirs have gas contained in tight spaces. The 

hydrocarbons cannot flow through these tight pore spaces. Shale gas is one type of 

unconventional gas reservoir. These formations have oil and gas bearing rocks, but they 

have limited natural permeability, even with the occurrence of fractures. The low 

permeability of shale gas requires the use of stimulation in order to increase the 

permeability (Sjolander, et al. n.d.). Other types of unconventional reservoirs include 

tight gas, which produces natural gas from low-porosity sandstones and carbonate 

reservoirs, and coal bed natural gas, which is produced from coal seams (Groundwater 

Protection Council and ALL Consulting 2009). 

Throughout the United States oil and natural gas are stored in rock formations. 

Conventional gas reservoirs were the first to be extracted. Now as conventional gas 

reservoir production is declining, unconventional gas reservoirs are becoming a much 

more important and productive resource. Shale gas is an important unconventional 

natural gas resource. The Marcellus Shale alone is estimated to provide 20 years of 

natural gas supply to the United States (Skone and Booz Allen, Inc 2012). Until recently, 

shale gas extraction was not economically feasible, but with advances in technology, 
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primarily horizontal drilling and hydraulic fracturing, these resources have become much 

more viable and productive. 

Shale gas reservoirs have been discovered throughout the United States. The 

largest of these reservoirs are the Marcellus Shale in the Appalachian Basin, which 

covers 95,000 square miles; the New Albany in the Illinois Basin at 43,500 square miles; 

the Antrim Shale, covering 12,000 square miles; and the Woodford Shale covering 

11,000 square miles (National Energy Technology Laboratory 2011).  Figure 3.2 is a map 

of the largest unconventional reservoirs in the Lower 48 in the United States. The New 

Albany Shale gas reservoir extends into the southeastern region of Indiana. Production of 

natural gas has started in the Barnett Shale, the Fayetteville Shale and the Marcellus 

Shale. Within the state of Indiana exploration is focused on the New Albany Shale 

(Indiana Geological Survey 2011).  

 

Figure 3.2 Shale Gas Plays of the Lower 48 States (U.S. Energy Information 
Administration 2011) 
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These formations are deep below the surface of the Earth, and are far below the 

base of the treatable water sources. Of the active gas shales in the United States, the 

Marcellus Shale formation lies 4,000 to 8,500 feet below the surface, the Barnett Shale 

lies at a depth of 6,500 to 8,500 feet and the Fayetteville Shale lies at 1,000 to 7,000 feet 

(Arthur, Bohm and Layne 2008). In the New Albany Shale, wells in Harrison County 

have been drilled at depths of 500 to 1,200 feet and around 2,000 feet in Daviess County 

(Indiana Geological Survey 2011). The depth to the base of treatable water resources in 

the Marcellus Shale is about 850 feet, about 1,200 feet in the Barnett Shale and 500 feet 

in the Fayetteville Shale (Arthur, Bohm and Layne 2008). Between the shale gas 

formations and the aquifers there are layers of impermeable rock preventing the 

migration of natural gas into the groundwater resources (Arthur, Bohm and Layne 2008). 

The US EIA Annual Energy Outlook for 2012 estimated 187 Tcf of unproved 

technically recoverable reserves in the Appalachian Basin, the largest basin. The US EIA 

Annual Energy Outlook for 2012 estimated 11 Tcf of unproved technically recoverable 

reserves in the Illinois Basin, which includes the New Albany Shale. Unproved 

technically recoverable reserves refers to the “quantities of oil and gas that can be 

estimated with reasonable certainty to be commercially recoverable, from a given date 

forward, from known reservoirs and under current economic conditions, operating 

methods, and government regulations but have not been proven to exist based on 

accepted geologic information, such as drilling or other accepted practices” (Penn State 

Extension 2012). The Annual Energy Outlook also estimated 19 Tcf of unproved 

technically recoverable reserves in the Fort Worth Basin, 18 Tcf in the Michigan Basin 

and 10 Tcf in the San Juan Basin. In total the Annual Energy Outlook estimates 482 Tcf 

of natural gas that is recoverable from shale gas reservoirs in the United States. With 

these projected quantities of natural gas, shale gas formations are an important factor in 

the future of energy production in the United States. 

Early well development required dynamiting the bottom of a vertical wellbore. 

Sometimes the release of pressure from these reservoirs pushed the gas to the surface, 

however, the gas primarily flowed into a cistern. These early wells were plentiful at first, 

however over time production slowed. In order to increase the production of these wells, 
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producers started using hydraulic fracturing. Hydraulic fracturing was first used in 1947 

by the oil and gas industry in order to increase production from the wells. They found 

that hydraulic fracturing unproductive wells was about half as expensive as drilling a new 

well (Sjolander, et al. n.d.). 

Until the recent technological developments in drilling, wells were all vertically 

drilled wells. These wells were originally drilled into shallow formations, with the hope 

of intersecting the natural fractures in the formation, allowing for easy extraction of the 

hydrocarbons. Over time these vertical wells produce less, especially in unconventional 

reservoirs, as they can only gather the molecules from the formations nearby. In order to 

intersect more of the natural fractures in the shale formations, the oil and gas industry 

developed a method of drilling a horizontal wellbore. To drill horizontally the leading 

drill pipe is steered in an arc so that the bore turns in a horizontal direction (Sjolander, et 

al. n.d.). These horizontal wells can have lateral legs that extend over 5,000 feet, all 

intersecting the layer of shale gas (Sjolander, et al. n.d.). In contrast, in the Marcellus 

Shale a vertical well may be exposed to as little as 50 feet of the producing formation 

(Arthur, Bohm and Layne 2008). Figure 3.3 depicts the differences between the 

wellbores of a conventional well and an unconventional well, as well as some of the 

differences between the general geologic characteristics of unconventional and 

conventional oil and gas sources.  

Now, unconventional shale formations are an economically feasible source of 

natural gas. Four advances in extraction methods made this possible: hydraulic fracturing, 

horizontal drilling, advances in fracturing fluids, and multi-well pads. Hydraulic 

fracturing aids in stimulating the natural gas formations. Hydraulic fracturing started as 

early as the 1900s, using foam fluid. Foam fluid is a nitrogen-based foam combined with 

some water, which is highly pressurized; this method uses the nitrogen bubbles in the 

foam to stimulate the formation (Virginia Department of Mines Minerals and Energy 

2006). Horizontal drilling allows for long lateral wellbores, which access much more of 

the thin layer of shale gas. 
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Figure 3.3 Schematic Geology of Natural Gas Resources (U.S. Energy Information 
Administration 2012c) 
 
 
 

Various advances in the types of fluids used in hydraulic fracturing were made 

during the 1980s through the 1990s, including cross-linked fracturing fluids, which can 

carry more propping agent, like sand, to prop open the microscopic fractures created 

during hydraulic fracturing. Slickwater fracturing fluids can reduce the amount of power 

required to pump large volumes of water and propping agent into the well over long 

distances and at high pressures, multi-stage slickwater fracturing also increases the 

amount of propping agent delivered deep into each fracture. All of these advances in 

hydraulic fracturing increase the ability to create and preserve the microscopic fractures 

that allow the hydrocarbon molecules to pass out of the shale formation and into the 

wellbore. In addition the advancement of multi-well pads allow for multiple wellbores on 

a single pad, which increases access to the gas inventory. These multi-well pads also 

reduce impacts on the environment and visual impacts of the well pad, by decreasing 

surface disturbances, less well pads are needed to access the natural gas. The first use of 
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multi-well pads and cluster drilling occurred in 2007 (Cornell University Cooperative 

Extension 2011). 

All of these technologies are essential in making extraction of natural gas from 

shale formations economically feasible. Today all of these technologies come together to 

make productive natural gas wells in the United States. The process is highly scientific 

and is designed differently for each target area. Computer simulation and modeling are 

used to develop specifications for the volume of fluid used as well as the quantity and 

type of proppant, the material used to prevent the newly created fractures from closing 

due to the extreme pressure at that depth below the ground, used in order to optimize the 

production of natural gas. This process involves analyzing the characteristics of the 

formation including the depth, porosity, thermal maturity, as well as looking at past 

drilling operations (Pennsylvania Department of Environmental Protection n.d.). 

A well consists of several layers of protective casings. These casings are 

constructed with steel pipe and cement. Each layer progresses deeper into the wellbore 

and adds protection for sources of groundwater from sources of contamination. The 

initial layer is called the “drive pipe” which is installed after the well is drilled and it 

prevents the wellbore from caving in (Pennsylvania Department of Environmental 

Protection n.d.). Each subsequent casing has a smaller diameter; the space between the 

steel pipe and the outer casing is filled with cement all the way to the surface as an added 

source of protection. Every layer of casing is designed specifically to protect groundwater 

resources from the natural gas in the formations below, and also isolate any sources of 

coal from the wellbore (Pennsylvania Department of Environmental Protection n.d.). The 

final and innermost casing is called the “production string,” which is installed at the 

production interval, or the zone where the natural gas bearing formation occurs. This pipe 

is used to transport the hydrocarbons extracted from the production zone to the surface 

for collection. This innermost layer, or the production interval can extend up to several 

hundred feet in a vertical well, and up to several thousand feet in a horizontal well, and 

this production interval is the deepest part of the wellbore (Pennsylvania Department of 

Environmental Protection n.d.). All of the casing strings must be installed before any 

hydraulic fracturing operations can begin. 
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3.3 Risks of Natural Gas Extraction 

Natural gas extraction, like any other form of resource extraction, poses certain 

environmental risks and causes certain impacts, both positive and negative. Hydraulic 

fracturing and horizontal drilling pose a different set of risks than methods used in more 

conventional natural gas extraction. The extensive use of water in hydraulic fracturing 

poses special environmental risks for operators of shale gas wells. Beyond the protection 

of groundwater during the drilling, hydraulic fracturing also requires the disposal of the 

contaminated flowback that comes back up from the well after the hydraulic fracturing 

process. In addition, shale gas extraction can also pose risks of air pollution, accidents 

and spills, deterioration of local infrastructure, and more. 

One of the primary environmental concerns associated with natural gas extraction 

and especially shale gas extraction that requires hydraulic fracturing is the prevention of 

ground and surface water contamination. Contamination of this kind can occur through 

many avenues in the extraction process. The first step in the extraction process is the 

drilling of the well. In order to drill through the many layers of rock, deep into the shale 

that is the production zone, the drill bits must be lubricated. In addition the cuttings along 

with mud are transported back to the surface. The drill cuttings and mud often contain 

certain amounts of diesel, heavy metals, mineral oils and synthetic alternatives, and acids. 

Through this process there is a risk that the contamination will leak into nearby 

groundwater sources, posing environmental as well as health risks for those that use the 

water (Muehlenbachs, Spiller and Timmins 2012). 

Any penetration of a groundwater source poses risks for contamination. 

Horizontal wells aid in the mitigation of this risk. A horizontal well intersects with a 

much larger region of the production formation, compared to traditional vertical wells. 

This means that fewer wells are required to extract the same quantity of gas, and there are 

fewer instances of wells penetrating the shallow aquifers that supply drinking water. 

Horizontal wells also allow for multiple wellbores from one well pad, this also decreases 

the risk of groundwater contamination. One of the most important methods that well 

operators use in order to decrease the risk of groundwater contamination is to install well 
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casings and cement down the entire wellbore and have added casings in the zones that are 

particularly sensitive (Grubert and Kitasei 2010).  

The improper or faulty installation of a well casing or cement can also pose risks 

for groundwater contamination (Gopalakrishnan and Klaiber 2014). Deep shale gas 

formations have natural layers of rock considered to be impermeable that protect the 

groundwater resources above from the hydrocarbons and other harmful chemicals trapped 

in the tight shale formations (Arthur, Bohm and Layne 2008). In order to prevent 

contamination of groundwater resources when a well is drilled through these protective 

layers, a system of casings and cement are installed. These casings, especially those at the 

upper stages of the well are essential in protecting groundwater resources from the 

variety of substances that come out of a natural gas well. If a casing is improperly 

installed the flowback and produced water can contaminate groundwater resources as 

they return to the surface through the wells (Moniz, Jacoby and Meggs 2010). 

Another risk from the improper installation of well casings is leakage of methane 

into groundwater sources as well as the fluid migration. Methane is naturally occurring in 

many rock formations underground, and it is possible that methane could migrate through 

the shale formation. The methane gases coming from sources in the production formation 

differ in composition than those in the layers closer to the shallow aquifers, which allows 

scientists to determine the approximate depth of the source. Osborne, et al. in their 2011 

study found increased contamination from methane occurring in the deep rock formations 

in groundwater sources in Pennsylvania. Although the study does not prove causality, 

there is a strong possibility that the methane leakage could come from leaky well casings. 

The methane contamination could also come in part from the methane traveling through 

the natural horizontal and vertical fractures, which were also stimulated through the 

hydraulic fracturing process and could possibly create greater connectivity to the layers 

above (Osborn, et al. 2011). 

The process of natural gas extraction can also release fluids known as “formation 

water” (Grubert and Kitasei 2010). Formation water is the water that has been trapped 

inside the reservoir rock for millions of years. This water is contaminated with heavy 

metals, salts and even Naturally Occurring Radioactive Materials (NORM). Formation 
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water returns to the surface in different quantities depending on the depth of the 

producing formation, however no matter what the quantity of this formation water, it still 

poses a risk for groundwater contamination (Gopalakrishnan and Klaiber 2014).  

In addition to the formation water, hydraulic fracturing also produces flowback 

water. Flowback water, combined with formation water creates the wastewater that well 

operators must treat or recycle. Hydraulic fracturing requires from two to eight million 

gallons of water, and between 10 and 40 percent of the water returns to the surface within 

the first 30 days of production (Gopalakrishnan and Klaiber 2014).  These quantities of 

wastewater pose one of the biggest challenges for well operators as well as government 

and residents. Improper well casings pose the potential for groundwater contamination 

from the flowback water.  

Even if the well casings are entirely secure, wastewater remains an important 

issue for the safe extraction of shale gas. The wastewater is first collected and stored 

onsite, either in storage tanks or ponds. If these storage methods fail, there is a potential 

for the contamination of surface water sources. After the wastewater is stored, it must be 

disposed of and well operators have a variety of options. One of these is to inject the 

wastewater into deep injection wells. Well operators can also treat the water onsite, so 

that it can be reused in the hydraulic fracturing process. However, onsite treatment can be 

expensive for the operator and it still poses certain risks for surface water contamination. 

Wastewater can also be treated in surface evaporation ponds. There is limited geographic 

space for evaporation ponds and they also pose environmental risks of surface water 

contamination. Finally flowback water can also be treated at municipal or special 

treatment plants.  

The element of accident is also always present in the extraction of natural gas. 

Natural gas wells are subject to accidents. There can be blowouts, as well as improper 

well construction, which can lead to water contamination (Grubert and Kitasei 2010). 

Blowouts can be caused by unexpected high-pressure gas, which is accompanied by large 

releases of gas or polluted water. Improperly constructed well casings can allow 

contaminants to leak into nearby sources of water (Muehlenbachs, Spiller and Timmins 

2012). Throughout the process of constructing and extracting the natural gas from a shale 
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gas well there are possibilities for accidents and spills, which present a risk for 

contaminating surface water sources, which is both an environmental and health risk. 

Surface water is not only contaminated through spills and accidents, it is also 

impacted through the surface activities required for natural gas extraction.  There are a 

wide range of surface activities that can impact these water resources. Transportation 

activities can stress nearby stream banks, which can contribute to erosion and add 

sediments to surface water. The transportation needs of hydraulic fracturing include truck 

traffic from the construction of the well pad, as well as industrial activity, and even 

trucking water into and out of the site, all of these activities add stress to the road system 

(Grubert and Kitasei 2010). There are methods that can be used to mitigate certain 

amounts of this damage, which can be dramatic due to the sheer amount of surface 

activity required for natural gas extraction.  Road planning and reducing truck traffic can 

help protect stream banks, and prevent some erosion (Grubert and Kitasei 2010).  

 Water quantity is another important environmental risk from the extraction of 

shale gas resources. Natural gas extraction, hydraulic fracturing in particular, requires 

large quantities of water. An unconventional well can use between one and nine million 

gallons of water during the hydraulic fracturing process (Pennsylvania Department of 

Environmental Protection n.d.). The quantity of water required depends on the number of 

fracturing stages required for the well (Arthur, Bohm and Layne 2008). Water availability 

is an especially pertinent issue when stream flow is low. In times when stream flows are 

low even small withdrawals can have an impact on the aquatic life of the region (Grubert 

and Kitasei 2010). 

 Another environmental risk posed by natural gas extraction is air pollution. The 

process of natural gas extraction can lead to escaped gases, including nitrous oxides and 

volatile organic compounds (VOCs). Combined, these create ozone. In addition natural 

gas extraction can also release other hazardous air pollutants, including methane and 

greenhouse gases (Muehlenbachs, Spiller and Timmins 2012). Air pollution is an issue 

throughout the process of extraction through the processing and power generation of 

natural gas (Grubert and Kitasei 2010).  
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Overall, with the disturbance from the well pads, the new roads and pipelines 

involved in the process of natural gas can result in dramatic impact on the landscape. 

These landscape impacts can have significant impacts on the region’s ecosystem, 

particularly the flora and fauna (Slonecker, et al. 2012). Not only do landscape 

disturbances pose environmental risks and even some health risks from stream 

contamination, but they also create negative community impacts. Road damage, noise 

and visual disturbances are all impacts to the community from the process of extracting 

natural gas from shale formations. 

 
 
 

3.4 Underground Natural Gas Storage 

The first use of an underground storage well in a depleted reservoir was in 

Welland County, Ontario, Canada in 1915. The following year operations began at the 

first facility in the United States, near Buffalo, New York in the Zoar field (Federal 

Energy Regulatory Commission 2004).  There were nine facilities across six U.S. states 

by 1930 and after World War II storage gained even more popularity. However, prior to 

1950 almost all of the natural gas storage facilities were located in depleted natural gas 

reservoirs (Storage of Natural Gas 2014). The US EIA divides the Lower 48 states into 

three regions regarding natural gas storage, the West, the East and the Producing Region. 

Figure 3.4 shows how natural gas storage is distributed throughout the United States, 

with depleted natural gas reservoir storage facilities spread across the United States, salt 

caverns concentrated in the Gulf Coast, and aquifers concentrated in the Upper Midwest. 

Although the Gulf Coast and south is considered the “Producing Region,” the recent 

technological advances in extracting unconventional natural gas resources allow for the 

production of natural gas in all three regions (U.S. Energy Information Administration 

2014).   
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Figure 3.4 U.S. Lower-48 States Active Underground Natural Gas Storage Facilities, by 
Type (December 31, 2012) (U.S. Energy Information Administration 2012d) 
 
 
 

According to the US EIA, total underground storage capacity in the United States 

was 8,991,335 Million cubic feet in 2012. This figure represents the “present developed 

maximum operating capacity” (U.S. Energy Information Administration n.d.). Total 

storage capacity was 8,402,216 Million cubic feet. In 2013 storage capacity increased by 

two percent, with these gains concentrated in the West and the Producing regions. Total 

storage capacity in Indiana decreased from 114,294 Million cubic feet in 2007 to 110,749 

Million cubic feet in 2012 (U.S. Energy Information Administration 2014). According to 

the US EIA’s Form EIA-191 data from 2012, there were 21 underground natural gas 

storage wells in Indiana. These wells are operated by seven companies and are located in 

14 counties across Indiana. Ten of the total storage fields are depleted natural gas 

reservoir type storage and the remaining 11 storage fields are aquifer type storage. In 

total they report a working gas capacity of 31,042,061 Million cubic feet, a total field 
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capacity of 105,960,920 Million cubic feet and a maximum daily delivery of 703,782 

Million cubic feet (U.S. Energy Information Administration 2012b). 

 Certain geologic characteristics are required for an underground formation to be 

suitable for natural gas storage. In order for an underground formation to be suitable for 

natural gas storage it must have a layer of porous and permeable rock where the natural 

gas is stored and an “entrapment” or a layer of impermeable rock that stops the migration 

of the natural gas out of the porous rock layer (Dawson and Carpenter 1963). There are 

three types of geologic formations commonly used for natural gas storage: depleted 

natural gas reservoirs, aquifers and salt caverns. Each of these types of underground 

formations have differing geologic characteristics, which impact the capacity and 

deliverability of the storage facility. Figure 3.5 shows the very basic differences between 

the three types of underground storage facilities. Deliverability is the amount of natural 

gas that can be withdrawn from the facility each day (U.S. Energy Information 

Administration 2004). A formation is chosen for development into an underground 

storage facility based on the geography of the formation and its geology. Storage 

facilities need to be located near to a market and they must be located near transportation 

infrastructure, so the natural gas can be withdrawn from storage and transported to 

consumers. Additionally, an underground storage facility chosen for storage must be 

porous enough to hold quantities of natural gas. It must also be permeable enough to 

allow the hydrocarbons to be withdrawn from the formation (Storage of Natural Gas 

2014). 
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Figure 3.5 Types of Underground Natural Gas Storage Facilities (U.S. Energy 
Information Administration 2004) 
 
 
 

Once a formation is chosen for storage it is reconditioned for use as a storage 

facility. In addition to setting up the underground formation for use as a storage facility 

certain aboveground equipment must be installed in order to operate the storage facility. 

A storage facility requires wells for injection and withdrawal, as well as wells for 

observation and possibly wells for water supply and disposal. Wells include wellhead 

valve assemblies. Other equipment can include gathering lines, metering facilities, 

compression facilities, dehydration units and generators or transformers (Federal Energy 

Regulatory Commission 2013). Once the underground storage formation is ready for use 

and the required equipment has been installed the gas is injected into the formation 

through a wellhead, which builds pressure within the formation as natural gas is added. 

This pressure is required in order to allow for the extraction of the gas at a later time. 

Because pressure is required for the withdrawal of the natural gas, in an underground 

storage field there is a certain amount of gas that can never be extracted, called “cushion” 

gas (Storage of Natural Gas 2014). The gas contained within the storage field that is 
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available to be extracted is called “working” gas. Each type of storage well has different 

proportions of “working” gas and “cushion” gas, which depends on the geology of the 

formation, the facility equipment and operations (U.S. Energy Information 

Administration 2004).  

 The most common type of underground formation used for storage are depleted 

natural gas or oil reservoirs (U.S. Energy Information Administration 2004). Figure 3.6 is 

an image of the typical depleted reservoir wellbore, including the surface valve 

assemblies. Depleted reservoirs have several benefits. Developing an underground 

storage reservoir requires knowledge of the geological conditions, which usually can only 

be obtained through subsurface testing. In the case of depleted reservoirs this information 

is already readily available, from the records of the holes drilled during the period of 

production (Dawson and Carpenter 1963). Since these formations have already held 

natural gas, they are known to be capable of storage and the geological characteristics of 

the formation are well known, which can reduce operating costs. Additionally, depleted 

reservoirs also already have equipment in place from the prior extraction activities, so the 

storage operator can use the equipment already in place, also reducing the cost of 

converting the formation for use as a storage facility (Storage of Natural Gas 2014). 

A typical depleted reservoir storage field requires about 50 percent cushion gas 

(Federal Energy Regulatory Commission 2004). They also have an injection-withdrawal 

cycle that takes a year. The typical injection period lasts from April through October, and 

the withdrawal period lasts from November to March. Due to the low deliverability of 

these types of facilities, or the low amount of natural gas that can be extracted daily, they 

are used to meet long-term seasonal demand (Storage of Natural Gas 2014).  
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Figure 3.6 Depleted Reservoir Storage Well Cross Section (U.S. Energy Information 
Administration 2008b) 
 
 
 
 Aquifers are another option for underground natural gas storage. Like a natural 

gas reservoir, an aquifer is an underground porous rock formation that holds water 

instead of natural gas. Some of these types of formations can be reconditioned for use as 

a natural gas storage facility. Figure 3.7 shows a cross section of the typical wellbore for 

an aquifer storage field. Aquifer storage fields are more expensive to develop than 

depleted reservoirs. There is less previously collected information on the geological 

attributes of the formation and the collection of this information can be costly. 

Additionally, some information on the characteristics of the formation can only be 

learned after further development of the storage facility. All of the infrastructure for the 

storage facility operations must also be developed, since there is no previously installed 

equipment (Storage of Natural Gas 2014).  
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Figure 3.7 Aquifer Storage Well Cross Section (U.S. Energy Information Administration 
2008a) 
 
 
 

Since an aquifer also already contains water, more pressure is required to inject 

the natural gas, as the gas must displace the water, which requires more specialized 

equipment. Additionally, the presence of water in the formation can also mean that the 

already processed natural gas that was injected into the formation requires further 

processing once it is removed from the storage facility. Due to the presence of water in 

the aquifer there are also increased regulations from the United States Environmental 

Protection Agency to prevent any groundwater contamination, and the unique geology of 

an aquifer can pose an increase in risk of migration, or the gas moving out of the 

designated storage formation into other strata of the subsurface (Storage of Natural Gas 

2014). Migration of the natural gas not only increases risk of contamination, but it also 

presents a risk for losses in supply. 
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 An aquifer storage facility is typically used to meet long-term storage demands 

like depleted reservoir storage facilities and generally have the same injection and 

withdrawal cycle. However, they require a larger percentage of cushion gas, which can 

range from 50 to 80 percent. Altogether the many characteristics of an aquifer mean that 

they are much more costly to develop than a depleted reservoir and are a much less 

desirable option. There are some regions in the United States where there are relatively 

few options for depleted reservoir storage fields, particularly the Upper Midwest. 

 The third and final type of underground natural gas storage formation are salt 

caverns. Salt caverns are developed from salt dome formations or bedded salt formations 

(U.S. Energy Information Administration 2004). A salt dome is a very thick underground 

formation that is created by natural salt deposits, which through a natural leaching 

process has a structure similar to a dome. A salt bed is a thinner and wider salt deposit 

formation, which is typically less desirable than a salt dome for development into an 

underground natural gas storage facility. In order to recondition a salt dome or bed into a 

salt cavern a process called “salt cavern leaching” is undertaken. In this process certain 

amounts of the salt deposit are dissolved and removed from the formation, which leaves 

behind a cavern (Storage of Natural Gas 2014).  

 Salt caverns have high development costs, due to the process of salt cavern 

leaching, which includes costly brine disposal (Federal Energy Regulatory Commission 

2004). However, they are a high deliverability type of facility, and most recent increases 

in storage have occurred in this type of storage field (U.S. Energy Information 

Administration 2014). High deliverability storage facilities have much shorter injection 

and withdrawal cycles, with gas being available within an hours notice, making them 

ideal for emergency and peak load situations (Storage of Natural Gas 2014). Due to 

increases in natural gas fired electricity generation and the changes in regulation, high 

deliverability storage sites are highly desirable (U.S. Energy Information Administration 

2004). They are typically much smaller in capacity than the average depleted reservoir 

storage facility, which makes them unsuitable to meet long-term seasonal demands 

(Storage of Natural Gas 2014). In addition to being high deliverability they require a 

much lower percentage of cushion gas than either depleted reservoir or aquifer storage 
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facilities, ranging from 20 to 30 percent (Federal Energy Regulatory Commission 2004). 

Salt caverns also have very strong walls that reduce degradation of the reservoir. They 

also allow very little escape of gas once injected. Most salt cavern storage facilities are 

located in the Gulf Coast region (U.S. Energy Information Administration 2004).  

Developing any underground natural gas storage project is a costly investment. 

Investment in cushion gas is one of the most costly aspects of developing a storage 

project (Federal Energy Regulatory Commission 2004). When natural gas prices are low 

storage projects that require larger investment in cushion gas become more desirable, like 

aquifer type storage facilities (Storage of Natural Gas 2014). New advances in 

technology allow for owners and operators of underground natural gas storage fields to 

reengineer existing storage fields in order to increase the proportion of working gas to 

cushion gas within the facility. This allows for the expansion of underground natural gas 

storage without the considerable investment required for developing an entirely new 

storage facility (Federal Energy Regulatory Commission 2004). While natural gas 

production has increased dramatically in the past few years, there has not been a similar 

increase in underground natural gas storage during the same time period. However, given 

the size of the investment required for a new underground storage project, it is possible 

that an increase in storage could follow in time. Investors may take some time before 

deciding to make the investment, especially given the discussion on the benefits and costs 

of exporting natural gas, which can be seen in the work of Tyner and Sarica (2013).  

 
 
 

3.5 Underground Natural Gas Storage Operation and Regulation 

Today, underground natural gas storage is used for more than just meeting 

seasonal demand. With the increase in natural gas fired electricity generation there is an 

increase in demand for natural gas in the summer. Underground storage also provides 

insurance against any unexpected events that could disrupt supply (Storage of Natural 

Gas 2014).  A change in Federal Energy Regulatory Commission regulations in 1994 

required all interstate pipeline companies under their jurisdiction to operate in “open 

access”. Open access means that the interstate pipeline companies still control the portion 
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of the working gas capacity required to maintain their pipelines and storage facilities, but 

a large portion of their working gas capacity must be available to third parties for leasing. 

Prior to this change in regulation the interstate pipeline companies had complete control 

over the working gas capacity in their pipelines and storage facilities (U.S. Energy 

Information Administration 2004). This change in regulation allowed more actors to 

participate in the industry and allows actors in the industry to use natural gas for 

commercial purposes, withdrawing natural gas when the prices are high and injecting gas 

when the prices are low (Storage of Natural Gas 2014).  

 After the natural gas storage industry became open access the variety of owners 

and operators increased. There are four primary types of owners and operators of natural 

gas storage facilities: interstate pipeline companies, intrastate pipeline companies, local 

distribution companies, and independent storage providers. The open access regulation 

means that now the owners and operators do not necessarily own all of the natural gas 

within their storage facility, in fact most of the working gas in storage facilities is under 

lease. Interstate pipeline companies use natural gas storage to balance differences in the 

timing of supply and demand of natural gas (U.S. Energy Information Administration 

2004), and to keep their pipelines filled in order to operate at maximum efficiency 

(Dawson and Carpenter 1963). Intrastate pipeline companies use natural gas storage for 

similar purposes as interstate pipeline companies, however they also serve end-use 

customers. Both interstate and intrastate pipeline companies lease a large portion of their 

storage capacity to other industry participants. Local distribution companies serve the 

natural gas needs of local customers and use storage facilities to serve this purpose. They 

have also been able to use storage capacity for lease to third parties, which are often 

marketers (U.S. Energy Information Administration 2004).  

Any owner or operator that is involved in interstate commerce is under the 

jurisdiction of the Federal Energy Regulatory Commission. This regulatory agency 

approves the location, construction and operation of any storage field to be involved in 

interstate commerce. All other owners and operators are under the jurisdiction of the state 

regulatory agency in the state where their operations are located (Federal Energy 

Regulatory Commission 2013). In the state of Indiana, the Department of Natural 



38 

 

Resources regulates underground natural gas storage owners and operators (Indiana 

Department of Natural Resources n.d.b).   

The Department of Natural Resources Division of Oil and Gas is the specific 

division that administers rules and regulations relating to the production of petroleum 

products. The Division of Oil and Gas was established in 1947. They have the 

responsibility for regulating the activities relating to the exploration and production of 

petroleum products, including permitting, drilling, completion, production, plugging, and 

abandonment activities. Underground natural gas storage facilities are considered Class II 

injection wells and the Division of Oil and Gas administers the specific regulations for 

these types of wells (Indiana Department of Natural Resources n.d.b). Class II injection 

wells are wells that inject fluids, which can refer to well stimulation or underground 

natural gas storage. The Division of Oil and Gas regulate the permitting of Class II 

injection wells, the exempting of aquifers for use as an underground storage facility, 

operating requirements for Class II injection wells and monitoring and reporting 

requirements for Class II injection wells (Article 16. Oil and Gas 2014).  

 Underground natural gas storage facilities must make certain agreements with 

landowners impacted by their activities, similar to those made for the exploration and 

production of natural gas. When a company interested in developing underground natural 

gas storage files an application with the Federal Energy Regulatory Commission they 

must also notify any landowner that could be impacted by the activity. This includes all 

landowners located above the geologic formation intended for natural gas storage 

(Federal Energy Regulatory Commission 2013). The size and location of any 

underground storage field is determined by the geologic formation, and these formations 

can encompass hundreds or even thousands of acres underground. In addition to notifying 

impacted landowners the pre-filing process required by the Federal Energy Regulatory 

Commission includes a program of community outreach, which includes open houses and 

other processes to notify all stakeholders of the project and gather input regarding the 

project from all stakeholders (Federal Energy Regulatory Commission 2012). The 

Indiana Department of Natural Resources does not require public notice upon the filing 

of a permit application for an underground natural gas storage facility, for those facilities 
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not under the jurisdiction of the Federal Energy Regulatory Commission (Indiana 

Department of Natural Resources n.d.c). 

Owners and operators of storage facilities must obtain at the very least the mineral 

rights to the underground storage facility. In the case when the owner or operator does 

not own the mineral rights for the underground formation they must establish a storage 

lease or easement agreement with the owners of the mineral rights. A previous landowner 

can attach a storage lease or agreement to a land deed and in the case of a property sale or 

transfer of ownership a new property owner can receive compensation for use. In the case 

where some surface facilities are necessary the company must also obtain a lease or 

easement for access to these facilities. In the case that a landowner and the storage 

company cannot come to an agreement regarding either mineral rights or surface access 

the company can go to court, and in some cases the court can grant the company the 

ability to access these rights through eminent domain (Federal Energy Regulatory 

Commission 2013).  

 
 
 

3.6 Impacts of Underground Natural Gas Storage 

Much of an underground storage field is located underground and does not require 

surface facilities on every property, therefore landowners may have very little visual 

impact due to the presence of an underground storage facility. However, the storage 

company may have reserved rights of access in order to conduct any necessary 

monitoring activities. In the cases where there are surface facilities, these landowners will 

have an agreement with the storage company involving compensation for the use of the 

land. These landowners will also see more visual impact due to the storage facility. In 

addition to some visual impacts, landowners with compression stations on their property 

or even landowners located near a compression station may experience some noise 

impacts. The Federal Energy Regulatory Commission does have rules regarding 

acceptable noise levels. In the case of new or modified compression stations the noise 

level cannot exceed an average level of 55 decibels at any “pre-existing noise sensitive 

area” (Federal Energy Regulatory Commission 2013). A noise sensitive area includes 
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areas with schools, hospitals or residences (Federal Energy Regulatory Commission 

2013). 

 Beyond the noise and visual impacts related to underground natural gas storage, 

there are other potential environmental issues associated with underground natural gas 

storage. Natural gas storage poses some risk of migration – i.e., leakage of natural gas 

from the underground formation. When an underground storage formation is developed it 

is important for the owners or operators to conduct a thorough analysis of the formation 

itself and any previously drilled wells. It is possible that natural gas can migrate out of 

the formation vertically through existing wells. In the event that a well is leaking, 

especially in an urban area or where homes are located, the natural gas can pose a risk to 

homeowners through the accumulation of natural gas within homes (Miyazaki 2009).  

Over time wells and abandoned wells can degrade, and age can increase the risks 

of failure in wellheads, increasing risks for migration of the natural gas through these 

pathways (Miyazaki 2009). Federal and state agencies have specific requirements for the 

construction of natural gas wells. There are also regulations for the abandonment and 

plugging of wells. These regulations are designed to protect formations above the natural 

gas storage well from contamination, including sources of groundwater. Despite these 

regulations well casings can corrode over time. The corrosion of well casings can lead to 

natural gas migration and it can also lead to the migration of brines from deeper 

formations into shallower ones (Rupp 2011). This type of migration of natural gas and 

even brines can pose a risk to sources of groundwater. It is possible for natural gas to 

migrate out of the portion of an underground storage formation that is designated as a 

storage facility.  

There are several examples of wellhead or well casing failure, leakage, and 

natural gas migration in recent years, cited by Miyazaki (2009). In Colorado, a property 

owner filed a lawsuit against an underground storage facility in 1998, claiming that a 

groundwater aquifer was contaminated by the storage facility. The natural gas had not 

actually migrated out of the property included within the underground storage facility, 

but some quantities of natural gas were discovered in the aquifer. As a result of this 

lawsuit the storage facility was decommissioned. The more extreme cases of migration 
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and risk are linked to salt cavern type storage facilities. One example occurred in Texas 

in 2004, in which well casing failure caused an explosion, which led to a second 

explosion and as a result the loss of between 30 and 60 million dollars of gas, and the 

temporary evacuation of nearby residents (Miyazaki 2009). The consequences of events 

like these can range from financial losses to the storage operator and local business, to the 

evacuation of nearby residents, and even fatalities. Beyond the damage to companies and 

residents there are also environmental consequences of these events, including soil and 

groundwater contamination (Miyazaki 2009). Although salt cavern underground natural 

gas storage facilities have had more severe examples of failure in recent years, any 

negative attention on the risks to nearby residents due to underground natural gas storage 

fields can increase risk perceptions for homeowners located near one of these facilities, 

even those that are not salt cavern storage facilities.  

When the working gas in an underground storage facility is not recycled properly 

it can move from the higher-pressure areas to lower pressure areas of the formation. 

When this occurs there is the chance for loss of the natural gas, which increases the cost 

for the owners and operators of the underground storage facility (Federal Energy 

Regulatory Commission 2004). In addition to the potential for losses, this type of 

migration can pose risks to other underground formations, including sources of 

groundwater. Aquifer storage facilities sometimes have different geological 

characteristics that can at times lead to poorer retention of natural gas than other types of 

storage facilities. Owners and operators of natural gas storage facilities with these types 

of characteristics must install more wells in order to collect any natural gas that migrates 

out of the formation (Storage of Natural Gas 2014). As there is the risk of loss due to 

migration, there is the potential for any natural gas that escapes collection to pose a risk 

for contamination. 

 Methane emissions are another environmental risk associated with natural gas 

storage. This methane can potentially come from “off-gassing” from the wellhead or 

from emissions from the compressor stations (U.S. Environmental Protection Agency 

2013). In addition to methane emissions, methane from oil and natural gas formations can 

contaminate water wells. Methane in water wells can be hazardous. Although it is not 



42 

 

explosive when dissolved in water, when exposed to the air methane in groundwater can 

become hazardous, especially in confined spaces. When methane is in concentrations 

between five and 15 percent it can be ignited by as little as a nearby electrical outlet. 

Homeowners relying on well water can educate themselves on the signs of methane in 

their well water, which include bubbling noises in the well and gas bubbles in the water. 

Although there are no established federal and state water quality standards for methane in 

drinking water there are recommendations for safe levels of methane in the water. If a 

homeowner discovers concentrations in excess of 28 milligrams per liter they should 

contact their local health department. Homeowners also have options for removing 

methane from their well, wells can be vented to reduce methane in the water or for more 

extreme situations homeowners can have aeration systems installed (Indiana Department 

of Natural Resources n.d.a). 

 Underground natural gas storage poses a possibility of a variety of sources of 

groundwater contamination, including brine from deep levels of the subsurface and 

methane. Homeowners with access to a public water system are not at as high of a risk 

for these types of hazards. Federal and state laws require that providers of public drinking 

water have a schedule for monitoring and reporting to their state department, in Indiana 

this is the Department of Environmental Management. The U.S. Environmental 

Protection Agency sets standards for acceptable levels of contaminants as mandated by 

the Safe Drinking Water Act. The Safe Drinking Water Act regulates any public water 

system that serves greater than 25 people, and the State of Indiana is responsible for 

enforcing these regulations. When a violation of these regulations occurs, the water 

provider is required to send out a public notice of the violation. These federal and state 

regulations are in place to protect the public from instances of dangerous water 

contamination (Indiana Department of Environmental Management n.d.). Households 

that receive water from a source that serves less than 25 people do not have the same 

level of protections established by regulations. Water received from these systems does 

not have the same level of testing requirements. 
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CHAPTER 4. METHODOLOGY 

 The hedonic pricing framework provides a method for measuring externalities, or 

in fact any type of attribute that is not traded in a market, by virtue of breaking a house 

into the many attributes that a consumer considers when making a purchasing decision. 

These attributes can include qualities that are not traded in their own market, attributes 

like air quality, water quality, noise, or the perception of risk from proximity to an 

underground natural gas storage facility. According to Rosen (1974) the hedonic 

hypothesis is that “goods are valued for their utility-bearing attributes or characteristics.” 

Using this hypothesis and theoretical framework combined with quasi-experimental 

methods, or the collection of observed prices and attributes, it is possible to recover an 

estimate of a consumer’s marginal willingness to pay for individual attributes included in 

the hedonic price function.  

 Although not the first to use the hedonic price model, Rosen (1974) first 

standardized the use of the hedonic price model to determine a consumer’s marginal 

willingness to pay for the attributes of a property. Rosen’s model provides the traditional 

theory used in hedonic price models, and the associated assumptions for these models. 

Houses are not a homogeneous product; they are in fact a group of attributes, or a bundle 

of attributes. Within the housing market there are a wide variety of combinations of these 

bundles of attributes, therefore the market for houses is a differentiated product market 

(Parmeter and Pope 2012). The hedonic price model assumes competitive equilibrium; in 

which consumers and producers interact to each maximize their wellbeing within the 

differentiated product market.  

 There are four essential assumptions in the traditional hedonic price model. First, 

buyers and sellers are assumed to have comprehensive information about both prices and 

quantities. Second, the market is assumed to be competitive. Third, buyers and sellers are 
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price-takers, ensuring that neither borrowers nor sellers can influence market prices 

(Parmeter and Pope 2012). Fourth, the market is assumed to be “sufficiently large,” that 

there are enough combinations of different attribute bundles (houses), which makes the 

consumer’s choice seem to be a choice from a continuously varying set of attributes 

(Rosen 1974). Additionally, if the consumer chooses from a continuously varying set of 

attributes, or their choice is one of a bundle of attributes, it is impossible for a seller to 

unbundle these attributes and sell in different markets. Therefore the bundle of attributes 

that comprise a house are always sold in the differentiated product market, the housing 

market (Parmeter and Pope 2012). 

 Consumers and producers are both utility and profit maximizers; by examining 

the optimal conditions for both consumers and producers it is possible to identify a 

market equilibrium, or the hedonic price function. Parmeter and Pope (2012) summarize 

both the consumer and producer sides of the hedonic price function as outlined by Rosen 

(1974). Consumers base their purchasing decisions on a price function – ܲ(ݖ), where z is 

a vector of housing attributes ܲ(ݖ) = …,ଵݖ)ܲ ,  ௡). The consumer bases their purchasingݖ

decisions on the price function and tries to maximize their utility. Assuming that the 

consumer only purchases one good or bundle of attributes and that the consumer has a 

concave utility function; ܷ(ݔ,  where x is a composite of all other commodities and z ,(ݖ

is the vector of housing attributes. In addition, the consumer has a budget ݕ = ݔ +  ,(ݖ)ܲ
where y represents the consumers income. The first order conditions derived from the 

consumers utility maximization problem, show that the slope of the hedonic price 

function, or the price of one attribute, is equal to the marginal rate of substitution between 

one attribute and all other consumption, holding all other attributes fixed: 

 

௭ܲ(ݖ) = ௭ܷ ܷ௫ൗ .          (1) 

 

 The consumer makes a “bid” for a property in the housing market. Rosen (1974) 

describes the maximum bid with a bid function, ݖ)ߛ, ,ݑ  The bid function holds utility .(ݕ

and income fixed, and represents a family of indifference curves. These indifference 

curves show the consumer’s levels of indifference between an attribute and all other 
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consumption. In essence the bid function represents the consumer side of the hedonic 

price function: ܲ(ݖ) = ,ݖ)ߛ ,ݑ  Substituting the consumer’s bid function for the	.(ݕ

hedonic price function in their utility maximization problem results in the first order 

conditions, which show that the consumer’s bid for an attribute is equal to the marginal 

rate of substitution between one attribute and all other consumption. Thus for a consumer 

to have higher utility the bid must be lower leaving more income for all other 

consumption:  

,ݖ)௭ߛ  ,ݑ (ݕ = ௭ܷ ܷ௫⁄ .          (2) 

 

 Next, assume that producers are profit maximizing. Producers have the cost 

function ܯ)ܥ, ;ݖ  in which M is the quantity of houses and v are the production ,(ݒ

parameters varying across producers. The cost function is assumed to be convex and have 

a positive marginal cost for M and z. The producer’s profit maximization problem leads 

to first order conditions, which show that the marginal revenue of more of an attribute is 

equal to the marginal cost of production for that additional attribute, and that the marginal 

cost of selling an additional unit is equal to the price: 

ܯ  ௭ܲ(ݖ) = ,ܯ)௭ܥ (ݖ)ܲ (3)          (ݖ = ,ܯ)ெܥ  (4)          .(ݖ

 

Analogous to the consumer’s bid function, producers have an offer curve, 

representing the different combinations of attributes they are willing to offer for a certain 

price. This offer curve is represented by the function ߱(ݖ;  Substituting the offer curve .(ߨ

into the cost function reveals first order conditions (5) and (6) that demonstrate that the 

marginal offer price holding profit constant is equal to the marginal cost of production. 

Also, the marginal offer price holding attribute levels constant is constant. Therefore, 

holding attributes and cost constant, in order to increase profit the producer must offer a 

higher price:  
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௭߱ܯ = ,ܯ)௭ܥ గ߱ (5)          (ݖ = 1 ൗܯ .           (6) 

 

Combining the producer’s profit maximization problem and the consumer’s utility 

maximization problem leads to a set of equilibrium prices, known as the hedonic price 

function. These equilibrium prices occur at the points of tangency between the bid and 

offer curves. The first order conditions of the consumer’s utility function show that the 

consumer’s optimal bid is tangent to the hedonic price function, which leads to the 

conclusion that the hedonic price function represents an upper envelope of the 

consumer’s bids in equilibrium. Similarly, the producer’s profit maximization problem 

first order conditions demonstrate that the producer’s optimal offer is tangent to the 

hedonic price function, and therefore the hedonic price function also represents the lower 

envelope of the producers offers. The points of tangency between the optimal bids and 

offers define the hedonic price function. Figure 4.1 illustrates the hedonic price function 

and points of tangency in the bid and offer curves. From the hedonic price function it is 

possible to determine the marginal willingness to pay for an attribute, since the marginal 

price of an attribute is equal to the marginal willingness to pay for the attribute.  

Based on the theoretical framework outlined by Rosen (1974) and aptly restated 

by Parmeter and Pope (2012), it is possible to recover the marginal willingness to pay for 

an attribute by defining an equation with price of a house as a function of many housing 

attributes, as well as the environmental or quality attribute under examination. Quasi-

experiments and the hedonic method have been used together to estimate the marginal 

willingness to pay for a wide variety of environmental externalities, such as the impact of 

wind farms by Heintzelman and Tuttle (2012).  
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Figure 4.1 Hedonic Market Equilibrium (Recreated from Parmeter and Pope (2012)) 
 
 
 
The hedonic price function can be linear or nonlinear. The specification of 

functional form of the price function is essential in estimating accurate marginal 

willingness to pay. There are a variety of common functional forms used in estimating 

marginal willingness to pay. Heintzelman and Tuttle (2012) employ a log-linear 

specification for their estimates. Other studies employ a log-linear or linear Box-Cox 

regression based on the findings of Cropper, Deck and McConnell (1988). Little literature 

exists on which functional form is best when employing hedonic price functions. There 

are many functional forms commonly used within hedonic price analysis. Taylor (2003) 

outlines several of these functional forms, including linear, log-linear, double-log, 

quadratic, and quadratic Box-Cox. Most of these common forms include non-linearities, 

and including non-linearities in the function is considered to be important because price 

is most likely not impacted at a constant rate by all characteristics (Taylor 2003). Of the 

common forms, the log-linear functional form is one of the most common, and was 
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recently used by Heintzelman and Tuttle (2012). According to Cropper, Deck and 

McConnell (1988) the semi-log form is one of the options that performs best under some 

types of misspecification. Additionally, Gopalakrishnan and Klaiber (2014) employ both 

a semi-log functional form and a Box-Cox form and find qualitatively the same results 

between the two. I employ the log-linear functional form, similar to that used by 

Heintzelman and Tuttle (2012) for my hedonic price function: 

 ln ௜ܲ௝ = ௝ߙ + ௜௝ݖߚ + ௜௝ݔߜ +  ௜௝.         (7)ߝ

 

 In the hedonic price equation outlined in (7), ߙ௝ represents the spatial fixed effects 

(county), ݖ௜௝ are the treatment variables, ݔ௜௝ are the set of explanatory or attribute 

variables, and ߝ௜௝ is the error term. In my analysis ݖ௜௝ are the variables measuring the 

impact of underground natural gas storage, either the proximity variables or the intensity 

variables.  I include spatial fixed effects in order to control for omitted variables bias. 

Omitted variables bias occurs when explanatory variables that are unobserved by the 

researcher and are correlated with observed variables are left out of the regression. They 

are instead accounted for in the error term. The error term should account for random 

variation in the data, but omitted variables captured by the error term introduce bias into 

the estimates (Parmeter and Pope 2012). Fixed effects include dummy variables for 

specified divisions of geographic regions, such as counties, which can account for 

unobserved variables that occur within the geographic region specified (Heintzelman and 

Tuttle 2012).  

 The coefficient estimates on the treatment variables provides the marginal 

willingness to pay for housing attributes. However, interpretation of the coefficients in a 

log-linear specification is required. In a log-linear specification the percentage change in 

price is equal to 100β. Therefore when examining proximity treatment attributes a 

coefficient of -β implies a 100β percent decrease in property values for a one unit 

increase in distance (meters or kilometers) to the proximity variable. Conversely a 

coefficient of β implies a 100β percent increase in property values for a one unit increase 

in distance. Additionally one can use marginal effects to evaluate the average impact of 
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the treatment on housing values over larger changes in the treatment, for instance a one 

kilometer change versus a one meter change. 
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CHAPTER 5. DATA 

5.1 Overview 

Hedonic pricing analysis requires the use of property transaction data within a 

certain geographic region that defines the market under analysis. In addition to 

transaction data, it is necessary to have a set of attributes describing each transacted 

property, and a set of treatment variables. Attribute variables describe the property in 

detail, which allows for the differentiation of the impact of treatment variables from the 

value of standard details of a property. Treatment variables are used as a measure of the 

impact on the value of a home within the market. In this case the treatment variables 

consist of distance to one of seven types of natural gas or oil wells, distance to and 

indicator variables for the presence of underground natural gas or oil fields, and measures 

for the intensity of well activity. 

My final data set consists of a sample of 1,512 single-family residential properties 

in 16 counties across the state of Indiana, from 2004 to 2013. The counties included in 

the analysis are Cass, Clark, Daviess, Decatur, Fulton, Greene, Harrison, Huntington, 

Knox, Lawrence, Monroe, Pike, Posey, Pulaski, Randolph, Spencer, Vermillion, and 

White counties. Each observation constitutes an arms-length property sale. In addition, 

529 of the 1,512 observations are repeat sales, or parcels that transacted more than once 

within the study period. The following sections describe the process of collecting and 

cleaning undertaken resulting in this final data set. 

Econometric identification has been a large portion of discussion in most recent 

work on valuing the externalities associated with hydraulic fracturing in general. 

Gopalakrishnan and Klaiber (2014) especially work through this issue in their recent 

work on hydraulic fracturing. Previous studies have focused on Washington County, 

Pennsylvania, which is located in the southwestern region of the state. Although this is 
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the region where hydraulic fracturing activities are concentrated, this region also has coal 

and oil extraction activities. In addition, as demonstrated in Figure 3.4, southwestern 

Pennsylvania also has concentrations of underground natural gas storage activities. 

Together these other activities pose difficulties for identifying and quantifying the value 

of externalities associated with a single activity, when there are so many similar activities 

located within the same region. The advantage of looking at Indiana within this study is 

that the underground natural gas storage activities are relatively isolated from other 

natural resource related activities. Indiana does have the potential for unconventional 

natural gas extraction activities; however, to date those activities have been relatively 

limited. Thus focusing on Indiana potentially minimizes the difficulties posed in 

econometric identification of the externalities related to underground natural gas storage 

specifically. 

 
 
 

5.2 Well Data 

The Indiana Geological Survey’s Petroleum Database Management System 

provided a list of all wells in the state of Indiana, including natural gas storage wells, 

observation wells, oil extraction wells, and natural gas extraction wells. This data 

includes details about each well found within the State, including construction 

completion dates, representing the date when the well is ready for production, which can 

be used to determine the age of the well. Most importantly, the data provides a 

classification for each well and the corresponding latitude and longitude coordinates. 

Table 5.1 provides a breakdown of the wells by county, contained within the list of wells 

provided by the Petroleum Database Management System. 
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Table 5.1 Housing Sales, Underground Natural Gas Storage and Extraction Wells by 
County 

 
 
 
 
In addition, the Indiana Department of Natural Resources maintains a list of 

active and inactive wells associated with natural gas storage. This data source includes 

the classification of each well as either a natural gas storage well or an observation well. 

Additionally this well data includes the latitudinal and longitudinal coordinates for each 

well, the name of the underground storage field where they are located, and the 

completion date for the well.  

From the latitudinal and longitudinal coordinates provided by the Petroleum 

Database Management System and the Indiana Department of Natural Resources, I 

pinpoint the exact location of each well using ArcGIS Desktop 10.1 software. I create a 

graphical representation for each type of well on a map of Indiana, visually representing 

County
Housing 

Sales
Gas Storage Observation

Abandoned 
Gas Storage

Abandoned 
Observation

Gas Extraction
Gas and Oil 
Extraction

Oil Extraction

Cass 90 33 32 15 1 0 0 0

Clark 276 14 5 0 0 0 0 0

Daviess 111 7 0 3 0 29 1 163

Decatur 34 34 0 27 0 509 0 0

Greene 89 163 59 20 7 19 9 117

Harrison 10 44 7 6 2 207 0 0

Huntington 245 3 0 0 0 0 0 18

Lawrence 55 49 20 0 0 0 0 0

Monroe 214 61 19 0 2 1 0 3

Pike 238 49 7 13 4 12 3 660

Posey 22 60 1 0 0 12 1 1136

Pulaski 1 4 6 7 1 0 0 3

Randolph 24 15 1 28 6 32 0 5

Spencer 45 45 1 3 1 27 2 447

Vermillion 17 1 0 10 7 2 0 0

White 41 38 21 8 13 0 0 0

Total 1512 620 179 140 44 850 16 2552
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the location of the wells spread across the state. In addition, I overlay the USA Counties 

Layer Package from Esri Data & Maps on the map of wells in order to determine which 

counties within the state have active underground natural gas storage wells and 

observation wells located within their boundaries. Twenty-three counties throughout the 

state have natural gas storage related wells within their boundaries; these counties 

represent the geographical region to be studied in this analysis.  

 
 
 

5.3 Housing Transaction Data 

Every county within the state of Indiana is required to collect a sales disclosure 

form for each housing transaction that occurs within that county. These sales disclosures 

are submitted to the Department of Local Government and Finance, which maintains a 

database for the entire state. Using this database I collect detailed sales information for 

every housing transaction occurring within the counties of interest for the years from 

2008 through 2012. The Department of Local Government and Finance’s Sales 

Disclosure database only allows for the searching of one county at a time, requiring that 

the dataset of sales disclosures be collected by county and later combined into a single 

database.   

Using the Sales Disclosure’s online database I compile a dataset of 55,688 sales 

observations within 22 counties in the state of Indiana. The search provides transactions 

occurring primarily between 2004 through 2012, however it also includes outlying 

transactions from 2002 to 2008 and 2012 to 2013.  One county from the original list of 

counties did not have data within the selected time period on the Sales Disclosure 

Database. The data collected from the Department of Local Government and Finance 

contains the parcel number associated with each sale; the sale date; sale price; detailed 

information about the buyer and seller; and important notes about each individual sale. 

However, the data does not include any attribute data, or descriptive data about the house 

or utilities. 

In addition to the Sales Disclosure Database provided by the State of Indiana, 

many counties maintain their own databases of sales disclosures and property 
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information. Using these individual resources I compile a second set of housing 

transactions for each county. Benton, Dubois, Greene, Knox, Pike, Posey, Pulaski, 

Randolph, Spencer, Sullivan, and Vermillion counties use WTH GIS’s ThinkGIS to 

provide Geographic Information Service (GIS) mapping services for their counties, 

including a sales search tool. Cass, Clark, Harrison, Lawrence, and Monroe counties use 

Enterprise GIS by 39 Degrees North, LLC to provide GIS mapping services for their 

counties, including a sales search tool. The Tippecanoe County Assessor’s webpage 

provides a parcel search tool, which can compile a dataset of sales within the county. 

White County has a database for parcel information, including sales information, on their 

Assessor’s website. Daviess, Decatur, Fulton, and Huntington counties do not have a 

county database to search for sales information. Using these independent county 

resources I assembled a dataset of 59,770 sales observations within 17 counties in the 

state of Indiana. Since the data from the Department of Local Government and Finance 

has data for more counties than the data collected from individual sources and combining 

the two sources would result in primarily repeated observations, I only use the dataset 

compiled from the Department of Local Government and Finance. 

In order to reduce the sample size and create a dataset of arms-length residential 

sales I clean the data from both data sources and each county. I remove all observations 

that are not classified as single-family residential homes (property codes 510 through 

515). In addition, I remove all $0 and $1 sales from the dataset. These sales are more 

likely to represent family or business transactions rather than a market sale, or an arms-

length sale. Every sale is associated with a parcel number; however, since the dataset 

contains repeat sales it is necessary to assign a unique identification number to each sale. 

Neither the Department of Local Government and Finance or the individual 

county’s search tools provide housing attribute data with the transaction data. Attribute 

data of this kind is equally as important as the sales information and the treatment effect 

data. In order to determine how to acquire the attribute data I contacted each county 

included in the study. Unfortunately the counties do not collect housing attribute data in a 

single dataset. However, the county assessor’s offices do maintain property records for 

every parcel within their county. These property records are used primarily to determine 
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the assessed value of each property for tax purposes. For the purposes of this study, all of 

the attribute data for each parcel is collected by the county assessor’s office. In addition 

these county offices maintain free online databases, either on their own website or on 

their GIS website. Using these individual sources it is possible to collect the information 

for each parcel included in both sets of transaction data. 

 
 
 

5.4 Geocoding of Housing Transactions 

After collecting the preliminary transaction the next step is to confirm their 

location using GIS software. Determining the location of each property allows for the 

creation of treatment variables that require information on distances to petroleum wells 

and fields. The property transactions provided by the Department of Local Government 

and Finance includes a street address for each property. Some of the observations had 

errors in the street addresses; all of these observations are removed from the dataset. 

In order to convert a street address into a location on a GIS map I use the 10.0 

North America Geocode Service provided in ArcGIS Desktop 10.1. This service converts 

street addresses housed in excel files into X and Y coordinates on the map. Once all of 

the housing transactions are geocoded, I add the new housing transaction shape file to the 

map containing Indiana counties, petroleum wells and petroleum fields. This new map 

provides a visual representation of the housing transactions in comparison to the location 

of natural gas storage wells and fields. 

 
 
 

5.5 Buffer Zones 

Unfortunately, given the size of the transaction data, 55,688 transactions from the 

Department of Local Government and Finance, it is an unreasonably large task to 

manually compile the attribute data for the purposes of this analysis. According to prior 

literature the range of impact of natural gas activity on nearby homes is limited. 

Muehlenbachs, Spiller and Timmins (2012) specify a buffer range for the impact of 

hydraulic fracturing activities of 2,000 meters. Boxall, Chan and McMillan (2005) define 
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a four-kilometer range around each property to determine their treatment variables, based 

on evidence from energy experts that four kilometers is the maximum range of impact 

extending from oil and gas facilities. Additionally, Gopalakrishnan and Klaiber (2014) 

find that the impacts of hydraulic fracturing activities on home values become 

insignificant at a range greater than one mile. Therefore, in order to reduce the size of the 

dataset and include only the most relevant housing transactions for the study, I decide to 

find a buffer range around the underground natural gas storage wells and the underground 

formations where the natural gas is stored. Based on the evidence gathered from 

comparing housing transactions at a variety of buffer ranges, as well as evidence from 

previous literature I can focus on a suitable range around the treatment area. 

The Indiana Geological Survey compiles, in addition to the extensive well data, a 

set of data on the location, size and type of underground fields across the state of Indiana 

that produce oil and natural gas. This data is available for observation in a Map Service 

through ArcGIS online. The metadata from the Map Service, titled Petroleum Fields, 

describes the layer, “Comparing digital lines from IGS Misc Map 58 (MM58) with ¼ 

mile buffers of productive petroleum wells. New petroleum field outlines were then 

manually digitized on screen using the shape information from MM58 and the buffer 

extents. In some cases, the IGS Petroleum Exploration Map (PEM) series was consulted 

to verify spatial and attribute data. Petroleum well information was queried from the 

Indiana Geological Survey Petroleum Database Management System.” I overlay the well 

location map on the Petroleum Fields map in order to identify and determine the location 

of each underground natural gas or oil formation used to store natural gas.  

After determining which of the many underground formations in Indiana are used 

to store natural gas, I use ArcGIS Desktop 10.1 to build a map containing all of the 

underground storage fields, all of the different types of petroleum wells, and all of the 

housing transactions. The first step in building this map is to add a county map of Indiana 

to the Map Service created by the Indiana Geological Survey of the petroleum fields in 

the state. ArcGIS Online provides access to a wide variety of maps, including a county 

map for the entire United States using data from Esri, TomTom, the Department of 

Commerce, the Census Bureau, the U.S. Department of Agriculture, the National 
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Agricultural Statistics Survey, and the United States Central Intelligence Agency. I limit 

the size of this map to include only counties within the state of Indiana. In order to create 

the buffer zones around the underground storage fields I need to be able to access the data 

in the Petroleum Fields map, unfortunately the Map Service does not allow any editing to 

the layer. Users of ArcGIS often share maps that they have created or edited using their 

online servers, however in order to preserve the data included in their maps, creators have 

the option to prevent any editing while still sharing their map. This makes it necessary to 

use the drawing tools provided in ArcGIS Desktop 10.1 to recreate the boundaries of the 

petroleum fields being used for natural gas storage. In essence I create my own layer of 

petroleum fields, which allows me to create a buffer around any field or group of natural 

gas storage wells. In addition I use the limited petroleum field map to calculate any 

intersections of housing transactions and petroleum fields, and the distance from an 

individual property to a petroleum field. 

I then add the layer of petroleum and other types of wells previously created. This 

layer includes the well data provided by both the Petroleum Database Management 

System and the Indiana Department of Natural Resources. Within this layer, it is possible 

to select certain wells based on their classification. I use the Buffer tool in ArcGIS 10.1 to 

create buffers around groupings of active natural gas storage wells and observation wells, 

and petroleum fields used for natural gas storage. The groupings of wells I define as all 

wells within 0.5 miles of another well, in order to remove any outliers from the buffer 

range. I did not create buffers for groups of natural gas storage wells that intersected a 

petroleum field, since these two buffers would simply intersect. In addition, I did not 

create a buffer around the two largest petroleum fields, the Trenton Field and the Laconia 

Consol. NAS, which are both so large that they cover several counties worth of land. If 

included when creating buffers, those buffers would not accurately limit the housing data 

to those homes close to natural gas storage. Instead I use the groupings of natural gas 

storage wells within those two fields in their place. Using these selected attributes I create 

a map layer for each of several possible ranges, five miles, four miles, three miles, two 

miles, 1.5 miles, and one mile.  
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5.6 Data Cleaning 

Once the housing transactions and the buffer zones are mapped, I am able to 

compare the number of housing transactions contained within each separate buffer zone. 

At the five mile distance the dataset of housing transactions contains 12,458 observations, 

at the four mile distance the dataset consists of 8,917 observations, at three miles there 

are 6,042 observation, at two miles there are 2,798 observations, at 1.5 miles there are 

2,007 observations, and at the one mile distance the dataset contains 1,179 sales. Prior 

literature on natural gas extraction has found little impact beyond a maximum of 4 

kilometers (approximately 2.5 miles), and the size of the dataset at two miles is both large 

enough for the study and small enough to allow for the collection of attribute data. 

Therefore, I use the set of housing sales located within the two mile buffer zone, giving 

me a starting dataset consisting of 2,798 observations. 

Before starting to collect the attribute data I clean the data of any addresses that 

are not geocoded to an exact postal address. The geocoding service will pinpoint an 

address to the most precise location possible, however some of the addresses included in 

the dataset can only be located to the city, zip code, or street level, I remove all of these 

observations from the dataset. In addition I remove any observations classified as Tied or 

Unmatched. An unmatched observation is an observation that the geocoding service 

cannot pinpoint a location for, and a tied observation is an observation that the geocoding 

service found two separate locations that match the address provided.   

 
 
 

5.7 Attribute Data 

In order to conduct a hedonic pricing analysis it is essential to have a set of 

variables describing as many attributes of a house as possible. This includes, in particular, 

the size of the house, the size of the property, the number of bedrooms, number of 

bathrooms, number of garages, public utilities, year the house was constructed, and a 

quality measure for the home. All of this data is available to the public on the property 

report cards created and updated by the Assessors Office of each county. However, the 

property cards vary drastically in format and information between each county. I 
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therefore attempt to create a consistent format for housing each piece of information 

contained in the different report cards, allowing me to leave any missing information 

blank while gathering as much data as possible for each individual property. All data that 

can be described as a number is described as such in the final dataset, also any variable 

that can be described as a binary variable is described as such in the final dataset. Some 

of the variables, such as construction year or the condition rating of the home, I originally 

enter in the format used in the property record cards, which I later convert to the 

appropriate number or binary format. 

I collect the attribute data for Cass, Clark, Harrison, and Monroe counties from 

their 39 Degrees North GIS mapping services. Daviess county data comes from their 

Property Tax Assessment page provided by xsoftin.com. Decatur county attribute data 

comes from their Beacon GIS mapping service. Dubois county data comes from the 

Dubois County Assessor’s webpage. Fulton, Knox, Pike, Posey, Pulaski, Randolph, 

Spencer, and Vermillion counties data comes from their ThinkGIS mapping service. 

Sullivan County also uses ThinkGIS’s mapping service, however all of the property cards 

for the properties included in my dataset were blank, thus I removed Sullivan County 

from the dataset, resulting in the removal of 44 observations from the dataset. Tippecanoe 

county data comes from their Tippecanoe County Parcel and Sales Data Search page; 

however the data was very incomplete resulting in the removal of all Tippecanoe County 

observations from the dataset, resulting in the removal of 33 observations from the 

dataset. Lastly, White county data comes from their County Assessor’s webpage. 

As each county’s data is collected by different people and maintained by different 

county governments there is significant variation in what data is available for the housing 

transactions within each county. Recent hedonic pricing analyses on natural gas 

extraction using hydraulic fracturing have found significant impacts on housing values 

when the home does not have access to public water; therefore the variable for public 

water is of particular importance for this analysis. When a house has access to public 

water it does not necessarily mean that the home uses the public water, but simply having 

the ability to connect with a source of public water mitigates any risk associated with 

groundwater contamination. One county, Dubois County, is completely lacking in public 
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utility attribute information on their property cards. I contact the county assessor’s office 

in order to determine if the lack of information indicates a lack of public utilities in the 

home or if it is in fact a deficit in the information. I determine that this county does not 

use that section of the property report card, and thus I remove all Dubois county 

transactions from the analysis due to the incompleteness of the data. This results in the 

removal of 169 observations from the dataset. Additionally, any properties with missing 

property report cards, properties with differences in property codes between the original 

transaction data and the property report card, any properties without homes or with 

mobile homes are also removed from the dataset. All observations missing data on key 

variables were removed, these key variables include access to public water, number of 

bedrooms, number of bathrooms, finished square feet, size of the lot, number of stories, 

number of fireplaces, number of full and half bathrooms, age of the home, building 

quality indicators, number of garages, and number of pools. This resulted in the removal 

of 265 observations from the dataset. 

In addition to the attribute data included in the property report cards I also collect 

data on the distance to the nearest street, census tracts, demographic variables, school 

districts, distance to the nearest public school, and whether the property is located in an 

urban area. All of this data I collect using ArcGIS Online resources and the tools 

provided in ArcGIS Desktop 10.1. Using the detailed primary and secondary streets data 

from the North America Detailed Streets Layer Package I calculate the distance from 

each housing transaction to the nearest secondary street in the North America Detailed 

Streets Layer Package. Secondary streets include primary limited-access roads or 

interstates, primary US and state highways, and secondary state and county highways.  

I also determine the census block for each housing transaction, using the USA 

Census Tract Boundaries layer file. In addition to providing the Census Block for each 

housing transaction the USA Census Tract Boundaries file also contains some 

demographic data. I add further demographic variables by matching census blocks to 

their corresponding data from the 2010 Census Demographic Profile 1 and the 2010 

Census Population & Housing Unit Counts. From this data I add variables for the percent 

of high school graduates, the percent of the population holding a bachelor’s degree, the 
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percent of the population with a graduate or a professional degree, the percent of 

unemployed, the median household income, mean household income, the “percentage of 

families and people whose income in the past 12 months is below the poverty level,” the 

median age, the percent at age 65 or over, the percent white, and the percent black. Table 

5.2 contains summary statistics for the demographic variables in the final dataset. 

In addition, I determine the school district for each housing transaction using the 

School Districts layer from the DOE U.S. Schools layer package, represented as a binary 

variable for each school district in the dataset. The DOE U.S. Schools layer package also 

contains data on all public schools in 2008 in the Public Schools in 2008 layer, which I 

use to calculate the distance from each housing transaction to the nearest public school in 

meters.  

Another important variable that I add is a binary variable representing whether a 

housing transaction is located within an urban area. Using ArcDesktop 10.1 and the USA 

Urban Areas layer package available on ArcGIS Online I determine which housing 

transactions intersect one of the urban areas. The layer package contains boundaries for 

the Census 2010 Urbanized Areas and Urban Clusters. An Urbanized Area “consists of 

contiguous, densely settled census block groups (BGs) and census blocks that meet 

minimum population density requirements (1000ppsm/500ppsm), along with the adjacent 

densely settled census blocks that together encompass a population of at least 50,000 

people.” An Urban Cluster “consists of contiguous, densely settled census BGs and 

census blocks that together encompass a population of at least 2,500 people, but fewer 

than 50,000 people.” Table 5.3 describes the final set of housing attributes, including a 

binary variable for homes intersecting an urban area and the distance to the nearest street. 

Table 5.3 includes some descriptive statistics worthy of slight explanation. The 

minimum sales price is $10. As mentioned previously all $0 and $1 sales were removed 

from the data set, in order to ensure arms-length sales. The cut-off point for the definition 

of an arms-length sale is ambiguous, thus the decision to includes sales as low as $10 is a 

judgment call. Within this study I err on the side of caution and include these sales. That 

being said the data set only includes 122 sales of less than $10,000, and preliminary 

regression results excluding these sales are negligibly different from those reported 
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throughout this thesis. In addition, the minimum value for lot size is zero. This variable 

data comes from the sales disclosures, and is reported by the seller. Some of these lots are 

very small, thus the acreage is rounded to zero. Data about legal acreage or lot size 

collected from the property report cards for each property is missing in many 

observations, and many of these are also reported as zero. Preliminary regression results 

using alternative measures of lot size, although a much smaller data set, are negligibly 

different than the results reported here. Finished living area also has a minimum value of 

zero. This is possible because some of the properties included in this data set are very 

small and poor quality homes. Additionally this variable measures the amount of area that 

is finished, not total unfinished area. It is possible for a home to be livable, yet have no 

finished square feet. 

Figure 5.1 is a graphical representation of the distribution of sales price across the 

data set. The majority of sales are less than $100,000. Each of the different types of data 

collected are visually represented in Appendix A. These figures include representations 

of the counties included within the analysis, the school districts within the analysis, the 

primary and secondary streets throughout Indiana, and combinations of counties and 

different types of petroleum wells. There are also figures for each of the buffer zones and 

housing sales within the different counties of analysis, which include all of the different 

types of petroleum related wells, streets and urban areas. 
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Table 5.2 Summary Statistics for Census Block Demographic Variables 

 

Variable n Mean Std Dev Min Max

Percent high school graduate 1512 39.92 0.21 9 54.00

Percent bachelors degree graduate 1512 10.45 0.14 4.10 28.30

Percent graduate or professional 
degree graduate

1512 7.45 0.15 0.40 39.60

Percent unemployed 1512 8.08 0.09 2.10 14.10

Median household income ($) 1512 49365.80 262.46 25750 71336

Mean household income ($) 1512 59316.72 287.82 41416 83740

Percent living below poverty level 1512 7.48 0.13 1.90 25.60

Median age (years) 1512 40.85 0.09 26.70 47.70

Percent 65 years and over 1512 15.35 0.09 10 22.90

Percent white 1512 97.26 0.11 80.40 100

Percent black 1512 1.74 0.07 0 12.10
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Table 5.3 Summary Statistics for Hedonic Attributes 

 
 
 

Variable n Mean Std Dev Min Max

Sale Price ($) 1512 94559.90 2192.91 10 625000

Lot size (acres) 1512 1.01 2.96 0 75.42

Height of home (number of stories) 1512 1.22 0.39 1 3

Finished living area (sq Ft) 1512 1664.52 798.91 0 9478

Fireplaces 1512 0.43 0.74 0 4

Bedrooms 1512 2.77 0.80 0 9

Full bathrooms 1512 1.47 0.65 0 5

Half bathrooms 1512 0.23 0.43 0 2

Age of home (years) 1512 56.97 1.05 0 194

Age
2 1512 4898.20 5336.26 0 37636

Distance to nearest major road 
(meters)

1512 819.77 1195.64 0.13 8480.89

Excellent grade building quality 
indicator

1512 0.08 0.27 0 1

Good grade building quality indicator 1512 0.40 0.49 0 1

Average grade building quality 
indicator

1512 0.51 0.50 0 1

Poor grade building quality indicator 1512 0.02 0.13 0 1

Urbanized area indicator 1512 0.29 0.45 0 1

Garages 1512 0.85 0.55 0 3

Pools 1512 0.05 0.21 0 1

Public water indicator 1512 0.68 0.47 0 1
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Figure 5.1 Frequency of Sales Price Histogram and Distribution 
 
 
 

5.8 Repeat Sales 

The Department of Local Government and Finance search results include all 

property transactions that occurred in the time period selected for the search. 

Unfortunately, the search tool on the website returned some observations that are actually 

exact repeats of the same transaction. These transactions would create inaccuracy in the 

results of the analysis; therefore they were removed from the final dataset, resulting in a 

removal of 252 observations. All remaining repeat sales are identified in the dataset with 

a dummy variable. Additionally some of the legitimate transactions occurred on the same 

day, these observations are identified with another dummy variable specific to same day 

sales of the same parcel. Within the final dataset 529 of the 1,512 housing transactions 

are repeat transactions. Table 5.4 contains summary statistics for the hedonic attributes in 

the limited repeat sales data. 
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Table 5.4 Summary Statistics for Repeat Sales Hedonic Variables 

 

Variable n Mean Std Dev Min Max

Sale Price ($) 529 75136.34 74053.08 10 425000

Lot size (acres) 529 0.67 1.25 0 8.84

Height of home (number of stories) 529 1.25 0.40 1 2.50

Finished living area (sq Ft) 529 1657.62 789.33 148 6348

Fireplaces 529 0.43 0.80 0 4

Bedrooms 529 2.79 0.73 0 6

Full bathrooms 529 1.46 0.65 0 4

Half bathrooms 529 0.17 0.38 0 1

Age of home (years) 529 62.87 41.47 0 141

Age
2 529 5669.18 5362.01 0 19881

Distance to nearest major road 
(meters)

529 779.80 1029.94 0.18 6811.51

Excellent grade building quality 
indicator

529 0.05 0.23 0 1

Good grade building quality indicator 529 0.32 0.47 0 1

Average grade building quality 
indicator

529 0.61 0.49 0 1

Poor grade building quality indicator 529 0.01 0.11 0 1

Urbanized area indicator 529 0.38 0.48 0 1

Garages 529 0.79 0.53 0 2

Pools 529 0.05 0.22 0 1

Public water indicator 529 0.72 0.45 0 1
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5.9 Treatment Variables 

In order to identify any impact of underground natural gas storage on property 

values, it is necessary to create some treatment variables. Proximity is commonly used as 

a measure of impact because the data to determine distance is often readily available. 

Guignet (2013) suggests that distance may not be the most accurate measure of impact; 

however this literature accepts that the data for other measures may not be available. In 

order to provide this analysis with the widest range for measures of impact I include both 

proximity variables and a measure representing the intensity of natural gas storage 

activities for each property. 

ArcDesktop 10.1 provides a variety of tools for measuring the distance from one 

feature on a map to another. In the case of this analysis I use the Near tool to measure the 

distance from each property to the nearest well of each type, this includes natural gas 

storage wells, observation wells, abandoned natural gas storage wells, abandoned 

observation wells, natural gas extraction wells, extraction wells that produce both natural 

gas, and oil extraction wells. Additionally I use the Near tool to calculate the distance 

from each property to the nearest petroleum field in order to provide a measure for the 

impact of being located near an underground formation containing natural gas or oil. All 

those properties intersecting, or located above a petroleum field, are identified with a 

dummy variable. Table 5.5 provides summary statistics for the proximity treatment 

variables used in this analysis. In addition Table 5.6 provides summary statistics for the 

proximity treatment variables used in the limited repeat sales data. Figure 5.2 is a 

graphical representation of the distribution of distance to the nearest gas storage well 

across the dataset. In addition Figure 5.3 provides a graphical representation of distance 

to the nearest gas storage well by the sale price of the home. 
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Table 5.5 Summary Statistics for Underground Natural Gas and Extraction Well 
Proximity Variables 

 

Variable n Mean Std Dev Min Max

Natural gas storage field indicator 1512 0.11 0.32 0 1.00

Distance to nearest natural gas or oil 
field (meters)

1512 9016.73 9930.79 0 33899.07

Distance to nearest natural gas 
storage well (meters)

1512 2454.12 1642.99 45.70 14478.08

Distance to nearest observation well 
(meters)

1512 17349.66 30476.98 20.80 86008.57

Distance to nearest abandoned 
natural gas storage well (meters)

1512 34506.38 30663.68 27.48 87241.88

Distance to nearest abandoned 
observation well (meters)

1512 32605.90 29543.88 87.90 89982.54

Distance to nearest natural gas 
extraction well (meters)

1512 17962.23 16042.42 46.58 71598.61

Distance to nearest natural gas and oil 
extraction well (meters)

1512 55099.26 40000.87 2797.28 142298.10

Distance to nearest oil extraction well 
(meters)

1512 23086.81 26380.49 79.21 87356.56
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Table 5.6 Summary Statistics for Repeat Sales Underground Natural Gas Storage and 
Extraction Well Proximity Variables 

 
 
 
 

Variable n Mean Std Dev Min Max

Natural gas storage field indicator 529 0.11 0.31 0 1

Distance to nearest natural gas or oil 
field (meters)

529 9750.22 9496.57 0 33899.07

Distance to nearest natural gas 
storage well (meters)

529 2297.86 1574.07 95.52 13853.58

Distance to nearest observation well 
(meters)

529 22623.03 34059.79 58.34 83621.99

Distance to nearest abandoned 
natural gas storage well (meters)

529 39161.19 32577.04 144.08 86277.90

Distance to nearest abandoned 
observation well (meters)

529 36178.74 31716.53 95.73 85944.72

Distance to nearest natural gas 
extraction well (meters)

529 19517.15 15930.06 217.46 71167.29

Distance to nearest natural gas and oil 
extraction well (meters)

529 56069.51 38548.86 2937.71 139460.60

Distance to nearest oil extraction well 
(meters)

529 22162.39 23618.93 334.76 80562.41
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Figure 5.2 Frequency of Gas Storage Well Distance Histogram and Distribution 
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Figure 5.3 Gas Storage Well Distance by Sales Price 
 
 
 

Another way to measure impact is by creating a measure for the intensity of well 

activity for each property. I use a combination of variables in order to represent the 
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combined, all abandoned natural gas storage related wells, and all of the preceding types 
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each well. Using the collapse command in STATA 13 I distill these tables into three 

variables, a count of each type of well for each property, the average distance from a type 

of well to each property and the minimum distance from a well to each property. In 

addition I use STATA 13 to create a binary variable specifying which properties have 

higher intensity. In order to determine the threshold of wells that indicates greater 

intensity, I create histograms of the well count variables. Based on these histograms I 

determine the threshold for each type of well. This threshold is 20 wells or greater for the 

combined count of all wells, 20 wells for the count of all underground natural gas storage 

related wells, five wells for the count of all types of extraction wells combined, 15 wells 

for natural gas storage injection/withdrawal wells and two wells for all abandoned 

underground natural gas storage related wells combined. This binary variable can be used 

as a term to interact with the count variables and create an intensity measure that 

accounts for number of wells and distance combined. Table 5.7 contains summary 

statistics for all of these measures of well intensity. 

This thesis focuses on underground natural gas storage, however, several of the 

proximity and intensity variables calculated are actually distance and intensity of 

extraction wells. Although these variables are not directly related to underground natural 

gas storage, examining their impacts on property values within the context of 

underground natural gas storage may provide further insight into the impacts of natural 

gas storage in comparison to natural gas extraction. In addition, these variables provide 

additional information about the geographic regions in which the property transactions 

included in the dataset are located. A comparison of different types of underground 

natural gas storage activities as well as extraction activities within the context of 

underground natural gas storage may provide valuable insight into the impacts of 

underground natural gas storage in particular. 
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Table 5.7 Summary Statistics for Underground Natural Gas Storage and Extraction Well 
Intensity Measures 

 
 

 

Variable n Mean Std Dev Min Max

All Wells Intensity Measure (Count 
of all wells within 2 miles)

1512 20.65344 22.61718 0 222

Storage Intensity Measure (Count of 
all Gas Storage and Observation wells 
within 2 miles)

1512 15.39947 20.06295 0 78

Gas Storage Wells Only Intensity 
Measure (Count of all Gas Storage 
wells within 2 miles)

1512 11.62235 15.64204 0 60

Observation Wells Intensity Measure 
(Count of all Observation wells within 
2 miles)

1512 3.777116 5.248799 0 20

Abandoned Gas Storage Intensity 
Measure (Count of all Abandoned 
Gas Storage wells within 2 miles)

1512 1.171958 3.200067 0 25

Extraction Wells Only Intensity 
Measure (Count of all Extraction wells 
within 2 miles)

1512 3.684524 12.55886 0 222

All Wells Threshold Binary Variable 
(Indicator for homes with 20 or more 
wells within 2 miles)

1512 0.297619 0.4573623 0 1

Storage Wells Threshold Binary 
Variable (Indicator for homes with 20 
or more wells within 2 miles)

1512 0.2222222 0.4158773 0 1

Gas Storage Wells Threshold Binary 
Variable (Indicator for homes with 15 
or more wells within 2 miles)

1512 0.1792328 0.383674 0 1

ExtractionWells Threshold Binary 
Variable (Indicator for homes with 2 or 
more wells within 2 miles)

1512 0.1646825 0.3710165 0 1
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CHAPTER 6. RESULTS 

6.1 Overview 

 Throughout this analysis I use the log-linear model specification, ln ௜ܲ௝ = ௝ߙ ௜௝ݖߚ+ + ௜௝ݔߜ +  ௜௝. In addition, I include different combinations of spatial and temporalߝ

fixed effects to account for unobservable factors that may be correlated with the variables 

in the model. The temporal fixed effects are a set of year dummy variables, with 2008 as 

the base year for comparison. The spatial fixed effects include a set of county dummy 

variables with White County as the base region of analysis, and a set of school district 

dummy variables to specify smaller spatial regions. In models using school district fixed 

effects I use the Metropolitan School District of Mount Vernon in Posey County and 

South Spencer County School Corporation in Spencer County as the base regions of 

analysis. 

 I use dummy variables for school districts instead of an indicator for each specific 

school because my data spans 16 counties across the state of Indiana. Within these 16 

counties, my data intersects 23 school districts. Although this method may not capture the 

impacts on housing values due to differing qualities of schools within a particular district, 

it would not be possible to include an indicator for each school, since there are over 100 

public schools within those 23 school districts. Inclusion of so many indicators would 

lead to a loss in degrees of freedom, which may lead to multicollinearity issues. Further, 

it is common in applied hedonic models to control at the school district level. 

 I estimate a variety of log-linear regressions, and within each different model 

specification I use a variety of treatment variables to explore the impact of underground 

natural gas storage on housing values. Although not all combinations of fixed effects 

results are reported in the tables found within this chapter they can be found in Appendix 

C. First I use a set of proximity variables, measured in meters, to each different type of 
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petroleum well, and to petroleum fields. This set of proximity variables includes distance 

to the nearest petroleum field, distance to the nearest natural gas storage wells, distance to 

the nearest observation well, distance to the nearest natural gas extraction well, distance 

to the nearest oil and gas extraction well, and distance to the nearest oil extraction well. 

Each of these different treatment variables allows me to explore the differences in impact 

each of these wells has on property values, and allows me to thoroughly explore the 

impact of underground natural gas storage under different conditions. Using variables 

related to natural gas and oil extraction in addition to variables directly related to 

underground natural gas storage provides me with an opportunity to compare the impacts 

of petroleum extraction activities within the context of underground natural gas storage 

with the direct impacts of underground natural gas storage activities. Second I have a 

binary variable indicating if a home is located over a petroleum field, which allows me to 

differentiate homes on top of a field from homes located near the field.  

 Another set of treatment variables used in this analysis is a measure of intensity 

through the count of wells within two-miles of each home. These intensity measures 

allow me to examine the impact that the concentration of petroleum related activity has 

on homes, in particular the impact that the concentration of underground natural gas 

storage related activities has on nearby property values. The set of intensity treatment 

variables includes the number of any type of wells located within two-miles of a home, 

the number of storage related wells located within two-miles of a home, the count of 

underground natural gas storage wells, the count of observation wells, the count of 

abandoned natural gas storage wells, and the count of all types of extraction wells 

combined. I use a count of wells to measure intensity of storage related activities because 

a home with a larger number of wells nearby should see a greater intensity of 

underground natural gas storage activity as compared to a home with only one or two 

wells nearby. In addition to the simple count intensity measures, I use binary variables to 

indicate which homes have a count of wells beyond a specified threshold. These 

threshold binary variables allow me to explore the impact that greater intensity of 

underground natural gas storage activities has on nearby property values. 
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 I also interact the proximity variables with several characteristic indicators in 

order to examine the specific impact that underground natural gas storage has on homes 

with different characteristics. I explore the interaction between proximity and a binary 

variable for homes with access to public water, the interaction between proximity and the 

binary variable indicating whether or not the home is within an urban area, and the 

interaction between the lot size of a home and proximity. Previous studies have found 

that homes with access to public water see a less significant impact of shale activity on 

property values (Muehlenbachs, Spiller and Timmins 2012). Additionally, Parsons (1990) 

argues that the size of a parcel’s lot can have an impact on the magnitude of impact due 

to attributes related to location. Each of these models provide unique insight into the 

impact of underground natural gas storage, as well as other petroleum related activities, 

on property values, as well as ensuring that the primary results are robust. 

 
 
 

6.2 Hedonic Attribute Results 

 In order to provide an initial benchmark set of results, I run a variety of 

regressions using only the basic hedonic attributes. Table 6.1 presents the initial 

estimation results of these regressions. Model 1 shows the results without the inclusion of 

any fixed effects, while Models 2 through 6 show the results of regressions including 

combinations of county level and year fixed effects. Models 7 and 8 include a set of 

census block group demographic variables, with and without county level and year fixed 

effects. These regression results indicate that the hedonic attributes have the expected 

impacts on housing values. 

 As expected, homeowners prefer larger properties and larger homes of higher 

quality with more amenities. Estimation results from Model 4, which includes both year 

and county level dummies, indicate that for an increase in one acre in lot size property 

values see a 3.84 percent increase in value. Model 6, which includes school district level 

and year fixed effects, results indicate that a one acre increase in acreage results in a 3.76 

percent increase in property values. Additionally, for a one square foot increase in 

finished living area property values see a 0.02 percent increase in value. The number of 
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bedrooms and bathrooms are insignificant in Model 4, however this is common when a 

variable for the square footage of the house is included in the hedonic price function, 

because the square footage accounts for much of the impact due to larger number of 

bedrooms and bathrooms. I would expect that a home with more square feet would also 

have more bedrooms and bathrooms, therefore the individual impact of bedrooms and 

bathrooms becomes insignificant when accounting for square footage as well.  

The number of fireplaces is positive and significant also, representing a 9.96 

percent increase in value for an additional fireplace. Variables like fireplaces and garages 

commonly are a bundling effect in hedonic regressions such as these. An addition of a 

single fireplace often represents more than just the fireplace and therefore captures these 

impacts as a bundle. A home with a fireplace commonly has additional attributes that a 

homebuyer considers attractive, the same effect occurs with garages. Thus the large 

positive and significant impact of both fireplaces and garages may be capturing the 

impacts of other bundled characteristics of a home. 

 Age is negative and significant: for each additional year of age property values 

decrease by 0.98 percent. The model also shows that age is nonlinear, because the 

squared age variable is significant at the 10 percent level. When the age of a home is at 

the mean value, 56.97 years, a home sees a decrease in value of 0.51 percent. The turning 

point at which a home sees an increase in value due to an additional year can be 

calculated as ݔ = ଵߜ| ⁄ଶߜ2 |, in which ߜଵ is the coefficient on Age and ߜଶ is the coefficient 

on Age2. In Model 4, this turning point is 119.5 years, and in Model 6 the turning point is 

104.8 years. This indicates that in general as a home ages it loses value, however once it 

reaches a certain age home buyers begin to value some historical or age related amenity 

of the home. 

 Following Halvorsen and Palmquist’s (1980) interpretation of the impact of 

dummy variable coefficients, I can determine the impact of the dummy variables 

representing different quality grading for homes. Halvorsen and Palmquist determined 

that the percentage effect of a dummy variable on price in a log-linear model can be 

calculated by 100൫݁ఋభ − 1൯, where ߜଵ is the coefficient on the dummy variable. In Model 

4 a home with excellent grade building quality sees a 537.7 percent increase over a poor 
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grade home. A good grade home sees a 458.84 percent increase, and an average grade 

home sees a 215.69 percent increase. The magnitude of these coefficients is very large, 

however when looked at within the context of the average price of homes within each 

group of building quality indicators the magnitude is reasonable. Homes within the poor 

building quality group, the base group, have an average sale price of $18,120.59. In 

comparison, the average grade building quality group has an average sale price of 

$48,166.06, the good building quality group has an average price of $126,574, and the 

excellent grade group has an average sale price of $254,227. Given the enormous 

difference in average sale price between poor quality homes and excellent quality homes, 

a 537.7 percent increase in value for an excellent home compared to a poor quality home 

is reasonable. 

 The primary difference between the county level fixed effects model and the 

school district level fixed effects model is the significance of the full bathrooms variable. 

This variable is insignificant in the county level fixed effects model; however it becomes 

significant at the five percent level when school district fixed effects are employed. The 

hedonic attribute estimation results remain consistent throughout the different models 

employed, including those models where census block demographic variables are 

included, and are generally consistent in sign and magnitude with prior expectations. 
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Table 6.1 Hedonic Attribute Estimation Results 

 
 

Variable (1) (2) (3) (4)

Lot size (acres) 0.0423** 0.0387** 0.0416** 0.0384**

0.0094 0.0093 0.0094 0.0094

Height of home (number of stories) -0.1322 -0.1248 -0.1300 -0.1262

0.0827 0.0826 0.0830 0.0829

Finished living area (sq Ft) 0.0002** 0.0002* 0.0002** 0.0002**

0.0001 0.0001 0.0001 0.0001

Fireplaces 0.0858* 0.1023** 0.0825** 0.0996**

0.0408 0.0408 0.0410 0.0410

Bedrooms -0.0031 -0.0050 -0.0012 -0.0034

0.0385 0.0382 0.0387 0.0384

Full bathrooms 0.1038 0.0934 0.1080* 0.0975

0.0640 0.0634 0.0643 0.0637

Half bathrooms 0.0318 -0.0065 0.0247 -0.0120

0.0713 0.0707 0.0717 0.0712

Age of home (years) -0.0122** -0.0098** -0.0121** -0.0098**

0.0031 0.0031 0.0031 0.0032

Age
2 0.000038* 0.000041* 0.000038* 0.000041*

0.000022 0.000021 0.000022 0.000022

Distance to nearest major road (meters) 0.000066** 0.000008 0.000066** 0.000008

0.000024 0.000032 0.000024 0.000032

Excellent grade building quality indicator 2.0235** 1.8454** 2.0315** 1.8527**

0.2558 0.2558 0.2567 0.2568

Good grade building quality indicator 1.8122** 1.7107** 1.8208** 1.7207**

0.2215 0.2208 0.2225 0.2219

Average grade building quality indicator 1.2655** 1.1425** 1.2736** 1.1496**

0.2147 0.2127 0.2157 0.2136

Poor grade building quality indicator - - - -

- - - -

Urbanized area indicator 0.1467** -0.2041 0.1387** -0.2019

0.0662 0.1278 0.0668 0.1282

Garages 0.2300** 0.2358** 0.2334** 0.2372**

0.0521 0.0514 0.0524 0.0517

Pools 0.1551 0.1039 0.1670 0.1129

0.1284 0.1272 0.1295 0.1284

Public water indicator -0.0907 0.0362 -0.0864 0.0392

0.0596 0.0811 0.0599 0.0816

Constant 9.2143** 9.5379** 9.1671** 9.5347**

0.2618 0.3187 0.2782 0.3298

County Dummies? No Yes No Yes

School District Dummies? No No No No

Year Dummies? No No Yes Yes

Sample Size 1512 1512 1512 1512

R
2

0.4038 0.4372 0.4061 0.4393

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level 
denoted with an asterisk (*).



 

 

80

Table 6.1, continued 

 

 

Variable (5) (6) (7) (8)

Lot size (acres) 0.0379** 0.0376** 0.0376** 0.0381**

0.0093 0.0094 0.0094 0.0094

Height of home (number of stories) -0.1195 -0.1206 -0.1325 -0.1234

0.0826 0.0829 0.0823 0.0829

Finished living area (sq Ft) 0.0002** 0.0002** 0.0002** 0.0002**

0.0001 0.0001 0.0001 0.0001

Fireplaces 0.1023** 0.0993** 0.0904** 0.0999**

0.0409 0.0411 0.0407 0.0412

Bedrooms -0.0008 0.0015 -0.0078 -0.0038

0.0384 0.0385 0.0382 0.0386

Full bathrooms 0.1013 0.1049* 0.0988 0.1070*

0.0633 0.0635 0.0633 0.0638

Half bathrooms -0.0218 -0.0298 0.0378 -0.0141

0.0709 0.0715 0.0705 0.0714

Age of home (years) -0.0128** -0.0130** -0.0094** -0.0113**

0.0033 0.0034 0.0032 0.0033

Age
2 0.000061** 0.000062** 0.0000 0.0001**

0.000022 0.000023 0.0000 0.0000

Distance to nearest major road (meters) 0.000004 0.000003 0.0000 0.0000

0.000033 0.000033 0.0000 0.0000

Excellent grade building quality indicator 1.8951** 1.9105** 1.9040** 1.8847**

0.2566 0.2577 0.2545 0.2584

Good grade building quality indicator 1.7055** 1.7213** 1.6728** 1.7328**

0.2206 0.2217 0.2198 0.2226

Average grade building quality indicator 1.1065** 1.1177** 1.1448** 1.1601**

0.2125 0.2134 0.2131 0.2145

Poor grade building quality indicator - - - -

- - - -

Urbanized area indicator -0.2113* -0.2106 0.0441 -0.2990**

0.1278 0.1282 0.1061 0.1512

Garages 0.2344** 0.2353** 0.2342** 0.2351**

0.0515 0.0517 0.0517 0.0518

Pools 0.0872 0.0955 0.1286 0.1264

0.1277 0.1288 0.1273 0.1289

Public water indicator -0.0272 -0.0269 -0.0646 0.0033

0.0819 0.0823 0.0682 0.0843

Constant 9.3242** 9.3057** 9.6964** 12.0710**

0.2985 0.3116 0.7309 1.2471

County Dummies? No No No Yes

School District Dummies? Yes Yes No No

Year Dummies? No Yes No Yes

Demographic Variables? No No Yes Yes

Sample Size 1512 1512 1512 1512

R
2 0.4407 0.4431 0.4222 0.4436

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level 
denoted with an asterisk (*).
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6.3 Proximity Treatment Variable Results 

After determining that the hedonic attributes of the dataset have the expected signs 

and significance I add the simple proximity variables to the regressions. Table 6.2 

contains the results of the proximity treatment variable estimation results. Models 1 

through 9 do not include any fixed effects, while Models 10 through 18 include both 

county level and year fixed effects. Additionally, results for models that include different 

combinations of fixed effects, including school district effects can be found in Appendix 

C. The results of the models in Appendix C with year fixed effects only are similar to 

those within Models 1 through 9 of Table 6.2 and the results of the models with spatial 

fixed effects only are similar to the results of Models 10 through 18. 

 In the model specifications using proximity variables without fixed effects, 

distance to the nearest gas or oil field, distance to the nearest natural gas storage well, 

distance to the nearest observation well, distance to the nearest abandoned natural gas 

storage wells, distance to the nearest gas or oil extraction well, and distance to the nearest 

oil extraction well are all significant at the 10 percent level. The results in Model 2 

indicate that a one kilometer increase in distance to the nearest natural gas or oil field 

results in a 1.7 percent increase in property value. Model 3 indicates that a one kilometer 

increase in distance to the nearest natural gas storage well results in a five percent 

decrease in value, and Model 4 indicates that a one kilometer increase in distance to the 

nearest observation well results in a 0.3 percent decrease in property value. Results from 

Models 8 and 9 indicate that a one kilometer increase in distance to the nearest oil or gas 

well, or the nearest oil well results in a 0.3 to 0.5 percent increase in property value. 

 The proximity treatment variables in the models without any fixed effects indicate 

that homes see a decrease in property values due to an increase in distance to 

underground natural gas storage wells. This result is contrary to my hypothesis; however 

it is possible that some of the impact captured by the treatment variable is in fact due to 

spatial differences in homes. When I add the county level fixed effects to the model the 

coefficients on distance to the nearest natural gas or oil field, distance to the nearest 

natural gas storage well, and distance to the nearest observation well become 

insignificant. The county level fixed effects model indicates that there are some 



 

 

82

differences in home values captured by the fixed effects that bias the estimates of the 

regression results when the fixed effects are not included. In addition, when county level 

fixed effects are added distance to the nearest gas extraction well becomes significant 

while distance to the nearest natural gas or oil field becomes insignificant. The sign on 

the proximity variables for gas extraction wells, and gas and oil wells also have a 

negative sign rather than the positive sign in the models without fixed effects. These 

basic linear functional form results indicate that the impact on housing values due to 

underground natural gas storage activity may be insignificant. However, a more complex 

functional form, including quadratic and cubic terms may be more enlightening if there 

are significant nonlinearities that have been neglected in the simple model. In addition, 

the changes in significance due to the addition of fixed effects could imply that there is 

some interaction between petroleum related activities and homes in urban areas. 
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Table 6.2 Proximity Variable Estimation Results 

 

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9)

-0.0961 - - - - - - - -

0.0903 - - - - - - - -

- 0.017** - - - - - - -

- 0.0041 - - - - - - -

- - -0.05** - - - - - -

- - 0.017 - - - - - -

- - - -0.0031** - - - - -

- - - 0.0012 - - - - -

- - - - 0.0035** - - - -

- - - - 0.0013 - - - -

- - - - - 0.0028* - - -

- - - - - 0.0015 - - -

- - - - - - 0.002 - -

- - - - - - 0.0018 - -

- - - - - - - 0.0027** -

- - - - - - - 0.00076 -

- - - - - - - - 0.0053**

- - - - - - - - 0.0015

Hedonic Attributes? Yes Yes Yes Yes Yes Yes Yes Yes Yes

County Dummies? No No No No No No No No No

Year Dummies? No No No No No No No No No

Sample Size 1512 1512 1512 1512 1512 1512 1512 1512 1512

R
2

0.4043 0.4103 0.4072 0.4067 0.4068 0.4052 0.4043 0.4087 0.4092

Distance to nearest natural gas 
extraction well (kilometers)

Distance to nearest natural gas and oil 
extraction well (kilometers)

Distance to nearest oil extraction well 
(kilometers)

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic regression results
are nearly identical to those reported in Table 6.1.

Natural gas storage field indicator

Distance to nearest natural gas or oil 
field (kilometers)

Distance to nearest natural gas storage 
well (kilometers)

Distance to nearest observation well 
(kilometers)

Distance to nearest abandoned natural 
gas storage well (kilometers)

Distance to nearest abandoned 
observation well (kilometers)
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Table 6.2, continued 

 

Variable (10) (11) (12) (13) (14) (15) (16) (17) (18)

-0.067 - - - - - - - -

0.120 - - - - - - - -

- -0.02 - - - - - - -

- 0.019 - - - - - - -

- - -0.00071 - - - - - -

- - 0.026 - - - - - -

- - - 0.0034 - - - - -

- - - 0.024 - - - - -

- - - - -0.014 - - - -

- - - - 0.018 - - - -

- - - - - 0.016 - - -

- - - - - 0.010 - - -

- - - - - - -0.032** - -

- - - - - - 0.017 - -

- - - - - - - -0.034** -

- - - - - - - 0.013 -

- - - - - - - - -0.024

- - - - - - - - 0.016

Hedonic Attributes? Yes Yes Yes Yes Yes Yes Yes Yes Yes

County Dummies? Yes Yes Yes Yes Yes Yes Yes Yes Yes

Year Dummies? Yes Yes Yes Yes Yes Yes Yes Yes Yes

Sample Size 1512 1512 1512 1512 1512 1512 1512 1512 1512

R
2

0.4395 0.4398 0.4393 0.4393 0.4396 0.4403 0.4407 0.4421 0.4401

Distance to nearest natural gas extraction 
well (kilometers)

Distance to nearest natural gas and oil 
extraction well (kilometers)

Distance to nearest oil extraction well 
(kilometers)

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic regression 
results are nearly identical to those reported in Table 6.1.

Natural gas storage field indicator

Distance to nearest natural gas or oil field 
(kilometers)

Distance to nearest natural gas storage well 
(kilometers)

Distance to nearest observation well 
(kilometers)

Distance to nearest abandoned natural gas 
storage well (kilometers)

Distance to nearest abandoned observation 
well (kilometers)
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6.4 Proximity Treatment Variable and Water Interaction Results 

 Previous literature analyzing the impact of shale gas extraction on nearby 

property values has found little impact due to proximity variables alone, however when 

an interaction with water source is added results indicate that homes without access to 

public water do see a significant negative impact on property values (Muehlenbachs, 

Spiller and Timmins 2012). Underground natural gas storage, and natural gas and oil 

extraction activities present risks for groundwater contamination, which are greater for 

homeowners relying on well water instead of a public water source. I hypothesize that 

although the impact on property values due to proximity of underground natural gas 

storage appears to be insignificant in the simple linear models, it is possible that adding 

an interaction term to the regressions will show an impact with statistical significance for 

homes without access to public water. 

 Models 1 through 9 in Table 6.3 show the estimation results from the proximity 

treatment variable and public water indicator regressions without spatial or temporal 

fixed effects. The only water interaction term that is significant is the water interaction 

term with distance to the nearest observation well. For the interaction term with water, 

when a home has access to public water (ݖ = 1), the percent impact on property values 

can be calculated as %∆݌ = ଵߚ)100 + ݌ଷ) for the simple equation lnߚ = ܿ + ݔଵߚ ݖଶߚ+ +  where x is the proximity treatment variable and z is the binary variable for ,ݖݔଷߚ

access to public water. The coefficient on the interaction term between public water and 

proximity to an observation well indicates that when a home has access to public water, a 

one kilometer increase in distance to the nearest observation well results in a 0.06 percent 

decrease in value. Additionally, in the regressions without fixed effects, distance to the 

nearest natural gas field is significant and positive, representing a one percent increase in 

value for a one kilometer increase in distance to the nearest oil or gas field. The variable 

for proximity to an abandoned observation well is positive and significant, as is distance 

to the nearest oil extraction well. 

 Given that adding spatial and temporal fixed effects to the original proximity 

regressions identified an impact due to geographic region that was captured within the 

proximity estimates, it is equally reasonable that these effects are present in the water 
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interaction models. Models 10 through 18 in Table 6.3 include county and year fixed 

effects as well as proximity variables and water interaction terms. When the fixed effects 

are added to the regression, distance to the nearest natural gas or oil field becomes 

insignificant as does distance to the nearest oil extraction well. The significance of the 

water interaction term with proximity to the nearest observation well decreases in 

significance from the five percent level to the 10 percent level and the magnitude 

decreases, however the coefficient does remain negative. Distance to the nearest gas 

extraction well and distance to the nearest gas and oil extraction well become positive at 

the 10 percent level, and each results in an approximate 3.4 percent decrease in value for 

a one kilometer increase in distance to the nearest extraction well.  

 The changes in significance seen in the water interaction and proximity results 

mirror the changes in significance seen in the basic proximity treatment variable 

regressions when temporal and spatial fixed effects are added. This indicates that the 

underground natural gas storage well proximity variables catch some impact due to 

variations in location rather than actual impact due to the proximity of storage. These 

results also indicate that the impact of underground natural gas storage activities on 

nearby homes is very limited, even when accounting for differences in water sources. 
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Table 6.3 Proximity Variable and Public Water Access Interaction Estimation Results 

 

Variable (1) (2) (3) (4) (5) (6)

-0.0597 - - - - -
0.1608 - - - - -
-0.0524 - - - - -
0.1912 - - - - -

- 0.014** - - - -
- 0.0052 - - - -
- 0.0051 - - - -
- 0.0059 - - - -
- - -0.045 - - -
- - 0.03 - - -
- - -0.0066 - - -
- - 0.036 - - -
- - - 0.00066 - -
- - - 0.0017 - -
- - - -0.0069** - -
- - - 0.0022 - -
- - - - 0.0028 -
- - - - 0.0018 -
- - - - 0.0011 -
- - - - 0.0021 -
- - - - - 0.004**
- - - - - 0.0019
- - - - - -0.0022
- - - - - 0.0022

Hedonic Attributes? Yes Yes Yes Yes Yes Yes

County Dummies? No No No No No No

Year Dummies? No No No No No No

Sample Size 1512 1512 1512 1512 1512 1512

R
2

0.4043 0.4031 0.4072 0.4107 0.4069 0.4057

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic regression 
results are nearly identical to those reported in Table 6.1.

Distance to nearest observation well (kilometers)

Distance to nearest observation well (kilometers) X 
Public Water
Distance to nearest abandoned natural gas storage well 
(kilometers)
Distance to nearest abandoned natural gas storage well 
(kilometers) X Public water
Distance to nearest abandoned observation well 
(kilometers)
Distance to nearest abandoned observation well 
(kilometers) X Public Water

Distance to nearest natural gas storage well (kilometers) 
X Public Water

Natural gas storage field indicator

Natural gas storage field indicator X Public Water

Distance to nearest natural gas or oil field (kilometers)

Distance to nearest natural gas or oil field (kilometers) X 
Public Water
Distance to nearest natural gas storage well (kilometers)
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Table 6.3, continued 

 

Variable (7) (8) (9) (10) (11) (12)

- - - 0.1604 - -
- - - 0.2363 - -
- - - -0.2670 - -
- - - 0.2396 - -
- - - - -0.023 -
- - - - 0.020 -
- - - - 0.0055 -
- - - - 0.0070 -
- - - - - -0.028
- - - - - 0.034
- - - - - 0.051
- - - - - 0.041

-0.00019 - - - - -
0.0034 - - - - -
0.003 - - - - -
0.0039 - - - - -

- 0.0014 - - - -
- 0.0013 - - - -
- 0.0018 - - - -
- 0.0015 - - - -
- - 0.0042** - - -
- - 0.0018 - - -
- - 0.0024 - - -
- - 0.0023 - - -

Hedonic Attributes? Yes Yes Yes Yes Yes Yes

County Dummies? No No No Yes Yes Yes

Year Dummies? No No No Yes Yes Yes

Sample Size 1512 1512 1512 1512 1512 1512

R
2

0.4045 0.4093 0.4096 0.4399 0.44 0.4399

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic regression 
results are nearly identical to those reported in Table 6.1.

Distance to nearest natural gas extraction well 
(kilometers)
Distance to nearest natural gas extraction well 
(kilometers) X Public Water
Distance to nearest natural gas and oil extraction well 
(kilometers)
Distance to nearest natural gas and oil extraction well 
(kilometers) X Public Water
Distance to nearest oil extraction well (kilometers)

Distance to nearest oil extraction well (kilometers) X 
Public Water

Distance to nearest natural gas storage well (kilometers) 
X Public Water

Natural gas storage field indicator

Natural gas storage field indicator X Public Water

Distance to nearest natural gas or oil field (kilometers)

Distance to nearest natural gas or oil field (kilometers) X 
Public Water
Distance to nearest natural gas storage well (kilometers)
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Table 6.3, continued 

 

Variable (13) (14) (15) (16) (17) (18)

0.0012 - - - - -
0.0244 - - - - -

-0.0044* - - - - -
0.0024 - - - - -

- -0.014 - - - -
- 0.018 - - - -
- -0.00037 - - - -
- 0.0026 - - - -
- - 0.016 - - -
- - 0.011 - - -
- - -0.00064 - - -
- - 0.0026 - - -
- - - -0.034** - -
- - - 0.017 - -
- - - 0.0050 - -
- - - 0.0048 - -
- - - - -0.033** -
- - - - 0.013 -
- - - - 0.0017 -
- - - - 0.0018 -
- - - - - -0.023
- - - - - 0.016
- - - - - 0.0017
- - - - - 0.0026

Hedonic Attributes? Yes Yes Yes Yes Yes Yes
County Dummies? Yes Yes Yes Yes Yes Yes
Year Dummies? Yes Yes Yes Yes Yes Yes
Sample Size 1512 1512 1512 1512 1512 1512

R
2 0.4407 0.4396 0.4403 0.4411 0.4424 0.4403

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic regression 
results are nearly identical to those reported in Table 6.1.

Distance to nearest natural gas extraction well 
(kilometers)
Distance to nearest natural gas extraction well 
(kilometers) X Public Water
Distance to nearest natural gas and oil extraction well 
(kilometers)
Distance to nearest natural gas and oil extraction well 
(kilometers) X Public Water
Distance to nearest oil extraction well (kilometers)

Distance to nearest oil extraction well (kilometers) X 
Public Water

Distance to nearest abandoned observation well 
(kilometers) X Public Water

Distance to nearest observation well (kilometers)

Distance to nearest observation well (kilometers) X 
Public Water
Distance to nearest abandoned natural gas storage well 
(kilometers)
Distance to nearest abandoned natural gas storage well 
(kilometers) X Public water
Distance to nearest abandoned observation well 
(kilometers)
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6.5 Quadratic Functional Form Specification Results 

 In order to capture potential nonlinear impacts from underground natural gas 

storage activities on housing values, I run regressions similar to the basic proximity 

treatment variable regressions, this time including squared proximity terms. This squared 

proximity term allows the impact of the type of petroleum activity in question to be 

nonlinear. I run regressions with and without fixed effects. Table 6.4 includes estimation 

results for the regressions without any fixed effects and for those including both county 

and year fixed effects. The estimation results from regressions with only spatial fixed 

effects can be found in Appendix C. 

 Models 1 through 8 do not include any type of fixed effects. These results show 

significance for a nonlinear functional form for distance to the nearest observation well, 

distance to the nearest abandoned natural gas storage well, distance to the nearest 

abandoned observation well, and distance to the nearest gas and oil extraction well. The 

percentage impact on housing values from an additional meter of distance from any of the 

proximity treatment variables can be calculated as 100(ߚଵ +  ଵ is theߚ in which ,(ݖଶߚ2

coefficient of the linear proximity term, ߚଶ is the coefficient on the quadratic proximity 

term and z is the proximity term. When the functional form is nonlinear the impact on 

housing values is dependent on the distance itself. At a distance of 1,000 meters or one 

kilometer from the nearest observation well, there is a decrease in value of 4.45 percent 

for an additional kilometer of distance. At the mean distance, 17,349.66 meters, the 

impact is a decrease in value of 2.72 percent per additional kilometer of distance. This 

demonstrates that the negative impact is decreasing as distance increases. A negative 

impact for an increase in distance is contrary to the hypothesis that underground natural 

gas storage activities have a negative impact on property values. However, these model 

results do not contain any fixed effects, which have in previous regressions captured 

some spatial impacts on housing values. 

 When county level and year fixed effects are included the estimation results 

change dramatically. Proximity to the nearest observation well, abandoned natural gas 

storage well, abandoned observation well, and distance to the nearest gas and oil 

extraction well all become insignificant. This change indicates that some spatial impact 
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on home values was being captured in the initial estimation results. Both the linear and 

quadratic proximity terms become significant in the fixed effect estimation results. At a 

distance of one kilometer the impact of an additional kilometer of distance increases 

property values by 9.2 percent. At the mean distance, 2,454.12 meters, the impact of an 

additional kilometer of distance is 5.13 percent. These results indicate that the impact of 

underground natural gas storage wells is nonlinear and decreasing as distance increases, 

which would be expected logically since as distance increases an additional kilometer of 

distance becomes less important. Additionally, both terms are jointly significant at a 

distance of one kilometer, with a joint variance of 1.78x10-9 and a joint standard 

deviation of 4.22x10-5, therefore the quadratic term is significant at the five percent level. 

However the terms become insignificant at the mean distance.  Joint significance of the 

linear and quadratic terms indicates that the impact of underground natural gas storage 

wells is quadratic and significant, at a distance of one kilometer from a home, but the 

impact is no longer significant at a distance of 2.45 kilometers or greater. 
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Table 6.4 Quadratic Functional Form Specification Estimation Results 

s 

Variable (1) (2) (3) (4) (5) (6)

0.0138 - - - - -
0.0153 - - - - -

0.0000996 - - - - -
0.000501 - - - - -

- 0.0577 - - - -
- 0.0351 - - - -
- -0.0145** - - - -
- 0.00418 - - - -
- - -0.0456** - - -
- - 0.0132 - - -
- - 0.000525** - - -
- - 0.000162 - - -
- - - 0.0268** - -
- - - 0.00414 - -
- - - -0.000312** - -
- - - 0.0000527 - -
- - - - 0.0309** -
- - - - 0.00454 -
- - - - -0.000326** -
- - - - 0.0000498 -
- - - - - 0.00992
- - - - - 0.00730
- - - - - -0.000129
- - - - - 0.000115

Hedonic Attributes? Yes Yes Yes Yes Yes Yes

County Dummies? No No No No No No

Year Dummies? No No No No No No

Sample Size 1512 1512 1512 1512 1512 1512

R
2 0.4104 0.412 0.4108 0.4204 0.4219 0.4048

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic 
regression results are nearly identical to those reported in Table 6.1.

Distance to nearest abandoned natural gas 
storage well (kilometers)
Distance to nearest abandoned natural gas 
storage well (kilometers) squared
Distance to nearest abandoned observation well 
(kilometers)
Distance to nearest abandoned observation well 
(kilometers) squared
Distance to nearest natural gas extraction well 
(kilometers)
Distance to nearest natural gas extraction well 
(kilometers) squared

Distance to nearest observation well (kilometers) 
squared

Distance to nearest natural gas or oil field 
(kilometers)
Distance to nearest natural gas or oil field 
(kilometers) squared
Distance to nearest natural gas storage well 
(kilometers)
Distance to nearest natural gas storage well 
(kilometers) squared
Distance to nearest observation well (kilometers)
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Table 6.4, continued 

 

Variable (7) (8) (9) (10) (11) (12)

- - 0.0286 - - -
- - 0.0277 - - -
- - -0.00259** - - -
- - 0.00105 - - -
- - - 0.122** - -
- - - 0.0458 - -
- - - -0.0144** - -
- - - 0.00441 - -
- - - - 0.00534 -
- - - - 0.0306 -
- - - - -0.0000359 -
- - - - 0.000346 -
- - - - - -0.0273
- - - - - 0.0317
- - - - - 0.000174
- - - - - 0.000353

0.0153** - - - - -
0.00346 - - - - -

-0.0000922** - - - - -
0.0000245 - - - - -

- -0.00326 - - - -
- 0.00537 - - - -
- 0.000114* - - - -
- 0.0000688 - - - -

Hedonic Attributes? Yes Yes Yes Yes Yes Yes

County Dummies? No No Yes Yes Yes Yes

Year Dummies? No No Yes Yes Yes Yes

Sample Size 1512 1512 1512 1512 1512 1512

R
2 0.4142 0.4103 0.4421 0.4434 0.4393 0.4397

Distance to nearest observation well (kilometers) 
squared

Distance to nearest natural gas or oil field (kilometers)

Distance to nearest natural gas or oil field (kilometers) 
squared
Distance to nearest natural gas storage well (kilometers)

Distance to nearest natural gas storage well (kilometers) 
squared
Distance to nearest observation well (kilometers)

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic regression 
results are nearly identical to those reported in Table 6.1.

Distance to nearest abandoned natural gas storage well 
(kilometers)
Distance to nearest abandoned natural gas storage well 
(kilometers) squared
Distance to nearest natural gas and oil extraction well 
(kilometers)
Distance to nearest natural gas and oil extraction well 
(kilometers) squared
Distance to nearest oil extraction well (kilometers)

Distance to nearest oil extraction well (kilometers) 
squared
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Table 6.4, continued 

 

Variable (13) (14) (15) (16)

0.0277 - - -

0.0179 - - -

-0.000253 - - -

0.000315 - - -

- -0.0323 - -

- 0.025 - -

- 0.0000126 - -

- 0.000485 - -

- - -0.0249 -

- - 0.0204 -

- - -0.000114 -

- - 0.000194 -

- - - 0.0116

- - - 0.0213

- - - -0.000767**

- - - 0.000298

Hedonic Attributes? Yes Yes Yes Yes

County Dummies? Yes Yes Yes Yes

Year Dummies? Yes Yes Yes Yes

Sample Size 1512 1512 1512 1512

R
2 0.4405 0.4407 0.4422 0.4426

Distance to nearest abandoned observation well 
(kilometers)

Distance to nearest abandoned observation well 
(kilometers) squared

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with 
an asterisk (*). Hedonic regression results are nearly identical to those reported in Table 6.1.

Distance to nearest natural gas extraction well 
(kilometers)

Distance to nearest natural gas extraction well 
(kilometers) squared

Distance to nearest natural gas and oil extraction well 
(kilometers)

Distance to nearest natural gas and oil extraction well 
(kilometers) squared

Distance to nearest oil extraction well (kilometers)

Distance to nearest oil extraction well (kilometers) 
squared
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6.6 Cubic Functional Form Specification Results 

 Given that the spatial and temporal fixed effects have been important in 

controlling for unobservable variables in the proximity treatment variable regressions so 

far, the estimation results presented within this section and all following will only report 

those regressions that included fixed effects when applicable. All estimation results for 

models without fixed effects or those with only spatial or only temporal fixed effects can 

be found in Appendix C. 

 The nonlinear estimation results clearly indicate that there is a significant 

nonlinear impact due to proximity of underground natural gas storage wells. It follows 

that other types of wells could have nonlinear impacts as well; therefore I include a cubic 

proximity term in Models 1 through 8 in Table 6.5. These results indicate that the linear, 

quadratic and cubic proximity variables for observation wells, Model 3, are significant. In 

order to calculate the percentage impact on property values I use the equation: 100(ߚଵ+2ߚଶݖ +  ଵ is theߚ ,ଶ), in which z is the proximity treatment variableݖଷߚ3

coefficient on the linear term, ߚଶ is the coefficient on the quadratic term, and ߚଷ is the 

coefficient on the cubic term. As in the quadratic functional form specification, the 

impact of proximity on home values is dependent on proximity. In the case of the 

proximity to an observation well, at a distance of one kilometer the impact is an increase 

in value of 10.03 percent. The three proximity terms are jointly significant at a distance 

of one kilometer, and at greater distances as well. This indicates that the impact of an 

observation well on home values is cubic and an increase in distance at one kilometer has 

a positive impact on value. Further, the shape of the cubic function implies that the 

relationship between distance and price is not only non-linear, but the marginal impact 

can flatten at larger distances.  

 In addition to observation wells, the linear and nonlinear proximity terms for oil 

extraction wells are significant at the five percent level. At a distance of one kilometer an 

increase in distance to the nearest oil extraction well results in a 6.5 percent increase in 

housing values. At the mean distance to the nearest oil extraction well, 23,086.81 meters 

or 23.09 kilometers, the impact of a one kilometer increase in distance is a decrease of 

10.79 percent in housing value. However, the nonlinear terms are significant at the 10 
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percent level at one kilometer and are insignificant at distances greater 2.5 kilometers 

approximately. This indicates that the impact due to proximity oil extraction wells is 

cubic, but it is insignificant at larger distances.  

These results indicate that homeowners prefer homes at greater distances from oil 

extraction wells, however the impact becomes increasingly less significant the farther 

away a home is from an oil extraction well. Comparatively, the impact due to proximity 

to an observation well is greater in magnitude at a distance of one kilometer than the 

impact of an oil extraction well at one-kilometer distance. In addition, the significance of 

the impact due to proximity to an observation does not become insignificant at greater 

distances, thus homeowners prefer homes located at greater distance from observation 

wells and this impact continues to impact their decisions even at distances greater than 

2.5 kilometers. These results imply that the magnitude of some underground natural gas 

storage activities has a greater impact than do oil extraction activities and that this 

preference continues to have an impact at greater distances than the distance at which 

homeowners no longer consider distance to the nearest oil extraction well. 
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Table 6.5 Cubic Functional Form Specification Estimation Results 

 

Variable (1) (2) (3) (4)

0.0434 - - -
0.0494 - - -

-0.00481 - - -
0.00623 - - -

0.0000512 - - -
0.000141 - - -

- 0.0326 - -
- 0.0913 - -
- 0.00986 - -
- 0.0217 - -
- -0.00136 - -
- 0.00119 - -
- - 0.139** -
- - 0.0457 -
- - -0.0164** -
- - 0.00419 -
- - 0.000129* -
- - 0.0000329 -
- - - 0.0198
- - - 0.0369
- - - -0.00248**
- - - 0.00113
- - - 0.0000259**
- - - 0.0000104

Hedonic Attributes? Yes Yes Yes Yes

County Dummies? Yes Yes Yes Yes

Year Dummies? Yes Yes Yes Yes

Sample Size 1512 1512 1512 1512

R
2 0.4421 0.4439 0.4452 0.442

Distance to nearest natural gas storage well 
(kilometers) cubed

Distance to nearest natural gas or oil field (kilometers)

Distance to nearest natural gas or oil field (kilometers) 
squared
Distance to nearest natural gas or oil field (kilometers) 
cubed
Distance to nearest natural gas storage well 
(kilometers)
Distance to nearest natural gas storage well 
(kilometers) squared

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic regression 
results are nearly identical to those reported in Table 6.1.

Distance to nearest observation well (kilometers)

Distance to nearest observation well (kilometers) 
squared
Distance to nearest observation well (kilometers) cubed

Distance to nearest abandoned natural gas storage well 
(kilometers)
Distance to nearest abandoned natural gas storage well 
(kilometers) squared
Distance to nearest abandoned natural gas storage well 
(kilometers) cubed
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Table 6.5, continued 

 

Variable (5) (6) (7) (8)

0.0434 - - -
0.0309 - - -

-0.000855 - - -
0.00101 - - -

0.00000491 - - -
0.00000786 - - -

- -0.0179 - -
- 0.0408 - -
- -0.000759 - -
- 0.0018 - -
- 0.00000792 - -
- 0.0000177 - -
- - -0.0312 -
- - 0.0296 -
- - 0.0000815 -
- - 0.000697 -
- - -0.00000114 -
- - 0.00000392 -
- - - 0.0747**
- - - 0.0334
- - - -0.00501**
- - - 0.00175
- - - 0.0000343**
- - - 0.000014

Hedonic Attributes? Yes Yes Yes Yes

County Dummies? Yes Yes Yes Yes

Year Dummies? Yes Yes Yes Yes

Sample Size 1512 1512 1512 1512

R
2 0.4407 0.4408 0.4422 0.4449

Distance to nearest natural gas extraction well 
(kilometers) cubed

Distance to nearest abandoned observation well 
(kilometers)
Distance to nearest abandoned observation well 
(kilometers) squared
Distance to nearest abandoned observation well 
(kilometers) cubed
Distance to nearest natural gas extraction well 
(kilometers)
Distance to nearest natural gas extraction well 
(kilometers) squared

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic regression 
results are nearly identical to those reported in Table 6.1.

Distance to nearest natural gas and oil extraction well 
(kilometers)
Distance to nearest natural gas and oil extraction well 
(kilometers) squared
Distance to nearest natural gas and oil extraction well 
(kilometers) cubed
Distance to nearest oil extraction well (kilometers)

Distance to nearest oil extraction well (kilometers) 
squared
Distance to nearest oil extraction well (kilometers) 
cubed
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6.7 Proximity Treatment Variable and Urban Interaction Results 

 In order to determine if homes in urban areas receive a different impact from 

proximity to petroleum related activities, I interact the proximity treatment variables and 

the binary variable for urban areas. The estimation results in Table 6.6 indicate that there 

are statistically significant interaction effects between proximity and urban areas. The 

interaction effect on natural gas storage wells, observation wells, abandoned natural gas 

storage wells, abandoned observation wells, gas and oil extraction wells, and oil 

extraction wells are all significant. A home within an urban area sees a 16.33 percent 

increase in value due to an increase in distance of one kilometer from the nearest natural 

gas storage well. The baseline impact of underground natural gas storage wells is 

negative, but insignificant. 

The impact due to observation well proximity for a home within an urban area is a 

decrease of 1.56 percent per kilometer. As with underground natural gas storage wells, 

the baseline effect of distance to the nearest observation well is negative, but 

insignificant. This indicates that the magnitude of the negative impact of increasing 

distance to the nearest observation well is increased for urban homes. This effect is also 

seen in the coefficients for distance to the nearest abandoned natural gas storage well and 

the urban interaction term. It is possible that the negative effect is caused by the fact that 

most of the urban homes located near petroleum extraction and storage activities are 

located on the edge of the urban area and would see an increase in distance from the 

center of the urban area when distance to the nearest well is increased, which may be the 

cause of the decrease in property value. This effect may not be reflected in underground 

natural gas storage wells because the mean distance to an underground natural gas 

storage well for an urban home is significantly less than the mean distance to an 

observation well for an urban home, as can been seen in Table C.16. 

Both the baseline proximity variable and the interaction effect for distance to the 

nearest abandoned observation well are significant, and indicate that a home within an 

urban area sees an increase in value of 0.4 percent, while homes that are not within an 

urban area see an increase in value of 1.9 percent. However, the baseline effect and the 

interaction term on abandoned observation wells are not jointly significant. This indicates 
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that proximity to the nearest abandoned observation well combined with the impact on 

urban homes specifically does not have an overall impact on housing values. 

  Distance to the nearest natural gas and oil extraction well and the interaction term 

are individually significant at the five percent level, and are jointly significant at the 10 

percent level. The impact on an urban home of an additional kilometer distance from the 

nearest gas and oil extraction well is a decrease in value of 2.37 percent, while a non-

urban home sees a decrease in value of 3.06 percent. The joint significance of these two 

terms indicates that the impact of distance to the nearest gas and oil extraction well 

combined with the impact on urban homes specifically does have an overall impact on 

housing values. The interaction term between oil extraction wells and the urban binary 

variable is significant at the 10 percent level and urban property values see a 1.32 percent 

decrease in value due to an additional kilometer in distance from the nearest oil extraction 

well. As with the negative impact on urban homes due to increasing distance to the 

nearest observation well, the overall decrease in value due to increasing distance to the 

nearest gas and oil, and oil extraction well may be due to a simultaneous increase in 

distance from the center of the urban area. However, the results also indicate that urban 

homes see a decrease in value of lesser magnitude than non-urban homes, which indicates 

that urbanity of a home provides an insulating effect against the negative impact of 

increasing distance to the nearest gas and oil, or oil extraction well.  

When the urban interaction is added to the regressions there are almost no 

baseline effects of statistical significance. However, the urban interaction is significant 

for many of the proximity variables. Overall the results indicate that urban homes are 

insulated from the impacts due to proximity to petroleum related activities, whether the 

baseline impact is positive or negative in sign. The difference in sign of the baseline 

effect for underground natural gas storage wells and observation wells, compared to the 

results of the nonlinear models may be due to the fact that both of these treatment 

variables have significant nonlinear effects, which are not accounted for within these 

interaction models. 
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Table 6.6 Proximity Variable and Urban Term Interaction Estimation Results 

 

Variable (1) (2) (3) (4)

-0.0205 - - -

0.0193 - - -

0.007 - - -

0.0156 - - -

- -0.0257 - -

- 0.0278 - -

- 0.189** - -

- 0.0762 - -

- - -0.00772 -

- - 0.0247 -

- - -0.0079** -

- - 0.0031 -

- - - -0.00967

- - - 0.0176

- - - -0.0208**

- - - 0.0078

Hedonic Attributes? Yes Yes Yes Yes

County Dummies? Yes Yes Yes Yes

Year Dummies? Yes Yes Yes Yes

Sample Size 1512 1512 1512 1512

R
2 0.4398 0.4417 0.4418 0.4423

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an 
asterisk (*). Hedonic regression results are nearly identical to those reported in Table 6.1.

Distance to nearest abandoned natural gas storage well 
(kilometers)

Distance to nearest abandoned natural gas storage well 
(kilometers) X Urban Indicator

Distance to nearest natural gas or oil field (kilometers)

Distance to nearest natural gas or oil field (kilometers) X 
Urban Indicator

Distance to nearest natural gas storage well (kilometers)

Distance to nearest natural gas storage well (kilometers) 
X Urban Indicator

Distance to nearest observation well (kilometers)

Distance to nearest observation well (kilometers) X 
Urban Indicator
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Table 6.6, continued 

 

Variable (5) (6) (7) (8)

0.0189* - - -

0.0102 - - -

-0.0152** - - -

0.00582 - - -

- -0.0321* - -

- 0.0167 - -

- 0.00977 - -

- 0.0159 - -

- - -0.0306** -

- - 0.013 -

- - 0.0073* -

- - 0.00438 -

- - - -0.0203

- - - 0.0165

- - - 0.0071*

- - - 0.00425

Hedonic Attributes? Yes Yes Yes Yes

County Dummies? Yes Yes Yes Yes

Year Dummies? Yes Yes Yes Yes

Sample Size 1512 1512 1512 1512

R
2 0.4428 0.4409 0.4431 0.4412

Distance to nearest abandoned observation well 
(kilometers)

Distance to nearest abandoned observation well 
(kilometers) X Urban Indicator

Distance to nearest natural gas extraction well 
(kilometers)

Distance to nearest natural gas extraction well 
(kilometers) X Urban Indicator

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an 
asterisk (*). Hedonic regression results are nearly identical to those reported in Table 6.1.

Distance to nearest natural gas and oil extraction well 
(kilometers)

Distance to nearest natural gas and oil extraction well 
(kilometers) X Urban Indicator

Distance to nearest oil extraction well (kilometers)

Distance to nearest oil extraction well (kilometers) X 
Urban Indicator
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6.8 Proximity Treatment Variable and Lot Size Interaction Results 

 In order to test for a relationship between the size of the lot associated with a 

home and the proximity to a petroleum extraction or storage related activity I include an 

interaction term between the continuous variable Lot Size and the continuous proximity 

treatment variables. Parsons (1990) argues that neglecting to weight a treatment effect, or 

any attribute that is dependent on location, by lot size could lead to bias in the estimates 

of the impact of these attributes. If the attributes dependent on location are weighted by 

lot size their impact becomes dependent on the size of the lot; for example a larger lot 

could see a smaller impact from proximity to natural gas storage wells than a home with a 

small lot. Table 6.7 presents the results from regressions in which proximity treatment 

effects are weighted by the size of the lot. As demonstrated in the model none of the 

interaction terms are statistically significant. Two of the proximity treatment variables are 

statistically significant at the 10 percent level, distance to the nearest natural gas 

extraction well and distance to the nearest gas and oil extraction well.  However, when 

comparing these results to those in Table 6.2, Models 16 and 17, it is clear that the sign 

and magnitude of the results from the lot size weighted models are not materially 

different from the basic proximity treatment effect regressions. These results indicate that 

overall there is little if any interaction between lot size and the proximity treatment 

effects and that the impacts on housing values is unlikely to be dependent on the size of 

the property in terms of acres. 
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Table 6.7 Proximity Variable and Lot Size Interaction Estimation Results 

 

Variable (1) (2) (3) (4)

-0.032 - - -

0.0211 - - -

0.00308 - - -

0.00223 - - -

- -0.00785 - -

- 0.0289 - -

- 0.00441 - -

- 0.00788 - -

- - 0.00423 -

- - 0.0244 -

- - 0.00039 -

- - 0.000436 -

- - - -0.0141

- - - 0.0175

- - - 0.000114

- - - 0.000455

Hedonic Attributes? Yes Yes Yes Yes

County Dummies? Yes Yes Yes Yes

Year Dummies? Yes Yes Yes Yes

Sample Size 1512 1512 1512 1512

R
2 0.4405 0.4395 0.4396 0.4396

Distance to nearest abandoned natural gas storage well 
(kilometers)

Distance to nearest abandoned natural gas storage well 
(kilometers) X Lot Size

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic 
regression results are nearly identical to those reported in Table 6.1.

Distance to nearest natural gas or oil field (kilometers)

Distance to nearest natural gas or oil field (kilometers) X Lot 
Size

Distance to nearest natural gas storage well (kilometers)

Distance to nearest natural gas storage well (kilometers) X Lot 
Size

Distance to nearest observation well (kilometers)

Distance to nearest observation well (kilometers) X Lot Size
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Table 6.7, continued 

 

Variable (5) (6) (7) (8)

0.0157 - - -

0.0102 - - -

0.000172 - - -

0.000434 - - -

- -0.0349** - -

- 0.0169 - -

- 0.00155 - -

- 0.00146 - -

- - -0.0341** -

- - 0.0128 -

- - -0.0000439 -

- - 0.000302 -

- - - -0.0236

- - - 0.0164

- - - -0.000152

- - - 0.000449

Hedonic Attributes? Yes Yes Yes Yes

County Dummies? Yes Yes Yes Yes

Year Dummies? Yes Yes Yes Yes

Sample Size 1512 1512 1512 1512

R
2 0.4403 0.4412 0.4421 0.4402

Distance to nearest oil extraction well (kilometers)

Distance to nearest oil extraction well (kilometers) X Lot Size

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic 
regression results are nearly identical to those reported in Table 6.1.

Distance to nearest abandoned observation well (kilometers)

Distance to nearest abandoned observation well (kilometers) X 
Lot Size

Distance to nearest natural gas extraction well (kilometers)

Distance to nearest natural gas extraction well (kilometers) X 
Lot Size

Distance to nearest natural gas and oil extraction well 
(kilometers)

Distance to nearest natural gas and oil extraction well 
(kilometers) X Lot Size
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6.9 Intensity Treatment Variable Results 

 Proximity is one simple way to measure the impact of underground natural gas 

storage on nearby property values, however it is likely that factors more complex than 

proximity are influential in a buyer’s purchasing decision and therefore in the marginal 

willingness to pay for underground natural gas storage activities. Guignet (2013) finds 

more significant impacts due to underground leaking storage tanks when using water well 

tests and measures of property owner knowledge of the leaking storage tank. His study 

suggests that proximity may not be the best measure of environmental quality. In order to 

use a different measure of the impact of underground natural gas storage on nearby 

property values I also use models with measures of intensity for petroleum extraction and 

natural gas storage related activities. The measures of intensity used are a count of 

different types of wells within two miles of a home. These count variables include the 

count of all types of wells, the count of storage related wells, the count of underground 

natural gas storage wells, the count of observation wells, the count of abandoned storage 

related wells, and the count of extraction related wells within two miles. 

 Results from the models employing a measure of intensity rather than a proximity 

variable are included in Table 6.8. The results indicate that in general higher intensity, 

more wells within two miles, decreases property values. Abandoned underground storage 

related well intensity, extraction well intensity and the overall intensity of well variables 

are not significant. However, all of the variables related to underground natural gas 

storage are significant at the 10 percent level. An additional storage related well of any 

type decreases property value by 0.43 percent. A decrease of 0.43 percent at the mean 

sale price, $94,559.90 is a loss in value of $406.61, and at the maximum sale price, 

$625,000 is a loss of $2687.50. An additional underground natural gas storage well leads 

to a reduction in value of 0.48 percent, and an additional observation well leads to a 

reduction in value of 2.64 percent. The results of the models employing measures of 

intensity indicate that underground natural gas storage wells do have a statistically 

significant and large negative impact on nearby property values. 
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Table 6.8 Intensity Variable Estimation Results 

 
 

Variable (1) (2) (3) (4) (5) (6)

-0.0262 - - - - -

0.0166 - - - - -

- -0.0431* - - - -

- 0.0241 - - - -

- - -0.0477* - - -

- - 0.0281 - - -

- - - -0.264* - -

- - - 0.138 - -

- - - - 0.0773 -

- - - - 0.130 -

- - - - - -0.015

- - - - - 0.0246

Hedonic Attributes? Yes Yes Yes Yes Yes Yes

County Dummies? Yes Yes Yes Yes Yes Yes

Year Dummies? Yes Yes Yes Yes Yes Yes

Sample Size 1512 1512 1512 1512 1512 1512

R
2 0.4403 0.4406 0.4404 0.4407 0.4395 0.4395

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic regression 
results are nearly identical to those reported in Table 6.1. All results reported are scaled by a factor of 10.

All Wells Intensity Measure (Count of wells within 2 
miles)

Storage Intensity Measure (Count of all Gas Storage 
and Observation wells within 2 miles)

Gas Storage Wells Only Intensity Measure (Count of 
all Gas Storage wells within 2 miles)

Observation Wells Intensity Measure (Count of all 
Observation wells within 2 miles)

Abandoned Gas Storage Intensity Measure (Count of 
all Abandoned Gas Storage wells within 2 miles)

ExtractionWells Only Intensity Measure (Count of all 
Extraction wells within 2 miles)
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6.10 Intensity Treatment Variable and Water Interaction Results 

 As with the proximity treatment effects it is possible that the impact due to the 

intensity of well activity could be more significant when accounting for homes dependent 

on different sources of water, as demonstrated by Muehlenbachs, Spiller and Timmins 

(2012). In order to account for differences in sources of water I add an interaction term 

between the intensity measures and the binary variable for access to public water. The 

estimation results for these models can be found in Table 6.9.  

 The interaction terms and intensity measures are all significant at the five percent 

level for all models related to underground natural gas storage, Models 2 through 5. 

These significant variables include intensity of abandoned underground natural gas 

storage related activities. An additional storage related well leads to a decrease of 0.31 

percent in nearby property values with access to public water. A home with public water 

sees a decrease in value of 0.32 percent for an additional underground natural gas storage 

well. For an additional observation well the decrease in value is 2.33 percent. These 

results imply that homes with access to public water see an overall negative impact due to 

increased intensity of underground natural gas storage related activities. An increase of 

one abandoned storage well increases property value for a home without access to public 

water by 2.57 percent, however for a home with access to public water there is a decrease 

in value of 1.46 percent. The result for abandoned storage well seems contrary, however, 

except for observation well intensity, the intensity measures and interaction terms are all 

jointly insignificant. This implies that homes with access to public water are not impacted 

by underground storage related activities.  

 A home without access to public water sees a decrease in value of 1.32 percent for 

an additional storage related well. This percentage loss in value is much larger in 

magnitude than for a home with access to public water. At the mean sale price of 

$94,559.90, this is a $1,248.19 reduction in value. Homes without access to public water 

see a decrease in value of 1.53 percent for an additional underground natural gas storage 

well, and a decrease of 6.12 percent for an additional observation well. These results 

demonstrate that homes without access to public water see statistically significant and 

larger magnitude impacts due to underground natural gas storage activities. 
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 Interestingly observation wells seem to consistently have impacts of larger 

magnitude than underground natural gas storage wells. An observation well is used to 

monitor the storage field, in order to ensure that no natural gas is migrating out of the 

formation. The larger magnitude impact of observation wells could be due to the fact that 

when the need for monitoring of a facility is apparent homeowners experience an 

increased perception of risk, as compared to the actual operation of the facility. As with 

the results presented in Guignet (2013), homeowners with greater information see greater 

impacts due to leaking underground storage tanks. A homeowner located near an 

observation well may have greater information about the risks due to the underground 

natural gas storage facility. 
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Table 6.9 Intensity Variable and Water Access Interaction Estimation Results 

 
 

Variable (1) (2) (3) (4) (5) (6)

-0.0538** - - - - -

0.0269 - - - - -
0.0397 - - - - -
0.0304 - - - - -

- -0.132** - - - -
- 0.0440 - - - -
- 0.101** - - - -

- 0.0418 - - - -
- - -0.153** - - -

- - 0.0543 - - -
- - 0.121** - - -
- - 0.0534 - - -

- - - -0.612** - -
- - - 0.202 - -
- - - 0.379** - -

- - - 0.160 - -
- - - - 0.257** -

- - - - 0.146 -
- - - - -0.403** -
- - - - 0.148 -

- - - - - -0.0270
- - - - - 0.0319
- - - - - 0.0274

- - - - - 0.0466

Hedonic Attributes? Yes Yes Yes Yes Yes Yes
County Dummies? Yes Yes Yes Yes Yes Yes

Year Dummies? Yes Yes Yes Yes Yes Yes
Sample Size 1512 1512 1512 1512 1512 1512

R
2 0.4409 0.4428 0.4424 0.4429 0.4423 0.4396

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic regression results are nearly
identical to those reported in Table 6.1. All results reported are scaled by a factor of 10.

Observation Wells Intensity Measure (Count of all Observation 
wells within 2 miles)

Observation Wells Intensity Measure (Count of all Observation 
wells within 2 miles) X Public Water Indicator

Abandoned Gas Storage Intensity Measure (Count of all 
Abandoned Gas Storage wells within 2 miles)

Abandoned Gas Storage Intensity Measure (Count of all 
Abandoned Gas Storage wells within 2 miles) X Public Water 

ExtractionWells Only Intensity Measure (Count of all Extraction 
wells within 2 miles)

ExtractionWells Only Intensity Measure (Count of all Extraction 
wells within 2 miles) X Public Water Indicator

Gas Storage Wells Only Intensity Measure (Count of all Gas 
Storage wells within 2 miles) X Public Water Indicator

All Wells Intensity Measure (Count of wells within 2 miles)

All Wells Intensity Measure (Count of wells within 2 miles) X 
Public Water Indicator

Storage Intensity Measure (Count of all Gas Storage and 
Observation wells within 2 miles)

Storage Intensity Measure (Count of all Gas Storage and 
Observation wells within 2 miles) X Public Water Indicator

Gas Storage Wells Only Intensity Measure (Count of all Gas 
Storage wells within 2 miles)
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6.11 Intensity Threshold Treatment Variable Results 

 In order to examine the impact of higher intensity of storage related activities on 

nearby homes I use a binary variable to differentiate homes with a higher intensity of 

petroleum related activities from those with lower intensity. The results presented in 

Models 1 through 4 indicate that the threshold variables are not statistically significant, or 

that homes with higher intensity of petroleum related activities do not see a specific 

impact due to the higher intensity of wells. 
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Table 6.10 Threshold Intensity Variable Estimation Results 

 
 

Variable (1) (2) (3) (4)

-0.243 - - -

0.655 - - -

- -0.355 - -

- 0.715 - -

- - 0.820 -

- - 0.756 -

- - - -0.918

- - - 0.835

Hedonic Attributes? Yes Yes Yes Yes

County Dummies? No No No No

Year Dummies? No No No No

Sample Size 1512 1512 1512 1512

R
2

0.4039 0.4039 0.4043 0.4043

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an 
asterisk (*). Hedonic regression results are nearly identical to those reported in Table 6.1. All results reported are scaled by a factor of 10.

ExtractionWells Threshold Binary Variable (Indicator for homes 
with 2 or more wells within 2 miles)

All Wells Threshold Binary Variable (Indicator for homes with 20 
or more wells within 2 miles)

Storage Wells Threshold Binary Variable (Indicator for homes 
with 20 or more wells within 2 miles)

Gas Storage Wells Threshold Binary Variable (Indicator for 
homes with 15 or more wells within 2 miles)
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6.12 Repeat Sales Hedonic Attribute Results 

 My data consists of 529 repeat sales, or homes that transacted more than one time 

during the time period of analysis. A repeat sales analysis is essentially a parcel level 

fixed effects analysis, therefore allowing me to control for unobserved characteristics at 

the parcel level. The repeat sales approach was used by Palmquist (1982) within the field 

of environmental economics. Heintzelman and Tuttle (2012) use a repeat sales approach 

within their study of the impact of wind power facilities on nearby property values. 

 Estimation results from models using only basic hedonic attributes are in Table 

6.11. These results indicate that homeowners within the repeat sales dataset behave as 

expected. Homeowners in general prefer a larger property size, better building quality 

and more amenities. An increase of one acre in lot size increases property value by 9.24 

percent, looking at Model 3 results. The addition of a fireplace increases property value 

by 14.29 percent. The primary difference illustrated in the repeat sales approach from the 

full dataset models is that the variable for full bathrooms becomes significant at the five 

percent level, and the increase of one full bathroom leads to an increase in value of 31.69 

percent. Additionally, homeowners prefer more garages, the addition of one garage 

results in an increase in value of 20.23 percent. As with the estimation results for the 

hedonic variables in the full dataset, variables such as fireplaces, full bathrooms and 

garages may be capturing the effects of bundles of attributes, rather than only the impact 

of the attribute represented. A home with more full bathrooms may have other attractive 

attributes, as may a home with more fireplaces or more garages. 

In addition age of home has a nonlinear impact on home value. The increase of 

one year in age reduces property value by 0.89 percent at the mean value for age, 62.87 

years. For a home of only one year in age the addition of a year decreases property value 

by 1.37 percent. The turning point at which age has a positive impact on property value is 

88.46 years. 

 The results from Model 3 also indicate that a home with excellent grade building 

quality has an increase of 250.7 percent in value over homes of poor building quality. 

Good grade homes see an increase of 192.12 percent in value and average grade homes 

see an increase of 118.26 percent of poor building quality homes. The impacts due to 
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these building quality indicators are large in magnitude, however, as with the results from 

the full dataset, the average price of an excellent grade home is drastically larger than the 

average sale price of a poor grade home. Overall these results indicate that homeowner 

preferences within this repeat sales data is as expected. 

 
 
 



115 

 

Table 6.11 Repeat Sales Hedonic Attribute Estimation Results 

 

 

 

 

Variable (1) (2) (3)

0.0972** 0.0914** 0.0924**
0.0398 0.0450 0.0451
-0.2042 -0.2187* -0.2105*
0.1247 0.1276 0.1279

0.000114 0.000094 0.000084
0.000086 0.000086 0.000087
0.1292** 0.1545** 0.1429**

0.0630 0.0671 0.0673
-0.0433 -0.0093 0.0138
0.0670 0.0684 0.0688

0.3376** 0.2941** 0.3169**
0.1038 0.1064 0.1065
-0.0251 -0.0446 -0.0737
0.1278 0.1308 0.1316

-0.0164** -0.0144** -0.0138**
0.0054 0.0056 0.0056

0.000081** 0.000083** 0.000078**
0.0000 0.0000 0.0000

0.0001** 0.0000 0.0000
0.0000 0.0001 0.0001

1.3224** 1.1859** 1.2548**
0.4790 0.5227 0.5230

0.9685** 1.0205** 1.0720**
0.4213 0.4596 0.4599

0.6941* 0.7620* 0.7805*
0.4139 0.4466 0.4458

- - -
- - -

0.3898** 0.0987 0.0651
0.1020 0.2286 0.2303

0.1941** 0.1929** 0.2023**
0.0901 0.0933 0.0944

0.3912* 0.2170 0.2328
0.2012 0.2088 0.2084

-0.1977* -0.0915 -0.0944
0.1018 0.1378 0.1383
9.7698 9.9954 9.6365
0.4853 0.5910 0.6120

County Dummies? No Yes Yes
Year Dummies? No No Yes
Sample Size 529 529 529

R
2

0.4191 0.4550 0.4638

Good grade building quality indicator

Average grade building quality indicator

Poor grade building quality indicator

Urbanized area indicator

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 
percent level denoted with an asterisk (*).

Lot size (acres)

Height of home (number of stories)

Finished living area (sq Ft)

Fireplaces

Bedrooms

Full bathrooms

Half bathrooms

Age of home (years)

Age
2

Garages

Pools

Public water indicator

Constant

Distance to nearest major road (meters)

Excellent grade building quality indicator
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6.13 Repeat Sales Proximity Treatment Variable Results 

 Estimation results from the repeat sales models including proximity treatment 

variables are included in Table 6.12. When parcel level fixed effects are controlled for all 

of the proximity treatment effects become insignificant. These estimation results could be 

due to the fact that when controlling for parcel level fixed effects locational unobserved 

attributes that were being captured within the proximity variables in prior models are now 

captured within the parcel level effects. However, it is also possible that the size of the 

sample could reduce the explanatory powers of these estimates.  

 
 
 

6.14 Repeat Sales Proximity Treatment Variable and Water Interaction Results 

 In order to further examine the impacts of underground natural gas storage on 

nearby housing values using the repeat sales dataset, I also run some regressions using 

interaction terms between the proximity terms and the public water indicator. The results 

from the repeat sales public water interaction models can be found in Table 6.13. The 

interaction term and the proximity variable are all insignificant except in Model 3. Model 

3 indicates that a home with access to public water sees an increase in value of four 

percent per kilometer increase in distance to the nearest underground natural gas storage 

well. However, these two terms are not jointly significant, indicating that the impact of 

underground natural gas storage for homes with access to public water is statistically 

insignificant. As with the models including only proximity variables, it is possible that 

the small size of the repeat sales dataset decreases the explanatory power of these results. 



 

 

117 

Table 6.12 Repeat Sales Proximity Variable Estimation Results 

 

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9)

-0.1799 - - - - - - - -

0.2041 - - - - - - - -
- -0.0141 - - - - - - -

- 0.0342 - - - - - - -

- - -0.0619 - - - - - -

- - 0.0488 - - - - - -
- - - -0.0268 - - - - -

- - - 0.0499 - - - - -

- - - - 0.00919 - - - -

- - - - 0.0351 - - - -
- - - - - 0.0294 - - -

- - - - - 0.0207 - - -

- - - - - - -0.0288 - -

- - - - - - 0.0320 - -
- - - - - - - -0.00304 -

- - - - - - - 0.0232 -

- - - - - - - - -0.0125

- - - - - - - - 0.0309

Hedonic Attributes? Yes Yes Yes Yes Yes Yes Yes Yes Yes

County Dummies? Yes Yes Yes Yes Yes Yes Yes Yes Yes

Year Dummies? Yes Yes Yes Yes Yes Yes Yes Yes Yes
Sample Size 529 529 529 529 529 529 529 529 529

R
2 0.4646 0.4639 0.4655 0.4641 0.4638 0.4659 0.4646 0.4638 0.4639

Distance to nearest natural gas 
extraction well (kilometers)

Distance to nearest natural gas and oil 
extraction well (kilometers)

Distance to nearest oil extraction well 
(kilometers)

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic 
regression results are nearly identical to those reported in Table 6.1.

Natural gas storage field indicator

Distance to nearest natural gas or oil 
field (kilometers)

Distance to nearest natural gas storage 
well (kilometers)

Distance to nearest observation well 
(kilometers)

Distance to nearest abandoned natural 
gas storage well (kilometers)

Distance to nearest abandoned 
observation well (kilometers)
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Table 6.13 Repeat Sales Proximity Variable and Public Water Access Interaction Results 

 

Variable (1) (2) (3) (4) (5)

-0.2066 - - - -

0.4904 - - - -

0.0287 - - - -

0.4794 - - - -

- -0.0177 - - -

- 0.0351 - - -

- 0.00608 - - -

- 0.0124 - - -

- - -0.122** - -

- - 0.0554 - -

- - 0.162** - -

- - 0.0717 - -

- - - -0.0339 -

- - - 0.0501 -

- - - -0.00507 -

- - - 0.00382 -

- - - - 0.00879

- - - - 0.0354

- - - - 0.000347

- - - - 0.00433

Hedonic Attributes? Yes Yes Yes Yes Yes

County Dummies? Yes Yes Yes Yes Yes

Year Dummies? Yes Yes Yes Yes Yes

Sample Size 529 529 529 529 529

R
2 0.4646 0.4642 0.471 0.466 0.4638

Distance to nearest natural gas storage well (kilometers) X 
Public Water

Natural gas storage field indicator

Natural gas storage field indicator X Public Water

Distance to nearest natural gas or oil field (kilometers)

Distance to nearest natural gas or oil field (kilometers) X 
Public Water

Distance to nearest natural gas storage well (kilometers)

Distance to nearest observation well (kilometers)

Distance to nearest observation well (kilometers) X Public 
Water

Distance to nearest abandoned natural gas storage well 
(kilometers)

Distance to nearest abandoned natural gas storage well 
(kilometers) X Public water

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic 
regression results are nearly identical to those reported in Table 6.1.
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Table 6.13, continued 

 

Variable (6) (7) (8) (9)

0.0295 - - -

0.0214 - - -

-0.0000602 - - -

0.00437 - - -

- -0.022 - -

- 0.0324 - -

- -0.00997 - -

- 0.00825 - -

- - -0.00433 -

- - 0.0233 -

- - -0.00239 -

- - 0.00317 -

- - - -0.0124

- - - 0.0309

- - - 0.00261

- - - 0.00464

Hedonic Attributes? Yes Yes Yes Yes

County Dummies? Yes Yes Yes Yes

Year Dummies? Yes Yes Yes Yes

Sample Size 529 529 529 529

R
2 0.4659 0.4662 0.4644 0.4643

Distance to nearest oil extraction well (kilometers)

Distance to nearest oil extraction well (kilometers) X Public Water

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic 
regression results are nearly identical to those reported in Table 6.1.

Distance to nearest abandoned observation well (kilometers)

Distance to nearest abandoned observation well (kilometers) X 
Public Water

Distance to nearest natural gas extraction well (kilometers)

Distance to nearest natural gas extraction well (kilometers) X Public 
Water

Distance to nearest natural gas and oil extraction well (kilometers)

Distance to nearest natural gas and oil extraction well (kilometers) X 
Public Water
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CHAPTER 7. CONCLUSIONS 

 As the natural gas industry continues to adapt to the increases in supply due to 

shale gas extraction, and to increasing demand for natural gas, so too will policy relating 

to the natural gas industry. Increased attention on the environmental impacts of hydraulic 

fracturing and activities required to extract unconventional sources of natural gas may 

also spread to other aspects of the natural gas industry. Natural gas transportation and 

storage may come under the same level of scrutiny that natural gas extraction currently 

faces. Given the changing conditions for the industry, knowledge about the costs and 

benefits of all aspects of the industry may be of benefit to the industry and policymakers 

as they adapt to the changing conditions of the industry.  

 The environmental and amenity risks to properties and nearby residents from 

natural gas related activities are not new, however, attention on these issues has the 

potential to increase the perception of risk due to increased awareness. As demonstrated 

by Miyazaki (2009), underground natural gas storage fields have risks, ranging from mild 

to as extreme as fatalities. Although these risks have been publicized upon the occurrence 

of any event, previous literature has not attempted to value the impact of these types of 

facilities on nearby property values. In the climate of increasing attention to the natural 

gas industry, now is a particularly good time to pre-empt any need for increased 

understanding of the costs and benefits of underground natural gas storage. 

By employing the hedonic method to a set of data for home sales within Indiana, I 

am able to recover an estimate for the impact of underground natural gas storage related 

activities on nearby housing values. Results from county level and year fixed effects 

models strongly suggest that there is a negative impact on property values due to 

proximity to underground natural gas storage activities. Proximity to the nearest 

underground storage well is well modeled with a quadratic functional form, 
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which indicates that a home within one kilometer of an underground natural gas storage 

well sees an increase of 9.4 percent due to an additional kilometer of distance from the 

well. Distance to the nearest observation well has a cubic functional form and for a home 

located within one kilometer of an observation well an additional kilometer of distance 

results in an increase in value of 10.03 percent. In addition, my results suggest that homes 

located in urban areas are insulated against the impacts of underground natural gas 

storage wells.  

Intensity of underground natural gas storage activity also has an impact on 

property values. The fixed effects models employing intensity treatment effects 

demonstrate that an additional storage related well within two miles decreases property 

values by 0.43 percent, an additional underground natural gas storage well decreases 

property values by 0.48 percent, and an additional observation well decreases value by 

2.64 percent. This leads to the conclusion that intensity of storage related activities has a 

significant negative impact on property values. In addition, when water interaction terms 

are added to the fixed effect intensity models I find that homes with access to public 

water see a smaller impact due to underground natural gas storage related intensity than 

homes without access to public water. These results also are a general indication that 

much of the perceived risk regarding underground natural gas storage activities is related 

to the risk of groundwater contamination. This public water access interaction was not 

found in the proximity models with water interaction terms, which could mean that the 

intensity of storage related activities nearby increases perceived risk of groundwater 

contamination while simple proximity does not. 

When the proximity variables are employed using repeat sales data the results 

become insignificant, which could mean that proximity treatment variables in the county 

level fixed effects model were capturing locational attributes specific to the parcel. 

However, this dataset is relatively small. Increasing the size of the sample used in the 

repeat sales model could make the importance of parcel level fixed effects more clear. 

Overall, my results demonstrate that homes in Indiana within proximity to underground 

natural gas storage activities suffer negative externalities due to these activities. These 
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impacts become more pronounced for homes without access to public water, and homes 

within urban areas are in general insulated from these impacts. 

Policymakers and industry participants can use these results in order to improve 

regulations related to underground natural gas storage as well as improve lease 

agreements with homeowners for any future development of underground natural gas 

storage facilities. My results demonstrate that homeowners with leases or easement 

agreements for mineral rights may not be compensated fully under current conditions. 

Within the current environment of increasing demand for natural gas throughout the year, 

industry participants may be planning projects related to storage of natural gas. With a 

more complete understanding of the impacts of these facilities, industry participants 

working on any development of underground storage facilities can be more prepared to 

account for the full costs of these facilities, and respond to the environment of increased 

awareness of industry activities.  

In addition, policymakers need to have a complete picture of the impacts of the 

natural gas industry in order to weigh the costs and benefits of any new or expanded 

industry activity. Currently, the natural gas industry is receiving more attention, and 

policymakers are expected to respond to the perception of risk within their constituents 

and help decide if the development new storage facilities outweigh the social costs. In 

this case increasing demand for natural gas could drive the need for new development of 

underground natural gas storage facilities. Using these results policymakers can help 

protect or properly compensate homeowners for the negative impacts of any underground 

natural gas storage related activities while also helping the natural gas industry respond to 

the energy demand throughout the country. 

The quantification of impact may also help homeowners and the natural gas 

industry in negotiations for mineral rights access. The location of development for any 

new underground natural gas storage is limited by the geological requirements for the 

activity; however, a more complete understanding of the impacts on property values due 

to these activities can help the industry and stakeholders in any decisions regarding the 

development and use of underground natural gas storage. In addition, with this 

information about the impacts of underground natural gas storage on nearby properties, 
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policymakers can have full information when deciding how to update regulations 

regarding underground natural gas storage facilities on private land as needed. 

 This study could also be applied to areas receiving more attention due to natural 

gas industry activities, including Pennsylvania and Texas. Although depending on the 

location of underground natural gas storage activities and the location of shale gas 

extraction activities it may be more difficult to disentangle the individual impacts due to 

underground natural gas storage activities from the impacts due to shale gas extraction in 

these regions than it is in a region like Indiana which has limited unconventional natural 

gas development.  

An analysis of property values near an underground natural gas storage well that 

has experienced a failure event in the past could allow a researcher to recover estimates 

for the impact of underground natural gas storage activities within the context of 

extremely heightened local awareness and media attention. Prior literature has found 

some increases in the impact of petroleum activities when studied in the context of a 

negative event (Flower and Ragas 1994). These events have a higher probability of 

occurring within salt cavern type storage (Miyazaki 2009), therefore a study of this type 

would most likely need to focus on the Gulf Coast region where salt cavern underground 

natural gas storage is more common. This region is also experiencing an increase in shale 

gas extraction, which could confound any estimation results.  

 As Guignet (2013) demonstrates, a treatment variable that more accurately 

measures homeowner knowledge of a treatment effect can be a better proxy for 

environmental quality. Within the context of underground natural gas storage it may 

improve estimates to look at homes with private water that have been tested. This could 

provide more insight into the impact of underground natural gas storage on homes 

without access to public water. In addition, it could be interesting to discover which 

properties have current leases with underground natural gas storage facilities, if possible. 

These homeowners may have more knowledge about the activities related to underground 

natural gas storage. Looking at homes with and without leases could help in disentangling 

the effects of receiving compensation for the use of mineral rights versus the impact on 
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nearby homes that do not have any type of agreement with the facility yet still receive 

some impact from the activities. 
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Appendix A Additional Figures 

 

Figure A.1 Counties in Analysis 
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Figure A.2 School Districts in Analysis 
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Figure A.3 Primary and Secondary Streets of Indiana 
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Figure A.4 Urban Areas in Analysis 
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Figure A.5 Petroleum Fields in Indiana 
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Figure A.6 Petroleum Fields and Underground Natural Gas Storage Wells 
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Figure A.7 Petroleum Fields and Abandoned Gas Storage Wells 
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Figure A.8 Petroleum Fields and Extraction Wells 
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Figure A.9 Petroleum Fields and All Well Types Combined 
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Figure A.10 Petroleum Fields with Home Sales in Analysis and Two-Mile Buffer Zones 
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Figure A.11 Legend of Symbols 
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Figure A.12 Region of Analysis in Cass, Fulton and Pulaski Counties 
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Figure A.13 Region of Analysis in Clark County 
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Figure A.14 First Region of Analysis in Daviess County 
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Figure A.15 Second Region of Analysis in Daviess County 
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Figure A.16 Region of Analysis in Decatur County 
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Figure A.17 First Region of Analysis in Greene County 
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Figure A.18 Second Region of Analysis in Greene County 
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Figure A.19 Region of Analysis in Harrison County 
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Figure A.20 Region of Analysis in Huntington County 
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Figure A.21 Region of Analysis in Lawrence County 
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Figure A.22 First Region of Analysis in Monroe County 
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Figure A.23 Second Region of Analysis in Monroe County 
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Figure A.24 First Region of Analysis in Pike County 
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Figure A.25 Second Region of Analysis in Pike County 
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Figure A.26 Third Region of Analysis in Pike County 
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Figure A.27 Region of Analysis in Posey County 
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Figure A.28 Region of Analysis in Randolph County 
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Figure A.29 Region of Analysis in Spencer County 
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Figure A.30 Region of Analysis in Vermillion County 
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Figure A.31 First Region of Analysis in White County 
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Figure A.32 Second Region of Analysis in White County 
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Appendix B Data Sources and Figure Credits 
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TomTom, Department of Commerce, Census Bureau, U.S. Department of Agriculture 
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Database Management System; Home Sales addresses collected from the Indiana 
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Figure A.16 Imagery and Data Sources: World Terrain Base from Esri Data & Maps, 

credits: Esri, USGS and NOAA; USA Counties from Esri Data & Maps, credits: Esri, 

TomTom, Department of Commerce, Census Bureau, U.S. Department of Agriculture 

(USDA), National Agricultural Statistics Service (NASS), United States Central 

Intelligence Agency; North America Detailed Streets from Esri Data & Maps, credits: 

Esri and TomTom; Petroleum Fields from the Petroleum Fields Map Service by the 
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Figure A.17 Imagery and Data Sources: World Terrain Base from Esri Data & Maps, 

credits: Esri, USGS and NOAA; USA Counties from Esri Data & Maps, credits: Esri, 

TomTom, Department of Commerce, Census Bureau, U.S. Department of Agriculture 

(USDA), National Agricultural Statistics Service (NASS), United States Central 

Intelligence Agency; North America Detailed Streets from Esri Data & Maps, credits: 

Esri and TomTom; Petroleum Fields from the Petroleum Fields Map Service by the 

Indiana Geological Survey (maps.indiana.edu/metadata/Geology/Petroleum-Fields.html); 
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Department of Natural Resources and the Indiana Geological Survey’s Petroleum 

Database Management System; Home Sales addresses collected from the Indiana 
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Gateway for Government Units (gatewaysdf.ifionlin.org/Search.aspx). 

 

Figure A.18 Imagery and Data Sources: World Terrain Base from Esri Data & Maps, 

credits: Esri, USGS and NOAA; USA Counties from Esri Data & Maps, credits: Esri, 

TomTom, Department of Commerce, Census Bureau, U.S. Department of Agriculture 

(USDA), National Agricultural Statistics Service (NASS), United States Central 

Intelligence Agency; North America Detailed Streets from Esri Data & Maps, credits: 

Esri and TomTom; Petroleum Fields from the Petroleum Fields Map Service by the 

Indiana Geological Survey (maps.indiana.edu/metadata/Geology/Petroleum-Fields.html); 

Underground Natural Gas Storage Well latitude and longitude provided by the Indiana 

Department of Natural Resources and the Indiana Geological Survey’s Petroleum 

Database Management System; Home Sales addresses collected from the Indiana 

Department of Local Government’s Sales Disclosure Database provided by the Indiana 

Gateway for Government Units (gatewaysdf.ifionlin.org/Search.aspx). 

 

Figure A.19 Imagery and Data Sources: World Terrain Base from Esri Data & Maps, 

credits: Esri, USGS and NOAA; Imagery and Data Sources: World Terrain Base from 

Esri Data & Maps, credits: Esri, USGS and NOAA; USA Counties from Esri Data & 

Maps, credits: Esri, TomTom, Department of Commerce, Census Bureau, U.S. 
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Figure A.20 Imagery and Data Sources: World Terrain Base from Esri Data & Maps, 

credits: Esri, USGS and NOAA; USA Counties from Esri Data & Maps, credits: Esri, 

TomTom, Department of Commerce, Census Bureau, U.S. Department of Agriculture 

(USDA), National Agricultural Statistics Service (NASS), United States Central 

Intelligence Agency; North America Detailed Streets from Esri Data & Maps, credits: 

Esri and TomTom; Petroleum Fields from the Petroleum Fields Map Service by the 

Indiana Geological Survey (maps.indiana.edu/metadata/Geology/Petroleum-Fields.html); 

Underground Natural Gas Storage Well latitude and longitude provided by the Indiana 

Department of Natural Resources and the Indiana Geological Survey’s Petroleum 

Database Management System; Home Sales addresses collected from the Indiana 

Department of Local Government’s Sales Disclosure Database provided by the Indiana 

Gateway for Government Units (gatewaysdf.ifionlin.org/Search.aspx). 

 

Figure A.21 Imagery and Data Sources: World Terrain Base from Esri Data & Maps, 

credits: Esri, USGS and NOAA; Imagery and Data Sources: World Terrain Base from 

Esri Data & Maps, credits: Esri, USGS and NOAA; USA Counties from Esri Data & 

Maps, credits: Esri, TomTom, Department of Commerce, Census Bureau, U.S. 

Department of Agriculture (USDA), National Agricultural Statistics Service (NASS), 

United States Central Intelligence Agency; North America Detailed Streets from Esri 
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Natural Gas Storage Well latitude and longitude provided by the Indiana Department of 

Natural Resources and the Indiana Geological Survey’s Petroleum Database Management 
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Figure A.22 Imagery and Data Sources: World Terrain Base from Esri Data & Maps, 

credits: Esri, USGS and NOAA; USA Counties from Esri Data & Maps, credits: Esri, 

TomTom, Department of Commerce, Census Bureau, U.S. Department of Agriculture 

(USDA), National Agricultural Statistics Service (NASS), United States Central 

Intelligence Agency; North America Detailed Streets from Esri Data & Maps, credits: 

Esri and TomTom; USA Urban Areas from Esri Data & Maps, credits: Esri, National 

Atlas of the United States, United States Geological Survey, Department of Commerce 

and Census Bureau, Geography Division; Petroleum Fields from the Petroleum Fields 

Map Service by the Indiana Geological Survey 

(maps.indiana.edu/metadata/Geology/Petroleum-Fields.html); Underground Natural Gas 

Storage Well latitude and longitude provided by the Indiana Department of Natural 

Resources and the Indiana Geological Survey’s Petroleum Database Management 

System; Home Sales addresses collected from the Indiana Department of Local 

Government’s Sales Disclosure Database provided by the Indiana Gateway for 

Government Units (gatewaysdf.ifionlin.org/Search.aspx). 

 

Figure A.23 Imagery and Data Sources: World Terrain Base from Esri Data & Maps, 

credits: Esri, USGS and NOAA; USA Counties from Esri Data & Maps, credits: Esri, 

TomTom, Department of Commerce, Census Bureau, U.S. Department of Agriculture 

(USDA), National Agricultural Statistics Service (NASS), United States Central 

Intelligence Agency; North America Detailed Streets from Esri Data & Maps, credits: 
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Figure A.24 Imagery and Data Sources: World Terrain Base from Esri Data & Maps, 

credits: Esri, USGS and NOAA; USA Counties from Esri Data & Maps, credits: Esri, 
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Intelligence Agency; North America Detailed Streets from Esri Data & Maps, credits: 
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credits: Esri, USGS and NOAA; USA Counties from Esri Data & Maps, credits: Esri, 

TomTom, Department of Commerce, Census Bureau, U.S. Department of Agriculture 

(USDA), National Agricultural Statistics Service (NASS), United States Central 

Intelligence Agency; North America Detailed Streets from Esri Data & Maps, credits: 

Esri and TomTom; Petroleum Fields from the Petroleum Fields Map Service by the 

Indiana Geological Survey (maps.indiana.edu/metadata/Geology/Petroleum-Fields.html); 

Underground Natural Gas Storage Well latitude and longitude provided by the Indiana 
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credits: Esri, USGS and NOAA; USA Counties from Esri Data & Maps, credits: Esri, 

TomTom, Department of Commerce, Census Bureau, U.S. Department of Agriculture 

(USDA), National Agricultural Statistics Service (NASS), United States Central 

Intelligence Agency; North America Detailed Streets from Esri Data & Maps, credits: 
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Database Management System; Home Sales addresses collected from the Indiana 

Department of Local Government’s Sales Disclosure Database provided by the Indiana 
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Figure A.27 Imagery and Data Sources: World Terrain Base from Esri Data & Maps, 

credits: Esri, USGS and NOAA; USA Counties from Esri Data & Maps, credits: Esri, 

TomTom, Department of Commerce, Census Bureau, U.S. Department of Agriculture 

(USDA), National Agricultural Statistics Service (NASS), United States Central 

Intelligence Agency; North America Detailed Streets from Esri Data & Maps, credits: 

Esri and TomTom; Petroleum Fields from the Petroleum Fields Map Service by the 

Indiana Geological Survey (maps.indiana.edu/metadata/Geology/Petroleum-Fields.html); 

Underground Natural Gas Storage Well latitude and longitude provided by the Indiana 
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Figure A.28 Imagery and Data Sources: World Terrain Base from Esri Data & Maps, 

credits: Esri, USGS and NOAA; USA Counties from Esri Data & Maps, credits: Esri, 

TomTom, Department of Commerce, Census Bureau, U.S. Department of Agriculture 
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Intelligence Agency; North America Detailed Streets from Esri Data & Maps, credits: 

Esri and TomTom; Petroleum Fields from the Petroleum Fields Map Service by the 

Indiana Geological Survey (maps.indiana.edu/metadata/Geology/Petroleum-Fields.html); 
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Department of Natural Resources and the Indiana Geological Survey’s Petroleum 

Database Management System; Home Sales addresses collected from the Indiana 

Department of Local Government’s Sales Disclosure Database provided by the Indiana 

Gateway for Government Units (gatewaysdf.ifionlin.org/Search.aspx). 

 

Figure A.29 Imagery and Data Sources: World Terrain Base from Esri Data & Maps, 

credits: Esri, USGS and NOAA; USA Counties from Esri Data & Maps, credits: Esri, 

TomTom, Department of Commerce, Census Bureau, U.S. Department of Agriculture 

(USDA), National Agricultural Statistics Service (NASS), United States Central 

Intelligence Agency; North America Detailed Streets from Esri Data & Maps, credits: 

Esri and TomTom; Petroleum Fields from the Petroleum Fields Map Service by the 

Indiana Geological Survey (maps.indiana.edu/metadata/Geology/Petroleum-Fields.html); 

Underground Natural Gas Storage Well latitude and longitude provided by the Indiana 

Department of Natural Resources and the Indiana Geological Survey’s Petroleum 

Database Management System; Home Sales addresses collected from the Indiana 

Department of Local Government’s Sales Disclosure Database provided by the Indiana 

Gateway for Government Units (gatewaysdf.ifionlin.org/Search.aspx). 

 

Figure A.30 Imagery and Data Sources: World Terrain Base from Esri Data & Maps, 

credits: Esri, USGS and NOAA; USA Counties from Esri Data & Maps, credits: Esri, 

TomTom, Department of Commerce, Census Bureau, U.S. Department of Agriculture 

(USDA), National Agricultural Statistics Service (NASS), United States Central 
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Figure A.31 Imagery and Data Sources: World Terrain Base from Esri Data & Maps, 

credits: Esri, USGS and NOAA; USA Counties from Esri Data & Maps, credits: Esri, 

TomTom, Department of Commerce, Census Bureau, U.S. Department of Agriculture 

(USDA), National Agricultural Statistics Service (NASS), United States Central 

Intelligence Agency; North America Detailed Streets from Esri Data & Maps, credits: 

Esri and TomTom; Underground Natural Gas Storage Well latitude and longitude 

provided by the Indiana Department of Natural Resources and the Indiana Geological 

Survey’s Petroleum Database Management System; Home Sales addresses collected from 

the Indiana Department of Local Government’s Sales Disclosure Database provided by 

the Indiana Gateway for Government Units (gatewaysdf.ifionlin.org/Search.aspx). 

 

Maps throughout this thesis were created using ArcGIS® software by Esri. ArcGIS® and 

ArcMap™ are the intellectual property of Esri and are used herein under license. 

Copyright © Esri. All rights reserved. For more information about Esri® software, please 

visit www.esri.com. 
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Appendix C Additional Tables 

Tables C.1 through C.11 include additional summary statistics for variables used in 

regressions throughout this analysis. This includes statistics for fixed effects terms, as 

well as interaction terms and nonlinear proximity effects. 

 
 
 
Table C.1 Summary Statistics for County Indicators 

 

Variable n Mean Std Dev Min Max

Cass county indicator 1512 0.0595 0.2367 0 1

Clark county indicator 1512 0.1825 0.3864 0 1

Daviess county indicator 1512 0.0734 0.2609 0 1

Decatur county indicator 1512 0.0225 0.1483 0 1

Greene county indicator 1512 0.0589 0.2354 0 1

Harrison county indicator 1512 0.0066 0.0811 0 1

Huntington county indicator 1512 0.1620 0.3686 0 1

Lawrence county indicator 1512 0.0364 0.1873 0 1

Monroe county indicator 1512 0.1415 0.3487 0 1

Pike county indicator 1512 0.1574 0.3643 0 1

Posey county indicator 1512 0.0146 0.1198 0 1

Pulaski county indicator 1512 0.0007 0.0257 0 1

Randolph county indicator 1512 0.0159 0.1250 0 1

Spencer county indicator 1512 0.0298 0.1700 0 1

Vermillion county indicator 1512 0.0112 0.1055 0 1

White county indicator 1512 0.0271 0.1625 0 1
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Table C.2 Summary Statistics for School District Indicators 

 

Variable n Mean Std Dev Min Max

Eastern Pulaski Community School 
Corporation indicator

1512 0.0006614 0.0257172 0 1

Huntington County Community 
School Corporation indicator

1512 0.162037 0.3686067 0 1

Pioneer Regional School 
Corporation indicator

1512 0.0595238 0.2366807 0 1

Tri-County School Corporation 
indicator

1512 0.0006614 0.0257172 0 1

Frontier School Corporation 
indicator

1512 0.026455 0.1605372 0 1

Union School Corporation indicator 1512 0.015873 0.1250256 0 1

South Vermillion Community 
School Corporation indicator

1512 0.0112434 0.1054719 0 1

Decatur County Community 
Schools indicator

1512 0.0112434 0.1054719 0 1

Greensburg Community Schools 
indicator

1512 0.0112434 0.1054719 0 1

Monroe County Community School 
Corporation indicator

1512 0.1415344 0.3486873 0 1

M S D Shakamak Schools indicator 1512 0.0013228 0.0363576 0 1

White River Valley School District 
indicator

1512 0.0575397 0.232948 0 1

North Lawrence Community 
Schools indicator

1512 0.0363757 0.187285 0 1

North Daviess Community Schools 
indicator

1512 0.0707672 0.2565204 0 1

Barr-Reeve Community School 
Corporation indicator

1512 0.0019841 0.0445141 0 1

Greater Clark County Schools 
indicator

1512 0.1541005 0.3611645 0 1

West Clark Community Schools 
indicator

1512 0.0284392 0.1662788 0 1

Pike County School Corporation 
indicator

1512 0.1580688 0.3649262 0 1

South Harrison Community 
Schools indicator

1512 0.0066138 0.0810824 0 1

M S D North Posey County 
Schools indicator

1512 0.0066138 0.0810824 0 1

North Spencer County School 
Corporation indicator

1512 0.0006614 0.0257172 0 1

M S D Mount Vernon indicator 1512 0.0079365 0.0887622 0 1

South Spencer County School 
Corporation indicator

1512 0.0291005 0.1681439 0 1
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Table C.3 Summary Statistics for Year Indicators 

 

Variable n Mean Std Dev Min Max

2004 Sale indicator 1512 0.0007 0.0257 0 1

2005 Sale indicator 1512 0.0013 0.0364 0 1

2006 Sale indicator 1512 0.0013 0.0364 0 1

2007 Sale indicator 1512 0.0026 0.0514 0 1

2008 Sale indicator 1512 0.1157 0.3200 0 1

2009 Sale indicator 1512 0.2176 0.4127 0 1

2010 Sale indicator 1512 0.2202 0.4145 0 1

2011 Sale indicator 1512 0.2050 0.4039 0 1

2012 Sale indicator 1512 0.2295 0.4206 0 1

2013 Sale indicator 1512 0.0060 0.0769 0 1
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Table C.4 Summary Statistics for Public Water Interaction Terms 

 

Variable n Mean Std Dev Min Max

Natural gas storage field indicator X 
Public Water

1512 0.07 0.26 0 1

Distance to nearest natural gas or 
oil field (meters) X Public Water

1512 5098.91 8008.76 0 31884.95

Distance to nearest natural gas 
storage well (meters) X Public Water

1512 1613.01 1757.00 0 8641.98

Distance to nearest observation well 
(meters) X Public Water

1512 11657.84 26269.58 0 84434.90

Distance to nearest abandoned 
natural gas storage well (meters) X 
Public water

1512 24221.31 30389.72 0 84225.27

Distance to nearest abandoned 
observation well (meters) X Public 
Water

1512 19852.26 28147.61 0 86986.13

Distance to nearest natural gas 
extraction well (meters) X Public 
Water

1512 12165.77 15885.68 0 71598.61

Distance to nearest natural gas and 
oil extraction well (meters) X Public 
Water

1512 35528.41 39887.70 0 137157.40

Distance to nearest oil extraction 
well (meters) X Public Water

1512 11453.14 18412.55 0 85930.77
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Table C.5 Summary Statistics for Quadratic Proximity Variables 

 

 
 
 
Table C.6 Summary Statistics for Cubed Proximity Variables 

 

Variable n Mean Std Dev Min Max

Distance to nearest natural gas or 
oil field squared

1512 1.80E+08 2.73E+08 0.00E+00 1.15E+09

Distance to nearest natural gas 
storage well squared

1512 8.72E+06 1.38E+07 2.09E+03 2.10E+08

Distance to nearest observation well 
squared

1512 1.23E+09 2.49E+09 4.33E+02 7.40E+09

Distance to nearest abandoned 
natural gas storage well squared

1512 2.13E+09 2.40E+09 7.55E+02 7.61E+09

Distance to nearest abandoned 
observation well squared

1512 1.94E+09 2.52E+09 7.73E+03 8.10E+09

Distance to nearest natural gas 
extraction well squared

1512 5.80E+08 9.66E+08 2.17E+03 5.13E+09

Distance to nearest natural gas and 
oil extraction well squared

1512 4.63E+09 5.37E+09 7.82E+06 2.02E+10

Distance to nearest oil extraction 
well squared

1512 1.23E+09 2.08E+09 6.27E+03 7.63E+09

Variable n Mean Std Dev Min Max

Distance to nearest natural gas or 
oil field cubed

1512 4.24E+12 7.55E+12 0 3.90E+13

Distance to nearest natural gas 
storage well cubed

1512 4.13E+10 1.54E+11 95471.13 3.03E+12

Distance to nearest observation well 
cubed

1512 9.69E+13 1.99E+14 9005.245 6.36E+14

Distance to nearest abandoned 
natural gas storage well cubed

1512 1.44E+14 1.94E+14 20757.71 6.64E+14

Distance to nearest abandoned 
observation well cubed

1512 1.35E+14 2.10E+14 679265.9 7.29E+14

Distance to nearest natural gas 
extraction well cubed

1512 2.50E+13 6.00E+13 101069.3 3.67E+14

Distance to nearest natural gas and 
oil extraction well cubed

1512 4.63E+14 6.78E+14 2.19E+10 2.88E+15

Distance to nearest oil extraction 
well cubed

1512 8.20E+13 1.57E+14 496985.4 6.67E+14
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Table C.7 Summary Statistics for Urban Interaction Terms 

 

Variable n Mean Std Dev Min Max

Natural gas storage field indicator X 
Urban Indicator

1512 0.0007 0.0257 0 1

Distance to nearest natural gas or 
oil field (meters) X Urban Indicator

1512 5733.55 9462.27 0 28166.39

Distance to nearest natural gas 
storage well (meters) X Urban 
Indicator

1512 643.24 1087.51 0 3806.51

Distance to nearest observation well 
(meters) X Urban Indicator

1512 10641.90 26623.11 0 80576.17

Distance to nearest abandoned 
natural gas storage well (meters) X 
Urban Indicator

1512 19326.56 31054.58 0 83290.17

Distance to nearest abandoned 
observation well (meters) X Urban 
Indicator

1512 18778.90 30526.81 0 82333.92

Distance to nearest natural gas 
extraction well (meters) X Urban 
Indicator

1512 7536.60 12087.97 0 34085.64

Distance to nearest natural gas and 
oil extraction well (meters) X Urban 
Indicator

1512 22433.52 38012.68 0 106000.70

Distance to nearest oil extraction 
well (meters) X Urban Indicator

1512 13150.28 25303.10 0 73729.68
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Table C.8 Summary Statistics for Lot Size Interaction Terms 

 

Variable n Mean Std Dev Min Max

Natural gas storage field indicator X 
Lot Size

1512 0.1683 1.4243 0 40

Distance to nearest natural gas or 
oil field (meters) X Lot Size

1512 5558.00 17058.52 0 429925

Distance to nearest natural gas 
storage well (meters) X Lot Size

1512 2550.46 9833.18 0 292502

Distance to nearest observation well 
(meters) X Lot Size

1512 12223.26 75500.16 0 2459903

Distance to nearest abandoned 
natural gas storage well (meters) X 
Lot Size

1512 31594.73 83836.50 0 1855934

Distance to nearest abandoned 
observation well (meters) X Lot Size

1512 27635.66 91865.01 0 2577479

Distance to nearest natural gas 
extraction well (meters) X Lot Size

1512 12282.58 26598.57 0 455187

Distance to nearest natural gas and 
oil extraction well (meters) X Lot 
Size

1512 49872.24 130406.00 0 3131606

Distance to nearest oil extraction 
well (meters) X Lot Size

1512 18520.40 77388.20 0 2503529
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Table C.9 Summary Statistics for Repeat Sales County Indicators 

 
 
 
 
Table C.10 Summary Statistics for Repeat Sales Year Indicators 

 

Variable n Mean Std Dev Min Max

Cass county indicator 529 0.0699 0.2553 0 1

Clark county indicator 529 0.1607 0.3676 0 1

Daviess county indicator 529 0.0681 0.2521 0 1

Decatur county indicator 529 0.0076 0.0867 0 1

Greene county indicator 529 0.0737 0.2616 0 1

Harrison county indicator 529 0.0151 0.1222 0 1

Huntington county indicator 529 0.2514 0.4342 0 1

Lawrence county indicator 529 0.0340 0.1815 0 1

Monroe county indicator 529 0.1285 0.3350 0 1

Pike county indicator 529 0.1191 0.3242 0 1

Posey county indicator 529 0.0076 0.0867 0 1

Randolph county indicator 529 0.0113 0.1060 0 1

Spencer county indicator 529 0.0151 0.1222 0 1

Vermillion county indicator 529 0.0076 0.0867 0 1

White county indicator 529 0.0302 0.1714 0 1

Variable n Mean Std Dev Min Max

2008 Sale indicator
529 0.0964 0.2954 0 1

2009 Sale indicator
529 0.2382 0.4264 0 1

2010 Sale indicator
529 0.2325 0.4228 0 1

2011 Sale indicator
529 0.2155 0.4116 0 1

2012 Sale indicator
529 0.2155 0.4116 0 1

2013 Sale indicator 529 0.0019 0.0435 0 1
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Table C.11 Summary Statistics for Repeat Sales Public Water Interaction Terms 

 

 
 
 

Table C.12 presents additional models using proximity treatment variables. 

Models 1 through 9 use only county level fixed effects, while Models 10 through 18 

employ only temporal fixed effects. Models 18 through 36 use combinations of school 

district fixed effects. The results presented within the models using only county level or 

school district level fixed effects as well as the school district fixed effects mirror those 

reported in Models 10 through 18 of Table 6.2. The results presented in the models using 

only temporal fixed effects mirror those presented in Models 1 through 9 of Table 6.2. 

Table C.13 presents additional models using proximity treatment variables and 

water interaction terms. Models 1 through 9 present results from regressions employing 

Variable n Mean Std Dev Min Max

Natural gas storage field indicator X 
Public Water

529 0.07561 0.26463 0 1

Distance to nearest natural gas or 
oil field (meters) X Public Water

529 6534.88 8579.19 0 31208.92

Distance to nearest natural gas 
storage well (meters) X Public Water

529 1559.57 1563.59 0 6465.34

Distance to nearest observation well 
(meters) X Public Water

529 16961.45 31264.57 0 79645.55

Distance to nearest abandoned 
natural gas storage well (meters) X 
Public water

529 29752.12 33187.82 0 82330.49

Distance to nearest abandoned 
observation well (meters) X Public 
Water

529 25370.45 31953.22 0 82192.27

Distance to nearest natural gas 
extraction well (meters) X Public 
Water

529 14690.14 16482.04 0 67307.55

Distance to nearest natural gas and 
oil extraction well (meters) X Public 
Water

529 40814.97 40859.82 0 136978.20

Distance to nearest oil extraction 
well (meters) X Public Water

529 13796.07 19189.07 0 71685.14
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only county level fixed effects. Models 10 through 18 use year fixed effects only, and 

Models 18 through 36 use combinations of temporal fixed effects and school district 

dummies. The results from the no fixed effects models and the county level and year 

fixed effects models reported in Chapter 6, are similar to those presented in this table.  

Table C.14 presents additional quadratic functional form model results from 

models using only level fixed effects, which were sufficiently similar to the results 

presented in Models 9 through 16 as to not require additional explanation. Table C.15 

present results from the cubic functional form model results. Models 1 through 8 do not 

use fixed effects, and Models 9 through 16 employ only county level fixed effects. The 

basic proximity treatment variable results indicated that county-level and year fixed 

effects captured some impacts that were being caught by the proximity treatment 

variables in the no fixed effects models, for this reason all models without fixed effects 

are contained within tables in this appendix. Additionally, the results presented in Models 

9 through 16 mirror those reported in Table 6.5. 

Tables C.16 and C.17 contain results from regressions including urban 

interactions or lot size interactions. As with the previous tables in this appendix, the 

results from Models 1 through 8 in both Table C.16 and C.17 do not employ fixed 

effects, which means that the results are biased. In addition, the results from Models 9 

through 16 mirror those results reported in Tables 6.6 and 6.7 respectively. 

Table C.18 and C.19 present additional intensity treatment variable results. Table 

C.18 includes results from intensity variable regressions without fixed effects and with 

county level fixed effects only. Table C.19 presents results from models with intensity 

measures and water interactions without fixed effects and with county level fixed effects 

only.  

Tables C.20 and C.21 include additional results from regressions employing the 

repeat sales data. Table C.20 includes results from models using only proximity treatment 

variables without fixed effects and with county fixed effects only. Table C.21 presents 

results from regressions using proximity treatment variables and water interactions 

without fixed effects and with county level fixed effects only.  
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Table C.12 Additional Proximity Variable Estimation Results 

  

 

 

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9)

-0.0724 - - - - - - - -

0.119 - - - - - - - -

- -0.0196 - - - - - - -

- 0.0192 - - - - - - -

- - -0.00126 - - - - - -

- - 0.0258 - - - - - -

- - - 0.00339 - - - - -

- - - 0.0242 - - - - -

- - - - -0.0135 - - - -

- - - - 0.0175 - - - -

- - - - - 0.0162 - - -

- - - - - 0.0102 - - -

- - - - - - -0.0321** - -

- - - - - - 0.0166 - -

- - - - - - - -0.0333** -

- - - - - - - 0.0128 -

- - - - - - - - -0.023

- - - - - - - - 0.0163

Hedonic Attributes? Yes Yes Yes Yes Yes Yes Yes Yes Yes

County Dummies? Yes Yes Yes Yes Yes Yes Yes Yes Yes

Year Dummies? No No No No No No No No No

Sample Size 1512 1512 1512 1512 1512 1512 1512 1512 1512

R
2

0.4374 0.4376 0.4372 0.4372 0.4374 0.4382 0.4386 0.4398 0.438

Distance to nearest natural gas extraction well 
(kilometers)

Distance to nearest natural gas and oil extraction 
well (kilometers)

Distance to nearest oil extraction well 
(kilometers)

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic regression results are nearly 
identical to those reported in Table 6.1.

Natural gas storage field indicator

Distance to nearest natural gas or oil field 
(kilometers)

Distance to nearest natural gas storage well 
(kilometers)

Distance to nearest observation well (kilometers)

Distance to nearest abandoned natural gas 
storage well (kilometers)

Distance to nearest abandoned observation well 
(kilometers)
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Table C.12, continued 

 

 

 

Variable (10) (11) (12) (13) (14) (15) (16) (17) (18)

-0.0912 - - - - - - - -

0.0909 - - - - - - - -

- 0.0167** - - - - - - -

- 0.00414 - - - - - - -

- - -0.05** - - - - - -

- - 0.017 - - - - - -

- - - -0.00315** - - - - -

- - - 0.00117 - - - - -

- - - - 0.00335** - - - -

- - - - 0.00127 - - - -

- - - - - 0.00272* - - -

- - - - - 0.00147 - - -

- - - - - - 0.00196 - -

- - - - - - 0.00182 - -

- - - - - - - 0.00263** -

- - - - - - - 0.000762 -

- - - - - - - - 0.00532**

- - - - - - - - 0.00145

Hedonic Attributes? Yes Yes Yes Yes Yes Yes Yes Yes Yes

County Dummies? No No No No No No No No No

Year Dummies? Yes Yes Yes Yes Yes Yes Yes Yes Yes

Sample Size 1512 1512 1512 1512 1512 1512 1512 1512 1512

R
2

0.4065 0.4125 0.4095 0.4089 0.4088 0.4074 0.4065 0.4108 0.4114

Distance to nearest natural gas extraction well 
(kilometers)

Distance to nearest natural gas and oil extraction 
well (kilometers)

Distance to nearest oil extraction well 
(kilometers)

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic regression results are nearly 
identical to those reported in Table 6.1.

Natural gas storage field indicator

Distance to nearest natural gas or oil field 
kilo(meters)

Distance to nearest natural gas storage well 
(kilometers)

Distance to nearest observation well (kilometers)

Distance to nearest abandoned natural gas 
storage well (kilometers)

Distance to nearest abandoned observation well 
(kilometers)
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Table C.12, continued 

 

 

 

Variable (19) (20) (21) (22) (23) (24) (25) (26) (27)

-0.0728 - - - - - - - -

0.119 - - - - - - - -

- -0.00104 - - - - - - -

- 0.0205 - - - - - - -

- - -0.0226 - - - - - -

- - 0.0266 - - - - - -

- - - -0.0117 - - - - -

- - - 0.0247 - - - - -

- - - - -0.00289 - - - -

- - - - 0.00558 - - - -

- - - - - 0.00349 - - -

- - - - - 0.00536 - - -

- - - - - - -0.0208 - -

- - - - - - 0.0187 - -

- - - - - - - -0.0232** -

- - - - - - - 0.0116 -

- - - - - - - - -0.0123

- - - - - - - - 0.0172

Hedonic Attributes? Yes Yes Yes Yes Yes Yes Yes Yes Yes

School District Dummies? Yes Yes Yes Yes Yes Yes Yes Yes Yes

Year Dummies? No No No No No No No No No

Sample Size 1512 1512 1512 1512 1512 1512 1512 1512 1512

R
2

0.4408 0.4407 0.441 0.4408 0.4408 0.4409 0.4412 0.4422 0.4409

Distance to nearest natural gas extraction well 
(kilometers)

Distance to nearest natural gas and oil extraction 
well (kilometers)

Distance to nearest oil extraction well 
(kilometers)

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic regression results are nearly 
identical to those reported in Table 6.1.

Natural gas storage field indicator

Distance to nearest natural gas or oil field 
(kilometers)

Distance to nearest natural gas storage well 
(kilometers)

Distance to nearest observation well (kilometers)

Distance to nearest abandoned natural gas 
storage well (kilometers)

Distance to nearest abandoned observation well 
(kilometers)
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Table C.12, continued 

 

 

 

Variable (28) (29) (30) (31) (32) (33) (34) (35) (36)

-0.0676 - - - - - - - -

0.1195 - - - - - - - -

- -0.00121 - - - - - - -

- 0.0206 - - - - - - -

- - -0.0225 - - - - - -

- - 0.0267 - - - - - -

- - - -0.0119 - - - - -

- - - 0.0248 - - - - -

- - - - -0.00312 - - - -

- - - - 0.0056 - - - -

- - - - - 0.00327 - - -

- - - - - 0.00538 - - -

- - - - - - -0.0204 - -

- - - - - - 0.0188 - -

- - - - - - - -0.0235** -

- - - - - - - 0.0116 -

- - - - - - - - -0.0123

- - - - - - - - 0.0173

Hedonic Attributes? Yes Yes Yes Yes Yes Yes Yes Yes Yes

School District Dummies? Yes Yes Yes Yes Yes Yes Yes Yes Yes

Year Dummies? Yes Yes Yes Yes Yes Yes Yes Yes Yes

Sample Size 1512 1512 1512 1512 1512 1512 1512 1512 1512

R
2

0.4432 0.4431 0.4434 0.4432 0.4432 0.4432 0.4435 0.4446 0.4433

Distance to nearest natural gas extraction well 
(kilometers)

Distance to nearest natural gas and oil extraction 
well (kilometers)

Distance to nearest oil extraction well 
(kilometers)

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic regression results are nearly 
identical to those reported in Table 6.1.

Natural gas storage field indicator

Distance to nearest natural gas or oil field 
(kilometers)

Distance to nearest natural gas storage well 
(kilometers)

Distance to nearest observation well (kilometers)

Distance to nearest abandoned natural gas 
storage well (kilometers)

Distance to nearest abandoned observation well 
(kilometers)
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Table C.13 Additional Proximity Variable and Public Water Access Interaction Estimation Results 

 

 

Variable (1) (2) (3) (4) (5) (6)

0.143 - - - - -
0.2351 - - - - -
-0.2538 - - - - -
0.2387 - - - - -

- -0.0218 - - - -
- 0.0195 - - - -
- 0.00509 - - - -
- 0.00702 - - - -
- - -0.0285 - - -
- - 0.0337 - - -
- - 0.0509 - - -
- - 0.0405 - - -
- - - 0.00106 - -
- - - 0.0242 - -
- - - -0.00445* - -
- - - 0.00237 - -
- - - - -0.0132 -
- - - - 0.0175 -
- - - - -0.000576 -
- - - - 0.00259 -
- - - - - 0.017
- - - - - 0.0104
- - - - - -0.000857
- - - - - 0.00259

Hedonic Attributes? Yes Yes Yes Yes Yes Yes

County Dummies? Yes Yes Yes Yes Yes Yes

Year Dummies? No No No No No No

Sample Size 1512 1512 1512 1512 1512 1512

R
2

0.4378 0.4378 0.4378 0.4386 0.4375 0.4382

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic regression results are 
nearly identical to those reported in Table 6.1.

Distance to nearest observation well (kilometers)

Distance to nearest observation well (kilometers) X Public 
Water
Distance to nearest abandoned natural gas storage well 
(kilometers)
Distance to nearest abandoned natural gas storage well 
(kilometers) X Public water
Distance to nearest abandoned observation well 
(kilometers)
Distance to nearest abandoned observation well 
(kilometers) X Public Water

Distance to nearest natural gas storage well (kilometers) X 
Public Water

Natural gas storage field indicator

Natural gas storage field indicator X Public Water

Distance to nearest natural gas or oil field (kilometers)

Distance to nearest natural gas or oil field (kilometers) X 
Public Water
Distance to nearest natural gas storage well (kilometers)
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Table C.13, continued 

 

Variable (7) (8) (9) (10) (11) (12)

- - - -0.0433 - -
- - - 0.1616 - -
- - - -0.0689 - -
- - - 0.1918 - -
- - - - 0.0138** -
- - - - 0.00525 -
- - - - 0.00537 -
- - - - 0.00593 -
- - - - - -0.0458
- - - - - 0.0301
- - - - - -0.00613
- - - - - 0.0359

-0.0343** - - - - -
0.0168 - - - - -
0.00471 - - - - -
0.00473 - - - - -

- -0.0324** - - - -
- 0.0128 - - - -
- 0.00153 - - - -
- 0.00181 - - - -
- - -0.0228 - - -
- - 0.0163 - - -
- - 0.00149 - - -
- - 0.0026 - - -

Hedonic Attributes? Yes Yes Yes Yes Yes Yes
County Dummies? Yes Yes Yes No No No
Year Dummies? No No No Yes Yes Yes
Sample Size 1512 1512 1512 1512 1512 1512

R
2

0.4390 0.4401 0.4381 0.4065 0.4128 0.4095

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic regression 
results are nearly identical to those reported in Table 6.1.

Distance to nearest natural gas extraction well 
(kilometers)
Distance to nearest natural gas extraction well 
(kilometers) X Public Water
Distance to nearest natural gas and oil extraction well 
(kilometers)
Distance to nearest natural gas and oil extraction well 
(kilometers) X Public Water
Distance to nearest oil extraction well (kilometers)

Distance to nearest oil extraction well (kilometers) X 
Public Water

Distance to nearest natural gas storage well (kilometers) 
X Public Water

Natural gas storage field indicator

Natural gas storage field indicator X Public Water

Distance to nearest natural gas or oil field (kilometers)

Distance to nearest natural gas or oil field (kilometers) X 
Public Water
Distance to nearest natural gas storage well (kilometers)
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Table C.13, continued 

 

Variable (13) (14) (15) (16) (17) (18)

0.000667 - - - - -
0.00167 - - - - -

-0.00689** - - - - -
0.00217 - - - - -

- 0.00262 - - - -
- 0.00178 - - - -
- 0.00121 - - - -
- 0.00206 - - - -
- - 0.00394** - - -
- - 0.00191 - - -
- - -0.00218 - - -
- - 0.0022 - - -
- - - -0.000393 - -
- - - 0.00344 - -
- - - 0.00318 - -
- - - 0.00395 - -
- - - - 0.00132 -
- - - - 0.00127 -
- - - - 0.0019 -
- - - - 0.00148 -
- - - - - 0.00415**
- - - - - 0.00179
- - - - - 0.00256
- - - - - 0.00228

Hedonic Attributes? Yes Yes Yes Yes Yes Yes
County Dummies? No No No No No No
Year Dummies? Yes Yes Yes Yes Yes Yes
Sample Size 1512 1512 1512 1512 1512 1512

R
2 0.4129 0.409 0.4078 0.4068 0.4114 0.4119

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic regression 
results are nearly identical to those reported in Table 6.1.

Distance to nearest natural gas extraction well 
(kilometers)
Distance to nearest natural gas extraction well 
(kilometers) X Public Water
Distance to nearest natural gas and oil extraction well 
(kilometers)
Distance to nearest natural gas and oil extraction well 
(kilometers) X Public Water
Distance to nearest oil extraction well (kilometers)

Distance to nearest oil extraction well (kilometers) X 
Public Water

Distance to nearest abandoned observation well 
(kilometers) X Public Water

Distance to nearest observation well (kilometers)

Distance to nearest observation well (kilometers) X 
Public Water
Distance to nearest abandoned natural gas storage well 
(kilometers)
Distance to nearest abandoned natural gas storage well 
(kilometers) X Public water
Distance to nearest abandoned observation well 
(kilometers)
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Table C.13, continued 

 

Variable (19) (20) (21) (22) (23) (24)

0.0911 - - - - -
0.2351 - - - - -
-0.1932 - - - - -
0.2389 - - - - -

- -0.00176 - - - -
- 0.0211 - - - -
- 0.00111 - - - -
- 0.00727 - - - -
- - -0.0429 - - -
- - 0.0341 - - -
- - 0.0386 - - -
- - 0.0404 - - -
- - - -0.0124 - -
- - - 0.0247 - -
- - - -0.00314 - -
- - - 0.00242 - -
- - - - -0.00216 -
- - - - 0.00591 -
- - - - -0.000985 -
- - - - 0.00261 -
- - - - - 0.00459
- - - - - 0.00578
- - - - - -0.00135
- - - - - 0.00262

Hedonic Attributes? Yes Yes Yes Yes Yes Yes

School District Dummies? Yes Yes Yes Yes Yes Yes

Year Dummies? No No No No No No

Sample Size 1512 1512 1512 1512 1512 1512

R
2 0.4411 0.4407 0.4413 0.4414 0.4409 0.441

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic regression results 
are nearly identical to those reported in Table 6.1.

Distance to nearest observation well (kilometers)

Distance to nearest observation well (kilometers) X 
Public Water
Distance to nearest abandoned natural gas storage well 
(kilometers)
Distance to nearest abandoned natural gas storage well 
(kilometers) X Public water
Distance to nearest abandoned observation well 
(kilometers)
Distance to nearest abandoned observation well 
(kilometers) X Public Water

Distance to nearest natural gas storage well (kilometers) 
X Public Water

Natural gas storage field indicator

Natural gas storage field indicator X Public Water

Distance to nearest natural gas or oil field (kilometers)

Distance to nearest natural gas or oil field (kilometers) X 
Public Water
Distance to nearest natural gas storage well (kilometers)



 
 

 

198 

Table C.13, continued 

 

 

Variable (25) (26) (27) (28) (29) (30)

- - - 0.1053 - -
- - - 0.2362 - -
- - - -0.2035 - -
- - - 0.2397 - -
- - - - -0.00203 -
- - - - 0.0212 -
- - - - 0.00126 -
- - - - 0.00729 -
- - - - - -0.0429
- - - - - 0.0341
- - - - - 0.0389
- - - - - 0.0406

-0.0225 - - - - -
0.0188 - - - - -
0.00401 - - - - -
0.00477 - - - - -

- -0.023** - - - -
- 0.0116 - - - -
- 0.000902 - - - -
- 0.00185 - - - -
- - -0.0121 - - -
- - 0.0172 - - -
- - -0.000409 - - -
- - 0.00273 - - -

Hedonic Attributes? Yes Yes Yes Yes Yes Yes
School District Dummies? Yes Yes Yes Yes Yes Yes
Year Dummies? No No No Yes Yes Yes
Sample Size 1512 1512 1512 1512 1512 1512

R
2 0.4414 0.4423 0.4409 0.4435 0.4431 0.4437

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic regression results 
are nearly identical to those reported in Table 6.1.

Distance to nearest natural gas extraction well 
(kilometers)
Distance to nearest natural gas extraction well 
(kilometers) X Public Water
Distance to nearest natural gas and oil extraction well 
(kilometers)
Distance to nearest natural gas and oil extraction well 
(kilometers) X Public Water
Distance to nearest oil extraction well (kilometers)

Distance to nearest oil extraction well (kilometers) X 
Public Water

Distance to nearest natural gas storage well (kilometers) 
X Public Water

Natural gas storage field indicator

Natural gas storage field indicator X Public Water

Distance to nearest natural gas or oil field (kilometers)

Distance to nearest natural gas or oil field (kilometers) X 
Public Water
Distance to nearest natural gas storage well (kilometers)
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Table C.13, continued 

 

 

Variable (31) (32) (33) (34) (35) (36)

-0.0125 - - - - -
0.0248 - - - - -

-0.00303 - - - - -
0.00243 - - - - -

- -0.00251 - - - -
- 0.00593 - - - -
- -0.000812 - - - -
- 0.00262 - - - -
- - 0.00421 - - -
- - 0.0058 - - -
- - -0.00114 - - -
- - 0.00264 - - -
- - - -0.0222 - -
- - - 0.0189 - -
- - - 0.00424 - -
- - - 0.00478 - -
- - - - -0.0233** -
- - - - 0.0116 -
- - - - 0.00104 -
- - - - 0.00186 -
- - - - - -0.0122
- - - - - 0.0173
- - - - - -0.000256
- - - - - 0.00274

Hedonic Attributes? Yes Yes Yes Yes Yes Yes
School District Dummies? Yes Yes Yes Yes Yes Yes
Year Dummies? Yes Yes Yes Yes Yes Yes
Sample Size 1512 1512 1512 1512 1512 1512

R
2 0.4438 0.4432 0.4433 0.4438 0.4448 0.4433

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic regression results 
are nearly identical to those reported in Table 6.1.

Distance to nearest natural gas extraction well 
(kilometers)
Distance to nearest natural gas extraction well 
(kilometers) X Public Water
Distance to nearest natural gas and oil extraction well 
(kilometers)
Distance to nearest natural gas and oil extraction well 
(kilometers) X Public Water
Distance to nearest oil extraction well (kilometers)

Distance to nearest oil extraction well (kilometers) X 
Public Water

Distance to nearest abandoned observation well 
(kilometers) X Public Water

Distance to nearest observation well (kilometers)

Distance to nearest observation well (kilometers) X 
Public Water
Distance to nearest abandoned natural gas storage well 
(kilometers)
Distance to nearest abandoned natural gas storage well 
(kilometers) X Public water
Distance to nearest abandoned observation well 
(kilometers)
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Table C.14 Additional Quadratic Functional Form Specification Estimation Results 

 

Variable (1) (2) (3) (4)

0.0279 - - -

0.0276 - - -

-0.00259** - - -

0.00105 - - -

- 0.122** - -

- 0.0457 - -

- -0.0143** - -

- 0.0044 - -

- - 0.00471 -

- - 0.0305 -

- - -0.0000246 -

- - 0.000346 -

- - - -0.0252

- - - 0.0316

- - - 0.000157

- - - 0.000353

Hedonic Attributes? Yes Yes Yes Yes

County Dummies? Yes Yes Yes Yes

Year Dummies? No No No No

Sample Size 1512 1512 1512 1512

R
2 0.4398 0.4412 0.4372 0.4375

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic 
regression results are nearly identical to those reported in Table 6.1.

Distance to nearest abandoned natural gas storage well 
(kilometers)

Distance to nearest abandoned natural gas storage well 
(kilometers) squared

Distance to nearest natural gas or oil field (kilometers)

Distance to nearest natural gas or oil field (kilometers) 
squared

Distance to nearest natural gas storage well (kilometers)

Distance to nearest natural gas storage well (kilometers) 
squared

Distance to nearest observation well (kilometers)

Distance to nearest observation well (kilometers) squared
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Table C.14, continued 

 

Variable (5) (6) (7) (8)

0.0278 - - -

0.0179 - - -

-0.000246 - - -

0.000314 - - -

- -0.0311 - -

- 0.0249 - -

- -0.0000258 - -

- 0.000483 - -

- - -0.0245 -

- - 0.0204 -

- - -0.000107 -

- - 0.000194 -

- - - 0.0107

- - - 0.0212

- - - -0.000735**

- - - 0.000297

Hedonic Attributes? Yes Yes Yes Yes

County Dummies? Yes Yes Yes Yes

Year Dummies? No No No No

Sample Size 1512 1512 1512 1512

R
2

0.4384 0.4386 0.4399 0.4403

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic 
regression results are nearly identical to those reported in Table 6.1.

Distance to nearest abandoned observation well (kilometers)

Distance to nearest abandoned observation well (kilometers) 
squared

Distance to nearest natural gas extraction well (kilometers)

Distance to nearest natural gas extraction well (kilometers) 
squared

Distance to nearest natural gas and oil extraction well 
(kilometers)

Distance to nearest natural gas and oil extraction well 
(kilometers) squared

Distance to nearest oil extraction well (kilometers)

Distance to nearest oil extraction well (kilometers) squared
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Table C.15 Additional Cubic Functional Form Specification Estimation Results 

 

Variable (1) (2) (3) (4)

-0.036 - - -
0.0273 - - -

0.00585** - - -
0.00266 - - -

-0.00014** - - -
0.0000635 - - -

- 0.0957 - -
- 0.0849 - -
- -0.0242 - -
- 0.0201 - -
- 0.000547 - -
- 0.00111 - -
- - -0.0491** -
- - 0.0204 -
- - 0.00066 -
- - 0.000612 -
- - -0.00000115 -
- - 0.00000501 -
- - - 0.0179
- - - 0.0222
- - - -0.000045
- - - 0.000655
- - - -0.00000196
- - - 0.0000048

Hedonic Attributes? Yes Yes Yes Yes

County Dummies? No No No No

Year Dummies? No No No No

Sample Size 1512 1512 1512 1512

R
2 0.4123 0.4121 0.4108 0.4205

Distance to nearest natural gas storage well 
(kilometers) cubed

Distance to nearest natural gas or oil field (kilometers)

Distance to nearest natural gas or oil field (kilometers) 
squared
Distance to nearest natural gas or oil field (kilometers) 
cubed
Distance to nearest natural gas storage well 
(kilometers)
Distance to nearest natural gas storage well 
(kilometers) squared

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic regression 
results are nearly identical to those reported in Table 6.1.

Distance to nearest observation well (kilometers)

Distance to nearest observation well (kilometers) 
squared
Distance to nearest observation well (kilometers) cubed

Distance to nearest abandoned natural gas storage well 
(kilometers)
Distance to nearest abandoned natural gas storage well 
(kilometers) squared
Distance to nearest abandoned natural gas storage well 
(kilometers) cubed
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Table C.15, continued 

 

Variable (5) (6) (7) (8)

0.0279** - - -
0.00939 - - -

-0.000212 - - -
0.000314 - - -

-0.000000953 - - -
0.00000258 - - -

- 0.0388** - -
- 0.0138 - -
- -0.00141** - -
- 0.000528 - -
- 0.0000136** - -
- 0.00000549 - -
- - -0.000621 -
- - 0.00765 -
- - 0.00023* -
- - 0.000144 -
- - -0.00000172** -
- - 0.000000735 -
- - - -0.0211**
- - - 0.00956
- - - 0.0009**
- - - 0.000355
- - - -0.00000748**
- - - 0.00000332

Hedonic Attributes? Yes Yes Yes Yes

County Dummies? No No No No

Year Dummies? No No No No

Sample Size 1512 1512 1512 1512

R
2 0.4219 0.4073 0.4164 0.4123

Distance to nearest natural gas extraction well 
(kilometers) cubed

Distance to nearest abandoned observation well 
(kilometers)
Distance to nearest abandoned observation well 
(kilometers) squared
Distance to nearest abandoned observation well 
(kilometers) cubed
Distance to nearest natural gas extraction well 
(kilometers)
Distance to nearest natural gas extraction well 
(kilometers) squared

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic regression 
results are nearly identical to those reported in Table 6.1.

Distance to nearest natural gas and oil extraction well 
(kilometers)
Distance to nearest natural gas and oil extraction well 
(kilometers) squared
Distance to nearest natural gas and oil extraction well 
(kilometers)cubed
Distance to nearest oil extraction well (kilometers)

Distance to nearest oil extraction well (kilometers) 
squared
Distance to nearest oil extraction well (kilometers) 
cubed
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Table C.15, continued 

 

Variable (9) (10) (11) (12)

0.0416 - - -
0.0492 - - -

-0.00458 - - -
0.00621 - - -

0.0000476 - - -
0.000141 - - -

- 0.039 - -
- 0.0911 - -
- 0.00792 - -
- 0.0217 - -
- -0.00125 - -
- 0.00119 - -
- - 0.138** -
- - 0.0455 -
- - -0.0164** -
- - 0.00418 -
- - 0.000129** -
- - 0.0000329 -
- - - 0.0225
- - - 0.0368
- - - -0.00254**
- - - 0.00112
- - - 0.0000263**
- - - 0.0000104

Hedonic Attributes? Yes Yes Yes Yes

County Dummies? Yes Yes Yes Yes

Year Dummies? No No No No

Sample Size 1512 1512 1512 1512

R
2 0.4398 0.4416 0.4431 0.4399

Distance to nearest natural gas storage well 
(kilometers) cubed

Distance to nearest natural gas or oil field (kilometers)

Distance to nearest natural gas or oil field (kilometers) 
squared
Distance to nearest natural gas or oil field (kilometers) 
cubed
Distance to nearest natural gas storage well 
(kilometers)
Distance to nearest natural gas storage well 
(kilometers) squared

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic regression 
results are nearly identical to those reported in Table 6.1.

Distance to nearest observation well (kilometers)

Distance to nearest observation well (kilometers) 
squared
Distance to nearest observation well (kilometers) cubed

Distance to nearest abandoned natural gas storage well 
(kilometers)
Distance to nearest abandoned natural gas storage well 
(kilometers) squared
Distance to nearest abandoned natural gas storage well 
(kilometers) cubed
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Table C.15, continued 

 

Variable (13) (14) (15) (16)

0.0438 - - -
0.0307 - - -

-0.000861 - - -
0.00101 - - -

0.00000503 - - -
0.00000781 - - -

- -0.0199 - -
- 0.0407 - -
- -0.000623 - -
- 0.00179 - -
- 0.00000612 - -
- 0.0000177 - -
- - -0.0278 -
- - 0.0295 -
- - -0.00000378 -
- - 0.000695 -
- - -0.000000605 -
- - 0.00000391 -
- - - 0.0732**
- - - 0.0332
- - - -0.00494**
- - - 0.00175
- - - 0.000034**
- - - 0.0000139

Hedonic Attributes? Yes Yes Yes Yes

County Dummies? Yes Yes Yes Yes

Year Dummies? No No No No

Sample Size 1512 1512 1512 1512

R
2 0.4386 0.4387 0.4399 0.4425

Distance to nearest natural gas extraction well 
(kilometers) cubed

Distance to nearest abandoned observation well 
(kilometers)
Distance to nearest abandoned observation well 
(kilometers) squared
Distance to nearest abandoned observation well 
(kilometers) cubed
Distance to nearest natural gas extraction well 
(kilometers)
Distance to nearest natural gas extraction well 
(kilometers) squared

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic regression 
results are nearly identical to those reported in Table 6.1.

Distance to nearest natural gas and oil extraction well 
(kilometers)
Distance to nearest natural gas and oil extraction well 
(kilometers) squared
Distance to nearest natural gas and oil extraction well 
(kilometers) cubed
Distance to nearest oil extraction well (kilometers)

Distance to nearest oil extraction well (kilometers) 
squared
Distance to nearest oil extraction well (kilometers) 
cubed
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Table C.16 Additional Proximity Variable and Urban Term Interaction Estimation Results 

 

Variable (1) (2) (3) (4) (5) (6)

0.014** - - - - -
0.00437 - - - - -
0.0202* - - - - -
0.0111 - - - - -

- -0.0613** - - - -
- 0.0173 - - - -
- 0.215** - - - -
- 0.0733 - - - -
- - 0.00167 - - -
- - 0.00163 - - -
- - -0.0093** - - -
- - 0.00221 - - -
- - - 0.0066** - -
- - - 0.00133 - -
- - - -0.0289** - -
- - - 0.00443 - -
- - - - 0.0075** -
- - - - 0.00162 -
- - - - -0.0257** -
- - - - 0.004 -
- - - - - 0.000922
- - - - - 0.00185
- - - - - 0.0325**
- - - - - 0.0113

Hedonic Attributes? Yes Yes Yes Yes Yes Yes
County Dummies? No No No No No No
Year Dummies? No No No No No No
Sample Size 1512 1512 1512 1512 1512 1512

R
2 0.4416 0.4106 0.4136 0.4233 0.4212 0.4076

Distance to nearest observation well (kilometers) X 
Urban Indicator

Distance to nearest natural gas or oil field (kilometers)

Distance to nearest natural gas or oil field (kilometers) X 
Urban Indicator
Distance to nearest natural gas storage well (kilometers)

Distance to nearest natural gas storage well (kilometers) 
X Urban Indicator
Distance to nearest observation well (kilometers)

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic regression results 
are nearly identical to those reported in Table 6.1.

Distance to nearest abandoned natural gas storage well 
(kilometers)
Distance to nearest abandoned natural gas storage well 
(kilometers) X Urban Indicator
Distance to nearest abandoned observation well 
(kilometers)
Distance to nearest abandoned observation well 
(kilometers) X Urban Indicator
Distance to nearest natural gas extraction well 
(kilometers)
Distance to nearest natural gas extraction well 
(kilometers) X Urban Indicator
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Table C.16, continued 

 

Variable (7) (8) (9) (10) (11) (12)

- - -0.0197 - - -
- - 0.0192 - - -
- - 0.00777 - - -
- - 0.0156 - - -
- - - -0.0253 - -
- - - 0.0277 - -
- - - 0.181** - -
- - - 0.076 - -
- - - - -0.00764 -
- - - - 0.0246 -
- - - - -0.0079** -
- - - - 0.00309 -
- - - - - -0.0089
- - - - - 0.0175
- - - - - -0.0208**
- - - - - 0.00779

0.0016** - - - - -
0.000806 - - - - -
0.0084** - - - - -
0.00234 - - - - -

- 0.0023 - - - -
- 0.00182 - - - -
- 0.0076** - - - -
- 0.00279 - - - -

Hedonic Attributes? Yes Yes Yes Yes Yes Yes
County Dummies? No No Yes Yes Yes Yes
Year Dummies? No No No No No No
Sample Size 1512 1512 1512 1512 1512 1512

R
2 0.4137 0.4121 0.4377 0.4394 0.4397 0.4401

Distance to nearest observation well (kilometers) X 
Urban Indicator

Distance to nearest natural gas or oil field (kilometers)

Distance to nearest natural gas or oil field (kilometers) X 
Urban Indicator
Distance to nearest natural gas storage well (kilometers)

Distance to nearest natural gas storage well (kilometers) 
X Urban Indicator
Distance to nearest observation well (kilometers)

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic regression results 
are nearly identical to those reported in Table 6.1.

Distance to nearest abandoned natural gas storage well 
(kilometers)
Distance to nearest abandoned natural gas storage well 
(kilometers) X Urban Indicator
Distance to nearest natural gas and oil extraction well 
(kilometers)
Distance to nearest natural gas and oil extraction well 
(kilometers) X Urban Indicator
Distance to nearest oil extraction well (kilometers)

Distance to nearest oil extraction well (kilometers) X 
Urban Indicator
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Table C.16, continued 

 

 

Variable (13) (14) (15) (16)

0.0193* - - -

0.0102 - - -

-0.0152** - - -

0.00581 - - -

- -0.0323* - -

- 0.0166 - -

- 0.0103 - -

- 0.0159 - -

- - -0.0296** -

- - 0.0129 -

- - 0.0074* -

- - 0.00437 -

- - - -0.0196

- - - 0.0164

- - - 0.0072*

- - - 0.00424

Hedonic Attributes? Yes Yes Yes Yes

County Dummies? Yes Yes Yes Yes

Year Dummies? No No No No

Sample Size 1512 1512 1512 1512

R
2 0.4408 0.4388 0.4409 0.4391

Distance to nearest abandoned observation well 
(kilometers)

Distance to nearest abandoned observation well 
(kilometers) X Urban Indicator

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic regression 
results are nearly identical to those reported in Table 6.1.

Distance to nearest natural gas extraction well 
(kilometers)

Distance to nearest natural gas extraction well 
(kilometers) X Urban Indicator

Distance to nearest natural gas and oil extraction well 
(kilometers)

Distance to nearest natural gas and oil extraction well 
(kilometers) X Urban Indicator

Distance to nearest oil extraction well (kilometers)

Distance to nearest oil extraction well (kilometers) X 
Urban Indicator
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Table C.17 Additional Proximity Variable and Lot Size Interaction Estimation Results 

 

Variable (1) (2) (3) (4) (5) (6)

-0.0475 - - - - -
0.0956 - - - - -
-0.0351 - - - - -
0.0227 - - - - -

- 0.015** - - - -
- 0.00453 - - - -
- 0.00186 - - - -
- 0.0021 - - - -
- - -0.0491** - - -
- - 0.0191 - - -
- - -0.000382 - - -
- - 0.00767 - - -
- - - -0.00347** - -
- - - 0.00122 - -
- - - 0.00039 - -
- - - 0.000425 - -
- - - - 0.00263* -
- - - - 0.00137 -
- - - - 0.000661 -
- - - - 0.000445 -
- - - - - 0.00233
- - - - - 0.00153
- - - - - 0.000413
- - - - - 0.000431

Hedonic Attributes? Yes Yes Yes Yes Yes Yes
County Dummies? No No No No No No
Year Dummies? No No No No No No
Sample Size 1512 1512 1512 1512 1512 1512

R
2 0.4052 0.4106 0.4072 0.4070 0.4077 0.4056

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic regression 
results are nearly identical to those reported in Table 6.1.

Distance to nearest observation well (kilometers)

Distance to nearest observation well (kilometers) X Lot Size

Distance to nearest abandoned natural gas storage well 
(kilometers)
Distance to nearest abandoned natural gas storage well 
(kilometers) X Lot Size
Distance to nearest abandoned observation well 
(kilometers)
Distance to nearest abandoned observation well 
(kilometers) X Lot Size

Distance to nearest natural gas storage well (kilometers) X 
Lot Size

Natural gas storage field indicator

Natural gas storage field indicator X Lot Size

Distance to nearest natural gas or oil field (kilometers)

Distance to nearest natural gas or oil field (kilometers) X 
Lot Size
Distance to nearest natural gas storage well (kilometers)
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Table C.17, continued 

 

Variable (7) (8) (9) (10) (11) (12)

- - - -0.0394 - -
- - - 0.1224 - -
- - - -0.0263 - -
- - - 0.0226 - -
- - - - -0.0306 -
- - - - 0.021 -
- - - - 0.00292 -
- - - - 0.00222 -
- - - - - -0.00817
- - - - - 0.0288
- - - - - 0.00425
- - - - - 0.00786

0.00106 - - - - -
0.00197 - - - - -
0.00173 - - - - -
0.0014 - - - - -

- 0.00257** - - - -
- 0.00078 - - - -
- 0.000133 - - - -
- 0.000299 - - - -
- - 0.00587** - - -
- - 0.00153 - - -
- - -0.0005 - - -
- - 0.000444 - - -

Hedonic Attributes? Yes Yes Yes Yes Yes Yes
County Dummies? No No No Yes Yes Yes
Year Dummies? No No No No No No
Sample Size 1512 1512 1512 1512 1512 1512

R
2 0.4049 0.4088 0.4097 0.4379 0.4383 0.4373

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic regression 
results are nearly identical to those reported in Table 6.1.

Distance to nearest natural gas extraction well (kilometers)

Distance to nearest natural gas extraction well (kilometers) 
X Lot Size
Distance to nearest natural gas and oil extraction well 
(kilometers)
Distance to nearest natural gas and oil extraction well 
(kilometers) X Lot Size
Distance to nearest oil extraction well (kilometers)

Distance to nearest oil extraction well (kilometers) X Lot 
Size

Distance to nearest natural gas storage well (kilometers) X 
Lot Size

Natural gas storage field indicator

Natural gas storage field indicator X Lot Size

Distance to nearest natural gas or oil field (kilometers)

Distance to nearest natural gas or oil field (kilometers) X 
Lot Size
Distance to nearest natural gas storage well (kilometers)
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Table C.17, continued 

 

Variable (13) (14) (15) (16) (17) (18)

0.00426 - - - - -
0.0243 - - - - -

0.000396 - - - - -
0.000435 - - - - -

- -0.0133 - - - -
- 0.0175 - - - -
- 0.000107 - - - -
- 0.000453 - - - -
- - 0.0161 - - -
- - 0.0102 - - -
- - 0.000163 - - -
- - 0.000432 - - -
- - - -0.0352** - -
- - - 0.0169 - -
- - - 0.00152 - -
- - - 0.00145 - -
- - - - -0.0332** -
- - - - 0.0128 -
- - - - -0.000042 -
- - - - 0.000301 -
- - - - - -0.023
- - - - - 0.0163
- - - - - -0.000143
- - - - - 0.000448

Hedonic Attributes? Yes Yes Yes Yes Yes Yes
County Dummies? Yes Yes Yes Yes Yes Yes
Year Dummies? No No No No No No
Sample Size 1512 1512 1512 1512 1512 1512

R
2 0.4375 0.4375 0.4382 0.4390 0.4398 0.4380

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic regression 
results are nearly identical to those reported in Table 6.1.

Distance to nearest natural gas extraction well (kilometers)

Distance to nearest natural gas extraction well (kilometers) 
X Lot Size
Distance to nearest natural gas and oil extraction well 
(kilometers)
Distance to nearest natural gas and oil extraction well 
(kilometers) X Lot Size
Distance to nearest oil extraction well (kilometers)

Distance to nearest oil extraction well (kilometers) X Lot 
Size

Distance to nearest abandoned observation well 
(kilometers) X Lot Size

Distance to nearest observation well (kilometers)

Distance to nearest observation well (kilometers) X Lot Size

Distance to nearest abandoned natural gas storage well 
(kilometers)
Distance to nearest abandoned natural gas storage well 
(kilometers) X Lot Size
Distance to nearest abandoned observation well 
(kilometers)



 
 

 

212 

Table C.18 Additional Intensity Variable Estimation Results 

 

 

 

 

Variable (1) (2) (3) (4) (5) (6)

0.00089 - - - - -

0.0126 - - - - -

- 0.018 - - - -

- 0.0141 - - - -

- - 0.024 - - -

- - 0.0179 - - -

- - - 0.048 - -

- - - 0.0548 - -

- - - - -0.128* -

- - - - 0.0695 -

- - - - - -0.0302

- - - - - 0.0227

Hedonic Attributes? Yes Yes Yes Yes Yes Yes

County Dummies? No No No No No No

Year Dummies? No No No No No No

Sample Size 1512 1512 1512 1512 1512 1512

R
2 0.4038 0.4045 0.4045 0.4041 0.4052 0.4045

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic regression results are nearly 
identical to those reported in Table 6.1. All results reported are scaled by a factor of 10.

All Wells Intensity Measure (Count of wells within 2 
miles)

Storage Intensity Measure (Count of all Gas Storage and 
Observation wells within 2 miles)

Gas Storage Wells Only Intensity Measure (Count of all 
Gas Storage wells within 2 miles)

Observation Wells Intensity Measure (Count of all 
Observation wells within 2 miles)

Abandoned Gas Storage Intensity Measure (Count of all 
Abandoned Gas Storage wells within 2 miles)

ExtractionWells Only Intensity Measure (Count of all 
Extraction wells within 2 miles)
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Table C.18, continued 

 

 

 

 

Variable (7) (8) (9) (10) (11) (12)

-0.0272 - - - - -

0.0165 - - - - -

- -0.0432* - - - -

- 0.024 - - - -

- - -0.0476* - - -

- - 0.028 - - -

- - - -0.269** - -

- - - 0.137 - -

- - - - 0.0789 -

- - - - 0.1298 -

- - - - - -0.0174

- - - - - 0.0244

Hedonic Attributes? Yes Yes Yes Yes Yes Yes

County Dummies? Yes Yes Yes Yes Yes Yes

Year Dummies? No No No No No No

Sample Size 1512 1512 1512 1512 1512 1512

R
2 0.4382 0.4384 0.4383 0.4387 0.4374 0.4374

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic regression results are nearly 
identical to those reported in Table 6.1. All results reported are scaled by a factor of 10.

All Wells Intensity Measure (Count of wells within 2 
miles)

Storage Intensity Measure (Count of all Gas Storage and 
Observation wells within 2 miles)

Gas Storage Wells Only Intensity Measure (Count of all 
Gas Storage wells within 2 miles)

Observation Wells Intensity Measure (Count of all 
Observation wells within 2 miles)

Abandoned Gas Storage Intensity Measure (Count of all 
Abandoned Gas Storage wells within 2 miles)

ExtractionWells Only Intensity Measure (Count of all 
Extraction wells within 2 miles)
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Table C.19 Additional Intensity Variable and Water Access Interaction Estimation Results 

 

 

Variable (1) (2) (3) (4) (5) (6)

-0.0615** - - - - -
0.0248 - - - - -

0.0837** - - - - -

0.0287 - - - - -
- -0.0814** - - - -
- 0.0341 - - - -

- 0.121** - - - -
- 0.0377 - - - -
- - -0.106** - - -

- - 0.0438 - - -
- - 0.157** - - -

- - 0.0483 - - -
- - - -0.254** - -
- - - 0.132 - -

- - - 0.368** - -
- - - 0.146 - -
- - - - -0.00731 -

- - - - 0.106 -
- - - - -0.207 -

- - - - 0.138 -
- - - - - -0.0284
- - - - - 0.0297

- - - - - -0.00422
- - - - - 0.045

Hedonic Attributes? Yes Yes Yes Yes Yes Yes
County Dummies? No No No No No No
Year Dummies? No No No No No No

Sample Size 1512 1512 1512 1512 1512 1512

R
2 0.4072 0.4085 0.4087 0.4066 0.4061 0.4045

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic regression results are nearly identical to 
those reported in Table 6.1. All resultsreported are scaled by a factor of 10.

Observation Wells Intensity Measure (Count of all Observation wells 
within 2 miles)

Observation Wells Intensity Measure (Count of all Observation wells 
within 2 miles) X Public Water Indicator

Abandoned Gas Storage Intensity Measure (Count of all Abandoned 
Gas Storage wells within 2 miles)

Abandoned Gas Storage Intensity Measure (Count of all Abandoned 
Gas Storage wells within 2 miles) X Public Water Indicator

ExtractionWells Only Intensity Measure (Count of all Extraction wells 
within 2 miles)

ExtractionWells Only Intensity Measure (Count of all Extraction wells 
within 2 miles) X Public Water Indicator

Gas Storage Wells Only Intensity Measure (Count of all Gas Storage 
wells within 2 miles) X Public Water Indicator

All Wells Intensity Measure (Count of wells within 2 miles)

All Wells Intensity Measure (Count of wells within 2 miles) X Public 
Water Indicator

Storage Intensity Measure (Count of all Gas Storage and Observation 
wells within 2 miles)

Storage Intensity Measure (Count of all Gas Storage and Observation 
wells within 2 miles) X Public Water Indicator

Gas Storage Wells Only Intensity Measure (Count of all Gas Storage 
wells within 2 miles)
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Table C.20 Additional Repeat Sales Proximity Variable Estimation Results 

 

 

 

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9)

-0.1450 - - - - - - - -

0.1501 - - - - - - - -
- 0.0203** - - - - - - -

- 0.00699 - - - - - - -

- - -0.0855** - - - - - -

- - 0.0286 - - - - - -

- - - -0.00403** - - - - -

- - - 0.00195 - - - - -

- - - - 0.00186 - - - -

- - - - 0.00231 - - - -

- - - - - 0.000795 - - -

- - - - - 0.00267 - - -

- - - - - - 0.00163 - -

- - - - - - 0.0029 - -
- - - - - - - 0.00214* -

- - - - - - - 0.00124 -

- - - - - - - - 0.00768**

- - - - - - - - 0.00266

Hedonic Attributes? Yes Yes Yes Yes Yes Yes Yes Yes Yes

County Dummies? No No No No No No No No No

Year Dummies? No No No No No No No No No

Sample Size 529 529 529 529 529 529 529 529 529

R
2 0.4202 0.4285 0.4291 0.4239 0.4198 0.4192 0.4195 0.4225 0.4285

Distance to nearest natural gas extraction 
well (kilometers)

Distance to nearest natural gas and oil 
extraction well (kilometers)

Distance to nearest oil extraction well 
(kilometers)

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic regression 
results are nearly identical to those reported in Table 6.1.

Natural gas storage field indicator

Distance to nearest natural gas or oil field 
(kilometers)

Distance to nearest natural gas storage 
well (kilometers)

Distance to nearest observation well 
(kilometers)

Distance to nearest abandoned natural 
gas storage well (kilometers)

Distance to nearest abandoned 
observation well (kilometers)
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Table C.20, continued 

 

 

 

Variable (10) (11) (12) (13) (14) (15) (16) (17) (18)

-0.1825 - - - - - - - -

0.204 - - - - - - - -

- -0.00603 - - - - - - -
- 0.0342 - - - - - - -

- - -0.0681 - - - - - -

- - 0.0487 - - - - - -

- - - -0.0324 - - - - -
- - - 0.0497 - - - - -

- - - - 0.00813 - - - -

- - - - 0.0351 - - - -
- - - - - 0.0302 - - -

- - - - - 0.0207 - - -

- - - - - - -0.0225 - -
- - - - - - 0.0319 - -

- - - - - - - -0.00185 -

- - - - - - - 0.0232 -

- - - - - - - - -0.0087
- - - - - - - - 0.0309

Hedonic Attributes? Yes Yes Yes Yes Yes Yes Yes Yes Yes
County Dummies? Yes Yes Yes Yes Yes Yes Yes Yes Yes

Year Dummies? No No No No No No No No No

Sample Size 529 529 529 529 529 529 529 529 529

R
2 0.4559 0.455 0.4571 0.4555 0.4551 0.4573 0.4556 0.455 0.4551

Distance to nearest natural gas extraction 
well (kilometers)

Distance to nearest natural gas and oil 
extraction well (kilometers)

Distance to nearest oil extraction well 
(kilometers)

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic regression 
results are nearly identical to those reported in Table 6.1.

Natural gas storage field indicator

Distance to nearest natural gas or oil field 
(kilometers)

Distance to nearest natural gas storage 
well (kilometers)

Distance to nearest observation well 
(kilometers)

Distance to nearest abandoned natural gas 
storage well (kilometers)

Distance to nearest abandoned 
observation well (kilometers)
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Table C.21 Additional Repeat Sales Proximity Variable and Public Water Access Interaction Estimation Results 

 

Variable (1) (2) (3) (4) (5) (6)

0.0363 - - - - -
0.2737 - - - - -
-0.2507 - - - - -
0.3165 - - - - -

- 0.0149 - - - -
- 0.00927 - - - -
- 0.00885 - - - -
- 0.01 - - - -
- - -0.149** - - -
- - 0.0463 - - -
- - 0.103* - - -
- - 0.0589 - - -
- - - 0.0000499 - -
- - - 0.00273 - -
- - - -0.00705** - -
- - - 0.00331 - -
- - - - 0.0011 -
- - - - 0.00291 -
- - - - 0.00144 -
- - - - 0.00335 -
- - - - - 0.00127
- - - - - 0.00326
- - - - - -0.000929
- - - - - 0.00365

Hedonic Attributes? Yes Yes Yes Yes Yes Yes
County Dummies? No No No No No No
Year Dummies? No No No No No No
Sample Size 529 529 529 529 529 529

R
2 0.4209 0.4294 0.4325 0.429 0.4201 0.4193

Distance to nearest natural gas storage well (kilometers) 
X Public Water

Natural gas storage field indicator

Natural gas storage field indicator X Public Water

Distance to nearest natural gas or oil field (kilometers)

Distance to nearest natural gas or oil field (kilometers) X 
Public Water
Distance to nearest natural gas storage well (kilometers)

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic regression 
results are nearly identical to those reported in Table 6.1.

Distance to nearest observation well (kilometers)

Distance to nearest observation well (kilometers) X 
Public Water
Distance to nearest abandoned natural gas storage well 
(kilometers)
Distance to nearest abandoned natural gas storage well 
(kilometers) X Public water
Distance to nearest abandoned observation well 
(kilometers)
Distance to nearest abandoned observation well 
(kilometers) X Public Water
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Table C.21, continued 

 

Variable (7) (8) (9) (10) (11) (12)

- - - -0.2323 - -
- - - 0.4872 - -
- - - 0.0536 - -
- - - 0.4764 - -
- - - - -0.0093 -
- - - - 0.0349 -
- - - - 0.00563 -
- - - - 0.0123 -
- - - - - -0.128**
- - - - - 0.0554
- - - - - 0.161**
- - - - - 0.0718

0.00759 - - - - -
0.00576 - - - - -
-0.00793 - - - - -
0.00662 - - - - -

- 0.00401* - - - -
- 0.00229 - - - -
- -0.00252 - - - -
- 0.00259 - - - -
- - 0.00619* - - -
- - 0.00347 - - -
- - 0.00263 - - -
- - 0.00394 - - -

Hedonic Attributes? Yes Yes Yes Yes Yes Yes
County Dummies? No No No Yes Yes Yes
Year Dummies? No No No No No No
Sample Size 529 529 529 529 529 529

R
2 0.4211 0.4236 0.429 0.4559 0.4553 0.4626

Distance to nearest natural gas storage well (kilometers) 
X Public Water

Natural gas storage field indicator

Natural gas storage field indicator X Public Water

Distance to nearest natural gas or oil field (kilometers)

Distance to nearest natural gas or oil field (kilometers) X 
Public Water
Distance to nearest natural gas storage well (kilometers)

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic regression 
results are nearly identical to those reported in Table 6.1.

Distance to nearest natural gas extraction well 
(kilometers)
Distance to nearest natural gas extraction well 
(kilometers) X Public Water
Distance to nearest natural gas and oil extraction well 
(kilometers)
Distance to nearest natural gas and oil extraction well 
(kilometers) X Public Water
Distance to nearest oil extraction well (kilometers)

Distance to nearest oil extraction well (kilometers) X 
Public Water
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Table C.21, continued 

 

Variable (13) (14) (15) (16) (17) (18)

-0.0394 - - - - -
0.0498 - - - - -

-0.00552 - - - - -
0.0038 - - - - -

- 0.0084 - - - -
- 0.0355 - - - -
- -0.000238 - - - -
- 0.00434 - - - -
- - 0.031 - - -
- - 0.0215 - - -
- - -0.000692 - - -
- - 0.00438 - - -
- - - -0.0158 - -
- - - 0.0323 - -
- - - -0.0104 - -
- - - 0.00814 - -
- - - - -0.00326 -
- - - - 0.0232 -
- - - - -0.00256 -
- - - - 0.00313 -
- - - - - -0.00851
- - - - - 0.0309
- - - - - 0.00256
- - - - - 0.00462

Hedonic Attributes? Yes Yes Yes Yes Yes Yes
County Dummies? Yes Yes Yes Yes Yes Yes
Year Dummies? No No No No No No
Sample Size 529 529 529 529 529 529

R
2 0.4578 0.4551 0.4574 0.4574 0.4558 0.4554

Distance to nearest abandoned observation well 
(kilometers) X Public Water

Distance to nearest observation well (kilometers)

Distance to nearest observation well (kilometers) X 
Public Water
Distance to nearest abandoned natural gas storage well 
(kilometers)
Distance to nearest abandoned natural gas storage well 
(kilometers) X Public water
Distance to nearest abandoned observation well 
(kilometers)

Statistical significance at a 5 percent level denoted with two asterisk (**). Statistical significance at a 10 percent level denoted with an asterisk (*). Hedonic regression 
results are nearly identical to those reported in Table 6.1.

Distance to nearest natural gas extraction well 
(kilometers)
Distance to nearest natural gas extraction well 
(kilometers) X Public Water
Distance to nearest natural gas and oil extraction well 
(kilometers)
Distance to nearest natural gas and oil extraction well 
(kilometers) X Public Water
Distance to nearest oil extraction well (kilometers)

Distance to nearest oil extraction well (kilometers) X 
Public Water
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