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[1] Sea surface temperature (SST) and near-surface winds from the Tropical Rainfall Measuring Mission
(TRMM) Microwave Imager (TMI) and the Quick Scatterometer (QuikScat) are used to calculate globally
integrated tropical cyclone-induced SST anomalies and power dissipation (PD). We estimate tropical
cyclone-induced upper ocean cooling to be �35% higher than our previous estimates based on reanalyzed
ERA40 and NCEP surface data. Annually averaged, global PD estimates from TMI are �5 � 1019 J for the
years 1998 to 2006 (roughly 30% greater than ERA40 PD for overlapping years). QuikScat PD is
estimated to be �1.7 � 1020 J for the years 2000 to 2006. On the basis of these results, we conclude that
the cyclone-induced cooling signal appears to be underrepresented in ERA40 and NCEP reanalysis, as
postulated in recent observational and modeling studies. Furthermore, we observe a strong positive
relationship between PD and ocean surface cooling, providing further evidence for the likelihood of
cyclone-induced climatic feedbacks. These results support the hypothesis that tropical cyclones play an
active role in the tropical surface ocean heat budget by cooling the tropical upper oceans through enhanced
vertical mixing, which likely represents a net warming beneath the oceanic mixed layer. Thus, to the
degree that vertical mixing is important for regulating the ocean’s meridional overturning circulation and
poleward heat transport, tropical cyclones may be an important contributor to Earth’s climate system. This
further confirms the results of Emanuel (2001, 2002) and Sriver and Huber (2007b) that possible future
changes in integrated cyclone intensity associated with warmer SST may provide possible climatic
feedbacks through enhanced vertical mixing and increased ocean heat transport, thus buffering the tropics
to increased temperatures while amplifying the warming at higher latitudes.
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1. Introduction

[2] The relationship between tropical cyclone (cy-
clone hereafter) activity and climate is well studied
from the standpoint of how climate variability
leads to changes in cyclone frequency and intensity.
Studies span a full range of spatial and temporal
scales: from interannual cycles such as the Quasi-
Biennial zonal wind Oscillation [Landsea et al.,
1999], the North Atlantic Oscillation [Elsner et al.,
2000], and the El Nino Southern Oscillation
[Pielke and Landsea, 1999], to multidecadal
changes in temperature patterns associated with
naturally varying processes such as the Atlantic
Multidecadal Oscillation [Goldenberg et al., 2001].
Other studies have attempted to assess the influence
of human-induced warming on lower-frequency
cyclone variability [Mann and Emanuel, 2006;
Santer et al., 2006].

[3] Currently, attempts to understand the effects of
observed warming on cyclone activity using met-
rics such as storm counts [Mann and Emanuel,
2006; Holland and Webster, 2007], landfall rates
[Landsea, 2007; Holland, 2007], per-storm inten-
sity [Kossin et al., 2007], and globally integrated
intensity [Emanuel, 2005; Sriver and Huber,
2006] comprise an area of active scientific debate
[Shepherd and Knutson, 2006; Maue and Hart,
2007; Sriver and Huber, 2007a, 2007b; Emanuel
et al., 2008]. While attempts to understand the
effects of changing climate on cyclone activity is
an active area of scientific research, the possibility
of cyclone-induced climatic feedbacks is only
beginning to gain attention.

[4] Tropical cyclones are efficient upper ocean
mixers [Jacob et al., 2000; D’Asaro, 2003]. This
mixing results primarily from near-inertial wave
breaking which causes cold water entrainment at
the base of the mixed layer [Shay et al., 1998]. This
mixing is evidenced by the depressed surface
temperatures observed along storm wakes [Price,
1981] and is accompanied by positive heat anoma-
lies below the oceanic mixed layer [Zedler et al.,
2002].

[5] A recent hypothesis proposed that cyclone-
induced mixing may significantly contribute to
sustaining the oceans’ meridional overturning cir-
culation [Emanuel, 2001], a large-scale circulation
pattern intimately linked to poleward ocean heat
transport [Wunsch and Ferrari, 2004]. The strength
of the meridional overturning circulation and the
magnitude of poleward ocean heat transport are
both sensitive to vertical ocean mixing in the
tropics [Scott and Marotzke, 2002; Bugnion et
al., 2006], and recent model results suggest the
mechanical energy input to the ocean by tropical
cyclones may be important for regulating the
oceanic general circulation [Liu et al., 2008].
Furthermore, Emanuel [2002] suggested a strong
dependence of cyclone activity on climate, and
recent studies have supported this hypothesis with
observational evidence that low-frequency cyclone
variability is well correlated with changes in trop-
ical surface temperature [Emanuel, 2005; Webster
et al., 2005; Sriver and Huber, 2006].

[6] Sriver and Huber [2007b, hereinafter referred
to as SH07] attempted to illuminate the existence
of cyclone-induced climatic feedbacks through the
use of reanalysis data. SH07 utilized near-surface
temperature records from ERA40 [Uppala et al.,
2005] and NCEP to measure cyclone-induced
surface temperature anomalies, which were used
to estimate downward oceanic heat pumping asso-
ciated with cyclone-induced vertical mixing. On
timescales long enough to assume steady state
vertically integrated tropical temperatures, positive
heat anomalies induced by tropical cyclone pump-
ing must be advected out of storm-affected regions
as ocean heat transport [Emanuel, 2001]. Results of
SH07 supported Emanuel’s [2001] hypothesis but
suggested that only �15% of peak ocean heat
transport may be associated with cyclone-induced
vertical ocean mixing. Furthermore, these estimates
of anomalous ocean heat content (OHC) were
shown to be highly correlated with surface tem-
perature, and a positive relationship was observed
between cyclone-induced OHC anomalies and
integrated cyclone intensity, thus supporting the
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proposed [Emanuel, 2002] conditions for the exis-
tence of cyclone-induced feedbacks through vertical
mixing, heat transport, and ocean temperature.

[7] In SH07, we hypothesized that better temper-
ature and wind data sets might increase our esti-
mates of tropical cyclone-induced anomalous OHC
and integrated cyclone intensity (power dissipa-
tion) compared to prior work. Here we utilize
surface temperature and wind data from the Trop-
ical Rainfall Measuring Mission (TRMM) Micro-
wave Imager (TMI) and the Quick Scatterometer
(QuikScat) to further examine cyclone-induced
climatic feedbacks discussed in SH07. Results
complement the previous study based on reana-
lyzed winds and temperature by using up-to-date
satellite measurements at higher spatial and tem-
poral resolutions that are derived independently of
reanalysis fields. We attempt to circumvent the
criticisms of Best Track winds and reanalyzed
surface winds [Manning and Hart, 2007; Maue
and Hart, 2007] and temperature by utilizing self-
consistent, objective data sets. The time series for
TMI and QuikScat are much shorter than for
typical reanalysis data sets (9 years for TMI and
7 years for QuikScat); however, use of TMI offers
a unique opportunity to examine wind and temper-
ature data derived using the same instrument, and
QuikScat winds have been applied extensively to
tropical cyclone research. This paper is organized
as follows: section 2 discusses the TMI and
QuikScat instruments, section 3 details the meth-
ods used in our study, section 4 contains our
essential results and discusses the relationship
between cyclone-induced anomalous ocean heat
content and integrated intensity, and section 5
provides a summary of our conclusions and their
implications.

2. TRMM TMI and QuikScat

[8] The Tropical Rainfall Measuring Mission
(TRMM) Microwave Imager (TMI) is a passive
microwave radiometer with nine channels ranging
from 10.7 to 85 GHz [Wentz et al., 2000]. It is
based upon the Special Sensor Microwave/Imager
(SSM/I), with a key difference being the addition
of two 10.7 GHz channels with horizontal and
vertical polarizations [Kummerow et al., 1998].
Available geophysical parameters derived from
TMI include sea surface temperature (SST), sur-
face wind speeds, atmospheric water vapor, liquid
cloud water, and rain rates. These data are freely
available from the Remote Sensing Systems
through their Web site: http://www.remss.com.

SST is retrieved at the low end of the frequency
range (10.7 GHz), and two separate surface wind
speeds are derived from the 11 GHz and 37 GHz
channels.

[9] The TRMM satellite was launched in November
1997 and continues to be operational today. The
satellite maintains an equatorial orbit yielding a
coverage of �40�S to 40�N, and it returns global
coverage on a timescale of 2 to 3 days [Gentemann
et al., 2004]. TMI offers a significant improvement
over traditional infrared radiometers in its ability to
retrieve SST from beneath clouds, which are nearly
transparent at the low end of TMI’s frequency range.
This feature makes TMI useful for analyzing short-
term surface temperature anomalies in the tropics,
where persistent cloud cover can be a factor. A
drawback of the radiometer is its inability to retrieve
SST and surface winds through precipitation and
heavy cloudiness. TMI winds have not been vali-
dated above 20 m/s, but recent results show this data
to accurately reproduce individual storm intensities
when scaling techniques are applied [Hoshino and
Nakazawa, 2007].

[10] QuikScat winds are measured using the Sea-
Winds microwave scatterometer on board the
QuikBird satellite launched in June of 1999. This
Ku-band microwave (13.4 GHz) scatterometer
retrieves 10 m wind velocities with respect to
surface currents within a 1800 km swath, with
accurate wind retrievals confined to the innermost
1600 km of the swath [Chelton and Freilich,
2005]. We use the 0.25� � 0.25� globally gridded
QuikScat winds available through the Remote Sens-
ing Systems (http://www.remss.com) (Version-3).
These data contain two daily maps corresponding
to the ascending and descending passes, as well
as 3-day averaged wind fields. Retrievals are
derived using the Ku-2001 model function and
exhibit agreement with observation-based winds
up to 50 m/s [Wentz et al., 2001]. We implement
QuikScat wind speeds from 2000 to 2006 in this
study for comparison with TMI-derived wind
quantities.

3. Methods

3.1. Data

[11] Cyclone track data is derived from the Best
Track data set, composed of track information
originally from the National Hurricane Center
(for the northern Atlantic and northeastern Pacific
regions) and the Joint Typhoon Warning Center
(for the northwestern Pacific, northern Indian, and
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Southern Hemisphere regions). Minor corrections
have been applied to account for duplicate tracks
and wind records between basins, specifically in
the northeastern and northwestern Pacific regions
where basin boundaries are poorly defined. Other
than these minor corrections for two or three
storms, these tracks are consistent with the data
used in previous studies, and we refer the reader to
Sriver and Huber [2006, 2007a, 2007b] for a
complete discussion regarding use of the Best
Track data set.

[12] We employ two separate methods for com-
bining the daily passes and 3-day averaged SST
and wind fields from TMI to obtain daily maps
with maximum spatial coverage. In one method,
we spatially average the ascending and descend-
ing passes and fill in the remaining gaps with the
3-day averaged fields. The second method com-
pares the daily ascending and descending passes,
keeping the largest returned values at overlapping
grid points. We fill in the remaining gaps with the
3-day averaged fields. Our main results are not
sensitive to the choice of data blending, i.e., year-
to-year variability is preserved. Thus, given that a
primary focus of this work is to identify cyclone
winds as opposed to the background wind field, we
primarily show results for the method that returns
the largest values of surface wind and SST at each
location. Our assumption relies on the idea the
strongest returned wind at a given location is likely
to be most relevant for our study.

[13] Our blending method creates a nearly com-
plete daily representation of surface wind speed
and temperature for TMI’s spatial range. Some
gaps remain in the data attributable to areas with
persistent rain. In order to fill these regions, we
utilized a mathematical relaxation technique which
solves Poisson’s equation. This technique likely
underrepresents the magnitudes of the winds within
cyclones where wind profiles contain local maxima
near the storm center; however, no further correc-
tion is applied here. The missing data may slightly
impact the global values of the quantities observed,
but it does not appear to impact the trends when
compared to independent analyses using winds
from QuikScat and Best Track. We have explored
the sensitivity of our conclusions to different
methodologies for infilling missing values and
found our results to be robust.

[14] We primarily show results for wind records
derived from TMI’s 11 GHz channel, which yield

higher cyclone winds than the 37 GHz channel.
The difference is likely due to the transparency of
nonprecipitating clouds at the low end of the TMI
frequency range, but we do not attempt to explic-
itly identify the differences here. It is noted that
trends in the normalized wind-derived time series
do not change as a result of the choice between 11
and 37 GHz winds.

[15] QuikScat winds are analyzed similarly to TMI.
We combine daily ascending and descending
passes, keeping the largest returned wind values
at overlapping indices. Remaining gaps in the
gloabally gridded daily maps are filled in with
the 3-day averaged wind fields. This method
returns nearly complete daily maps, and we do
not apply further infilling of missing data. As a
quality check of QuikScat winds, we sampled wind
speeds along cyclone tracks from our QuikScat
daily maps and compared the highest recorded
values with the corresponding Best Track maximum
sustained winds. We only considered QuikScat
wind samples that were retrieved from an ascend-
ing or descending pass within + or �3 h of the
corresponding best track estimation. Results
yielded 4145 wind value comparisons, considering
all Best Track storms globally from 2000 to 2006.
Performing a linear regression between the Best
Track maximum sustained wind speed and the
corresponding maximum QuikScat wind speed
from the daily maps yielded a correlation R2 =
0.59.

3.2. Integrated Cyclone Intensity

[16] We define integrated cyclone intensity as the
power dissipation (PD) [Emanuel, 2005; Sriver and
Huber, 2006, 2007a, 2007b],

PD ¼ 2p
Z Z

CDrajV j
3
rdrdt

where Cd is surface drag coefficient, ra is surface
air density, jVj is magnitude of the surface wind,
and the integral is over the radius (r) and lifetime
(t) of the storm. For all calculations, CD and r are
held constant and equal to 0.002 and 1 kg/m3,
respectively. PD represents the amount of power
dissipated over the lifetime of a storm by surface
friction; thus it also indicates the amount of energy
available for ocean mixing. Because PD is the
convolution of cyclone wind speed, size, and
duration, it is a useful quantity for examining
annual trends in regional and global cyclone
activity (when PD is integrated over the number
of storms annually).
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3.3. Cyclone-Induced Anomalous
Ocean Heat Content

[17] Following the formalism of Emanuel [2001],
and consistent with Sriver and Huber [2007b], we
estimate cyclone-induced, vertically integrated
anomalous ocean heat content (OHC) as:

OHC ¼
Z Z Z

FrsCDTdhdWdL

where

F fraction of heat transported downward from

the oceanic mixed layer;

rs density of seawater;

C heat capacity of seawater;

DT magnitude of surface temperature anomaly;

dh depth of temperature anomaly;

dW cross track length of storm wake;

dL long track length of storm wake.
For all calculations, r and C are held constant and

equal to 1020 kg/m3 and 3900 J/(kg�C), respectively.
[18] We invoke two separate methods for consid-
ering the mixing depth (dh). First, we assume
mixing depths for all surface temperature anoma-
lies are constant and equal to 50 m. This simplified
approach corresponds to our previous methodology
(see SH07), and the choice is consistent with recent
CBLAST results, where in situ measurements for
Hurricane Frances show a turbulent mixing depth
of �50 m [Black et al., 2007]. In our second
method, we combine surface temperature anoma-
lies with seasonally averaged vertical ocean tem-
perature profiles from the World Ocean Atlas
(1998) [Levitus et al., 2000] to estimate the annual
mixed layer depth change attributable to cyclone
mixing. We use the relation L = DT@z

@T (where L is
the vertical mixing depth, dT is the surface tem-
perature anomaly, and dz/dT is the vertical temper-
ature gradient) to estimate the depth to which
mixing must occur in order to achieve the observed
surface temperature anomaly. With this method, we
consider only the largest surface temperature
anomaly (i.e., mixing event) at each location an-
nually to avoid accounting for subsequent events
that potentially remix the same regions. In both
methods, we assume the surface temperature anom-
aly represents homogeneous mixing throughout the
entire vertical mixing depth (L).

[19] In all calculations of cyclone-induced anoma-
lous OHC, we assume all heat lost from the near-
surface depth (L) is pumped down beneath the

mixed layer (F = 1 in equation (2)) and that the
mixed layer temperatures are eventually restored to
climatologically normal conditions through surface
fluxes, leading to a column-integrated heating.
Analysis shows this reheating is typically on time-
scales of 1 to 2 weeks. These assumptions reflect a
simplified approach where we do not account for
surface fluxes associated with latent heating during
storm passage [Trenberth and Fasullo, 2007].
However, since the majority (>70%) of cyclone-
induced upper ocean cooling is due to entrainment
through the base of the mixed layer [Shay et al.,
1992; Shay et al., 1998; Jacob et al., 2000;
D’Asaro, 2003], our approach offers a valid first-
order approximation of vertical ocean heat pump-
ing by these events.

3.4. Cyclone Footprint

[20] Wind speeds and temperature are analyzed
every 6 h over a spatial domain that is centered
on the best track location and moves with each
storm (consistent with the methods of SH07).
Given that our methodology creates daily maps
of SST and surface winds, our technique may not
be capturing variability on timescales less than a
day. This limitation does not largely affect SST,
since cyclone-induced anomalies are on the order
of 4–7 days; however, the typical hourly evolution
of cyclone winds may not be adequately repre-
sented. In this respect, data sources such as
ERA40, with higher temporal resolution may be
better for capturing the subdaily evolution of the
cyclone wind fields. But ERA40’s lower spatial
resolution and poor representation of tropical cy-
clone structure [Manning and Hart, 2007] is a
limitation compared to TMI or QuikScat. At this
point, it is not clear how the tradeoffs between
spatial and temporal limitations between various
data sets and methodologies affect the different
aspects of estimating storm evolutions, but the
assumptions made in this study do not appear to
affect our essential results. For estimating trends in
integrated cyclone intensity (PD or PD index), we
observe similar results using TMI, QuikScat, Best
Track, and recent NCDC time series created by
Kossin et al. [2007].

[21] We tested the sensitivity of our PD results to
the choice of footprint domain size (6� � 6�, 8� �
8�, 10� � 10�), and the trends did not change.
Furthermore, we applied several minimum wind
thresholds (0, 10, 17 m/s) in combination with
varying domain sizes to ensure the noncyclone
background wind fields did not bias our PD results.
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Our essential results were not changed, and the
year-to-year variability in the regional and global
time series was preserved. Therefore, the results
shown here utilize a constant footprint domain size
of 6� � 6� for all storms, which is consistent with
our methods in SH07.

4. Results and Discussion

4.1. Cyclone-Induced Cooling

[22] Figure 1 shows the distributions of the annu-
ally integrated cyclone-induced SST anomalies
(Figure 1a) and PD (Figure 1b) averaged over the
time period 1998 to 2006. Figures 1a and 1b are
derived from TMI surface temperature and winds,
and the quantities are plotted over TMI’s spatial
domain (�40� to +40� north). The patterns ob-
served in Figures 1a and 1b are similar, with the
largest SST cooling occurring in regions subjected
to the most cyclone activity, corresponding to the

highest values of annual integrated intensity. Some
regions typically experience mild warming associ-
ated with passing cyclone events, but analysis
suggests this warming is likely a surface feature
associated with weak, early season storms and
developing cyclones. The large warming region
observed in the eastern Pacific is a notable excep-
tion to the widespread cooling pattern and is
unexplained.

[23] Provided that cooling is driven by vertical
mixing as current modeling and observations indi-
cate [Shay et al., 1992, 1998; Jacob et al., 2000;
D’Asaro, 2003], the spatial similarity between
Figures 1a and 1b suggests a positive relationship
between integrated intensity and vertical ocean
mixing. Consequently, regions experiencing more
cyclone activity exhibit increased surface cooling
indicative of downward pumping of ocean heat
beneath the mixed layer and into the thermocline.

Figure 1. (a) Time average of the annually accumulated, cyclone-induced sea surface temperature anomalies
derived from Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) (1998–2006). (right) The
zonally averaged fluxes needed to restore the storm-affected regions over 1 year, assuming the anomalies are uniform
to 50 m depth. The black curve depicts TMI and the red curve depicts ERA40 sea surface temperature (shown in
SH07). (B) Annually averaged global distribution of cyclone power dissipation (PD) (in units J/m2 divided by a
constant 1 � 106) from TMI 11 GHz surface wind speeds (1998–2006). (right) The zonally averaged PD for storm-
affected regions.
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[24] The distribution of widespread SST cooling
over TMI’s domain shown in Figure 1a is consis-
tent with previously published results using
ERA40 SST and 2 m air temperature (see SH07).
Expressed as a surface heat flux (right of Figure 1a),
Figure 1a suggests fluxes as large as �5 W/m2

annually are needed to restore storm-affected areas
to prestorm temperatures (assuming the SST anom-
aly is uniform to 50 m depth). While spatially
consistent with reanalysis, Figure 1a displays an
increase in the magnitude of cyclone-induced sur-
face cooling in active storm regions compared to
ERA40 and NCEP (see right of Figure 1a). This
increase is likely due to the higher spatial and
temporal resolutions of TMI compared to reanaly-
sis SST and its ability to sense through clouds
[Wentz et al., 2000]. The TMI spatial resolution is
0.25� � 0.25� and can produce complete global
coverage within 2 to 3 days, whereas reanalysis
exhibits lower spatial resolution, e.g., 1.125� �

1.125� for ERA40 and �1.9� � 1.9� for NCEP,
and SST is weekly averaged after 1981 for both
reanalysis data sets. Thus, TMI provides a more
accurate representation of short-term SST variations.

[25] Figure 2a displays the calculated annual cy-
clone-induced mixed layer depth changes averaged
over the years 1998 to 2006. These depths define
the mixing length scales used to quantify the
cyclone contribution to vertical diffusivity shown
in Figure 2b. We calculate mixed layer depth
change using TMI surface temperature anomalies
combined with vertical temperature profiles from
the World Ocean Atlas (1998) [Levitus et al.,
2000]. We begin by assuming the single largest
cyclone-induced cooling event at each location is
the only cooling per year, resulting in annual maps
of the largest negative temperature anomaly at
every storm-affected grid location. We then use
vertical temperature profiles (averaged over hurri-
cane season months for each basin) to determine the

Figure 2. (a) Annually averaged cyclone-induced mixed layer depth changes (1998–2006). Values refer to the
increase in mixed layer depth attributable to the single largest cyclone mixing event per year (based on TMI surface
temperature anomalies) and averaged over all available years. (right) The zonally averaged mixed layer depth change
for storm-affected regions. (b) Annualized vertical diffusivity attributable to cyclone mixing calculated from the
mixed layer depth changes shown in Figure 2a, averaged over the years 1998–2006. Diffusivity calculation assumes
a mixing timescale of 24 h and that the largest single cyclone mixing event is the only mixing occurring at each point
during the year. (right) The zonally averaged diffusivity for the entire domain. The black curve depicts TMI-derived
diffusivity and the red curve depicts values derived using ERA40 (shown in SH07).
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length scale of the mixing, i.e., depth from which
upwelling occurs. In other words, the mixed layer
depth change is the depth to which mixing must
occur to achieve the largest observed surface tem-
perature anomalies per year. This method for calcu-
lating cyclone mixing depth reflects a somewhat
simplified approach, in that we do not account for
transient increases in regional SSToccurring prior to
storm passage that are not captured in the seasonal
vertical temperature profiles. Our mixing depth
estimates range from 10 m for small temperature
anomalies to over 80 m for strong mixing events.
Such increases in mixed layer depths at low latitudes
have been shown to significantly impact meridional
overturning strength and poleward ocean heat flux
[Huang et al., 2007]. We note that this mixing
assumption is conservative in the sense that some
regions (e.g., in the west Pacific) may experience
several large mixing events in a given year; there-
fore mixing may be stronger than indicated from
only the single largest event [Liu et al., 2008].

[26] The mixed layer depth changes shown in
Figure 2a are used to estimate effective vertical
diffusivities attributable to cyclone mixing shown
in Figure 2b. These diffusivities are calculated
assuming cyclones mix this thickness of water
shown in Figure 2a on a characteristic e-folding

timescale of 24 h (consistent with observations)
and that only one mixing event occurs at each
location per year. The map of vertical diffusivities
shows maxima in regions with pronounced cyclone
activity (Figure 1b). Figure 2b (right) shows the
effective diffusivity averaged zonally across all
ocean regions for TMI (black curve) and ERA40
(red curve; discussed in SH07). The average TMI-
derived diffusivities are around twice the typical
values from ERA40. The diffusivities shown in
Figure 2b are similar to recent findings [Korty et
al., 2008] and are consistent with background
values currently used in ocean general circulation
models. These results further suggest the conjec-
ture that vertical mixing missing from the current
generation of ocean model simulations may be
attributable to transient extreme mixing events
such as tropical cyclones.

[27] We show the globally integrated time series
for cyclone-induced OHC anomalies in Figure 3.
Assuming steady state, anomalies are represented
as an annual heat transport (in watts) and the time
series covers the TMI data record from 1998 to
2006. We show anomalous OHC calculated using a
constant mixing depth (50 m), as well as OHC
from combining the surface temperature anomalies
with the vertical temperature profiles to approxi-

Figure 3. Globally integrated cyclone-induced ocean heat content (OHC) anomalies (represented as annual energy
input to the ocean (watts)). OHC anomalies are calculated from sea surface temperature anomalies as discussed in
section 3. Red curve denotes TMI (�40� to + 40� latitude) assuming constant mixing depths of 50 m. The dashed
gray curve represents TMI utilizing mixing depths calculated by combining surface temperature anomalies with
cyclone season-averaged vertical temperature profiles. The dashed black curve represents OHC derived from ERA40,
which represents a subset corresponding to the TMI region (�40� to +40� latitude).

Geochemistry
Geophysics
Geosystems G3G3

sriver et al.: tropical cyclone-climate feedbacks 10.1029/2007GC001842

8 of 18



mate spatially varying annual mixed layer depth
changes (see section 3.3). ERA40-derived OHC
anomalies are shown for years overlapping with
TMI (1998–2001). We have scaled the ERA40
OHC to the same spatial domain as TMI (�40� to
+40� latitude) for comparison. Results show a
similar trend between the two series with ERA40
underrepresenting the anomalous OHC signal com-
pared to TMI. The TMI series that utilizes the
constant mixing depths shows a 35% increase in
OHC compared to ERA40, while OHC calculated
from varying mixing depths shows roughly a
�60% increase compared to ERA40, with peak
values reaching near 0.6 PW (1PW = 1015 W).
These results suggest SH07’s estimation of the
contribution of cyclone-induced mixing to global
ocean heat transport may be too low, at least
toward the end of the ERA40 record comparable
to TMI.

[28] As discussed in the methods, this simplified
calculation for cyclone-induced anomalous OHC
assumes that vertical ocean mixing accounts for all
of the temperature anomalies observed at the
surface. Trenberth and Fasullo [2007] have recently
suggested that tropical cyclones may substantially
contribute to the atmospheric poleward heat flux,
and they estimate that �0.5 J a�1 of heat is lost
from the ocean through surface fluxes by cyclone-

induced latent heating of the atmosphere. This
corresponds to 0.17 PW, or roughly 28% of our
peak estimates. Thus, while our calculations serve
as a first-order estimate of the heat uptake by the
oceans due to tropical cyclone mixing, further
research is clearly needed to fully understand
the effect of these events on heat convergence/
transport for the oceans and atmosphere.

4.2. Cyclone Integrated Intensity

[29] Figure 4 shows the globally integrated time
series for cyclone PD from TMI and ERA40.
Annually averaged PD for the 11 GHz TMI sensor
with no wind filter is 5 � 1019 J. In Figure 4, all
TMI wind records reproduce similar PD time series,
except the magnitude of PD from the 37 GHz winds
is less than the 11 GHz wind-derived series by an
offset of �0.4 � 1019 J. We do not attempt to
resolve differences arising from the use of multiple
TMI channels here, but we note the larger magni-
tude PD derived from 11 GHz winds is likely due
to the higher transparency of nonprecipitating
clouds at the low end of TMI’s frequency range.

[30] As an example of our sensitivity analysis
described in the methods section, we have plotted
the TMI PD time series for the 11 GHz channel
with a 10 m/s filter applied (Figure 4). The
portions of the cyclone wind field with speeds less

Figure 4. Globally integrated cyclone-induced power dissipation (PD) (in joules). TMI PD (�40� to + 40� latitude)
is shown for winds retrieved using the 11 GHz (red curve) and 37 GHz (dashed gray curve) channels. Blue curve
represents PD from the TMI 11 GHz channel with a 10 m/s wind filter applied (see text for discussion). The dashed
black curve represents a subset of ERA40 corresponding to the TMI region (�40� to +40� latitude).

Geochemistry
Geophysics
Geosystems G3G3

sriver et al.: tropical cyclone-climate feedbacks 10.1029/2007GC001842

9 of 18



than 10 m/s have been removed from the PD
integral. While the magnitude of the filtered PD
is less than PD containing the entire wind field, the
trend and variability is very similar. We performed
similar exercises utilizing varying wind speed
filters and footprint domain sizes, and the variabil-
ity within all regional and global PD time series
remained largely unchanged. Furthermore, efforts
to constrain the magnitude of global PD can be
facilitated by applying this type of wind filter to a
high-resolution wind data set in order to achieve a
more realistic representation of the cyclone winds
(using a larger footprint size). Such efforts are

useful for estimating the amount of surface wind
energy available for ocean mixing.

[31] A subset of ERA40 PD consistent with the
TMI spatial domain is plotted in Figure 4. On
average, we find that TMI PD is �30% greater
than ERA40 over the same spatial domain (�40� to
+40� latitude) for overlapping years (1998–2001).
Annually averaged PD calculated from QuikScat is
calculated to be �1.7 � 1020 J. This corresponds to
more than a threefold increase in globally integrated,
annual PD for QuikScat compared to TMI for the
overlapping years (2000–2006).

Figure 5. (a) Globally integrated cyclone-induced power dissipation (PD) from TMI (red curve) and QuikScat (blue
curve), and Best Track (BT) power dissipation index (dashed black curve) for the period 1998–2006. All series are
normalized by subtracting the time mean and dividing by the respective standard deviation. (b) Partial results from the
Reynold’s decomposition of the globally integrated power dissipation (PD) for TMI (red curve) and QuikScat (blue
curve), and the power dissipation index from the Best Track maximum sustained surface wind estimates (dashed
black curve). All curves represent the wind-sensitive components of PD for TMI and QuikScat, and PDI for Best
Track, and all curves are normalized as in Figure 5a.
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[32] PD is often approximated as the Power Dissi-
pation Index (PDI),

PDI ¼
Z

jVmj3dt

which is proportional to the cube of the maximum
sustained surface wind (Vm) and is integrated over
the lifetime of the storm. PDI differs from PD,
where the latter quantity is spatially integrated over
the entire wind field. Previous results [Sriver and
Huber, 2006, 2007a, 2007b] indicate that PDI is a
reasonable approximation to PD and adequately
reproduces low frequency variability in globally
integrated cyclone intensity. Figure 5a shows a
comparison between global PD from TMI and
QuikScat, along with global PDI derived from Best
Track winds. The TMI and Best Track time series
span 1998 to 2006, while the QuikScat time series
is from 2000 to 2006. We normalize all curves by
subtracting the time mean and dividing by the
standard deviation.

[33] Figure 5a shows general agreement between
TMI PD, QuikScat PD, and Best Track PDI,
though one major difference appears to be the Best
Track and QuikScat time series are offset from
TMI during much of the time period. Best Track
and QuikScat underrepresent the upward shift in
integrated intensity from 1999 to 2003 observed in
TMI, and the Best Track and QuikScat peaks occur
1 year after the associated peak in TMI.

[34] We attempt to explain the differences in the
curves shown in Figure 5a by performing a Rey-
nold’s decomposition on the quantities. We define
V and T to be the wind-sensitive and track-sensitive
terms of PD (or PDI), and we separate V and T into
the time mean plus annual perturbation (V = V + V0

and T = T + T0). Using this formalism, the product
VT can be written as the sum of the time-averaged
product (VT ) plus the wind-sensitive (V0T ) and the
time-sensitive (VT0) components. The higher-order
term (V0T0) is ignored (see Sriver and Huber
[2007a] for a more complete description). The
main point of this analysis is to focus on the part
of the PD trend that reflects wind intensity changes
[Sriver and Huber, 2007a; Maue and Hart, 2007].

[35] Figure 5b shows the results of the Reynold’s
decomposition for globally integrated PD from
TMI and QuikScat, and PDI from Best Track
shown in Figure 5a. We only compare the wind-
sensitive component of integrated intensity (V0T ),
since the same track information (location and
time) is used for all three quantities (thus the

shapes of the time-sensitive components (VT0)
are identical). All quantities are normalized by their
respective standard deviations as in Figure 5a.
Figure 5b exhibits general agreement between
wind-sensitive components of QuikScat PD and
Best Track PDI, with both time series peaking in
2004. The main difference appears to be attribut-
able to the wind-sensitive component of TMI PD.
TMI does not appear to reproduce the variability
observed in the other two series, overestimating the
initial upward trend and underestimating the peak
in 2004. The difference in the curves shown in
Figure 5b suggests that TMI cyclone wind repre-
sentation is inconsistent with QuikScat and Best
Track winds, leading to the discrepancies in the
variability shown in Figure 5a. This difference is
likely due to the underrepresentation of the mag-
nitude of TMI cyclone wind fields compared to
QuikScat and Best Track estimates or possible
instrument bias within TMI.

[36] To investigate regional biases between TMI,
QuikScat, and Best Track, we perform basin-by-
basin comparisons of PDI and PD in Figures 6 and 7.
In Figure 6, we compare PDI derived from TMI and
Best Track for the period 1998 to 2006, and QuikS-
cat for the period 2000 to 2006 for five different
regions: the northern Atlantic (Figure 6a), the north-
eastern Pacific (Figure 6b), the northern Indian
(Figure 6c), the Southern Hemisphere (Figure 6d),
and the northwestern Pacific (Figure 6e). In addi-
tion, we have plotted the recently constructed PDI
time series from the University of Wisconsin-
Madison National Climatic Data Center (NCDC)
for the northern Atlantic, northeastern Pacific, and
northwestern Pacific regions [Kossin et al., 2007].
NCDC PDI is calculated between �45� and +45�
latitude and only includes events over water (similar
to TMI, except the domain extends to 45� latitude
rather than 40� latitude). All time series are normal-
ized as in Figure 5.

[37] Figure 6 shows TMI and QuikScat PDI gen-
erally agree. NCDC PDI and Best Track PDI
closely agree for the Atlantic and northwestern
Pacific regions and for the majority of the north-
eastern Pacific time series, with the exception
being in the portion of the northeastern Pacific
record from 1998 to 2001. During these 3 years,
the NCDC PDI agrees with TMI more closely than
Best Track, possibly suggesting biases in the Best
Track winds during this period. In the Atlantic
region, TMI PDI is underrepresented with respect
to Best Track and NCDC for the years 1998–2000
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and 2004, and it is overrepresented in 2001–2002.
TMI and QuikScat generally agree in the Atlantic
region throughout the record. The poorest agree-
ment between TMI, QuikScat, and Best Track PDI

occurs in the northern Indian Ocean. However, this
region contributes the least to globally integrated
intensity, with typical yearly values of PD an order
of magnitude less than for the more active South-

Figure 6. Tropical cyclone power dissipation index (PDI) derived from TMI (red curves), QuikScat (blue curves),
and Best Track (black curves) for (a) Northern Hemisphere Atlantic (AT); (b) Northern Hemisphere eastern Pacific
(EP); (c) Northern Hemisphere Indian Ocean (IO); (d) Southern Hemisphere (SH); (e) Northern Hemisphere western
Pacific (WP). PDI results from the University of Wisconsin-Madison National Climatic Data Center (NCDC) [Kossin
et al., 2007] (dashed gray curves) are plotted for the AT, EP, and WP basins. All series are normalized by subtracting
the time mean and dividing by the standard deviation.
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ern Hemisphere and northwestern Pacific regions.
Therefore, discrepancies between quantities in this
region do not propagate onto the globally integrated
time series. While year-to-year variability is con-
sistent between all quantities in the Southern
Hemisphere region, TMI and QuikScat overrepre-
sent PDI during the middle of the record (2001 and
2003), and it is underrepresented in 2005. The

northwestern Pacific region exhibits good agree-
ment between all quantities.

[38] To illustrate the differences in PD estimated
from different data sources, we plot regional PD
calculated from ERA40, TMI, and QuikScat in
Figure 7 (left axis). Also shown is PDI from Best
Track winds plotted on the right axis. Figure 7

Figure 7. Tropical cyclone power dissipation (PD) from TMI (red curves), QuikScat (QSCAT, blue curves), ERA40
(black curves), and the Power Dissipation Index (PDI) from Best Track estimates (dashed gray curves) for
(a) Northern Hemisphere Atlantic (AT); (b) Northern Hemisphere eastern Pacific (EP); (c) Northern Hemisphere
Indian Ocean (IO); (d) Southern Hemisphere (SH); (e) Northern Hemisphere western Pacific (WP). PD is plotted on
the left y axis (in joules), and PDI is plotted on the right y axis (in (m/s)3(s)).
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shows general agreement between QuikScat, TMI,
and ERA40 for overlapping years, with QuikScat
reflecting higher magnitude and variability. While
annual, globally integrated PD from TMI is 30%
higher than ERA40 (discussed earlier), globally
integrated PD from QuikScat is estimated to be

�3.5 times greater than TMI PD on average for
years overlapping between data sets. This large
difference in magnitude reflects QuikScat’s ability
to more accurately sense wind speeds within trop-
ical cyclones compared to both ERA40 and TMI.

Figure 8. Mean per-storm ocean heat content (OHC) anomalies from TMI (black points) as a function of the per-
storm power dissipation (PD) calculated using TMI (Figure 8a) and QuikScat (Figure 8b) winds. OHC and PD are
both measured in joules. Cyclone PD is divided into equally spaced bins that span most of the range observed within
TMI and QuikScat, and the mean cyclone-induced anomalous OHC is calculated for each bin. Red error bars
represent ±1 standard deviation, and blue error bars represent ± the standard error. The black line represents the linear
fit for mean per-storm OHC as a function of binned PD. The bar graphs represent the percentage of storms within
each bin that reached category 4 or higher according to the maximum sustained surface winds speeds within the Best
Track storm information.
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4.3. PD/OHC Feedbacks

[39] To establish the dependence of cyclone-in-
duced ocean heat convergence on cyclone PD,
we calculated the storm-integrated OHC anomalies
and PD for all Best Track cyclone events occurring
globally from 1998 to 2006 for TMI (Figure 8a)
and 2000 to 2006 for QuikScat (Figure 8b). In
Figure 8a, we separated 811 events into seven
equally spaced bins of PD spanning nearly the full
range of values returned by TMI. Ten storms with
PD values exceeding the upper limit (seventh bin)
were excluded due to the small sample size of
additional bins. For each PD bin, we calculated the
respective mean, standard deviation, and standard
error for the corresponding population of storm-
induced anomalous OHC calculated from TMI-
derived storm integrated SST anomalies. We
preformed linear regression analysis that yielded a
positive, linear relationship between mean per-
storm anomalous OHC and binned PD (black line).

[40] We performed similar analysis comparing per-
storm PD from QuikScat (Figure 8B) with per-
storm anomalous OHC from TMI SST for 622
events from 2000 to 2006. We separated the events
into six equally spaced bins of PD ranging from
1.4 � 1018 J to 8.6 � 1018 J, with 14 events
excluded due to the small sample size of additional
bins. We decreased the number of bins from seven
(Figure 8a) to six (Figure 8b) in order to better
retain a more consistent sample size at the high end
of the PD range for QuikScat winds. Results were
closely similar to the TMI-derived relationship
shown in Figure 8a, and a linear regression yielded
a correlation of R2 = 0.94 between per-storm PD
and per-storm anomalous OHC, consistent with the
relationship observed in Figure 8a. The observed
relationship between per-storm PD and anomalous
OHC in Figure 8 suggests that storms with larger
PD values (e.g., stronger winds, larger area, and/or
longer lasting) lead to greater surface cooling,
vertical mixing, and downward heat pumping
within the tropical oceans.

[41] Error estimates for per-storm anomalous ocean
heat content shown in Figure 8 are performed in
two ways. The red lines denote ±1 standard devi-
ation for the OHC values calculated within each
PD bin, and the blue lines represent the standard
error for the binned data. Given that the majority of
cyclone events occur near the low end of the PD
range, i.e., most do not reach major hurricane
status, it is not surprising that the standard error
is relatively low for small PD storms since the
sample size is large there. The standard error

increases with increasing PD as the number of
events decreases. On the other hand, the relatively
larger error estimated using the standard deviation
reflects the spread of the sampled data within each
PD bin.

[42] Since PD is the convolution of surface wind
speed, duration, and size, the relative contribution
of each component to vertical mixing is not clear,
though they are all likely important. To better
understand the relationship between per-storm PD
and the more usual indices of storm intensity, we
calculate the percentage of cyclones in each bin
that achieved category status greater than 3 (bar
graphs in Figure 8) according to the maximum
sustained surface winds contained in the Best
Track information. The bar graphs display a clear
upward trend, suggesting that higher category
storms typically account for larger integrated in-
tensities and more vertical ocean mixing. Given
that ocean mixing is normally associated with a
threshold in which the critical gradient Richardson
number is exceeded, it is quite likely that it is not
just the spatially integrated portion of PD which
determines the amount of mixing but also the
duration of strong winds. This latter component
is suggested by the increase in OHC with increasing
percentage of strong cyclonewinds. On average (but
not necessarily on a storm-by-storm basis), PD is
highly correlated with per-storm intensity, and it is a
reasonable indicator for cyclone-induced vertical
ocean mixing and OHC anomalies.

[43] The OHC trend and the associated error shown
in Figure 8 offer additional insight into the cy-
clone-induced climatic feedback hypothesis. The
low end of the PD range can be assumed to
represent ocean surface temperature variability in
the presence of negligible storm-induced vertical
mixing, i.e., the null hypothesis. In other words, the
lowest PD bin provides a quantitative estimate of
the mean and range of values that would occur if
we applied our sampling over an ocean character-
ized by noise. Therefore, if OHC is not a function
of PD, then OHC should not fall outside the range
of variability for zero magnitude storms or storms
with weak mixing. The error for the low end of the
OHC function describes the natural surface tem-
perature variability with no important effect on
tropical cyclones or ocean temperature. Given that
the high end of the PD range yields OHC anomaly
values well outside the error limits within the null
hypothesis region, the positive dependence of
OHC on PD is supported with both TMI and
QuikScat data.
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[44] The positive relationship shown in Figure 8 is
also observed for globally integrated PD and OHC.
Figure 9 represents a scatterplot of the globally
integrated, annual cyclone-induced anomalous
OHC as a function of globally integrated, annual
PD for the data sources: ERA40, TMI, and QuikS-
cat. Also shown is globally integrated, annual PDI
from Best Track (plotted along the upper x axis).
Anomalous OHC is calculated from storm-induced
SST anomalies and is represented here as annual
transport, equivalent to the annual amount of ocean
heat pumped vertically by cyclones and subsequent
steady state lateral transport. Since ERA40 and
TMI are the only data sources containing temper-
ature information, TMI and ERA40 derived OHC
is used for plotting QuikScat PD and Best Track
PDI, respectively. The years shown for ERA40 PD
and Best Track PDI reflect the period where ERA40
uses weekly SST fields rather than monthly (1982–
2001) [Uppala et al., 2005].

[45] The linear regressions in Figure 9 reflect the
general positive relationship between globally in-
tegrated PD and cyclone-induced anomalous OHC.

Scaling arguments and previous numerical simu-
lations have suggested a 3/2 power law dependence
of the power expended by wind-driven ocean mix-
ing (PD) on poleward ocean heat flux (or anomalous
OHC) [Emanuel, 2002; Scott and Marotzke, 2002].
Our results do not support a nonlinear relationship
between PD and OHC, but our analysis is limited
by the availability of reliable data. We do show
these quantities to be strongly positive correlated,
suggesting the nonlinear scaling dependence is
plausible.

[46] Figures 8 and 9 both suggest that storms with
larger integrated intensities will likely lead to
increased vertical mixing and cyclone-induced
anomalous OHC. Thus, given the strong correla-
tion between low-frequency cyclone variability and
surface temperature, future increases in tropical
SST will likely be accompanied by increased
integrated cyclone activity, resulting in enhanced
vertical ocean mixing and positive anomalous
OHC beneath the mixed layer. Whether this OHC
is eventually expressed as increased poleward

Figure 9. Globally integrated, annual cyclone-induced anomalous OHC versus PD for TMI (red), QuikScat (blue),
ERA40 (black), and Best Track PDI (gray). Because QuikScat and Best Track do not contain temperature data, SST
from TMI and ERA40 is used for the QuikScat and Best Track data points, respectively. The years shown for ERA40
and Best Track are 1982–2001. The years for TMI are 1998–2006 and QuikScat are 2000–2006.
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ocean heat transport, as has been conjectured, is
impossible to assess with our current methodology.

5. Conclusions and Implications

[47] We utilized SST and surface wind data from
TMI for 1998 to 2006, along with QuikScat surface
wind data from 2000 to 2006, to present a global
representation of cyclone-induced surface temper-
ature anomalies and power dissipation. These
techniques offer a unique opportunity to analyze
surface temperature and winds within cyclone
environments using up-to-date, high-resolution,
and independent data sets. We find that cyclone-
induced vertical ocean heat pumping is �35%
higher than previous estimates based on reanalysis,
and new methodology, which utilizes seasonal
vertical temperature profiles for determining mix-
ing depths, suggests heat pumping may be �60%
higher than previously published estimates. Fur-
thermore, the resulting effective vertical diffusiv-
ities are roughly twice the size of those calculated
in SH07. Power dissipation estimates are also sig-
nificantly higher, with averages of �5 � 1019 J and
�1.7� 1020 J fromTMI andQuikScat, respectively.
These estimates reflect a 30% increase in globally
integrated, annually averaged TMI PD compared to
ERA40 for overlapping years and more than a
threefold increase in QuikScat PD compared to
TMI. Results suggest the underrepresentation of
surface quantities in cyclone conditions for ERA40
compared to the more highly resolved TMI, as well
as an underestimation of cyclone winds in TMI
compared to QuikScat.

[48] We show a positive relationship between
cyclone-induced OHC anomalies and PD on a
per-storm basis, with the higher-category storms
accounting for a larger contribution to global PD
and anomalous OHC. This positive relationship
holds for globally integrated, annual PD and anom-
alous OHC. These results support the hypothesis
for cyclone-induced climatic feedbacks, where
increases in globally integrated cyclone intensity
associated with warming surface temperatures may
provide a positive feedback on poleward ocean
heat transport through enhanced vertical ocean
mixing. In other words, more power dissipated at
the surface by cyclone winds infers more turbulent
ocean mixing and vertical heat pumping, which
may influence oceanic heat convergence and trans-
port since ocean heat transport is sensitive to
diapycnal mixing in the tropics. This cyclone-
induced mixing may be the ‘‘missing’’ mixing in

today’s generation of ocean general circulation
models. These models currently prescribe back-
ground diffusivity values similar to those estimated
here that we attribute to transient cyclone mixing.
In order to reproduce past climate variability and
accurately project future climate change scenarios,
a better representation of cyclone mixing (and the
associated feedback mechanisms) needs to be in-
cluded in climate simulations.
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