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ABSTRACT 

Addae-Mensah, Nda-Agyima K.. M.S.A.B.E., Purdue University, May 2014. Quality 
Changes in Hermetic Stored Corn caused by Fungi and Sitophilus zeamais (Motschulsky). 
Major Professors: Klein Ileleji and Linda Mason.  
 
 

Hermetic storage has been shown to be effective in controlling insect pests and 

maintaining grain quality of dry grains at 13% moisture and below. However, the 

feasibility and use of hermetic storage for grains at intermediate mid-moisture levels 

under the influence of the sub-Saharan African weather conditions is relatively unknown. 

Hermetic storage experiments were conducted on grade 1 “6297 and 6333 VT RIB” 

hybrid corn under controlled temperature conditions at 10C and 25C at target 

approximate moisture content levels of 11, 15, 18 and 21% wet basis for a total storage 

period of 6 months. Corn quality was evaluated by using mold counts, aflatoxin levels, 

free fatty acids, germination, gas composition, and nutritional composition. The results 

showed that hermetic storage is effective at suppressing mold growth, minimizing 

aflatoxins levels and maintaining the nutritional content of corn stored at 11 and 15% MC 

w.b. Non-hermetic storage was better at preserving germination.  Mold count, aflatoxin, 

and free fatty acids generally increased with temperature, moisture content and storage 

time. 

Germination had an inverse relationship between these variables for both hermetic 

and non-hermetic storage. Nutritional content such as protein, starch and oil decreased 
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with storage time across storage types but remained unchanged in hermetic storage. Mold 

growth was accompanied by a high temperature rise due the difference between the 

storage medium and ambient conditions. This difference was highly pronounced at high 

initial moisture contents (21%) of corn stored at 25C.  Hermetic storage was superior to 

non-hermetic storage in attaining insect mortality and suppressing insect damage before 

and after emergence. Hermetic storage was also superior to non-hermetic storage in 

suppressing insect emergence. However, this relationship was also modulated by the 

moisture content of the corn. 
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CHAPTER 1. INTRODUCTION 

This MS thesis research focuses on the changes in quality (seed germination, 

mold growth, fat acidity, aflatoxin contamination, chemical composition, insect damage 

and insect pest population) in hermetic (air-tight) stored corn under three different 

moisture content levels (11, 15, 18 and 21%) stored at a temperate (10oC) and sub-

tropical (25oC) condition. The thesis is in partial fulfillment for an MS (thesis option) in 

the Agricultural and Biological Engineering at Purdue University, West Lafayette, 

Indiana. Drying corn (maize), a major staple in sub-Saharan Africa, from harvest 

moisture (about 30%) to safe storage moistures (below 13%), is one of the primary 

challenges that cause huge post-harvest losses (PHL) of smallholder farmers in the humid 

tropics such as Ghana. Additionally, smallholders access to supply lucrative value-added 

markets with corn are closed because of the high levels of aflatoxin caused by storage 

fungi prevalent in the region. The study investigated corn quality changes due to mold 

(fungi) and the effect of insect infestation (Sitophilus zeamais) in hermetically stored corn. 

The moisture levels investigated were low moisture (11%) and intermediate moisture 

(15%, 18% and 21%) corn stored hermetically for up to 6 months to study the effect of 

fungi deterioration on quality (germination, fat acidity, mold count, aflatoxin and 

chemical composition). The second study investigated Sitophilus zeamais mortality and
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 progeny suppression in hermetically stored corn at 11%, 15%, 18% and 21% and the 

effect of Sitophilus zeamais on insect damaged kernels. 

 

1.1 Problem Statement 

In the tropics especially across the sub-Saharan African (SSA), corn is regarded as a 

common staple crop used mainly for human consumption and livestock feed with only a 

small fraction stored for seed. Most often corn is only stored in small quantities of several 

bags (100 kg per bag) from an average farm size of 2 ha per household. Due to high 

humidity conditions and limited sunshine hours during rainy season which coincides with 

time of harvest, most smallholders are not able to dry down their corn to safe moisture 

content levels of 13% mc or below, especially south of the Sahelian region. Corn 

harvested at high moisture levels (~30% mc) is most likely dried to between 15% to 21% 

moisture using open air sun drying; the primary means of drying in this region. Because 

of the warm temperatures, which can reach as high at 30oC, corn stored at these 

intermediate moisture levels in the humid tropics cannot be stored for long before 

spoilage sets in. Successful results from the Purdue Improved Cowpea Storage (PICS) 

bags in suppressing Bruchids infestation and damage in cowpea (Murdock et al. 2012; 

Baoua et al. 2012) and economic and financial benefits (Jones et al. 2011), there has been 

a surge in interest in the use of hermetic bags for other types of grain. PICS is a triple bag 

hermetic storage system consisting of an outer woven polyethylene bag and two inner 

80µ high-density polyethylene bags that has been rigorously tested for cowpea storage in 

SSA.  A study by Jones et al. (2011) have also showed that high profits with the PICS 

bags were evident in regions such as Ghana, Tanzania and Malawi to name a few and that
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 these regions showed increasing potential for their use. While it is advisable to use 

hermetic technology for storing corn only after it has been effectively dried down to 13% 

mc or below, there are limited studies to indicate that corn can be safely stored 

hermetically at the intermediate moisture levels achieved by farmers under the warm 

weather of the humid tropics. Achieving low moisture levels below 13% with open-air 

drying during the harvest season is often not possible in the humid tropics.  

Challenges with the quality of stored corn are not only manifested in the formation of 

mold but can also cause the production of aflatoxins, reduction in grade and subsequent 

value, insect infestation and germination. Mold development in hermetic storage depends 

on a number of factors including the length of storage time, moisture content levels, 

storage temperature, insect infestation and the presence of broken corn and foreign 

material.  Understanding how these factors and their interaction affect quality changes in 

hermetically stored corn is the major focus of this research (See Figure 1.1). 
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               Figure 1:1 Schematic diagram of research problem 
 

1.2 Research hypothesis and goals 

Grains, especially maize and sorghum grown in the major season in the humid 

tropics of SSA are normally harvested in humid rainy weather conditions when there is 
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limited sunshine hours for drying. Most grain harvested at 30% mc or more cannot be 

properly dried to safe moisture levels below 13.5% mc, and thus may go into storage at 

intermediate moisture levels between 15 and 21%. The literature shows that intermediate 

to high moisture levels of corn stored under aerobic conditions have a higher invasion by 

mold compared to corn stored under hermetic conditions (Moreno-Martinez et al., 2000). 

Additionally, the rate of mold growth tends to decrease over storage time under hermetic 

conditions (Weinberg et al., 2008).    

This research work seeks to address gaps in knowledge regarding corn quality 

changes (loss) such as mold growth and aflatoxin development in hermetic storage at 

moisture contents ranging from 15 to 21% mc stored under cool and warm conditions for 

various storage times. What we do know is that hermetic storage has been successful in 

storing cowpeas at moisture levels of 13% and below and is also very effective in 

suppressing insect infestation in areas across the sahel region (areas encompassing the 

Sahara desert). (Navarro et al.1994; Yakubu et al. 2010).  However there is limited 

knowledge for hermetically stored corn at intermediate moisture levels (11% to 21%) at 

both cool and warm temperatures with the warm temperature being of particular interest. 

It is hypothesized that the rate of mold growth, levels of aflatoxins and insect damage 

will be lower when corn is stored hermetically at moistures of 11%, 15%, 18% and 21% 

at 25oC than when stored aerobically. 
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1.3 Specific objectives 

Specific objectives of this study were to: 

1. Investigate the quality changes due to fungi deterioration of corn stored 

hermetically at 11%, 15%, 18% and 21% moisture levels under 10oC and 25oC 

indicated by kernel germination, mold count, fat acidity, aflatoxin contamination 

and corn chemical composition 

2. Investigate Sitophilus zeamais (maize weevil) control  in corn stored hermetically 

at 11%, 15%, 18% and 21% under 25oC indicated by mortality, progeny 

development and insect damaged kernels.  

3. Develop an Extension publication for use in training agricultural extension agents 

based on results from Objective 1 and 2 

 

1.4 Thesis outline 

The research thesis comprises of six chapters. The introduction and literature 

review are Chapters 1 and 2, respectively. Chapters 3, 4 and 5 consist of Objectives 1, 2 

and 3, respectively. Chapter 6 is the conclusion and recommendations for future work.   

 

1.5 References 
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CHAPTER 2.  LITERATURE REVIEW 

2.1 The corn crop 

Corn (Zea mays L.), a food crop introduced in western and eastern Africa in the 16th 

and 17th century by the Portuguese is widely consumed on the African continent (FAO, 

1994). Corn is the most widely consumed staple food in sub-Saharan Africa (SSA). It 

serves about 50% of Sub-Saharan Africans (IITA, 2010) with over 1.2 billion people in 

Africa consuming this crop as food. Other applications of the crop include use as animal 

feed, processed food, flour, and sweeteners. In SSA, the grain, leaves, stalk, tassel and 

cob of corn have economic values for food and non-food consumption (IITA, 2007). The 

corn crop is processed into many dishes depending on location and ethnicity, and 

accounts for 30-50% of the daily food consumed by people in low-income families in 

SSA (FAO, 2001). Corn is highly regarded due to its nutritional value. It contains vitamin 

A, C, E, protein, calcium and phosphorus (FAO, 1994).  

 

2.1.1 Physical and thermal properties of corn 

In handling and processing of grains having a good understanding of the physical 

and chemical properties is a necessity. Table 2.1 and 2.2 show these properties for corn. 

The reason why the physical and thermal properties should be understood because, for 
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example the bulk density determines volume of the storage medium required to store a 

desired amount of grain and the rate at which grain flows in grain dryers. Thousand-

kernel weight is directly related to the drying rate for grains. The porosity which is the 

percentage of the volume of grain influences the resistance of a grain bulk to airflow. The 

specific heat which is defined as the energy required by a mass unit of grain to increase in 

temperature by 1C determines the energy required to reach a desired temperature at a 

specified evaporation rate. The thermal conductivity of grains helps us determine the 

resistance of the conduction of thermal energy within the kernels. The higher the 

conductivity the lower the thermal gradients during the drying process. The repose angle 

informs us on how best grains can be stored in flat storage medium at a uniform depth 

and the specific surface area, defined as the surface area per unit volume of grain enables 

us determine to what extent moisture and energy is exchanged with atmospheric air 

during drying (Brooker et al. 1992).   

 

Table 2:1  Physical and thermal properties of corn adapted from Brooker et al. 1992 
Property Corn (English units) Corn (S.I units) 

Bulk density 46.5 Ib/ft3 745 kg/m3 

1000-kernel weight & porosity 0.72 & 40 (Ib) (%) 325 (g) & 40 (%) 

Specific heat 0.48 (Btu/Ib F) 2.01 (kJ/kg. C) 

Thermal conductivity 0.092 (Btu/hr ft F) 0.159 W/mC 

Repose angle 

Specific surface area 

35 (deg) 

238 (ft2/ft3) 

35 (deg) 

784 m2/m3 
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2.1.2 Chemical composition of corn 

The chemical composition of corn such as protein, fat, starch and fiber are 

determined by proximate analysis (NIR) technology. These parameters change when corn 

quality changes over a period of time.  This could be a reference point for any changes in 

composition that occur as a result of deterioration or invasion by pests during storage.  

 

Table 2:2 Chemical composition of corn 
Nutritional content Chemical composition 

of corn (%) 

Protein (%) 9.8 

Fat (%) 4.9 

Starch (%) 63.6 

Fiber (%) 2.0 

 

 

2.2 Importance of storage to global food security 

Low moisture corn that is free of insects and microbial activity can be stored for 

extended periods of time. Corn is prone to post harvest losses during storage. When corn 

is stored for long periods of time and variables such as moisture and temperature are not 

well controlled its quality progressively decreases over time. In effect, the eventual 

quality of stored corn can be explained by the complex interactions between the physical, 

sanitary, and intrinsic variables of quality, and their relationships within the eco-system 

(Multon, 1988; Tipples, 1995). Under warm and humid climatic conditions in regions 
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such as SSA (see Figure 2.1), corn can deteriorate rapidly.  High temperature and 

moisture are the main driving forces of this deterioration. 

 

Figure 2:1  Climatic conditions in SSA, (Adapted from CIMMYT, 2011) 
 

Grain is in constant demand throughout the year and thus needs to be stored 

beyond the harvest time and until the next harvest. Grain production increase should be 

accompanied by storage and preservation practices to ensure an uninterrupted supply of 

grain to meet increasing demands (Chakraverty et al, 2003). The main objective of grain 

storage is to preserve quality, including nutritive value, and keep the grain in good 

condition for marketing and processing thereby reducing product and financial losses. 

Storage of food grains, a component of postharvest operations, is an ongoing challenge 

for both industrialized and developing countries (Chakraverty et al, 2003).  

Alarmingly, most developing countries in Africa produce less corn than its 

population needs, and approximately 28% of the African corn supply is imported from 

other countries. According to Godfray et al. (2010), as the world population increases 
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within the next 40 years, there is an expected steady increase in demand for food, with 

the increase projected to reach 70 - 100% by 2050.  

According to a report by FAOSTAT (2010), corn production increased by only 

2.3% in SSA, compared to 6.0% in Asia and 5.0% in Latin America. Figure 2.2 shows 

corn production data since 1961. One interesting trend is that while production for coarse 

grains and root crops plateaued over the past decade, the production of main grains such 

as corn has seen a steady increase in production, mainly due to an increase in demand. 

The reasons for this demand may stem from the increased use of corn for food, feed and 

biofuels. As the demand for main grains such as corn increases globally, the world’s 

poorest (low income earners) especially those from developing countries are most 

vulnerable to negative effects of market and availability fluctuations, price hikes and a 

global or trade crisis. Put simply, developing countries need to increase production and 

minimize waste from on-farm handling, storage and shipment in order to meet the needs 

of their population and store grain for unforeseen times of global or trade crisis, thus 

minimizing their reliance on grain imports. 
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Figure 2:2  World grain productions from 1961 to 2010 (Adapted from Godfray et al. 
2010). 

 

2.3 Post-harvest handling along the value chain in SSA 

The post-harvest and marketing system is a link of related activities and steps 

from time of harvest to the consumer (Rembold et al., 2011). The steps in the supply 

chain of corn are (1) harvesting after field drying, (2) drying (3) shelling, (4) winnowing, 

(5) transporting to store, (6) storage, (7) transport to market and (8) market storage. 

Figure 2.3 illustrates the post-harvest food chain in SSA.  In most African rural farming 

communities, the post-harvest handling of corn involves a number of stages.  First, the 

corn is allowed to dry to some extent in the field before harvest. After harvest, the corn is 

left in piles on the field until transportation is available. The corn is then transported to 

threshing facilities or personal households. Husks are removed and it is threshed and later 

spread out to dry on mats or tarps.  During drying (a critical operation right before 

storage), the corn is stirred and turned over to facilitate moisture removal. One method by 

which moisture content of the corn is checked subjectively is by biting kernels between 
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the teeth. Kernels which shatter when bitten are considered dried enough while those 

which break neatly into two halves is considered still wet. Other methods of determining 

the corn to be ‘safe’ for storage include feeling a handful on the palm for dampness or 

shaking a few on the palm to discern sound variation between dry and wet grains. Even 

though estimating the moisture content by biting and by feel has been a common practice 

by small holder farmers in SSA, anecdotal evidence suggest that these farmers cannot 

accurately predict grain moisture using these subjective methods.  

 

 

Figure 2:3 Post-harvest food chain of corn in SSA 
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2.4 Post-harvest losses (PHL) in the humid tropics of SSA 

The aim for the post-harvest system is to ensure that the harvested product 

reaches the consumer meeting the negotiated nutritional and product safety expectations 

(Hodges, 2011). Table 2.3 gives a profile of corn losses in eastern and southern Africa.  

 

Table 2:3 Profile loss of corn (humid climate) in Eastern and Southern Africa 
Estimates are weighted averages (Adapted from Hodges, 2011) 

Post-harvest activity Loss profile (% weight losses) 

Harvesting/ field drying 6.4 

Drying 4 

Shelling/threshing 1.2 

Winnowing - 

Transport to store 2.3 

Storage 5.3 

Transport to market 1 

Market storage 4 

 

In addition to low production, the table above shows that developing countries 

lose a majority of their yield to poor handling, storage and infrastructure, with a total 

weight loss of 24.2%. PHL could also be physical, nutritional, monetary or economic. 

PHL ranged between 16-23% in SSA from 2003 and 2008 (Rembold et al., 2011). This 

high percentage of post-harvest loss in SSA resulting from handling and transportation 

may be due to 1) suboptimal knowledge of the proper procedures for handling after 
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harvest 2) lack of investment and knowledge in storage practices that minimize spoilage 

during storage 3) lack of infrastructure/machinery for transportation and trade.  

Other causes of losses include harvesting methods, handling procedures, drying 

techniques and poor storage structures all of which exacerbate mold contamination, insect 

damage and infestation. PHL losses contribute to higher food prices and a decline in food 

security. PHL could be reduced by increasing the efficiency of the supply chain by 

intervening with the right tools to address the various challenges.  

PHL can be quantitative or qualitative. Qualitative losses may include aflatoxin 

contaminated grain and loss in nutritional value. When grains are harvested at high 

moisture they are prone to deterioration by fungi. Some other factors that influence 

deterioration along the value chain include mechanical damage, high temperatures and 

rainfall during harvest, insect damage and microorganism contamination. Because 

farmers primarily depend on open-air sun drying, frequent rainfalls and high humidity 

during harvest in the humid tropics provide insufficient sunshine hours necessary to dry 

grain to safe moisture levels. The estimated average sunshine hours in the month of 

August between 1981 and 2010 in Kumasi, the capital of the Ashanti region located in 

the middle belt of Ghana was 2.6 (Ghana Meteorological service, 2011). This makes solar 

drying to a safe moisture level below 13.5% a challenge with open air drying alone. Thus, 

it is likely that the criterion farmers use to determine when the corn is at a high moisture 

may not be 13% or below, hence it is likely that corn will be placed in storage at unsafe 

moisture levels above 15% is highly inevitable. This is suggestive of an inefficient 

system of production and storage that is non-sustainable. To reduce the risk of income 

loss, farmers often hastily market their grain to millers, wholesalers, retailers and then 
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consumers because of the potential loss that would be incurred in storage due to spoilage. 

Therefore, excess grain gluts in the market are very typical at harvest time reducing 

prices, while grain deficits develop late in the season where grain prices could easily 

quadruple. Therefore, a sufficient long-term storage method is important to increase 

income and food security in farming households in SSA. Figure 2.4 gives an illustration 

of one of many ways dried corn is transferred from small-scale farmers to consumers. 

 

Figure 2:4  Food chain of corn in SSA (Hodges, 2011) 
 

Storing corn that may not be completely dry for an extended period of time 

increases the likelihood of spoilage. If corn with mold is not discarded appropriately but 

is either knowingly or unknowingly consumed, because of a lack of alternative food 

source for poor consumers, this may lead to an increased predisposition for health issues.  

As the demand for locally grown corn increases, small-scale farmers in SSA may 

aspire to harvest and store larger quantities of corn for longer periods of time. In order to 

limit the progression of quality change in corn stored in sacks, distributors or small-scale 

farmers would need to acquire adequate knowledge and resources to allow them to use 

the best available methods of treating and storing of their corn. 

 

Farmers Rural traders 
(Aggregators)

Urban traders 
(Aggregators) Millers Wholesalers/

Retailers Consumers
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2.5 Grain drying 

In grain drying systems, moisture moves from a point of higher vapor pressure in 

the product to be dried to a point of lower vapor pressure in the drying medium, usually - 

air at a rate dependent on the difference in water vapor pressure between the two points. 

The vapor pressure of the air depends on its relative humidity and temperature.  Table 2.4 

shows the moisture distribution in a kernel of freshly harvested corn. Vapor pressure 

within a kernel depends on the temperature and moisture content and to a lesser degree 

on composition.   

 
Table 2:4  Moisture distribution in a freshly harvested corn kernel (Brooker etl al, 1992). 

Kernel part MC (% w.b.) 

Whole kernel 36.0 

Germ 48.2 

Endosperm 30.7 

Pericarp 52.6 

 

When air passes through grain it either absorbs or releases moisture. Kernels will 

absorb moisture from the air when their equilibrium relative humidity is less than the 

relative humidity of the air. Grain will lose moisture to the air in the reverse situation, 

that is, when the equilibrium relative humidity of the grain is greater than the relative 

humidity of the air. When dry air passes over wet or high moisture grain, air absorbs the 

moisture from the kernels increasing the humidity ratio while decreasing the air’s drying 

potential. No further drying occurs when the air relative humidity reaches the equilibrium 

relative humidity (ERH) of the grain. Equilibrium moisture content (EMC) is the 
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moisture content when grain comes to equilibrium with air under constant environmental 

conditions (Loewer et al., 1994). If the air is not in contact with the kernels until it 

reaches their ERH, the air will not attain its maximum possible relative humidity. If the 

air does attain equilibrium its relative humidity will be the same as the grain’s ERH, and 

no further drying will occur as the air continuous to travel through the grain mass. Drying 

rate can increase for a given airflow if moisture is removed from the air before it is 

passed through the grain or if the air’s temperature is increased. 

 

2.5.1 Grain drying in SSA 

In tropical countries, high temperatures and high relative humidity together with 

high cost of drying systems often leaves small-scale farmers with no feasible alternative 

but to use the sun to dry their harvested corn. Open air solar drying by spreading grain on 

a mat, plastic or tarp on thin layers (see Figure 2.5) is the predominant drying method 

used by small-scale farmers in SSA. Albeit inexpensive, this form of drying is slow and 

dependent on the prevailing environmental conditions compared to drying using 

mechanical means.  High humidity and few days of sunshine during the harvest season in 

the humid tropics of SSA make it very difficult to bring down the corn moisture content 

below the critical of 13% in a timely manner. Furthermore, if the farmer is not very 

attentive to the weather, rain could re-wet the kernels and prolong the drying process. 

Under these prevailing conditions, small-scale farmers face the problem of drying corn to 

acceptable moisture levels that prevent the growth of molds and other micro-organisms 

during storage.  The presence of excessive moisture above the critical levels of 13% in a 

hot humid environment makes corn prone to spoilage by fungi, which in turn could lead 
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to aflatoxin contamination.  Furthermore, there is also danger of contamination during 

solar drying of shelled corn. Birds often fly above the drying mats with the intention of 

feeding on the corn and in the process release their droppings on the mat contaminating 

the corn. Rodents may also contaminate the corn with their droppings while attempting to 

feed off the corn. These activities also increase the possibility of mold growth in corn 

while contaminating it with foreign materials. Additionally, contamination from dust 

generated by passing vehicles is common for grain dried along the side of the road. 

 

 

Figure 2:5  On-the-tarp drying of corn in SSA 
 

2.5.2 Post-harvest storage and storage in SSA 

Corn storage is one of the most important steps in the post-harvest food supply 

chain. High grain quality must be maintained to achieve higher market value, permit safe 

human consumption and provide seed with good germination qualities for planting. 

Storage should provide protection to prevent loss of the crop from unfavorable weather 

conditions and to sustain the cultivation of corn for subsequent seasons. Corn is in 
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demand on a regular basis over several seasons, and the storage of harvested corn is 

required to vary from months to several seasons.  Small-scale farmers store corn in 

varying amounts and for varying time periods and for several different purposes such as 

food consumption, periodic planting and generating income during lean seasons. What 

drives costs of grain storage are market value, storage costs, labor, insect control, cost of 

maintenance, and storage losses (FAO, 1994). The moisture content of grain in storage 

plays a major role in defining the quality of grain. 

 

2.5.3 Challenges in drying and storing corn in SSA 

Consuming contaminated corn with molds poses health risks to humans. Some 

molds produce mycotoxins, a secondary metabolite. Aflatoxin, a highly toxic mycotoxin, 

suppresses the immune system. It can cause chronic damage to the liver and kidney, and 

the digestive and nervous systems. Aflatoxins can also interfere with the reproductive 

system of humans. Aflatoxin contaminated corn results in high storage and economic 

losses and is one measure used in marketing to determine grain quality. Typically, major 

grain grading standards require that grain sold not exceed a certain aflatoxin threshold 

levels. In the U.S., the United States Food and Drug Administration, Department of 

Agriculture (USDA), Federal Grain inspection Service (FGIS) threshold level for 

aflatoxin in corn is 20 ppb (CAST, 2003), the threshold for Ghana is 15 ppb (Ghana 

Grain Standards Board, 2003) and for the European Union (EU) it is 4 ppb (ready-to-eat) 

and 10 ppb (if further processed) (www.usda.gov). In Europe he recommended safe limit 

for fungi in processed food is 103-104 colony-forming units (cfu) per gram. The UN 

World Food Program (WFP) Purchase-for-Progress (P4P) allowable limit for aflatoxin 
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threshold is 10 ppb analyzed with the ELISA technique (Kang’ethe, 2011).  A challenge 

faced by the WFP in purchasing grains from SSA is that farmers are not able to meet 

their high quality standards, especially with regards to aflatoxin levels.  Hence, storing 

corn with high moisture content not only exposes consumers to severe health risk from 

aflatoxin contamination, it also results in suboptimal revenue from high storage losses. 

 

2.6 Stored Grain Ecosystem 

Abiotic conditions that influence mold growth and mycotoxin production during 

storage are water activity, temperature and gas composition (Magan & Olsen, 2004). The 

critical moisture content for safe storage is the moisture that produces a water activity (aw) 

of about 0.65. Below this water activity most stored grain fungi cannot grow. In the 

stored corn eco-system quality and nutritive changes occur because of the interactions 

between physical, chemical and biological factors (Chulze, 2010). Figure 2.6 illustrates 

the interactions between environmental and biological factors that influence quality 

change of grains in the storage ecosystem. 
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Figure 2:6  Major factors affecting the respiration of grains and microorganisms (Adapted 
from Cardoso et al. 2008) 

 

2.7 Respiratory quotient 

Aerobic respiration needs oxygen to release carbon dioxide, water and energy (in 

the form of heat). Anaerobic respiration needs carbon dioxide, and releases less energy. 

The respiratory quotient (R.Q) is defined as carbon dioxide produced divided by oxygen 

consumed. For normal respiration of carbohydrates the R.Q. is equal to 1 (Huxoll, 1961). 

However for fats the R.Q. is 0.7.  Moisture content is related to respiration. Molds begin 

to grow at a water activity (aw) of > 0.65. Increase in mold growth is a major contributor 

to increased respiration within the storage ecosystem (Milner and Geddes, 1954). 

 

2.8 Ecological system of grain storage 

Factors influencing the conservation of corn quality during storage interact in a 

complex way. The components that make up the ecological system and interact with each 

other include: 1) Stored grain (principal biotic factor), the storage structure (abiotic 
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factor), the storage atmosphere (abiotic – external & internal factors), grain temperature 

(abiotic – external & internal factors), humidity of the air in the structure (abiotic – 

external & internal factors), presence of foreign matter (abiotic internal factor), presence 

of microorganisms (biotic – external & internal factors) and presence of insects (biotic – 

external & internal factors) (Calderon, 1981; Navarro, 2001). 

The physical properties of corn are influenced by abiotic and biotic factors in 

grain storage. The proliferation of mold is affected by moisture content and temperature 

(Wilson and Desmarchelier, 1994). High moisture content grains are prone to mold and 

insect pest development during storage. Corn, which is very hygroscopic in nature, 

consists of water and dry matter. Water in grain can be categorized into three parts: 

absorbed water, adsorbed water and chemically bound water.  In an airtight space, the 

moisture in the grain produces a vapor pressure less than the saturated vapor pressure of 

free water. An equilibrium is maintained between the moisture in the grain and the 

moisture in the air. 

 

2.9 Moisture content 

Moisture content is a major factor that influences grain spoilage during storage. 

Water activity (aw) resulting from the moisture content of the grain influences microbial 

growth, germination, insect feeding behavior, and grain weight. To attain a state of 

equilibrium, moisture moves from the air into the grain or from the grain into the air 

depending on which has the higher vapor pressure. If placed in an enclosed container at 

constant temperature, in a state of equilibrium, the rate of water movement out of the 

grain equals the rate of water movement into the grain. The moisture content of the grain 
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at this point is the equilibrium moisture content (EMC) and the relative humidity of the 

air is the equilibrium relative humidity (ERH). The EMC is very important when drying 

grain while the ERH, also known as the water activity (aw) is important for grain storage 

(Loewer et al. 1994).  

In a storage environment, moisture content influences several quality attributes of 

stored grains. Over time, the moisture content of stored grains interacts with biotic factors, 

environmental factors and gas composition in a systematic way to eventually affect 

fungal development and survival, insect mortality and progeny, germinability and in 

some cases grain damage (Loewer et al. 1994). Several studies have evaluated one or two 

combinations of these interactions and the eventual effect on some aspects of the quality 

of stored corn. This section will discuss existing research findings on the effect of 

moisture content, water activity on fungal development and survival, insect mortality and 

progeny, germinability and grain spoilage. The relationship between moisture content, 

relative humidity and temperature is illustrated in Figure 2.7.  This figure shows that for a 

specific relative humidity, as temperature increases the moisture level required for 

maintaining a state of equilibrium decreases. Several studies have indicated that when 

temperature is held constant, there is an approximate increase in EMC of 1% MC to 

every 5% change in relative humidity (Ross et al, 1973; Moreno et al, 1988).  
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Figure 2:7  Equilibrium moisture content, temperature and relative humidity relationships 
(Adapted from Ross et al., 1973) 

 

These factors are often associated with temperature difference either within the 

grain mass or between the grain mass and a portion (roof, wall) of the bin in which the 

grain is stored.  

Movement of moisture in stored grain could occur by: 1) diffusion of moisture 

due to vapor gradients, 2) translocation of moisture due to convection currents, 3) 

condensation forming on the inside roof surface and 4) water vapor exchange with 

atmospheric air at the grain surface (Navarro, 2001). Moisture migration is often driven 

by temperature differences within a given grain bulk. Under non-isothermal conditions, 

convection currents resulting from temperature gradients drive moisture movement in the 

grain.  
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Figure 2:8 Air currents in grain storage bins for summer and winter conditions (Adapted 
from Hilborn, 1976) 

 

When grain is harvested and placed in storage during warmer temperatures 

especially in late summer in northern latitudes the grain mass begins to lose heat as 

colder temperatures approach (especially in the winter).  The grain next to the bin wall 

starts to cool much faster than grain in the center of the bin which is still warm. 

Convention currents are created as cold air by the bin wall is forced downwards and a 

recirculation pattern develops (see Figure 2.8). The warm air in the center of the bin rises 

because it is less dense and carries moisture from the grain with it. The warm air moving 

up releases moisture when it comes into contact with the cold grain at the surface of the 

grain mass. This leads to condensation further creating conditions favorable for the 

proliferation of mold growth and aflatoxin production.  In tropical and sub-tropical 

countries of sub-Saharan Africa (SSA), the reverse of this usually occurs (Navarro, 2001).  

 Moisture content is a major factor that influences grain spoilage during storage. 

The relative humidity of the air and the moisture content of the grain influence microbial 

growth. Moisture moves from the air into the grain and from the grain into the air. If 
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placed in an enclosed container at constant temperature, a state of equilibrium will 

develop in which the rate of water movement from the grain equals the rate of water 

movement into the grain. The moisture content of the grain at this point is the equilibrium 

moisture content (EMC) and the relative humidity of the air is the equilibrium relative 

humidity (ERH).  

 The EMC is important when drying grain while the ERH is equally important for 

grain storage (Loewer et al. 1994). This information can be used to determine safe 

storage. For example, at 40C corn with moisture content at or below 12% is considered 

safe for storage, whereas corn with moisture content that exceed 13% is considered 

unsafe for storage. 

 

2.10 Microorganisms in stored grains 

In the tropics and sub-tropics, the development of microflora is highly likely in 

corn storage since it is a challenge, especially for small scale farmers, to keep corn dry 

and at safe moisture levels. Spores of microflora are usually present in corn storage. 

Microflora consist mainly of actinomycetes, fungi and bacteria.  When grain moisture 

levels are low, naturally occurring mold spores stay in a dormant state and remain 

inactive until the environment is suitable for them to proliferate. Microbial activity and 

susceptibility are related to the ERH. Microflora will multiply when ERH is at least 65%. 

At moisture conditions above safe levels, grain deterioration from microflora 

development may increase at an exponential rate.  

Fungi which can survive in dryer conditions compared to bacteria can cause huge 

problems in storage since they can overcome lower levels of moisture under high stress 
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levels. Fungi are non-synthetic, eukaryotic organisms that thrive on dead organic material 

(saprophytic) and living material (parasitic). Fungi like to feed on matter containing 

nutrients.  They reproduce either asexually, sexually via spores or by a combination of 

the two. Spores are fungal reproductive cells and are a single cell about 3 – 30 m in 

diameter. They settle on a substrate, germinate and project a germ tube. The germ tube 

develops into a thread-like filament known as hypha, this hypha develops and branches 

into other hyphae usually seen as a white mass of filaments called mycelium. Hyphae can 

produce chemicals to repel other fungi growing on food substrates (Meronuck and 

Stuckey, 1988; Mills, 1991; Richard-Molard, 1988). Fungal spores are not affected by 

ultraviolet rays of sunlight. This is why solar drying does not influence levels of aflatoxin. 

Conditions favorable for fungal growth are 70% RH and a pH of 5.0 with optimum 

temperatures between 20C and 35C (Christiansen and Kaufman, 1969).  

 

 
Figure 2:9   Schematic diagram of Aspergillus spp. (Adapted from Klich, 2002) 

 

Fungi are classified as true or fungi-like organisms. The genera Aspergillus and 

Penicillium, which have nonmotile spores, are classified as true spores and under the 
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subgroup “Deuteromycetes”.   Under microscopic evaluation, Aspergillus spp exhibit 

distinct features. These fungi develop asexually by budding conidiophores borne on 

conidia. Figure 2.9 shows a schematic diagram of Aspergillus spp. Eurotium species, 

sexual states of Aspergillus flavus can infect corn pre and post- harvest. Optimum 

conditions for its growth include 30-35°C, 16-17% MC and 85% RH (Lacey and Magan; 

1991). A. flavus produces a potent carcinogen called aflatoxin which has been shown to 

cause liver cancer in humans (Christensen, et al., 1977). Aflatoxin content can increase if 

drying and storage is not properly performed (Marin et al., 2004). 

 

2.10.1 Effect of moisture on fungi 

The major factors that influence the growth and reproduction of microorganisms 

include moisture content, temperature, initial infestation, gas composition, pH, grain 

condition, storage time and foreign material (Loewer et al. 1994). Notwithstanding that 

these factors interact in a complex manner, this section will focus on the effect of 

moisture content/water activity, temperature and gas composition on microbial growth 

and survival. 

When moisture levels are low, microbial growth tends to be at a minimum in stored 

grains. Each type of mold species has its own moisture preference. When the moisture of 

corn is at 13% MC or below fungal growth is minimal. When the moisture content of 

corn is above 13% MC and the temperature is above 25C the environment is conducive 

for mold growth. As the moisture increases mold grows faster. Water activity resulting 

from the relative humidity of the air and the moisture content of the stored grains interact 

with other variables such as temperature and gas composition to influence microbial 
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growth. The equilibrium relative humidity below 65% is considered “safe” from the 

growth of microorganisms on corn when the equilibrium moisture content is 13.1% at a 

temperature of 26.7C. Microorganisms absorb moisture and nutrients when the relative 

humidity is above the critical level. The growth and reproduction stall when the relative 

humidity falls below the critical level.  The minimum, optimal and maximum relative 

humidity required for microbial growth is dependent on the species of the organism. For 

example, Navarro (2001) reported that the optimal relative humidity for the development 

of Aspergillus spp.is 80% (i.e. aw = 0.8). 

 

2.10.2 Effect of temperature on fungi 

Most storage fungi require high temperatures for their growth. Common storage 

fungi grow within a range of 17C to 44C, with optimum growth in the range of 29C to 

32C. The influence of temperature on growth of different types of microorganisms is 

illustrated using data from Navarro (2001) shown in Table 2.5. Storage microflora may 

be categorized into three groups: Psychrophilic, Mesophilic and Thermophilic. Most 

storage fungi are mesophilic (Navarro, 2001).  The optimum growth temperature for 

mesophile fungi is between 20C and 40C and for thermophiles it is between 50 and 

60C.  
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Table 2:5  Range of temperature requirements of three groups of storage microorganisms 
 Range 

Group of Microflora Minimum (°C) Optimum (°C) Maximum (°C) 

Psychrophilic (-8) -0 10 -20 25 -30 

Mesophilic 5 -25 20 -40 40 - 45 

Thermophilic 25 -40 50 -60 70 - 80 

Growth of fungi and temperature (After Navarro, 2001) 

 

An increase in grain temperature increases the production of moisture due to 

increase in respiration rate of the grain and microorganisms. The rate of respiration is 

doubled with a 10C rise in temperature, within the range of fungal survival and 

development (Navarro, 2001). 

 

2.10.3 Effect of gas composition on fungi 

Mold species involved in the deterioration of stored corn are aerobes but they can 

grow under limited oxygen levels and significant levels of CO2. Their tolerance for low 

O2 and high CO2 is influenced by the presence of water. When the moisture levels of corn 

are increased their tolerance level for low O2 decreases and fungal development increases. 

Pilot studies conducted by Addae-Mensah and Ileleji (2012) showed that after 14 days of 

storage, corn stored at 22% MC had notably more visible mold growth compared to corn 

stored at 14% MC.  

Modified atmosphere influences the suppression of mold growth in stored corn 

(Dixon and Kell., 1989; Magan and Lacey, 1988). Microorganisms need oxygen to 
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survive and reproduce. Microorganisms can be classified as aerobic, anaerobic, 

facultative anaerobic and microaerophillic (Loewer et al. 1994).  Aerobic microorganisms 

require oxygen to develop, while anaerobic microorganisms can develop without the 

presence of oxygen. The chemical reaction for anaerobic respiration of these organisms is 

shown.   

	 	 		 	 /        (1) 

Anaerobic respiration 

When given limited oxygen supply, some microorganisms may continue to 

develop by partially decomposing carbon dioxide, producing lactic acids, acetic acids and 

alcohols. This process is commonly known as fermentation. Heat produced in this 

reaction is much less than in aerobic respiration. In ensiling, the process of fermentation 

takes place in hermetic environments at relatively high moisture levels (Rodriguez et al 

2002). Facultative anaerobic microorganisms grow either in the presence or absence of 

oxygen while microaerophillic microorganisms grow in very low levels of oxygen 

(Loewer et al. 1994). 

According to Magan  and Lacey (1984), oxygen levels below 0.14% suppress the 

development of most fungi species. Carbon dioxide levels above 50% result in complete 

inhibition of development of most fungal species. In most bio-generated modified 

atmospheres, decrease in oxygen results in a simultaneous increase in carbon dioxide. 

Several studies have evaluated the effect of high carbon dioxide and low oxygen level on 

fungi development. Studies by (Magan and Lacey 1984) have shown that when carbon 

dioxide levels exceed 50% mycelia growth is suppressed. However it is the combinations 

of gases that determine the increase or decrease of mold growth. Species such as 
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(P.roqueforti) can grow in environments with 80% and above CO2 levels. However O2 

should be at least 4% for this to occur. The consensus is that carbon dioxide levels that 

exceed 35% will suppress fungi growth in low oxygen environments. When ambient 

levels of oxygen are present, Magan and Alfred. (2007) showed that levels of carbon 

dioxide exceeding 60-80% can still result in suppression of fungi. Banks (1981) also 

stated that low oxygen and high carbon dioxide levels were the main variables 

responsible for inhibiting fungal development in high moisture corn.  

A recent study by Weinberg et al. (2008) illustrates the importance of carbon 

dioxide in suppressing mold growth. Although their data showed that all oxygen was 

depleted after 15 days of storage this did not result in an immediate suppression of fungi. 

In fact, they reported further that complete suppression of fungi was attained after 55 

days of storage, this time period also coincides with the time it took to attain a carbon 

dioxide level of 80%. Moreno et al. (2000) also reported that even though complete 

oxygen depletion was attained after 3 days of storage, complete suppression of fungi did 

not occur immediately, complete death of fungi was attained after 30 days of storage. 

Even though Moreno et al. (2000) did not report carbon dioxide levels, it is likely that the 

delay between the day of complete oxygen depletion and complete fungi suppression was 

due to the time needed for accumulation of carbon dioxide to a level that was high 

enough to be toxic to the fungi. 
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2.11 Aflatoxins in grain storage 

Under unsafe storage conditions fungi produce the metabolites that produce 

mycotoxins (Shotwell, 1977). Under certain environmental conditions, A. flavus fungi in 

grain can produce aflatoxin, a carcinogen. Mycotoxins include ochratoxin, zearalenone 

and trichothecenes. Aflatoxins were discovered in animals which fed on grains and seeds 

(White et al., 2003).  Common aflatoxins include B1, B2, G1, G2 and M1. This fungus can 

proliferate both in the field and during storage.  Aflatoxins can occur on a wide variety of 

commodities such as nuts, oilseeds, grain and processed food. Aflatoxins are most 

frequently produced by A. flavus and A. fumigatus. Insects act as vectors by transporting 

fungal spores on their bodies and contaminating grain when they move from a location to 

another (Lynch & Wilson, 1991). 

Storage pests such as the Sitophillus zeamais (Motschulsky) and Sathartus 

quadricollis contribute to the production of aflatoxins (Lamboni and Hell, 2009) by 

disseminating spores of A. flavus in the field and stored products. When insects feed on 

the corn they break or dislodge the pericarp making the corn more susceptible to the 

invasion of storage fungi such as A. flavus (Tuite et al.1985; Wicklow, 1988). Metabolic 

activity by insects increases the relative humidity creating more favorable conditions for 

A. flavus growth.  Sinha & Sinha, (1992) found more A. flavus fungi and greater aflatoxin 

production in insect-damaged maize samples from different localities in India than with 

corn samples without insects.   

Aflatoxins are hepatocarcinogens and contribute to the prevalence of 

hepatocellular cancer in Africa (White et al., 2003). Aflatoxins which could be mutagenic, 
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teratogenic and immunosuppressive affect the liver when consumed in high doses and 

may cause deaths and chronic cancer (CAST, 2003). Aflatoxins suppress synthesis of 

protein, nucleic acid and damage the liver by mobilizing liver fat (White et al., 2003). 

Salmonellosis in corn was known to have high concentrations of aflatoxins (CAST, 2003).  

In Africa a strong relationship between dietary aflatoxin and liver cancer was found 

(White et al., 2003).  Young children can also be exposed to aflatoxins which can stunt 

their growth (Gong et al., 2004; Williams et al, 2004).  In the US, the FDA has assigned 

action levels for aflatoxin concentrations depending on use. Guidelines set by the U.S. 

Food and Drug Administration in 1978, regulate the permissible amounts of 

contamination in corn before the grain must be disregarded.  For human consumption it is 

20 ppb, for mature and non-lactating livestock it is 20 – 100 ppb for finishing swine it is 

200 ppb and for finishing cattle it is 300 ppb (White et al, 2003; Munkvold , 2003). 

 

2.12 Fatty acids 

Grain damaged by microflora undergoes chemical changes which result in 

increase in free fatty acids (FFA), an increase in reducing sugars, a decrease in non-

reducing sugars and an increase in respiration due to breakdown of oil by fungal related 

lipases (Bottomley et al, 1950). FFA measurement is an efficient measure of grain 

deterioration mainly due to mold growth. Biochemical deterioration of grain fats or oils is 

either oxidative or hydrolytic.  

Grain lipids are categorized as either polar or non-polar compounds based on their 

solubility in solvent systems (Christensen, 1982). Fatty acids are major components of all 

types of lipids which are non-polar lipids. Lipids occur as components of intercellular 
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membranes, spherosomes, and starch and protein bodies in cereal grains. Fats in grain are 

readily broken down by lipases into free fatty acids and glycerol during grain storage 

especially when moisture content and temperature are high and hence favorable for grain 

deterioration. This process is facilitated by mold growth due to the high lypolytic activity 

of the molds (Goodman and Christensen, 1952). Therefore, fatty acids can be used as a 

measure of grain deterioration. Fat acidity value is quantified by titration and defined as 

milligrams of pottassium hydroxide required to neutralize the free fatty acids in 100 g of 

corn (AACC, 2009). In sum, fatty acid production is a result of enzymatic hydrolysis of 

the fats by lipases or by chemical saponification (Pomeranz, 1985).The lipid content of 

corn ranges from 5.2 to 6.0% (Cooper & Morrison, 1978). Goodman and Christensen 

(1952) found that some fungi are able to grow on corn oil and convert a portion of it into 

fatty acids as food. A study by Baker et al. (1957) used fat acidity tests as an indicator of 

grain deterioration and found an increase in fatty acids with fungal colonization.  A study 

by Dirks et al. (1995) showed that fungal lipase activity increases when corn deteriorates. 

Fungal lipase causes fatty acid levels to increase.  Ileleji et al. (2003) studied the relative 

storability of high-oil and BT corn hybrids and compared them to conventional hybrids. 

They studied the effects of oil content on the production of fatty acids and found that 

high-oil corn hybrids had higher fat acidity values than their paired normal-oil corn 

hybrids and changes in fat acidity values were higher post storage than pre storage.  The 

aforementioned studies show that fat acidity tests can be used as a reliable indicator of 

grain deterioration. 
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2.13 Stored grain insects 

Stored grain insect pests consist of 250 species, 40 families of beetles and 70 

species of moths (Halstead, 1986; Cox and Bell, 1991). They are categorized as Primary 

insect pests and Secondary insect pests. Primary insects develop and feed primarily inside 

the grain kernel while secondary insects develop outside the kernels and feed mainly on 

fines. The maize weevil (Sitophilus zeamais Motschulsky.), a primary, cosmopolitan 

insect commonly found in SSA and belonging to the Family Curculionidae, is a small 3 

mm in length brown, with four patches on its elytra. The female bores a hole in the grain, 

deposits her egg in the hole and then plugs it up with a gelatinous secretion. The larva 

feed and pupates on the grain. The new adults that emerge within the grain feed on the 

corn tissue on their way out of the grain onto the surface where the life cycle would have 

completed.  The female then mates and lays about 350 eggs within a lifespan of 5 months. 

The temperature range for a complete life cycle is 14°C - 34°C and development is 

complete within 25 days at 29°C and 70% RH (Navarro, 1991). The heat and moisture 

produced by the larvae and pupae often contribute to the development of hotspots. 

Insects lower corn quality by feeding on corn kernels and contaminating the grain 

with their waste, cast skins, webbing and body parts. Insect pests incur substantial 

damage to whole kernels, consume broken kernels and fines, raising grain temperature 

and moisture content which may cause fungal growth and heating in grain. Fungal growth 

results in increase in carbon dioxide, heat (i.e. hot spots up to 55C for A. flavus) and 

moisture. Insect damaged kernels or number of live insects may reduce marketability of 

grains especially when it is significant enough to reduce food grade.  
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Certain variables within the storage environment influence the species 

composition of insect population.  Insects in stored corn need certain environmental 

conditions that favor their development.. Insect development is highly influenced by 

temperature and grain moisture content (Mason and Strait, 1997). Insects have a 

maximum, minimum and optimal temperature range for their development, oviposition, 

insect progeny and survival.  Put together, insect mortality is affected by temperature, 

intrinsic growth rate and exposure time (Fields, 1992). Egg production is affected by 

insect species, temperature, ambient humidity, grain moisture and diet (Navarro, 2001).  

Moisture content, water activity, and gas composition do not act in isolation, but rather 

have a combined effect on insect survival and progeny, especially in a hermetic storage 

environment. The section below discusses the effect of each factor and their combined 

effect on insect mortality and progeny. 

Maize weevil causes quantitative losses primarily by feeding. Insects contaminate 

the grain with their excreta containing uric acid, fragments of dead insects and webbing. 

Insects spread storage fungi and their activity leads to the generation of heat in the local 

areas. The hotspots cause moisture and temperature gradients in the grain mass favoring 

mold growth leading to grain deterioration. Levels of insect infestation is a commonly 

used quality assessments (Chakraverty et al., 2003). 

 

2.13.1 Effect of moisture content on insect mortality 

Insect feed on grain to enable them produce enough moisture for their survival. 

The higher the moisture contents of grain the higher the rate of increase in insect pests. 
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Moisture requirements vary with insect species. Moisture and temperature in hermetic 

storage varies because of the metabolic water produced, grain contamination from their 

fecal matter and atmospheric composition.  

However, when gas composition in the storage environment is modified, the 

moisture content modulates insect survival and progeny. Insects have been shown to 

modify their feeding behavior by closing their spiracles to increase their tolerance to 

hypoxia environments  Navarro (1978) reported that when exposed to a low oxygen 

environment, adult S. orzyae (Coleoptera: Curculionidae) increased their tolerance to the 

toxic environment by closing their spiracles. 

 

2.13.2 The effect of relative humidity on insect mortality and progeny 

When oxygen levels decrease mortality of adult insects occurs. The effect of low 

oxygen is however modulated by relative humidity. Calderon and Navarro (1980) showed 

that when pupae of Ephesia cautella were exposed to low, moderate and high humidity, 

the time needed for complete suppression of adult emergence was directly related to the 

relative humidity. At a high humidity (i.e. 97%) 80 to 95% of the pupae emerged as 

adults. At the lowest humidity (i.e. 24%) emergence of adult insects was completely 

suppressed within 4 days of exposure. The data by Calderon and Navarro (1980) is 

consistent with established trends that adult insects survive in an ideal humidity that is 

equal to or greater than 60% (Howe, 1965). Relative humidity modulates the effect of 

carbon dioxide on insect mortality. Calderon and Navarro (1979) measured relationships 

between carbon dioxide and relative humidity at a fixed temperature and exposure time. 

In general, increase in relative humidity required a directly proportional increase in 
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carbon dioxide to attain 95% mortality of insects. In general, the ERH is directly 

proportional to the moisture content of the grain, therefore as moisture content increases, 

ERH increases and insect mortality decreases. 

 

2.13.3 The effect of temperature on insect mortality and progeny 

The ideal temperature for insect survival is approximately 25C to 32 C. Insect 

development decreases at lower temperatures. Oviposition of most insects has been 

shown to halt at 15 C and insect mortality can be attained at temperatures below 5C. 

Extreme high temperatures (i.e. > 45 - 50 C) also results in insect mortality. Insect life 

cycle lasts approximately 25 days, but it can be affected by temperature and gas 

composition (IRRI, 2009).  

Grains stored in low oxygen environments (i.e. < 1% 02) with temperatures 

between 20 and 30 C results in insect mortality of 95%. Exposing S. zeamais to -10C 

for 7 days will attain a complete kill (Ileleji et al, 2007). The effect of temperature on the 

exact time needed to attain complete mortality (i.e. LT99) is modulated by the species of 

insects (Annis and Graver, 1987).  Yakubu et al. (2010) investigated the influence of 

temperatures and moisture contents on the rate of suppression of insects and insect 

mortality in hermetic storage of corn and concluded that a complete kill of the maize 

weevil can be achieved using this technology. However, the hermetic environment 

enclosure was highly dependent on the moisture content, temperatures within the 

enclosure, insect count and the size. Chiappini et al (2009) evaluated the effect of 

temperature on insect mortality in a low oxygen environment (5-8%). They reported that 
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LT 99 could be attained within 7 days at 20C to 37 C. Finkelman et al. (2003) evaluated 

the effect of temperature and carbon dioxide on insect mortality at four different 

developmental stages (Eggs, larvae, pupae and adults) of Ephesia cautella. Navarro et al. 

(1985) also reported that at 2% oxygen concentration levels, 48 hours was needed to 

obtain complete insect mortality at 26 C compared to 72 hours at 15 C. In general, one 

can conclude that higher temperatures results in faster rates of mortality for all insect 

stages when exposed to modified atmospheres with low oxygen and high carbon dioxide. 

Furthermore, complete mortality of adult insects could be attained in a shorter amount of 

time compared to eggs, larvae and pupae. Below 45 C, Finkelman et al (2003) showed 

that adults and pupae appear to be the most susceptible to the negative effect of increase 

in temperature. 

 

2.13.4 Effect of gas composition on insect mortality 

When oxygen is low and carbon dioxide is high, low grain moisture content and 

inter-granular humidity contribute to high insect mortality due to death by desiccation 

(Murdock, 2012).  Different species of insects show different carbon dioxide 

requirements for complete kill of their eggs, larvae, pupae or adults. Navarro and 

Donahaye (2005) suggest that a minimum requirement of 35% CO2 over a 14 day period 

is sufficient for attaining complete insect mortality of the red flour beetle. Complete kill 

of the majority of stored-product insects can be attained in 10 to 48 hours in 100% carbon 

dioxide (Kashi, 1981). In a bio-generated atmosphere, oxygen, carbon dioxide and 

nitrogen change in tandem. Therefore an increase in carbon dioxide is also suggestive of 
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a decrease in oxygen and a consequent change in nitrogen. Ideally, the most lethal is a 

synergistic environment with low oxygen and high carbon dioxide. Some studies seem to 

suggest that high nitrogen behaves in like manner with high carbon dioxide (e.g. 

Donahaye, 1990). However the effect of nitrogen on insect mortality, fungi development 

and overall corn quality changes in general is beyond the scope of this proposed project. 

Even though it will not be addressed in detail in this proposal, it is acknowledged that 

nitrogen does change with resultant change in oxygen and carbon dioxide and it affects 

biotic variables within the hermetic storage environment.  The efficacy of oxygen versus 

carbon dioxide is also related to the type of insect species. According to Banks and Annis 

(1990) high carbon dioxide levels (i.e. > 60%) is most effective at killing internal feeding 

insects such as S. zeamais, whereas low oxygen (hypoxia) environments are most 

effective at killing external-feeding insects.  

Moreno et al. (2000) reported that oxygen concentration was directly related to 

insect mortality. Finkelmann et al. (2003) showed that at a given temperature, increase in 

carbon dioxide results in a measurable decrease in the time needed to attain complete 

mortality of insects, especially when carbon dioxide concentrations exceed 80%. Adults 

and pupae appear to be the most sensitive to high carbon dioxide levels. 

 

2.14 Germination of stored grains 

Corn seeds are of vital importance for human nutrition in SSA where it is a staple 

food. Small-scale farmers use organic farming methods, which often require them to save 

some of their harvest for planting. Therefore, good seed quality parameters such as 

germinability should be preserved for the immediate and subsequent planting seasons. 
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The association of official seed analysts defines seed germination (see Figure 2.10) as 

“the emergence and development from the seed embryo of those essential structures 

which, are indicative of the ability to produce a normal plant under favorable conditions” 

(Copeland and McDonald, 1985; 2001). Germination is a quality index measure of stored 

grain viability.   

 

Figure 2:10   Stages of germination for corn seed diagram of Aspergillus spp. (Adapted 
from Klich, 2002) 

 

Seed quality and vigor is maintained when proper storage is carried out. Seed 

viability is the ability of the seeds to survive, grow and multiply. In order for a seed to 

remain viable the embryo must be alive. Even though germination and seed vigor are 

used interchangeably, the official definition of seed vigor is “the sum total of those 

properties of the seed that determine the level of activity and performance of the seed 

during germination and seedling emergence” (ISTA, 2006). Seed quality comprises of the 

viability of the seed, germination percentage and seed strength. According to guidelines 

by ISTA (2006), seed vigor assessment involves direct (e.g. stress tests to evaluate 

germination percentage or seedling emergence) and indirect tests such as conductivity. 
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How well a seed grain tolerates stress tests provides an indication of its vigor. The cold 

test is a stress test that simulates unfavorable conditions for germination, and it is often 

used to assess vigor of corn seeds. Seed viability, seed dormancy and environmental 

effects influence germination percent. Germination percentage could be defined as the 

ratio of live seeds (seed that will germinate) relative to the total seeds in storage with the 

same storage conditions.  

The germination process can be classified into three phases 1) water imbibition, 2) 

lag phase and 3) radicle emergence. The imbibition phase is also related to a slow 

increase in respiration until it reaches a plateau, which is usually followed by a sharp 

increase in respiration with radicle emergence (Christiansen, 1982). The metabolic 

activity that ensues from imbibition requires oxygen, and it is modulated by temperature. 

Immersing dry grains into water results in a period of rapid water imbibition followed by 

slower imbibition until the seeds are fully hydrated. When immersed in water, seeds leak 

metabolites such as organic compounds and inorganic salts, amino acids and proteins. 

The more vigorous seeds leak less of these metabolites compared to less vigorous seeds 

(Mathews and Bradnok, 1968; Copeland and McDonald, 2001). Electrical conductivity 

measurements can thus be used to quantify metabolite leakage and hence assess the vigor 

of a seed grain such as corn. Less vigorous seeds will lose the most amounts of 

metabolites and this can often manifest in death or damage to the seed’s embryo (ISTA, 

2006). The tetrazolium test is often used to assess seed vigor. It is based on the principle 

that seeds with living embryo will be brightly stained. This test involves removal of the 

seed coat, creation of an incision to expose the embryo and then immersed in a triphenyl 

tetrazolium chloride (TTC) solution, followed by a period of incubation. Examination of 
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the seeds after the incubation period will show the most vigorous seeds as the ones with 

the entire embryo stained (ISTA, 2006). Some of the tests outlined here will be used in 

assessment of germination in the proposed study and will be discussed in more detail in 

the methods section of this document.  

In essence, water, oxygen and temperature are the main factors that enable 

germination of a seed grain. However, even when these three conditions are favorable for 

a particular seed product, some seeds may fail to germinate. Such seeds can be classified 

as dormant. Put another way, seed dormancy can be explained as the seeds inability to 

germinate under environmental conditions suitable for germination. Favorable conditions 

for germination and absence of dormancy determine seed viability. Hell et al. (2000) 

reported that corn seed quality is not only verified by the condition of grain. It can also be 

evaluated by the seeds ability to be planted the following season. 

Factors affecting seed viability after storage are: temperature, water, light intensity 

and gas composition. The resilience of grains and seeds are highly influenced by seed 

maturity, environmental and moisture conditions (Christensen and Kaufman, 1969). The 

lower the moisture content and temperature the longer the allowable safe storage time for 

preservation of seed germination (Copeland and McDonald, 1985).  The viability of most 

seeds are inversely related to storage time (Guberac et al, 2003; Pascual et al, 2006). 

 

2.14.1 The effect of moisture content and temperature on germination 

The seed life of grain is related to initial moisture content and its interaction with 

storage temperature. Temperature is a factor that depends on moisture level and storage 
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time. Germination decreased after corn seeds where stored at -10°C, 2.5°C and 10°C 

respectively (Gilbert et al., 1997). Table 2.6 shows that the storage life of seed is doubled 

for every 5°C  drop in temperature within a 5°C - 25°C range and 1% drop in seed 

moisture. 

Table 2:6  Maximum storage time (weeks) for corn w.r.t. germination (Adapted from 
Gilbert et al., 1997) 

Temperature (C) Moisture Content (%) 

 12% 13% 14% 15% 15.5% 16% 18% 

25 26 14 9 5 3.5 2 0.5 

20 40 22 14 9 5.5 3 1.5 

15 70 34 22 14 8.5 5 2.5 

10 120 60 38 24 14.0 8 3.5 

5 200 100 52 39 22.0 15 6.0 

 

 

2.14.2 The effect of gas composition on germination 

Germination is influenced by oxygen and carbon dioxide levels. Annis and Banks 

(1990) evaluated the relationship between germination and gas composition. Increase in 

carbon dioxide had the greatest effect on germination. The most lethal effect on 

germination is a combined increase in carbon dioxide and decrease or absence of oxygen. 

Storage time for maintaining viable seeds is much reduced in such situations and further 

shortened as temperature and moisture content increases. 
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2.14.3 The Effect of fungi on germination  

The viability of seeds is affected by microflora. Grains infected by mold can no 

longer be used for planting purposes. High humidity and temperatures do not favor seed 

viability. Storage fungi invade the embryo of corn kernels when conditions are favorable. 

The embryo or germ may be totally infected by mold without visible evidence when 

moisture content is above safe levels (Christensen, 1982). The corn kernel is first 

weakened by the mold which later kills the germ. When mold attacks the grain, it kills off 

the living tissues of the embryo where it mostly functions as a parasite (Christensen, 

1982).  A small dose of isolates of A. flavus on grain will result in no seedling emergence. 

After the embryo and germ dies, discoloration with brown color surfaces (Christensen, 

1982). 

 

2.15 Grain damage 

Kernels that are damaged can adversely affect grain quality and increase grain 

deterioration. Kernels that have sustained damage to the pericarp in the vicinity of either 

the crown, tip cap or germ pericarp have an increased susceptibility to invasion by 

microorganisms. The greater the sustained damage to a corn kernel the lower the 

recommended moisture level needed for safe storage.  

Stroshine and Yang (1990) used Thompson model in a computer simulation which 

they used to examine the effects of physical damage and hybrids, on dry matter loss 

during drying of 22% m.c shelled corn.  Multipliers such as theirs were used to correct 

allowable storage time for differences in grain damage and hybrid resistance to storage 

mold. Dry matter loss of the hybrids resistance to mold growth was consistently 30 to 40% 
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lower than DMLs for susceptible hybrids. They used the equation initially developed by 

Steele (1967), computed the damage multiplier from the equation, and then fitted data to 

an exponential equation having a coefficient of determination of 0.67. 

 

2.16 Grain-Grading systems  

Grade standards for grain were developed to facilitate marketing, identify 

economic factors important for end users and reflect storability (Hill, 1988). A grain 

grading system significantly influences the efficiency of storage. Grading systems ease 

trade in markets to meet buyer requirements and forces producers to meet the desired 

quality.  Variation in physical appearance of grain, moisture content, fungal infection or 

discoloration of the grain affects the quality, price and storage life of grains.  Corn quality 

is a major factor that affects the price for end users. The quality of corn produced by most 

farmers varies significantly due to differences in soils, climate, insects, and management 

practices with respect to harvesting, drying and storage.   

Grain grades were established to allow buyers and sellers to settle on a common 

price by the guidance of rules that are commonly accepted and understood. The main 

principle is that end use of corn that drives the factors and tests are most important for 

measuring quality. The grading system is categorized into two: fair average quality 

system and the numeric system (CGC, 1993). The average quality system represents the 

average quality of the grain; shipments of grain are checked by third parties at their final 

destination (White and Johnson, 2003). 

Sellers and buyers in the Mediterranean regions and Europe in the late 1800s 

normally met with the grain consignment and bargained until they had an agreement 
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(Commission et al., 1983).  This usually had some drawbacks with regards to corn quality 

because the origin of the corn was only based on word communication. Regulations of 

grain quality started as a form of penalty or a fee. That is, when the quality is not as 

expected a penalty is normally collected. In 1856, the Chicago Board of Trade began 

establishing a grade for wheat and extended into southern Russia at the beginning of the 

19th century. Hill (1990) reported that the U.S. Grain Standards act passed in 1916 

authorized the U.S. Department of Agriculture (USDA) to develop standards, grading etc. 

to ensure quality of the grains. Grain Inspection, Packers and Stockyards Administration 

(GIPSA), a sub section of the USDA controlled the development, inspection and 

enforcement of the U.S. grain grades.  

In the numerical grading system, corn grades are rated on a scale from U.S. Grade 

No. 1 to the poorest quality called sample grade. A tabulation of the different grades and 

their requirements are shown in Table 2.7. 
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Table 2:7  US Grades: Grades and Grade Requirements for Corn 
  Maximum limits  

  Damaged Kernels  

U.S. Grade No. Minimum Test 

Weight (Ib/bu) 

Heat-Damaged 

kernels (%) 

Total Damaged 

(%) 

BCFM (%) 

1 56.0 0.1 3.0 2.0 

2 54.0 0.2 5.0 3.0 

3 52.0 0.5 7.0 4.0 

4 49.0 1.0 10.0 5.0 

5 46.0 3.0 15.0 7.0 

Sampleb     

Adapted from the Official United States Standards for Grain (USDA-GIPSA, 2004) 

 

In the US grain grading system there are four factors of measurement: test weight, 

heat-damaged kernels, total damaged kernels, and broken corn and foreign material 

(BCFM). A grade is lowered when any of the factor requirements are not met. The U.S. 

Federal grain standards define limits on fine material, heat damage, damage and test 

weight.   

Other countries also have their grading system by which grain is traded. Like in 

the U.S., the EU countries and other developed countries such as Russia and Japan have 

developed grading systems for use in the trade. In Africa, grade systems have been 

developed by the standard organizations of individual African nations, some more 
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developed than others. However, these are not necessarily used by small producers (See 

Table 2.8 for Ghana grade standard). 

In Ghana, located in western part of Africa, corn is graded according to the 

presence of other grains, degree of physical defect, foreign matter and fifth.  The grade 

factors and safe moisture requirements are shown in Table 2.8 & 2.9. 

 

Table 2:8  Ghana Grain standards (Corn) 
Grade factors Grade 1 Grade 2 Grade 3 

Disease 0.5 0.5 0.5 

Discolored 2.0 3.0 3.0 

Broken / Chipped 5.0 6.0 10.0 

Insect damaged 3.0 5.0 7.0 

Stained 0.0 0.5 0.5 

Germinated 0.0 0.5 0.5 

Shriveled 1.0 2.0 3.0 

Other grains 0.5 0.5 1.0 

Total defective 11.0 16.0 22.5 

Inorganic 0.0 1.0 2.0 

Organic 1.0 2.0 5.0 

Filth 0.5 0.5 1.0 

(Adapted from Ghana Standards Board, 2003) 

 

 



53 

 

Table 2:9  Maximum moisture content storage at 70% RH and 27C 
Grain type Safe moisture levels of grain (%) 

Wheat 13.5 

Maize 13.5 

Paddy rice 15 

Sorghum 13.5 

Millet 16 

Source: (Adapted from Brooker et al. 1992) 
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CHAPTER 3.  QUALITY CHANGES CAUSED BY FUNGI IN HERMETIC 
STORED CORN AT MID-MOISTURE LEVELS UNDER COOL AND WARM 

CONDITIONS 

3.1 Introduction 

Small-scale farmers in sub-Saharan Africa own about 2 ha of land on average 

as compared to much larger portions (> 100 ha) owned by fellow farmers in 

developed countries (MOFA, 2011). In the sub-Saharan African (SSA) region the 

average corn yields between the year 2005 and 2008 was about 1.4 t/ha (Smale et al. 

2011). 

 About 21 years ago, land used for the cultivation of corn increased annually at 

a steady rate of 1.09 %, while in 2009 land for corn production was increasing at a 

steady rate of 2.66% (FAOSTAT, 2011).  

Price fluctuations largely depend on the harvest season, with low prices 

usually occurring right after harvest. These price fluctuations vary across the sub-

region of Africa. They are influenced by factors such as storage costs which 

eventually affect corn production (Jones, 2011). When losses are incurred storage 

cost increases so when storage is done properly it improves farmer’s profits.  

Small scale farmers from the leading producing areas of corn (maize) in 

regions of Ghana near Kumasi (643’N 136’W) such as Ejura Sekyeredumase, 

Nkoranza, Kintanpo, Afram Plains and Techiman  have been challenged by the ability
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to dry down corn to safe moisture levels of 13% or below. The primary reason is that 

the use of sun drying, which is the common practice during the major harvest season 

(July to August) is inefficient in drying corn because of the limited daily sunshine 

hours (i.e. < 2.6 hrs.) and high ambient relative humidity (about 80% on average) 

influenced by the major rainy season during this period (Ghana Meteorological 

Service, 2011).   

Anecdotal evidence indicates that corn harvested above 30% moisture is 

normally dried to moistures between 15 and 21% using open-air drying, but not as 

low as 13% or below for long-term safe storage under humid conditions. Because 

farmers typically have no access to moisture meters to measure grain moisture 

content, they determine grain moisture using subjective means such as crushing 

between their teeth or shaking a handful of kernels in their palm. This means that 

there is high probability that poorly dried grain goes into storage and becomes moldy 

with time in storage.  

Storing insufficiently dried corn at mid-moisture range (15 - 21%) in hermetic 

or non-hermetic storage presents conditions that are favorable for the proliferation of 

xerophilic toxin produced by storage mold. One of the common toxins produced by 

molds known to contaminate stored corn in parts of Africa is aflatoxin (Hell et al., 

2011). Aflatoxin is a secondary metabolite produced by aspergillus flavus and 

aspergillus parasiticus. Aflatoxin is highly toxic and suppresses the immune system 

(Ellis et al., 1991). It can cause chronic damage to the liver and kidney, and the 

digestive and nervous systems. Aflatoxins can also interfere with the reproductive 

system of humans. According to Farombi (2006), in certain parts of Africa liver 
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cancer (Hepatocellular carcinoma) caused by aflatoxins contributed to 70% of cancer 

related deaths. Consuming corn products that are contaminated with aflatoxin (often 

not discernible to the naked eye) can cause adverse health effects to adults and infants. 

Significant research has been published on the effectiveness of hermetic 

storage in controlling stored pests (Navarro et al., 1994; Moreno-Martinez et al., 2000; 

Emekci et al., 2001; Quezada et al., 2006; De Carli et al., 2010; Murdock et al., 2012). 

Hermetic storage has been used commercially for storage of corn, rice, cocoa, coffee 

and sunflower seeds (Villers et al., 2010). The system has also been found to be 

successful in storing cowpea that is grown in the Sahel region as reported by 

Murdock et al. (2012) where the grain is harvested sufficiently dry and suitable for 

long periods of storage. In general hermetic storage is preferred for storing 

sufficiently dry grain than wet grain (Banks et al., 1981; Moreno et al., 1988). The 

rate of mold growth tends to decrease over storage time under hermetic conditions 

compared to non-hermetic storage (Dixon and Kell, 1989; Magan and Lacey, 1988).   

When there is limited oxygen supply in hermetic storage some microorganisms 

may continue to develop by partially decomposing carbon dioxide, producing lactic 

acids, acetic acids and alcohols known as fermentation (Sauer et al., 1992; Weinberg 

et al., 2008). There is a gap in knowledge particularly on the efficacy of hermetic 

storage on mold suppression at mid-moisture levels between 15% – 21% Villers et al. 

(2010), as well as aflatoxin contamination.  The objective of this study was to 

investigate the quality changes due to fungi deterioration of corn stored hermetically 

at 11%, 15%, 18% and 21% moisture levels under 10oC and 25oC indicated by kernel 
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germination, mold count, fat acidity, aflatoxin contamination and corn chemical 

composition. 

 

3.2 Materials and Methods 

 

3.2.1 Experimental design  

Quality changes were measured by monitoring changes in germination, mold 

growth, aflatoxin levels, fat acidity, and nutritional content before and after storage 

for 2, 4 and 6 month periods. Oxygen, carbon dioxide and the grain temperature of 

the storage environment in the one liter jars used were monitored and used to explain 

changes in corn quality. This study used a repeated measure factorial design to 

evaluate the effect of temperature, moisture content, storage type (hermetic vs. non-

hermetic-aerobic) and storage time on corn quality measures such as mold count, 

aflaxtoxin levels, seed germination, fat acidity and nutritional content. Corn was 

stored at four moisture levels (11% as control, 15, 18, and 21%) under two 

temperature conditions (10 and 25C) for three storage periods (2, 4 and 6 months). 

During the storage tests, temperature was measured every two hours, while oxygen 

and carbon dioxide were measured weekly. All destructive and nondestructive quality 

tests were performed at the end of the storage period on pooled samples of two 

replications per treatment/storage condition and period. 
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3.2.2 Sample source and preparation 

Shelled corn used for the experiment was of U.S. grade no. 1 yellow dent corn 

of hybrid “6297 and 6333 VT RIB”. The grain was purchased from a seed supply 

company, Ceres Solution in Lafayette, Indiana, US at approximately 12% moisture 

content. In order to describe the storability of the grain, characterize product yield and 

grain quality, sub-samples were taken to Titus Grain Inspection Service (Tipton, 

Indiana), a local licensed grain grader for grade classification. Corn was kept in cold 

storage (-20C) in January of 2013 to suppress or stop any mold from proliferating, as 

well as eliminate any prior insect infestation should there be any.  Prior to preparation 

of the samples for the experiment, the samples were removed from cold storage and 

allowed to thaw for 24-h in a 0 - 4C cooler. The samples were then cleaned over a 

4.76-mm (12/64-in.) round–hole sieve to remove fines and foreign material leaving 

small broken and chipped kernels. Sub-samples were divided using a boerner divider 

(Seedburo Equipment Co., Chicago, IL, USA) in order to obtain a representation of 

the samples. 

An estimate of moisture levels in the bags holding the shelled corn was 

conducted using a moisture meter, Grain Analyzer Computer (GAC) 2100 (Dickey-

John Corporation, Auburn, IL) and the moisture content was found to be 12.5 + 0.7%. 

Later, samples were measured using the air-oven standard (ASABE Standards, 2000) 

and the moisture content was about 11% (10.8 + 0.1%). To conduct the storage tests, 

corn was rewet to target mid-moisture levels of 15% (14.6 + 0.1%), 18% (17.8 + 

0.0%) and 21% (21.2 + 0.2%) using the methodology according to Ileleji et al. (2003). 

The values in parenthesis were the exact final moistures achieved after rewetting.  



70 
 

 

Corn was conditioned by mixing in a mechanical roller for two hours using calculated 

amounts of distilled water and stored in plastic bags in a 0 - 4C refrigerator for 72 

hours to complete moisture equilibrium. The final moisture after rewetting was 

determined upon the equilibration period using the air-oven standard method ASABE 

S352.2 (ASABE Standards, 2000).  

Initial quality assessment was conducted before the samples were placed in 

storage. The samples before storage tests had a percent germination of 99%, aflatoxin 

levels were below detection level (0 – 2.5 ppb) using QuickScan QuickTox Kit , mold 

counts were below 2 CFUs by plating , and fat acidity value of 20 by AACC Standard 

Method 02–03A  procedures. The nutritional content determined by using 

INFRATEC 1229 NIR transmittance equipment (Foss Tecator AB, Höganäs, Sweden) 

were 60.4%, 8.6% and 3.1% for starch, protein and oil, respectively. 

 

3.2.3 Storage tests 

Shelled-corn samples (650 g each) were conditioned to the target moisture 

levels and were placed in 1L glass jars (height of 0.23 m and diameter of 0.1 m) that 

were hermetically sealed and not hermetically sealed (aerobic conditions). Two 

replications per treatment were stored for 2, 4 and 6 months periods, after which they 

were removed from storage for analyses. The corn samples in the jars occupied 

approximately 70-80% by volume of the jars with some amount of headspace present. 

Two tiny holes were drilled in the lids and covered with septum to allow for 

continuous temperature monitoring using a thermocouple and intermittent gas 

sampling at regular time intervals as shown in Figure 3.1.  Temperature in the grain 
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was monitored every hour at the center of the grain mass using thermocouples 

connected to 2625 Hydra data loggers (Fluke Corporation, Everett, WA 98203) and 

HOBO data loggers were used to monitor temperature conditions in the temperature 

chambers (Percival Scientific Inc., Boone, IA). Carbon dioxide and oxygen were 

measured using the Mocon PAC Check® Model 325 headspace analyzer (Mocon, 

Minneapolis, MN, USA) on air pulled with a hypodermic needle positioned a few 

millimeters below the bottom of the jar. The analyzer which uses an automatic 

internal sampling pump measures levels of oxygen and carbon dioxide concentration 

of the air within the grain mass through an infrared and electro-chemical cell. The 

analyzer was used 30 min after self-calibration against ambient conditions and the 

filters were replaced every two weeks. Calibration of the Mocon device was validated 

every week throughout the entire period of the experiment. Gas composition was 

measured every 7 days from the beginning to the end of the storage tests for all 

moisture treatments and storage periods. Since 4 ml sample of air was drawn for 

every reading taken the storage jars were allowed to establish air equilibration with 

the atmosphere after every sample reading.  

Each of the storage jars containing corn was classified as an experimental unit. 

Jars were placed in separate temperature chambers (Percival Scientific Inc., Boone, 

IA) set to 10C and 25C to stimulate a comparison between temperate and tropical 

climates respectively. The experimental units (jars) were placed in the environmental 

chamber after the center of the grain bulk in the jars had warmed up from thawing 

under 0-4oC in the cooler to room temperatures (20C to 25C). For the hermetic jars, 

airtight lids were placed over the jars to seal air-tight while Whatman filter paper and 
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mesh wire fabric were placed on the non-hermetic jars. The non-hermetically sealed 

jars were used as the control. The filter paper and mesh allowed the exchange of air 

creating aerobic storage conditions, and were removed only after the storage tests 

were completed.   

Half of the storage jars in each storage chamber were then placed in 

constructed Styrofoam insulation which was done to investigate whether mold growth 

would be accompanied by a marked temperature rise (hot spot). Because the jars were 

relatively small, the insulation prevented heat loss from the jar. Although relative 

humidity data was not measured in the jars, moisture content and weight of dry matter 

was measured before and after storage. Because of the relatively small headspace 

volume in the jars compared to the quantity of corn (20-30%), it is accurate to assume 

that the air in the jar headspace came to equilibrium with the corn moisture. At the 

end of the experiment, grain samples from both replications were separately tested for 

quality indicated by kernel germination, mold count, fat acidity, aflatoxin 

contamination and corn chemical composition, and the average determined. 
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Figure 3:1 Experimental set-up of storage jar 
 

3.2.4 Microbiological analysis 

After the storage tests for the respective storage periods, the kernels were 

removed from storage and dried down using a forced-air oven at 28°C for 

microbiological analyses. Microbiological analyses were conducted using two 

methods: (1) kernel plating to isolate and identify the type and kind of fungi that was 

growing on the kernels and (2) serial dilution to determine the total mold count by 

counting the colony forming units (CFUs).  

Each replication per storage treatment was divided into 3 sub-samples using a 

boerner divider to ensure equal representation of mold samples. About 30 g of the 

samples were poured into a 250 ml container; 50 ml of 0.05% sterilized Triton-X-100 

solution was added to the mixture and shaken for 1 min. The mixture was then 

decanted with the solution poured into 50 ml corning tubes and placed in a freezer at -

20C to be used for serial dilution. Kernels were then plated by surface sterilizing 
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with 100 ml of sodium hypochlorite (NaClO), and shaken for 1 – 2 min. to remove 

most of the external contaminants. Afterward, the bleach was poured off and about 

200 ml of distilled water was added and stirred for about 1 min to wash off the bleach. 

50 corn kernels was plated on mal salt agar (MSA) media and incubated at 30°C for a 

period of 5 days. Malt salt agar was used because of its ability to isolate storage fungi, 

its high osmotic concentration to isolate highly osmophillic fungi mainly Aspergillius 

spp., its inhibition of most bacteria and its ability to discourage growth of non-storage 

fungi. The MSA medium contained 2% malt extract, 6% sodium chloride and 2% 

agar (Moreno-Martinez et al., 2000). The medium was autoclaved for 15-20 minutes 

because of the acidic nature of the medium. Ten kernels were plated in each petri dish 

and incubated in a 30 + 1C chamber. After 5-7 days, morphological identification of 

fungi associated with kernels was done by scraping mycelia advancing from margins 

of the grains with a pick. The mycelia were mounted on slides for microscopic 

examination. Identification of the isolates was based on color of shooting spores, 

morphology of mycelia and the arrangement of conidia structures (Tuite et al., 1985; 

Pitt and Hocking, 1997; Klich, 2002). Mold counts were performed before and after 

storage. The total mold count was performed by serially diluting the contents of the 

50 ml corning tubes on the MSA media to 1:100 dilution factors. 100 l of each 

dilution were plated. After 5-7 days of incubation, colonies were counted giving CFU 

values at 30 + 1C. 
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3.2.5 Aflatoxins Analyses 

Aflatoxin analysis was conducted for corn samples before and after the 

storage. Aflatoxin was determined using the QuickTox Kit for QuickScan 

(Envirologix Inc., Portland, ME). About 20 g of corn was grinded and sieved using # 

20 screen size. 2 ml/g of 50% ethanol in water was used to extract aflatoxins. The 

samples were shaken by hand for 2 min and allowed to settle into separate layers. 100 

l corn sample extract was mixed with 100 l dilution buffer (standard aflatoxin-

enzyme solution). After it was stirred and test strips where placed into the vials. After 

5 minutes, part of the strips was placed into the Quick Scan reader for aflatoxin 

determination in parts per billion (ppb).  

 

3.2.6 Fat Acidity 

Fat acidity tests were conducted on kernels before (0 month) and after (2, 4 

and 6 months) storage tests. Fat acidity was determined according to AACC Standard 

Method 02–03A for determining the fat acidity in corn (AACC, 2009). The procedure 

was carried out by extracting free fatty acids from 20-g of ground corn samples using 

50 ml purified grade toluene and titrated the extract with CO2 –free standard solution 

of 0.0178N KOH. Three titrations (three replicates) from 20-g corn samples each 

were conducted. Fat acidity values obtained for each 20-g ground corn sample were 

averaged and represented as milligrams of KOH required to neutralize free fatty acids 

from 100-g corn.  
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3.2.7 Germination 

Germination tests were conducted on corn samples before and after storage 

according to methods by Moog (2006). Seed germination was determined by placing 

200 kernels in trays. De-ionized water was used to moisten the kernels lined with 

paper towels and wrapped with plastic linings to minimize evaporation. Kernels that 

germinated were counted and germination percentage calculated by determining the 

ratio of germinated kernels to the total number of kernels multiplied by a 100.  

 

3.2.8 Nutritional content (Chemical composition) 

A InfratecTM 1229 (Foss Tecator AB, Höganäs, Sweden) grain analyzer was 

used to determine the chemical composition of kernels before and after storage tests.  

The analyzer measured the starch, protein, oil on an ‘as is’ basis. It is important to 

note that the results obtained using this device was “AS IS” values for the 

constituents.  

3.2.9 Statistics 

Analysis of Variance (ANOVA) and multiple linear regression was performed 

to evaluate the effect of: initial moisture content, storage time, temperature and 

storage type on different measures of corn quality: 1) mold counts (CFUs), 2) 

aflatoxin, 3) germination (%), 4) fat acidity and 5) chemical composition (%).  

 

3.3 Results 

This study evaluated quality changes in hermetically stored corn at mid-moisture 

levels (15-21%) under tropical storage conditions. This section discusses the results on 
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the effect of moisture content, temperature, storage time and gas composition on the 

major quality measures: mold, aflatoxin and germination, fat acidity, and nutritional 

content (chemical composition). 

 

3.3.1 Moisture content 

Table 3.1 shows the mean and standard deviation of two replications of moisture 

content before and after 2, 4 and 6 months of storage, respectively. The initial 

moisture content after rewetting corn to the target moistures of 11%, 15%, 18% and 

21% were 10.8%, 14.6%, 17.8% and 21.2%, respectively. For consistency and to 

avoid confusion, the target moistures were used in reporting the data.  
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Table 3:1 Moisture content (M.C.) (Mean (%) + (SD)) over storage periods at 
temperatures of 10 and 25C 

Storage time (months) 10°C 25°C 
  Hermetic Non-hermetic Hermetic Non-hermetic 

11% initial M.C. 
0 10.80 + 0.00 10.80 + 0.00 10.80 + 0.00 10.80 + 0.00 
2 11.44 + 0.33 10.47 + 0.16 11.61 + 0.20 10.88 + 0.61 
4 11.43 + 0.54 11.99 + 0.59 11.70 + 0.08 11.54 + 0.66 
6 10.95 + 1.37 13.04 + 1.04 11.58 + 0.15 11.83 + 1.34 

15% initial M.C. 
0 14.60 + 0.00 14.60 + 0.00 14.60 + 0.00 14.60 + 0.00 
2 16.88 + 0.14 15.55 + 0.21 16.56 + 0.13 12.82 + 0.42 
4 16.68 + 0.10 16.03 + 0.06 17.81 + 0.38 12.76 + 0.11 
6 16.79 + 0.17 16.69 + 0.05 19.34 + 0.43 11.68 + 0.40 

18% initial M.C. 
0 17.80 + 0.00 17.80 + 0.00 17.80 + 0.00 17.80 + 0.00 
2 18.93 + 0.02 17.27 + 0.02 18.87 + 0.23 15.67 + 0.71 
4 19.07 + 0.08 17.43 + 0.12 20.86 + 1.27 14.15 + 0.12 
6 19.49 + 0.12 18.03 + 0.01 21.00 + 1.51 13.28 + 0.08 

21% initial M.C. 
0 21.20 + 0.00 21.20 + 0.00 21.20 + 0.00 21.20 + 0.00 
2 23.39 + 0.31 21.12 + 0.57 22.51 + 0.34 35.42 + 5.42 
4 22.26 + 0.52 30.68 + 0.98 24.68 + 0.37 38.20 + 15.02 
6 24.80 + 1.82 41.15 + 7.01 24.95 + 1.61 46.78 + 6.96 

 

Post storage moisture content for hermetically stored corn increased.  For non-

hermetic storage, moisture content after storage slightly increased for 10°C for all 

moistures and at 25°C moisture levels decreased for 15 and 18% mc except 11 and 21% 

mc.  

3.3.2 Temperature profiles during storage 

 Temperature was measured hourly in both non-insulated and insulated jars to monitor  
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the rise in temperature caused by mold growth for the different initial moisture contents 

of corn stored at 10C and 25C. Because the jars were small with about 650 g of corn, 

we insulated one of the replicate jars to prevent rapid heat dissipation from within the 

small corn (grain) mass, so as to capture any heat rise due to hotspot development 

from molding corn. Temperature data points were plotted using 24 h averages. Figure 

3.2 and 3.3 depicts temperature data measured in both non-insulated and insulated 

jars at different initial moisture content levels. The spikes in the chamber temperature 

data were due to the opening and closing of the chamber for data collection. These 

figures show that at 10C, there was a small but significant difference statistically 

between the chamber temperature and that of the insulated and non-insulated jars for 

all the moisture contents.  

 

3.3.3 Gas composition during storage 

Fig 3.4 and 3.5 shows production of carbon dioxide and oxygen within the hermetic 

and non-hermetic jars at each initial moisture level period from the beginning (i.e. 

day zero) to the end of 6 months of storage. The general trend was as expected, the 

higher the initial moisture content the higher the rate of respiration and consequently 

the higher the amount of carbon dioxide produced and oxygen depleted.  
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Figure 3:2 Response of temperature to mold across storage time for 11 % MC (top left panel), 15 % MC (top right panel), 18% 
MC (bottom left panel) and 21% MC (bottom right panel) at 10C for both insulated and non-insulated jars 
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Figure 3:3 Response of temperature to mold across storage time for 11 % MC (top left panel), 15 % MC (top right panel), 18% 

MC (bottom left panel) and 21% MC (bottom right panel) at 25C for both insulated and non-insulated jars 
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Figure 3:4 Carbon dioxide levels across storage time for hermetic (top panels) and non-hermetic (bottom panels) at 10C (left 
panels) and 25C (right panels). 
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Figure 3:5 Oxygen levels across storage time for hermetic (top panels) and non-hermetic (bottom panels) at 10C (left panels) and 
25C (right panels). 
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3.3.4 Mold count after storage 

Mold counts across all four moisture levels for corn stored hermetically and non-

hermetically at 10 and 25C are shown in Fig 3.6. In general, mold count (CFUs) increased 

with increase in initial moisture content, temperature and storage time for both storage 

types. For moisture effects, mold counts increased with moisture content. For temperature 

effects, mold counts were higher at 25oC compared to 10oC. For storage time effects, mold 

counts increased with storage time. Mold counts were also higher at month 2 compared to 

month 4 and month 6. Mold counts were higher at month 4 compared to month 6.  This 

trend of increasing mold count with increase in storage time is the opposite of the expected 

effect in a truly hermetic environment.  It is likely that mold increase may be attributed to 

air leakage or reintroducing ambient air to replace the 4ml used for gas composition 

measurements. As stated in the methods section, 4ml of ambient air (i.e. 20% oxygen and 0% 

carbon dioxide) was introduced every 7 days to replace the gas used for measurements. 

This was done to minimize creating a vacuum. However, this reintroduction of ambient air 

every 7 days may likely be the reason for the trend of increasing mold with increase in 

storage time. A post-hoc study was conducted to evaluate whether the 4ml of ambient air 

replacement was sufficient to encourage the proliferation of aerobic mold. Two samples 

were used, one that was sealed during the entire storage period and the other with a septum 

hole and opening to allow air replacement. The study showed that introducing 4ml or more 

every 7 days in the hermetically sealed jar was enough to keep fungi still growing on the 

stored corn. 
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Figure 3:6 Mold count (CFUs/g) for different moisture contents levels across storage time for hermetic (top panels) and non-
hermetic (bottom panels) at 10C (left panels) and 25C (right panels). 
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3.3.5 Visible characterization of kernels to molding during storage 

After six months of hermetic storage, 11% initial moisture samples stored at 25C 

hermetically and non-hermetically had no visible signs of mold, no off-odor, no 

noticeable smell, characteristics of the corn was free flowing. However, samples at 15% 

moisture content had some visible mold while non-hermetically stored corn contained 

more traces of mold growth than corn stored hermetically. For 18% moisture, odor of 

fermentation was present confirming possible occurrence of anaerobic respiration and 

mold in the hermetically stored corn. There was a musty odor showing greenish and dark 

coloration in the non-hermetically stored corn at 18%. At 21% moisture, hermetically 

stored samples showed the strongest signs of fermentation from odor with high pressure 

build-up. At 10°C corn stored hermetically there were no visible signs of mold especially 

for corn stored at lower moistures.  

 

3.3.6 Aflatoxin concentration after storage 

Table 3.2 shows that most of the aflatoxins (ppb) contamination levels measured for the 

storage periods were below the limits of detection (LOD). In general, aflatoxin levels 

increased with increase in temperature, moisture content and time.  
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Table 3:2 Aflatoxin levels (ppb) over storage periods at temperatures of 10 and 25C 
Storage time (months) 10°C 25°C 

  Hermetic Non-hermetic Hermetic Non-hermetic 
11% initial M.C. 

0 *LOD *LOD *LOD *LOD 
2 * LOD *LOD * LOD *LOD 
4 * LOD *LOD * LOD *LOD 
6 * LOD *LOD * LOD *LOD 

15% initial M.C. 
0 *LOD *LOD *LOD *LOD 
2 * LOD *LOD * LOD *LOD 
4 *LOD *LOD * LOD *LOD 
6 *LOD *LOD * LOD *LOD 

18% initial M.C. 
0 *LOD *LOD *LOD *LOD 
2 *LOD *LOD * LOD 172.5 + 10.61 
4 *LOD *LOD * LOD > 180 
6 *LOD *LOD * LOD > 180 

21% initial M.C. 
0 *LOD *LOD *LOD *LOD 
2 *LOD *LOD 7.23 + 1.10 > 180 
4 *LOD *LOD 50.50 + 6.36 > 180 
6 *LOD *LOD 66.50 + 4.95 > 180 

* Limit of detection (LOD) indicates Aflatoxin levels (ppb) below the detection limit (0 

ppb). 
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3.3.7 Germination after storage 

Moisture content, temperature and storage type critically affected germination. Table 3.3 

shows seed germination percentage over the total storage period at 10C and 25C 

temperatures for corn stored hermetically and non-hermetically.  

 

Table 3:3 Seed germination (Mean (%) + (SD)) over storage periods at temperatures of 
10C and 25C 

         

Storage time (months) 10°C 25°C 
  Hermetic Non-hermetic Hermetic Non-hermetic 

11% initial M.C. 
0 99.00 + 1.00 99.00 + 1.00 99.00 + 1.00 99.00 + 1.00 
2 95.00 + 1.41 97.50 + 0.71 96.00 + 1.41 96.25 + 3.18 
4 92.25 + 1.06 95.00 + 1.41 91.00 + 2.12 94.50 + 3.54 
6 90.25 + 1.77 77.50 + 1.41 89.55 + 2.05 62.00 + 1.41 

15% initial M.C. 
0 99.00 + 1.00 99.00 + 1.00 99.00 + 1.00 99.00 + 1.00 
2 89.00 + 1.41 95.75 + 0.35 37.00 + 4.24 78.25 + 1.06 
4 67.00 + 1.41 92.50 + 2.12 0.50 + 0.71 64.25 + 1.06 
6 64.75 + 3.18 53.00 + 4.24 0.00 + 0.00 42.75 + 2.47 

18% initial M.C. 
0 99.00 + 1.00 99.00 + 1.00 99.00 + 1.00 99.00 + 1.00 
2 59.50 + 10.61 75.75 + 1.06 0.00 + 0.00 23.75 + 3.89 
4 29.25 + 1.06 60.25 + 1.06 0.00 + 0.00 22.75 + 3.89 
6 25.50 + 4.95 34.50 + 0.71 0.00 + 0.00 0.00 + 0.00 

21% initial M.C. 
0 99.00 + 1.00 99.00 + 1.00 99.00 + 1.00 99.00 + 1.00 
2 6.25 + 1.77 19.25 + 1.77 0.00 + 0.00 11.00 + 4.24 
4 4.75 + 1.77 5.00 + 1.41 0.00 + 0.00 0.00 + 0.00 
6 0.00 + 0.00 0.00 + 0.00 0.00 + 0.00 0.00 + 0.00 
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Seed germination decreased with increase in initial moisture content irrespective of storage 

type and temperature. Hermetic storage was less favorable for preserving germination. 

Germination decreased with increase in moisture content, temperature and storage time. 

With respect to the relationship between germination and gas composition, seed 

germination decreased with increase in carbon dioxide production and oxygen depletion. 

Germination was lower in hermetic compared to non-hermetic storage. 

 

3.3.8 Fat acidity after storage 

Moisture content, temperature and storage type critically affected fat acidity values. Fat 

acidity data is shown in Table 3.4. In general, free fatty acids increased with increase in 

initial moisture content of the stored corn and storage time. Fat acidity values were lower in 

hermetic storage than in non-hermetic storage. Overall, fat acidity increased significantly 

with storage time. Across all conditions, the mean levels of fat acidity were for month 0, 2, 

4 and 6 respectively. In summary, fat acidity was only significantly higher after month 4 

and month 6 of storage.  
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Table 3:4 Fat acidity value (Mean (%) + (SD)) over storage periods at temperature s of 
10C and 25C 

Storage time (months) 10°C 25°C 
  Hermetic Non-hermetic Hermetic Non-hermetic 

11% initial M.C. 
0 26.6 + 1.72 26.6 + 1.72 26.6 + 1.72 26.6 + 1.72 
2 60.3 + 0.10 65.4 + 0.17 83.9 + 1.72 87.6 + 2.25 
4 71.2 + 1.30 105.2 + 6.19 182.4 + 0.65 183.2 + 1.95 

6 75.7 + 2.60 143.5 + 2.34 288.4 + 2.34 349.4 + 1.95 

15% initial M.C. 
0 26.6 + 1.72 26.6 + 1.72 26.6 + 1.72 26.6 + 1.72 
2 67.8 + 1.72 122.5 + 1.12 274.2 + 1.12 312.7 + 19.73 
4 108.2 + 3.61 164.8 + 3.24 305.6 + 3.90 340.8 + 6.49 
6 229.6 + 2.83 236.0 + 5.84 339.3 + 2.97 385.0 + 2.83 

18% initial M.C. 
0 26.6 + 1.72 26.6 + 1.72 26.6 + 1.72 26.6 + 1.72 
2 187.3 + 1.30 215.7 + 4.05 314.6 + 0.00 361.1 + 8.51 
4 215.0 + 6.26 285.0 + 1.72 331.1 + 5.07 374.5 + 6.49 
6 295.5 + 1.95 328.1 + 5.84 387.3 + 5.19 415.7 + 1.95 

21% initial M.C. 
0 26.6 + 1.72 26.6 + 1.72 26.6 + 1.72 26.6 + 1.72 
2 264.8 + 2.34 269.7 + 0.00 344.6 + 13.0 363.3 + 6.49 
4 282.2 + 2.25 301.2 + 6.83 360.3 + 1.30 404.5 + 0.00 
6 356.6 + 5.19 380.9 + 1.95 402.3 + 2.25 471.9 + 2.25 

 

3.3.9 Nutritional content after storage 

Table 3.5 shows nutritional data for protein, starch and oil content. Across all conditions, 

protein levels decreased slightly with time.  
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Table 3:5 Nutritional content (%) (‘AS IS’) value over storage periods at temperatures of 10 and 25C 

        

    Starch content (%) Protein content (%) Oil content (%) 

Storage time  10°C 25°C 10°C 25°C 10°C 25°C 

  (months) H NH H NH H NH H NH H NH H NH 

11
%

 I
M

C
 0 60.4 60.4 60.4 60.4 8.6 8.6 8.6 8.6 3.1 3.1 3.1 3.1 

2 60.7 60.7 60.5 60.8 8.7 8.5 8.4 8 3.2 3.2 3.3 3.4 

4 61 60.6 60.7 61.1 8.1 8.2 8.5 8 3.1 3.3 3.1 3.2 

6 60.3 60.2 60.7 60.8 8.3 8.8 8.3 8.3 3.5 3.4 3.3 3.2 

15
%

 I
M

C
 0 60.4 60.4 60.4 60.4 8.6 8.6 8.6 8.6 3.1 3.1 3.1 3.1 

2 60.8 60.5 60.4 60.1 8.3 8.2 8.4 8.7 3.4 3.4 3.5 3.5 

4 60.5 61.2 60.8 60.1 8.2 8.3 8.5 9.6 3.5 3.3 3.4 5.2 

6 60.2 60.5 57.6 60.9 8.6 8.2 9.2 8.1 3.6 3.4 3.6 3.2 

18
%

 I
M

C
 0 60.4 60.4 60.4 60.4 8.6 8.6 8.6 8.6 3.1 3.1 3.1 3.1 

2 61 60.6 60.8 60.9 8.4 5.2 8.2 8.1 3.3 3.3 3.4 3.3 

4 65.4 60.4 61.8 61 7.2 8.2 8.6 8.1 5.6 3.6 3.4 3.2 

6 60.8 60.8 61.2 61.8 8.3 8.1 8.2 8.3 3.2 3.6 2.9 2.7 

21
%

 I
M

C
 0 60.4 60.4 60.4 60.4 8.6 8.6 8.6 8.6 3.1 3.1 3.1 3.1 

2 60.9 62.1 60.6 54.8 8.9 7.9 8.5 11.8 3.7 3.6 3.5 3.5 

4 60.3 58.3 61.1 47.8 9.1 10 8.7 13.8 3.8 5.1 4.1 3.9 

6 60.1 60.1 61.2 62 8.3 8.8 8.2 8.5 3 5.3 3.3 3.2 

*’H’ means hermetic and ‘NH’ means non-hermetic 
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3.3.10 Statistical analysis 

Four-way ANOVA was used to evaluate the effect of temperature, storage time, 

moisture content and storage type on germination. The main effect was significant for 

temperature [F (1, 36) = 86.22, p = .0007], storage type [F (1, 36= 24.11, p = 0.0080], 

moisture content [F (2, 36) = 126.37, p = .0002], and storage time [F (1, 36) = 23.84, p 

= .0060].  The two-way interaction between temperature and moisture [F (2, 36) = 17.97, p 

= .01] and temperature and storage type [F 2, 36) = 10.17, p = .0270] were significant. 

Fisher’s protected least significant difference (LSD) was used to determine which of the 

groups were different and represents the smallest significance between the two groups 

(means). The data in Table 3.6 includes all the factors that were significant and their 

respective LSD values. LSD mean separation tests were determined using 4-way 

interaction. The range of means was greater than 0.5, population skewed and the sample 

size moderate so the data was arcsin transformed. The mean germination at 10°C (M = 

1.0489, SE = 0.029) was higher than at 25°C (M = 0.6639, SE = 0.029).  The mean 

germination in non-hermetic (M = 0.9582, SE = 0.029) was higher than in hermetic (M = 

0.7546, SE = 0.029).  The mean germination for 11%MC (M = 1.2698, SE = 0.036) was 

higher than at 15%MC (M = 0.8360, SE = 0.036) and 18% MC (M = 0.4633, SE = 0.036). 

21% MC was dropped in the statistical analysis for germination because the mean and 

standard deviation in the descriptive statistics were all equal to zero. The mean 

germination at 2 months (M = 1.0248, SE = 0.036) was higher than at 4 months (M = 

0.8694, SE = 0.036) and 6 months (M = 0.6749, SE = 0.036). All other four, three and 

two-way interactions were not statistically significant. In summary, germination was 
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significantly lower at 25oC when compared to 10oC; in hermetic compared to non-hermetic 

storage, for higher MCs and also for longer storage times. 

Four-way ANOVA was used to evaluate the effect of temperature, storage time, 

moisture content and storage type on mold. For mold counts, the main effect was 

significant for temperature [F (1, 48) = 127.79, p < .0001], storage type [F (1.48= 75.59, p 

= 0.0001], moisture content [F (2, 48) = 1278.01, p < .0001], and storage time [F (1.48) = 

118.28, p < .0001].  The two-way interaction between temperature and moisture [F (3, 48) 

= 10.32, p = .0088];  moisture and storage type [ F (2,36) = 17.09, p = .0024], temperature 

and time [ F (2,48) = 6.40, p = .0326] ; storage type and storage time type [ F (2,48) = 6.51, 

p = .0314], and moisture and storage time type [ F (2,48) = 10.37, p = .0059], were 

significant. All other four, three and two-way interactions were not statistically significant. 

In summary, mold was significantly higher at 25C when compared to 10oC; in non-

hermetic compared to hermetic storage, for higher MCs and also for longer storage times. 

The mean mold at 10°C (M = 6.1700, SE = 0.222) was lower than at 25°C (M = 9.7167, 

SE = 0.222).  The mean mold in non-hermetic (M = 9.3073, SE = 0.222) was higher than 

in hermetic (M = 6.5795, SE = 0.222).  The mean mold for 11%MC (M = 2.6071, SE = 

0.314) was lower than at 15%MC (M = 7.1090, SE = 0.314), 18% MC (M = 9.5524, SE = 

0.314) and 21%MC (M = 12.5050, SE = 0.314). The mean mold at 2 months (M = 4.9390, 

SE = 0.272) was lower than at 4 months (M = 8.0445, SE = 0.272) and 6 months (M = 

10.8466, SE = 0.272). 

Four-way ANOVA was used to evaluate the effect of temperature, storage time, 

moisture content and storage type on fat acidity. For mold counts, the main effect was 

significant for temperature [F (1, 6) = 1794.09, p < .0001], storage type [F (1, 6) = 157.75, 
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p < 0.0001], moisture content [F (3, 6) = 1074.53, p < .0001], and storage time [F (1, 6) = 

490.41, p < .0001].  The two-way interaction between temperature and moisture [F (3, 6) = 

46.32, p = .0002]; and moisture and storage time [F (6, 6) = 6.44, p = .0196] were 

significant. The three-way interaction between temperature, moisture and time [F (6, 6) = 

38.48, p = .0002], and moisture, time and storage type [F (6, 6) = 4.71, p = 0.0405] were 

also significant. All other four, three and two-way interactions were not statistically 

significant. In summary, fat acidity was significantly higher at 25C when compared to 

10oC; in non-hermetic compared to hermetic storage, for higher MCs and also for longer 

storage times.  The mean fat acidity at 10°C (M = 201.330, SE = 1.97) was lower than at 

25°C (M = 319.321, SE = 1.97).  The mean fat acidity in non-hermetic (M = 277.819, SE 

= 1.97) was higher than in hermetic (M = 242.831, SE = 1.97).  The mean fat acidity for 

11%MC (M = 141.341, SE = 2.79) was lower than at 15%MC (M = 240.543, SE = 2.79), 

18% MC (M = 309.240, SE = 2.79) and 21%MC (M = 350.177, SE = 2.79). The mean fat 

acidity at 2 months (M = 212.208, SE = 2.41) was lower than at 4 months (M = 250.952, 

SE = 2.41) and 6 months (M = 317.816, SE = 2.41). 

Four-way ANOVA was used to evaluate the effect of temperature, storage time, 

moisture content and storage type on oil, protein and starch. The main effect of moisture on 

protein was the only significant independent variable [F (3, 48) = 6.74, p =.0238]. All other 

main effects and four, three and two-way interactions were not statistically significant for 

oil, protein and starch content. In summary, protein was significantly higher for higher 

MCs.   The mean protein for 11%MC (M = 8.3417, SE = 0.207), 15%MC (M = 8.5250, 

SE = 0.207) and 18% MC (M = 8.1583, SE = 0.207) were statistically significant 

however at 21%MC (M = 9.3750, SE = 0.207) it was not statistically significant.  
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The data in table 3.6 shows that temperature, storage, moisture and time affected 

germination, mold growth, gas composition, fat acidity and protein. 
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Table 3:6 Analysis of variance results showing the factors and their interactions related to 
their dependent variables 

Dependent variable  Factors  df  F‐value  Pr < F  Sig.  LSD 

ArcsinGermination 

Temp 1 86.22 0.0007 **  0.1151 

Storage  1 24.11 0.008 **  0.1151 

Moisture 2 126.37 0.0002 **  0.141 

Temp * Moisture 2 17.97 0.01 *  0.199 

Storage * Moisture 2 10.17 0.027 *  0.199 

Time 2 23.84 0.006 **  0.141 

√  

Temp 1 127.79 <.0001 **  0.7677 

Storage  1 75.59 0.0001 **  0.7677 

Moisture 3 178.01 <.0001 **  1.0857 

Temp * Moisture 3 10.32 0.0088 **  1.5355 

Storage * Moisture 3 17.09 0.0024 **  1.5355 

Time 2 118.28 <.0001 **  0.9403 

Temp * Time 2 6.4 0.0326 *  0.7226 

Storage * Time 2 6.51 0.0314 *  1.3297 

Moisture * Time 6 10.37 0.0059 **  1.8805 

log CO2 

Temp 1 27.48 0.0019 **  0.1323 
Storage  1 370.85 <.0001 **  0.1323 
Moisture 3 91.22 <.0001 **  0.1871 
Temp * Moisture 3 6.34 0.0273 *  0.2645 
Storage * Moisture 3 31.15 0.0005 **  0.2645 

O2 

Temp 1 59.98 0.0002 **  1.039 

Storage  1 666.92 <.0001 **  1.039 

Temp * Storage 1 45.67 0.0005 **  1.4693 

Moisture 3 118.21 <.0001 **  1.4693 

Temp * Moisture 3 19.62 0.0017 **  2.0779 

Storage * Moisture 3 85.74 <.0001 **  2.0779 

Temp * Storage * Moisture 3 21.67 0.0013 **  2.9387 

Fat Acidity 

Temp 1 1794.09 <.0001 **  6.8163 

Storage  1 157.75 <.0001 **  6.8163 

Moisture 3 1074.53 <.0001 **  9.6396 

Temp * Moisture 3 46.32 0.0002 **  13.633 

Time 2 490.41 <.0001 **  8.3482 

Moisture * Time 6 6.44 0.0196 *  16.7 

Temp * Moisture * Time 6 38.48 0.0002 **  23.61 

Storage * Moisture * Time 6 4.71 0.0405 *  23.61 

Protein Moisture 3 6.74  0.0238 *  0.7169 
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3.3.11 Linear regression analysis 

Multiple linear regressions was used to assess the predictive role of moisture 

content, time in storage and the microclimate conditions (temperature, oxygen and carbon 

dioxide) on mold growth, aflatoxin levels and germination under hermetic conditions.  

Carbon dioxide, oxygen, moisture content, storage time, temperature and storage 

type were subjected to stepwise multiple regression analysis to evaluate the predictive 

strength of these variables on corn quality measures. A separate regression model was 

evaluated for each of the three dependent variables (i.e. mold, aflatoxin and germination) 

for only hermetic conditions. All regression values are shown in Table 3.7.   

For mold count, carbon dioxide, storage time, temperature, oxygen and moisture 

content were significant predictors in hermetically stored corn. The stepwise regression 

model developed to predict mold count in hermetic storage conditions yielded: 

. . 	 . 	 . 	 . 	 . 		

.  

where y = mold count (CFUs), x1 is carbon dioxide levels, and  x2 is the storage time, and  

x3 is the temperature, x4 is oxygen levels, and x5 is moisture content. This regression model 

explained about 73.10% of the variance.  

For aflatoxin, moisture content and temperature were the only significant predictors in 

hermetically stored corn.  The stepwise regression model developed to predict aflatoxin 

levels in hermetic storage conditions yielded:  

. . . .  

 where y = aflatoxin levels (ppb), x1 is moisture content and x2 is temperature . Albeit 

significant, this was a weak model, only explaining 22.2% of the variance. The weakness 
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of the model may be attributed to the partial categorization method used to assess aflatoxin 

contamination post storage. 

For germination, oxygen, storage time, and moisture content were the only significant 

predictors in hermetically stored corn. The stepwise regression developed to predict seed 

germination in hermetic storage conditions yielded:  

. . 	 . 	 . 		 .  

 where y = seed germination (%), x1 is oxygen levels, x2 is the storage time and x3 is the 

moisture content. The results showed an adjusted R2 of 0.968.  This was an excellent model, 

with oxygen and storage time explaining about 96.8% of the variance.  
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Table 3:7  Summary of stepwise multiple linear regression analyses. The predictor variables were carbon dioxide, oxygen, moisture content, 
temperature and storage time. The dependent variables were mold, aflatoxin and germination. 

  Mold growth model Aflatoxin model Germination model 

Variable B SEB β B SEB β B SEB β 

Carbon dioxide 12.007 3.887 1.554** - - - - - - 

Oxygen 8.786 3.369 1.242* - - - 4.071 0.178 0.86*** 

Storage time 11.830 2.310 .408*** - - - -2.445 0.511 -0.126*** 

Moisture content 3.424 1.559 .237* 1.334 0.356 0.417*** -0.758 .329 -0.078* 

Temperature 2.168 0.606 .251** 0.466 0.213 0.244* - - - 

R2 0.731 0.222 0.968 

F-value 35.320 9.984 627.47 

          
* P<.05, ** P<.01 and *** P<.001.  The - symbol indicates variable was not entered into the stepwise regression model. 

‘B’ are the constants 

‘SEB’ are the error terms or noise 

‘β’ are the effects or regression coefficients 

 



100 
 

 

3.4 Discussion 

This study evaluated quality changes in hermetic and non-hermetically stored corn. 

For hermetic storage, the results showed that quality of corn deteriorates with increase in 

moisture content. For non-hermetic storage, the quality of corn generally decreased with 

storage time for all MC. Moisture content and temperature are critical factors for 

maintaining quality during storage, especially when they reached unsafe levels and make 

conditions favorable for corn deterioration. In the present study, the presence of 

microorganisms augmented the rate of depletion of oxygen and increased the carbon 

dioxide levels. (Foster et al., 1955; Hyde and Oxley, 1960; Richard-Molard et al., 1988; 

Adhikarinayake et al., 2006). For hermetically stored corn at 18 and 21% MC carbon 

dioxide levels initially increased and then decreased after 25 days and then plateaued at 

approximately 20% for the remainder of the storage period. We believe this modification 

of carbon dioxide level influenced levels of nitrogen and maintained equilibrium in a 

manner similar to that reported by Weinberg et al. (2008). The initial decrease in carbon 

dioxiode levels may be attributed to corn absorbing a considerable amount of the initially 

emitted carbon dioxide in the interstatial air due to the porosity of the kernels. The 

amount of carbon dioxide absorbed depends on temperature and moisture content 

(Mitsuda et al., 1973). Studies of some investiagtors have  suggested that when gas 

composition  levels of 1-2% oxygen and 15-40% carbon dioxide are reached anaerobic 

activity increases (Gonen and Calderon, 1968; Burrell et al, 1978; Clarke and Hill, 1981). 

On the contrary, lower moisture level (ie. 11%, 15%) treatments stored hermetically at 

10C did not experience any anaerobic respiration since oxygen levels were above 0%. 
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One of the replicated jars was insulated with Styrofoam to prevent rapid heat 

dissipation from within the small corn (grain) mass, so as to capture any heat rise due to 

heat produced by molding corn. This was done for all four moisture levels. Trends of 

temperature in the insulated and non-insulated jars were expected for a 21% initial 

moisture however lower initial moistures at 11% was not expected because temperatures 

in the non-insulated jars was higher than in the insulated jars.  

We expected that for the respective moisture contents the temperatures between the 

insulated and non-insulated jars may have been more pronounced than what was actually 

recorded because at the lowest moisture content the temperature in the insulated jars was 

lower than in the non-insulated jars. Probably the jars were not equilibrated exactly at 

25C (temperatures could be lower, 20-23C-room temperature in laboratory) before they 

were insulated. The lower temperature which was possibly at room conditions 

surrounding the jars were trapped by the insulation covering the jars but the temperatures 

correspondingly increased due to respiration and this was what affected the temperatures 

across all moisture levels.    

The optimum temperature range for mold growth is 25C – 30C (Norholt et al., 

1977). When compared to identical MC and temperature conditions, mold count was 

lower in the hermetic jars compared to the non-hermetic jars, which suggests suppression 

of all aerobic mold proliferation due to the bio-generated modified atmosphere.  

Visual examination of the mold in hermetic storage combined with the presence of 

ethanol for hermetically stored corn at 18 and 21% suggested that aerobic molds  were 

present. Mold growth increased with storage time in hermetic storage although it was 

lower than non-hermetic storage. We believe there was possible introduction of ambient 
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air (oxygen) during gas sampling. The mold in the jars was determined to be aerobic 

mold after observing the jars as shown in appendix 1. Each jar stored after 6 months had 

24+ ml of air introduced in total, 4 months after storage  had 16+ ml and 2 months had 8+ 

ml of air replaced in the jars. This could be enough to proliferate mold growth. When the 

oxygen data at 25C for hermetic storage was observed, the corresponding mold data was 

expected to be less than in 10C since the oxygen was depleted faster at 25C. The 

increase in aflatoxin at 21% moisture over time (2, 4 and 6 months) can be explained 

from the mold data increasing with time. 

Weinberg et al (2008) quantified mold species in hermetically stored corn and they 

reported proliferation of anearobic mold at similar MC conditions. On the contrary, 

characteristics of the mold in the non-hermetic condition were consistent with aerobic 

molds such as Aspergillus. A few other studies have also reported that aerobic mold is 

suppressed in hermetic compared to non-hermetic storage (Clarke and Hill, 1981;  

Moreno et al., 1988; Tabak and Cooke, 1968; Quezada et al., 2006). 

Consistent with a previous report by Moreno-Martinez et al. (2000), our current 

findings show that corn hermetically stored between 15% and 18% moisture content had 

negligible mold invasion after 2 to 6 months of storage compared to non-hermetic storage. 

Atmospheric gases affect aflatoxin biosynthesis (Ellis et al., 1991). Aflatoxin 

levels were highly suppressed in hermetic storage (Table 2) except at 21% mc.. All 

moisture content treatments of corn stored both hermetically and non-hermetically at 

10C were below limits of detection. However in hermetic storage at 25C corn at mid 

moistures were below limits of detection (0 – 2.5 ppb) when stored after only 2 months. 

After 4 to 6 months of storage, aflaxtoxin was present at levels above the criterion of 15 
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ppb (Ghana Grain Standards Board, 2003) for 18 and21% MC in non-hermetic storage 

and at 21% in hermetic storage which was not expected. This may have been due to the 

way the gas was sampled.  

From our mold identification and microscopic evaluation studies aflatoxins 

produced were by A.flavus since aflatoxins, a secondary metabolite can be produced by 

A.flavus (Woloshuk and Shim, 2013; Klich, 2007). Previous studies have shown that 

aflatoxin production will be suppressed at carbon dioxide levels of at least 50% (Giorni et 

al., 2008; Taniwaki et al., 2009; Wilson and Jay, 1975). 

In hermetic storage, seed germination of mid moisture grain fell rapidly with 

increase in moisture content and temperature. The mold produced negatively affected 

seed germination. Biological activity of grain and mold respiration were the major factors 

that caused the rapid decline. Researchers such as Weinberg et al. (2008); Guberac et al. 

(2003) have shown that germination fall to zero in a few weeks at 22% mc and above. 

The resilience of grains and seeds are highly influenced by moisture conditions 

(Christensen and Kaufman, 1969). The lower the moisture content the longer the 

allowable safe storage time for preservation of the seed (Copeland and McDonald, 1985). 

Our results showed that germination decreased with higher moisture content regardless of 

temperature and storage type. Several studies have reported similar trends (Costa et 

al.,2010; Guberac et al., 2003; Moreno et al.,2000; Moreno et al., 1988; Weinberg et al., 

2008).  

Fat acidity levels correlated and had similar trends to mold counts indicating that 

it can be used as good indicator of grain deterioration. There was an increase in moisture 

content with increase in fat acidity. Increase in free fatty acids during storage is 
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comparable to results reported by Singh et al. (2000), Megahad and El kinawy (2002) and 

Nagi et al. (2012). The high fat acidity values may have been due to experimental bias 

that was consistent across all the tests.   

Nutritional content did not change appreciably in hermetic storage compared to 

non-hermetic storage. Similar results correlated with studies conducted by Reed et al. 

(2007). Slight changes in starch and protein content were observed in non-hermetic 

storage.  Protein content results in Table 5 generally remained unchanged in hermetic 

storage.  The combined effect of moisture content, temperature and gas composition 

influenced the post storage quality of corn.  High levels of carbon dioxide and low levels 

of oxygen suppressed the rate of mold growth in hermetic storage compared to non-

hermetic storage. These findings are consistent with previous research studies (Oxley and 

Wickenden (1963); Richard-Molard et al., 1988; Weinberg et al., 2008).  

Stepwise multiple linear regressions were used to evaluate the predictive strength 

of moisture content, temperature, storage time, carbon dioxide and oxygen on the 

dependent variables: mold growth, aflatoxin levels, and seed germination in hermetically 

stored corn. Mold was significantly predicted by carbon dioxide, storage time, temperature, 

oxygen and moisture content. Aflatoxin level was significantly predicted by moisture 

content and temperature. Seed germination was significantly predicted by oxygen level, 

storage time and moisture content.  

 

3.5 Conclusion 

In summary, hermetic storage was effective at suppressing mold growth for corn at 11% 

and 15%, and may show promise as a cost-effective and accessible system of suppressing 



105 
 

 

the growth rate of mycotoxins and aerobic mold under tropical conditions. For hermetic 

storage to be successful the moisture level of the grain being stored is a critical factor; the 

lower the moisture content the better for hermetic storage. Future work may extend 

hermetic storage to grain stored in larger quantities based on sub-tropical conditions and 

small holder farmers’ needs. 
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CHAPTER 4. QUALITY CHANGES CAUSED BY SITOPHILUS ZEAMAIS 
(MOTSCHULSKY) IN HERMETICALLY STORED CORN AT MID-MOISTURE 

LEVELS UNDER TROPICAL CONDITIONS 

4.1 Introduction 

Maize is the main staple food in sub-Saharan Africa. In the sub-Saharan African 

continent the annual production is about 29 million tons (Christopher et al., 1996). About 

75% of this total production is consumed as human food. The quality of corn can be 

categorized into these three main categories: physical (example broken kernels, heat 

damage) sanitary (example insect fragments, mycotoxins) and intrinsic (example feed 

value and starch content). Certain properties of corn quality can be influenced by the 

genetic characteristics and their interactions with environmental conditions during the 

growing season. Other management factors that influence grain (corn) quality include 

time of harvest, storage time, system of harvesting and handling, post-harvest treatment, 

storage practice, transportation method (Brooker et al. 1992), microbial activity, and 

insects. 

Small scale sub-Saharan African maize farmers are challenged by insect 

infestation, which leads to a substantial amount of post-harvest loss (Rembold et al., 

2011). In	sub‐Saharan	Africa	(SSA),	one	important	insect	that	attack	stored	maize	is	

the	maize	weevil	Sitophilus	zeamais	Motschulsky	(Vowotor	et	al.,	2005).	Use of 

traditional storage enclosures such as jute bags encourages infestation and proliferation
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of insects.  Alzouma (1981) reported that insect infestation resulted in a value loss of $20 

million USD. Approximately, three decades later, farmers still attribute post-harvest loss 

to insect infestation (Moreno-Martinez et al., 2000). For example in the Kenyan 

highlands total losses due to insects was 57%. Grisley (1997) reported that losses caused 

by insects were higher than those caused by diseases. In Zimbabwe, grain damage of 92 % 

in stored maize was reported due to insect pests (FAO, 1994). One of the several factors 

responsible for these losses includes grain damage by insects and weight loss (FAO, 

1994). The maize weevil causes quantitative losses primarily by way of feeding while 

damage is caused by developing larvae that hatch from the eggs, which completes its 

lifecycle in the kernel before emerging out as an adult.  

Minimizing postharvest losses of maize due to storage insects such as maize 

weevil, is important for financial reasons as well as for maintaining food security 

worldwide (FAO, 1994).  Simple technologies can be used for safely storing corn without 

insecticides. Hermetic storage creates a biological modified atmosphere containing high 

carbon dioxide and low oxygen levels which is toxic to insects. Significant research has 

been published on the effectiveness of hermetic storage in controlling stored pests 

(Navarro et al., 1994; Moreno-Martinez et al., 2000; Emekci et al., 2001; Quezada et al., 

2006; De Carli et al., 2010; Murdock et al., 2012). Hermetic storage, such as the triple 

layer Purdue Improved Cowpea Storage (PICS) bags have been used in west and central 

African countries in the Sahelian region (Baoua et al., 2013) and  provides a form of 

hermetic storage that is practical and useful under Sahelian conditions. Storing grains 

hermetically increases availability of high quality, insecticide-free cowpeas long after the 

harvest season (Murdock et al., 2012). Evidence from recent studies has shown that this 
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hermetic storage technology has been successful in storing dry cowpeas (i.e. ≤11% MC) 

without the destruction by cowpea weevils, Callosobruchus maculatus (F.) (Boua et al., 

2013). The success of hermetic storage has also been shown using hermetic jars to attain 

complete kill of maize weevils and also suppress progeny in low moisture maize 

(Moreno-Martinez et al., 2000). Numerous investigators have also studied hermetic 

storage of corn using maize weevils. However, minimal work has been done on 

investigating the quality of corn with respect to insect damage when corn is immediately 

harvested during the rainy season in sub-tropical African countries below the Sahelian 

region. Small holder farmers in these regions often harvest their corn during the rainy 

season. Limited sunshine hours coupled with high humidity often inhibits them from 

drying their corn down to safe moisture levels prior to storage. The wet harvested corn 

may also have been attacked by insects when placed in storage causing damage and 

weight loss reducing marketability and affecting food grade. For example, the USDA 

Federal Grain Inspection Service (FGIS) has a rejection threshold of 2 live weevils per kg 

of corn or 5 or more live beetles per kg of corn (GIPSA, U., 2004). This study 

investigated investigated Sitophilus zeamais (maize weevil) control in corn stored 

hermetically at 11%, 15%, 18% and 21% under 25oC indicated by mortality, progeny 

development and insect damaged kernels. 
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4.2 Materials and methods 

4.2.1 Sample source and preparation 

Shelled corn used for this experiment was U.S. grade No. 1 yellow dent corn of hybrid 

“6297 and 6333 VT RIB”. The grain was purchased from a seed supply company in 

Lafayette, Indiana, US at approximately 12% moisture content. Corn was kept in cold 

storage (-22C) to kill any insect pests before it was used in the experiments.  Prior to 

preparation of the samples for the experiment, the samples were removed from cold 

storage and allowed to thaw for 24-h in a 0 - 4C cooler. Samples were cleaned over an 

inclined sieve 3 times to remove any dead insects.  The samples were also cleaned over a 

4.76-mm (12/64-in.) round–hole sieve to remove fines and foreign material leaving small 

broken and chipped kernels. Sub-samples were divided using a boerner divider (Seedburo 

Equipment Co., Chicago, IL, USA) in order to obtain a representation of the samples 

prior to moisture content measurements. 

 

4.2.2 Experimental design 

Storage atmosphere changes were measured by monitoring changes in gas 

composition, carbon dioxide and oxygen. This study used a repeated measures factorial 

design to evaluate the effect of initial moisture content (11% as the control, 15%, 18% 

and 21% mc), storage type (hermetic and non-hermetic) and storage time (15 and 30 days) 

on corn quality measures such as insect damaged kernels, insect mortality, and insect 

emergence (F1 progeny). All quality tests were performed at the end of the storage period 

for three replications per treatment/storage condition and period. The experiment was 

conducted at 25C. Insect emergence was determined after 30 d of incubation on samples 
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stored after 15 and 30 days for both storage types. Shelled-corn samples (650 g) were 

conditioned to target moisture levels and were placed in 1L Mason jars that were 

hermetically sealed. Three replications per treatment were stored at 15 and 30 d periods, 

after which they were removed from storage for analyses. Prior to the start of the 

experiment, two tiny needle size holes were drilled in the lids and covered with septum to 

allow for continuous gas sampling at regular time intervals. Temperature in the grain was 

not monitored during the entire storage period. Carbon dioxide and oxygen were 

measured daily using the Mocon PAC Check® Model 325 headspace analyzer (Mocon, 

Minneapolis, MN, USA) on air pulled with a hypodermic needle positioned a few 

millimeters below the bottom of the jar. A 4 ml sample of air was drawn from the jars for 

every reading taken and no air was introduced after measurements were taken. The 

analyzer was used 30 min after self-calibration against ambient conditions and the filters 

were replaced every two weeks. Calibration of the Mocon device was validated every 

week throughout the entire period of the experiment by allowing the unit to sit at ambient 

conditions for at least 30 min to enable the device to calibrate itself against ambient 

conditions. Each of the storage jars containing corn was classified as an experimental unit. 

Jars were placed in a temperature chamber (Percival Scientific Inc., Boone, IA) set to 

25C to mimic tropical conditions. Airtight lids were placed over the hermetic jars to seal 

air-tight while Whatman filter paper and mesh wire fabric were placed on the non-

hermetic jars. The non-hermetically sealed jars were the control treatments. The screened 

covers were used to allow the exchange of atmospheric gases and were removed only 

after the storage tests were completed. 
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4.2.3 Maize weevil colonies 

Maize weevils, Sitophilus zeamais (Motschulsky) were from a colony obtained from the 

Stored Products Laboratory at the Department of Entomology, Purdue University on corn 

kernels kept in an environmental chamber at 25C.  Sixty-eight randomly selected 3-4 

week old adult maize weevils were placed in each experimental jar. A total of 48 

experimental units were used in the experiment. Four moisture levels (11%, 15%, 18% 

and 21%), one temperature condition (25°C), two storage conditions (hermetic vs non-

hermetic condition), two storage periods (15 and 30 days) with three replications (4 x 1 x 

2 x 2 x 3 = 48 experimental units). The ratio of the number of insects to grain used was 

0.11 (68 insects to 650-g of corn).  

 

4.2.4 Moisture content 

Samples were obtained before and after storage. Fifteen gram grain samples were 

used to determine the moisture content of each sample.   Moisture was measured using 

the air-oven standard ASABE S352.2 (ASABE Standards, 2000), 103C for 72 hours. 

Corn at 11% MC wb was used as a control against 15%, 18% and 21% MC corn. 

 

4.2.5 Insect mortality 

Insect mortality was determined by counting the number of dead insects after 15 

and 30 days of storage for both storage types. Percent insect mortality was evaluated by 

determining the number of dead weevils divided by the total number of maize weevils 

(both dead and alive) and then multiplied by 100% to obtain the percent insect mortality.  
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4.2.6 Insect damage 

Grain samples were assessed for insect damage before, during and after the 

storage period of 15 and 30 days for both storage types. The insect damaged kernels were 

determined using USDA-FGIS standards on 250-g of per jar. Kernels were considered 

insect damaged when the kernels and pieces of kernels possessed insect-bored holes or 

feeding damage. Kernels may also be considered insect damaged when whole or broken, 

weevil-bored or which have evidence of boring. Broken kernels were also observed for 

insect boring and tunneling. The percent insect damaged kernels were evaluated by 

determining the number of damaged kernels divided by the total number of kernels in 

250-g of corn and then multiplied by 100% to obtain the percent insect damaged kernels.  

 

4.2.7 Insect progeny production 

Insect progeny production was evaluated by counting the total number of insects 

present and subtracting the initial number (68) after 45 (for 15 days of storage plus 30 

days of incubation) and 60 (for 30 days of storage plus 30 days of incubation) days after 

the start of the experiment.  At the end of the storage period (15 and 30 days), after insect 

mortality count, all initial insects (dead or alive) were removed and sieved from the corn 

before insect emergence started. Every three days, the jar contents were sieved and 

emerged progeny were counted until the 30th day to determine F1 progeny numbers. 
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4.2.8 Statistical analysis 

Analysis of Variance (ANOVA) was performed to evaluate the effect of: initial moisture 

content, storage time, insect infestation and storage type on insect mortality, insect 

damage kernels before and after emergence and insect emergence.   

 

4.3 Results 

4.3.1 Gas composition 

Oxygen decreased over time in all insect-infested hermetic jars across all four 

moisture levels (Figure 4 1).  Complete oxygen depletion was attained within the first 5 

days for 18% and 21% moistures. Oxygen levels without insects decreased to 

approximately zero within the first 25 days of hermetic storage for similar moisture levels. 

Thus, an additional 20 day was required to deplete to the same amount of oxygen in non-

infested corn compared to infested corn. At lower moistures (11% and 15% M.C.) 

oxygen levels only reduced to about 3% after 30 days of storage while oxygen levels 

without insects remained stable within 20%. 

Carbon dioxide levels increased, as expected, in each of the jars across all 

moisture levels.  Carbon dioxide increased the most at higher moistures (18% and 21%) 

but plateaued at 20% (Figure. 4.2). Some insects died after 15 d. Carbon dioxide at lower 

moistures in the insect-infested jars increased at a slower rate and remained below 20% 

after 30 d. These levels were similar to the carbon dioxide levels obtained in the hermetic 

jars without insects. 
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Figure 4:1 Oxygen levels after 30 day of storage under hermetic storage 
 

 
Figure 4:2 Carbon dioxide levels after 30 days of storage under hermetic storage 
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4.3.2 Insect mortality 

Moisture content and storage type affected insect mortality. The results show the 

percent insect mortality after 15 and 30 days of hermetic storage (Table 4.1). For 

hermetically stored corn, after 15 days of storage, corn at 21% mc attained complete kill 

of insects. Hermetic corn stored at 18% mc attained over 60% mortality and corn stored 

at 11 and 15% mc attained less than 50% mortality after 15 d of storage. After 30 days of 

hermetic storage all moisture contents achieved 80 % or higher levels of mortality.  Thus 

the higher the moisture content the higher the insect mortality which can be attributed to 

the fast rate of oxygen depletion with increase in moisture levels.  Insect mortality after 

15 and 30 days of non-hermetic storage was below 50% irrespective of the initial 

moisture content (Table 4.1).  

 

4.3.3 Insect emergence 

Insect emergence data after 15 and 30 days of hermetic and non-hermetic storage 

plus an additional 30 days of incubation showed that the average number of maize weevils 

was lower in hermetic storage compared to non-hermetic storage (Table 2.2). The average 

number of maize weevils increased with storage time after 30 days of incubation across all 

four moisture levels regardless of storage conditions.  

 

4.3.4 Insect damage 

For hermetically stored corn, insect damaged kernels fell below 6% of kernels 

across all moistures after 15 and 30 days of storage (at the end of the storage period but 

before F1 emergence). The insect damaged kernels were higher at lower moistures (11% 
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and 15%). This was expected based on the lower mortality attained at these moisture 

levels. For non-hermetically stored corn, the damage caused by maize weevils was much 

higher after 15 and 30 days of storage (at the end of the storage period but before 

emergence) compared to hermetically stored corn. Corn at moistures of 15% and 18% 

had the highest number of kernels damaged by insects. Corresponding insect damage 

percentage increased after the 30 day incubation for both storage types and across all four 

moistures (Table 4.1).  

 

4.3.5 Statistical analysis 

The main effect was significant for storage time, moisture content and storage type. 

Two-way interactions (Time * Moisture), (Time * Storage) and (Moisture * Storage) were 

all statistically significant at an alpha level of 0.05. The three-way interaction (Time * 

Moisture * Storage) was also statistically significant. Fisher’s protected least significant 

difference (LSD) multiple comparison procedure was used to make direct comparisons 

between two means (or groups). Means and standard deviations for insect mortality are 

shown in Table 4.1.  ANOVA results, including the LSD values are shown in Table 4.3. In 

summary, the mean insect mortality at 15 days was lower than at 30 days. The mean insect 

mortality in non-hermetic was lower than in hermetic. 

The main effect was significant for storage time, moisture content and storage type. 

Two-way interactions (Time * Moisture), (Time * Storage) and (Moisture * Storage) were 

all statistically significant at an alpha level of 0.05. The three-way interaction (Time * 

Moisture * Storage) was also statistically significant. Fisher’s protected least significant 

difference (LSD) multiple comparison procedure was used to make direct comparisons 
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between two means (or groups). . Means and standard deviations for insect mortality are 

shown in Table 4.1.  ANOVA results, including the LSD values are shown in Table 4.3. In 

summary, the mean insect damage (before emergence) at 15 days was lower than at 30 day. 

The mean insect damage for non-hermetic was higher than in hermetic storage. The mean 

insect damage (before emergence) was statistically significant at 11% MC and 21% MC 

but not statistically significant for 15% MC and 18% MC. 

The main effect was significant for storage time, moisture content and storage type. 

Two-way interactions (Time * Moisture), (Time * Storage) and (Moisture * Storage) were 

all statistically significant at an alpha level of 0.05. Fisher’s protected least significant 

difference (LSD) multiple comparison procedure was used to make direct comparisons 

between two means (or groups). Means and standard deviations for insect mortality are 

shown in Table 1.  ANOVA results, including the LSD values are shown in Table 3. In 

summary, the mean insect damage (after emergence) at 15 days was lower than at 30 days. 

The mean insect damage (after emergence) for non-hermetic was higher than the mean 

insect damage for hermetic storage. The mean insect damage (after emergence) for was 

lowest at 11% MC (M = 0.4432, SE = 0.0129), compared to 15% MC (M = 0.5380, SE = 

0.0129) and 18% MC (M = 0.6176, SE = 0.0129).  

The main effect was significant for storage time, moisture content and storage type. 

Two-way interactions (Time * Moisture) and (Moisture * Storage) were both statistically 

significant at an alpha level of 0.05. The three-way interaction (Time * Moisture * Storage) 

was also statistically significant.  Fisher’s protected least significant difference (LSD) 

multiple comparison procedure was used to make direct comparisons between two means 

(or groups). . Means and standard deviations for insect emergence are shown in Table 4.2.  
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ANOVA results, including the LSD values are shown in Table 4.3. In summary, the mean 

emerged insects at 15 days (M = 2.0029, SE = 0.0126) was lower than at 30 days (M = 

2.2796, SE = 0.0126).  The mean emerged insects for non-hermetic was higher than for 

hermetic. The mean emerged insects for 21% mc was lower than 18% mc, 11% mc and 15% 

mc.  The difference in damage levels from what the farmer sees and the consumer sees 

after it is sent to the market could be huge. Insect damage was higher at 11% MC and 15% 

MC than at 18% MC...
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Table 4:1  Insect mortality and total emergence (mean + SD) at various moisture levels over storage periods at 25C 

Moisture 
content 

Storage 
time  

Insect mortality (%) 
Insect damage before F1 

emergence (%) 
Insect damage after F1 

emergence (%) 

(days) H NH H NH H NH 

11% MC 

15 37.90 + 0.18 13.05 + 1.33 2.37 + 0.25 5.47 + 0.76 6.37 + 0.80 24.67 + 4.51 

30 88.19 + 1.42 25.33 + 2.52 3.60 + 0.75 9.33 + 0.67 9.23 + 1.40 40.67 + 4.51 

15% MC 

15 44.22 + 2.34 21.57 + 2.05 4.50 + 0.66 12.53 + 2.25 9.30 + 1.23 36.33 + 4.16 

30 92.82 + 2.34 35.10 + 2.01 5.03 + 0.96 20.29 + 2.74 10.00 + 2.82 59.00 + 5.57 

18% MC 

15 67.30 + 1.82 28.29 + 1.69 0.63 + 0.25 18.23 + 3.66 3.60 + 1.22 72.00 + 4.58 

30 98.91 + 0.96 38.35 + 1.58 0.47 + 0.15 30.50 + 6.38 2.50 + 1.31 80.00 + 7.21 

21% MC 

15 100.00 + 0.00 0 0.50 + 0.44 0.83 + 0.21 1.03 + 0.25 2.67 + 1.53 

30 100.00 + 0.00 0 0.57 + 0.21 11.83 + 2.64 1.57 + 0.60 16.00 + 2.00 
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Table 4:2  Total emergence (mean + SD) at various moisture levels over storage periods at 25C 

Moisture content 
Storage time  Total Emergence after 30 days 

(days) H NH 

11% MC 
15 34.33 + 11.02 298.00 + 32.00 

30 130.33 + 18.56 564.00 + 77.35 

15% MC 
15 141.00 + 15.13 633.67 + 24.01 

30 193.67 + 13.61 683.33 + 75.27 

18% MC 
15 19.33 + 4.73 558.67 + 32.62 

30 13.00 + 2.00 784.33 + 43.25 

21% MC 
15 9.67 + 1.15 119.00 + 2.65 

30 27.00 + 2.00 664.33 + 53.31 
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Table 4:3  Analysis of variance results for insect mortality, damaged kernels and 
emergence 

Dependent variable  Factors  df  F‐value  Pr > F  Sig.  LSD 

ArcsinMortality 

Time 1 1189.45 <.0001 **  0.0162 

Moisture 3 539.35 <.0001 **  0.0229 

Time * Moisture 3 79.94 <.0001 **  0.0324 

Storage  1 5955.75 <.0001 **  0.0162 

Time * Storage 1 304.14 <.0001 **  0.0229 

Moisture * Storage 3 158.95 <.0001 **  0.0324 
Time * Moisture * 
Storage 

3 71.81 <.0001 
**  0.0459 

ArcsinDamaged kernels 
(before) 

Time 1 82.23 <.0001 **  0.0176 

Moisture 3 79.1 <.0001 **  0.0249 

Time * Moisture 3 4.54 0.0092 **  0.0353 

Storage  1 650.63 <.0001 **  0.0176 

Time * Storage 1 60.28 <.0001 **  0.0249 

Moisture * Storage 3 75.13 <.0001 **  0.0353 
Time * Moisture * 
Storage 

3 6.89 0.001 
**  0.0499 

LogTotal Insects emerged 

Time 1 241.9 <.0001 **  0.0362 

Moisture 3 276.9 <.0001 **  0.0512 

Time * Moisture 3 64.73 <.0001 **  0.0725 

Storage  1 3590.97 <.0001 **  0.0362 

Moisture * Storage 3 167.45 <.0001 **  0.0725 
Time * Moisture * 
Storage 

3 19.12 <.0001 
**  0.1025 

ArcsinDamaged kernels 
(after) 

Time 1 60.4 <.0001 **  0.0264 

Moisture 3 197.05 <.0001 **  0.0373 

Time * Moisture 3 3.3 0.0327 *  0.0527 

Storage  1 1254.2 <.0001 **  0.0264 

Time * Storage 1 45.76 <.0001 **  0.0373 

Moisture * Storage 3 142.91 <.0001 **  0.0527 
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4.4 Discussion 

The current study evaluated the effectiveness of hermetic storage in attaining 

control and/or elimination of insects and suppressing insect damage and progeny for 

maize stored at mid-moisture levels. The results suggest that when all the oxygen is 

depleted and carbon dioxide levels are at a maximum in an hermetic environment, leads 

to high insect mortality, low insect damage and low F1emergence. 

Oxygen levels decreased while carbon dioxide levels increased by the end of the 

storage period for the insect-infested hermetic jars for all four moisture levels. There was 

a large separation noted between oxygen and carbon dioxide levels from insects and corn 

at 11% and 15% moistures and insects and corn at 18% and 21% moistures. At 11% and 

15% MC corn oxygen depletion was not as fast as corn at 18% and 21% because of the 

lower respiration rate of the corn stored at the lower MC levels. Weinberg et al. (2008) 

also obtained similar findings.  

Carbon dioxide levels increased rapidly for corn at 18% and 21% while corn at 11% 

and 15% increased gradually over the storage period.  The results from the gas 

composition data are in line with those of Oxley and Wickenden (1963). They reported 

that all insects exposed to 2% of oxygen or lower will die. Their gas composition levels 

in both storage types influenced insect mortality, insect damage and insect emergence. 

Navarro (2012) reported that high carbon dioxide (> 60%) and low oxygen (< 8%) are 

highly effective at expediting the rate of insect mortality.   

The current data also allowed us to compare the effectiveness of hermetic storage 

on the mortality of insects. Hermetic storage achieved a 100% mortality at the end of 

both 15 and 30 days for corn stored at 21% while no insect died for the same conditions 



129 

 

when stored non-hermetically. At 21% moisture corn in non-hermetic storage insects 

mostly died due to the proliferation of mold.  For corn stored at 11% MC for a period of 

30 days there was approximately 63% increase in insect mortality when corn was 

hermetically stored than when it was non-hermetically stored. 

 In corn storage, high insect mortality is desired for controlling insect pests and 

100% mortality was achieved at moisture levels of 21% MC in hermetic storage. This 

percentage varied by 30% across all moisture levels. We can conclude that at 21% MC 

oxygen levels depleted so fast that insects could no longer survive within that 

environment. However, it must also be noted that mold will grow at this moisture level. 

The distinguished change in the insect mortality data between the two storage types 

further highlights the robustness of the hermetic systems. It should also be noted that it is 

the simultaneous effect of both oxygen and carbon dioxide that affects insect mortality 

(Calderon and Navarro, 1980).  

These results could further contribute to the reduction of insecticide use by small 

scale farmers. Our results show that the hermetic storage technology has a similar effect 

on maize weevils when they feed on corn and has been shown in the research conducted 

by Purdue University using Purdue Improved Cowpea Storage (PICS) bags where 

cowpea grain and cowpea weevils were used (Moreno et al., 1994; Murdock et al., 2012). 

Other investigators showed that 100% of insects can be obtained at mid moisture levels 

(Villers et al. 2010). This is percent kill of insects is dependent on the number of insects 

at the beginning of storage.  

For each storage period, storage type and moisture level insect damage (before 

emergence) and some interactions were also statistically different between the levels 
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tested. After 15 and 30 days of storage the damage caused by these maize weevils was 

comparatively lower in hermetic storage versus non-hermetic storage. While insect 

damaged levels remained below 1% in hermetic storage of corn stored at 18% MC and 21% 

MC it increased up to approximately 5% for corn stored at 11% MC and 15% MC.  The 

insect damage data revealed that damage for corn stored at 11% MC after 15 days of 

storage was lower than when it was after 30 days in hermetic storage. These 68 insects 

feed on the grain and lay their eggs in the grain kernel. Annis (1897) reported that 

different life stages of the maize weevils have higher tolerance than the adult weevils.  

After the 30 days of storage the eggs laid by the female adults will have 

completed one life cycle and turned into adults. Therefore after 30 days the additional 

damage noted is a result of the feeding damage by the F1 generation. These moisture 

conditions of corn hardly respired as fast so there was enough oxygen for the maize 

weevils to survive to actually lay eggs. However a similar scenario cannot be said about 

storage of corn at 18% mc and 21% mc which recorded damage levels below 1% in 

hermetic storage since at those moisture levels oxygen depletion and carbon dioxide 

accumulation was drastic enough to allow minimal time to not only to lay eggs or 

develop well but to also fight for survival. For the non-hermetic storage case the scenario 

was different as there was an abundance of ambient air. There was an increase in damage 

levels between storage times across moisture levels.  

The post-emergence insect damage levels increased correspondingly from the pre-

emergence insect damage levels measured immediately after storage as it relates to 

increasing moisture content.  
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4.5 Conclusion 

In summary, hermetic storage was superior to non-hermetic storage in attaining 

insect mortality. Hermetic storage was also superior to non-hermetic storage in 

suppressing insect emergence. However, this relationship was also modulated by the 

moisture content of the corn as the wetter the corn the higher the respiration rate, and thus 

faster the attainment of lethal levels of CO2. Further research work could investigate 

longer term studies to see if those that emerge are able to live long enough to reproduce 

or if it levels out.. 
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CHAPTER 5. USE OF SMALLHOLDER HERMETIC SYSTEMS FOR CORN 
STORAGE DURING THE MAJOR HARVEST PERIOD IN THE HUMID 

TROPICAL ZONE, ASHANTI AND BRONG-AHAFO REGIONS OF GHANA 

5.1 Applications and strategies 

Major grain (corn) producing areas in Ghana are the Brong Ahafo and Ashanti 

region. Storage of grain in this region is hampered by the inability to dry down corn to 

safe moisture levels. The primary method, solar drying, is inefficient in drying corn 

because of too little sunshine and high humidity during the majority of the harvest season. 

Corn harvested very wet is normally dried to mid-moistures of 15 to 21% using primarily 

ambient air. Thus, corn may be put into storage at unsafe moisture contents resulting in 

molds, aflatoxin and maize weevils infestation, which reduces marketability and 

increases health risks.   

Hermetic storage is an airtight storage mechanism that uses naturally bio-

generated  modified air with buildup of carbon dioxide and reduction of oxygen by the 

respiration of grains and microorganisms, to create a toxic atmosphere that eventually 

kills storage insects and molds. It minimizes biological organism damage and effectively 

increases the marketability of the stored grain. The effectiveness of the hermetic storage 

technology with regards to mold growth is pronounced when grain are stored at safe 

moisture levels. 



136 

 

This chapter explores the advantages and disadvantages of storing hermetically 

with regards to quality loss at different moisture levels.  

In deciding the most suitable initial moisture levels of corn before stored 

hermetically the final grain use must be determined. (1) Storing for seed (germination 

purposes), (2) Storing for consumption especially nursing mothers and infants and (3) 

Storing to retain the nutritional composition 

Results suggested that hermetic storage was superior to non-hermetic (i.e open air) 

storage for killing storage weevils, suppressing weevil emergence, and reducing total 

damage and reducing  mold and aflatoxin development for corn stored up to 18% MC. 

Hermetic storage was only suitable for 60 days for corn at 18% and 21% MC. For seed 

germination, open-air/ non-hermetic storage was more superior at preserving germination. 

In tropical and humid climate conditions, corn at 21% MC can be stored 

hermetically for only a period of 2 months at 25°C after which it will no longer be 

considered suitable for human consumption. Moistures less than or equal to 18% can be 

stored successfully for a period of 6 months. Corn is only suitable for germination 

purposes for a period of 2 months in hermetic storage when stored at 11% MC or below. 

 

Moisture level: 11% at 25°C: 

Hermetic storage: 

 The best moisture level of corn stored hermetically for seed, *mold growth was 

minimal (the difference between storage types was less than 25% (no aflatoxin) 

(RECOMMENDED) and so can be consumed, insect damage was 2-3 times lower 

than in traditional storage. 
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Non-hermetic storage: 

 Storing for seed was much more successful compared to hermetically stored corn, 

*mold growth was just a little higher (no aflatoxin) but can also be consumed, 

insect damage was 2-3 times higher than in hermetic storage  

 

Moisture level: 15% at 25°C: 

Hermetic storage: 

 Seed quality was greatly reduced compared to 11% mc, *mold growth was higher 

than at 11% mc but lower compared to traditional storage at 15%, (no aflatoxin) 

(RECOMMENDED), insect damage was 3-4 times lower than in traditional 

storage after 1 month of storage  

Non-hermetic storage: 

 Seed quality reduced but better compared to hermetically stored corn at this 

moisture level so seed quality was better in non-hermetic storage, *mold growth 

doubled compared to hermetic storage at 15%, (no aflatoxin), insect damage was 

3-4 times higher than in hermetic storage 

 

Moisture level: 18% at 25°C: 

Hermetic storage: 

 The seed can no longer germinate after 2 months of storage, *after 6 months of 

storage mold growth was greater compared to 11% and 15%, (no aflatoxins), 

insect damage was negligible after 1 month of storage probably due to high mold 

count resulting in the death of insects.  (NOT RECOMMENDED) 
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Non-hermetic storage: 

 Germination is greatly reduced after 2 months of storage, *mold growth more 

than doubled after 6 months of storage when compared to hermetic storage, 

(aflatoxin levels were above acceptable levels), 30% of the grains were damaged 

by insects (NOT RECOMMENDED).  

 

Moisture level: 21% at 25°C: 

Hermetic storage: 

 The seed can no longer germinate after 2 months of storage, *mold growth 

increased compared to 18%, insect damage was negligible after 1 month of 

storage due to death related to high mold content.  (NOT RECOMMENDED) 

Non-hermetic storage: 

Germination is minimal after 2 months of storage,* mold growth was more than 

four times hermetically stored corn, 15% of the grains were damaged by insects 

(lower than at 18% largely due to mold growth) (NOT RECOMMENDED). 

 

*NB: It should be noted that there was some amount of air-exchange between the storage 

container and the environment 

 

5.2 Recommendations for use of hermetic storage 

Hermetic storage technology has proved successful in storing corn that is grown in 

the Sahel region of Africa where the grain is harvested sufficiently dry and suitable for 
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extended periods of storage. The success of hermetic storage is dependent on the initial 

moisture content of corn and its storage temperature. 

1. If hermetically storing corn for seed, dry the corn down before storing them 

hermetically.  

2. Seed corn should be separated from the corn used for consumption. The corn that 

is the driest should be used for seed if this is not possible, store seed corn non-

hermetically in order to maintain the integrity of the germ.   

3. Small holder farmers should use corn at moistures of 21% or above first if 

immediately needed for consumption (by nursing mothers and children.. If the 

corn is not needed immediately, it is important to store at for about 7 days to kill 

insects and dry down to moisture content below 15 %mc before storage.  

4. Do not reuse hermetic bags or containers that stored corn at high moistures if 

there was some leakage of air due to the possibility of aflatoxin 

5. The limit of moisture by which corn should be stored hermetically for 

consumption should not exceed 15%mc.  

6. Store high moisture corn hermetically for the first 7 days to kill insects before 

drying down to minimize mold growth 
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CHAPTER 6. FUTURE RESEARCH 

6.1 Future work 

Future work for corn stored at moistures in the range of 15 to 21% and 25oC or above 

need to be conducted on the field with PIC bags, GrainPro Superbags or other type of 

hermetic storage technology. For this technology to be trusted by small scale farmers in 

sub-Saharan Africa, larger scale trials are needed to test the system at a scale closer to 

those used by small scale farmers since these trials were carried out in small jars (1 l of 

size). Also, it would be good to explore the idea of how to utilize high moisture corn, say 

from 18 to 21% to eliminate intial harvest infestation in the first 2 months of storage 

before finally drying down to safe moistures of 13% and below. 

 

.



142 
 

 

 

 

 

 

 

 

 

APPENDICES 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

142 

Appendix A Storage environment 

 

Figure A1- Storage jars 
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Appendix B Statistical data 

Table B1: Statistical tables on transformed data results presented on back transformed means (chapter 3) 
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Tables B2: Statistical tables of the transformed data (results are presented on back transformed means) (chapter 4) 
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