Long-Term Watershed Monitoring - Do's and Don'ts

S.J. Livingston¹

The USDA-ARS National Soil Erosion Research Laboratory (NSERL) initiated a watershed monitoring network in northeastern Indiana in 2002. The objectives of this network include monitoring nutrients, pesticides and soil loss from agricultural lands at the field to watershed scale, using a paired nested approach. We are also evaluating topography, land-use, and conservation practices influences on losses from these watersheds. New and innovative BMP's are being evaluated at the field and watershed scale (Smith and Livingston, 2013). The data is also being used for validation of new and existing modelling efforts. This network has expanded from three ditch sites monitoring/sampling flow, to nine stream/ditch sites and six surface/subsurface edge-of-field monitoring locations monitoring flow, turbidity, and 14 weather/soil moisture installations mostly co-located at existing water quality monitoring stations (Table 1). Each station is networked wirelessly and accessible via the internet in near real-time. Transducer level and ultrasonic velocity sensors (AV sensors) are used in ditches and in field tile monitoring locations for calculation of discharge under all conditions. Surface runoff is measured using topographic depression collector tile inlets (tile risers) as well as weirs (Figure 1) and flumes in locations with free fall to ditches utilizing instream transducer AV sensors along with bubbler and ultrasonic level sensors. This work has allowed for the study and development of an NRCS-approved alternative drainage system, the blind inlet, which has been shown to reduce sediment loads by up to 85% (Smith and Livingston, 2013). Cooperator interaction (Figure 2) is critical and an ongoing process, requiring face-to-face interaction and sharing of pertinent data. This presentation will describe the lessons learned while developing a network such as this, which is now part of the Conservation Effects Assessment Project (CEAP) (Maresch et al., 2008), the Long-Term Agroecosystem Research (LTAR) network (Walbridge and Shafer, 2011), and the Soil Moisture Active/Passive (SMAP) satellite calibration/validation project (NASA-JPL, 2016).

Figure 1. Edge of field monitoring.

Figure 2. Field trips and demonstrations.

¹Stanley J. Livingston, Soil Scientist, USDA-Agricultural Research Service, National Soil Erosion Research Laboratory, West Lafayette, Indiana, USA. Corresponding author: S.J. Livingston, email: <u>Stan.Livingston@ars.usda.gov</u>.

Site ID	hectares	Site type	Major Soils	Land Use/Cropping	Site ID	hectares	Site type	Major Soils	Land Use/Cropping
AXL	4303	watershed	Blount silt loam Pewamo silty clay, Glynwood loam Rawson sandy loam, Rensselaer loam Sebewa sandy loam	78% Agriculture 14% Grass/Pasture 6% Forest	BLG	1417	watershed	Blount silt loam Pewamo silty clay Glynwood loam Sebewa sandy loam Rensselaer loam	83% Agriculture 12% Grass/Pasture 3% Forest
ALG	1934	watershed	Blount silt loam Pewamo silty clay Glynwood loam Rawson sandy loam Morley silty clay loam	77% Agriculture 16% Grass/Pasture 6% Forest	BME2	123	watershed	Blount silt loam Pewamo silty clay Moreley silty clay loam Glenwood loam	78% Agriculture 22% forest
AME	298	watershed	Rawson sandy loam Pewamo silty clay Morley silty clay loam Blount silt loam	79% Agriculture 15% Grass/Pasture 4% Forest	BME2b	2.15	edge of field	Blount silt loam Glenwood loam Pewamo silty clay	100% agriculture
AS1	2.22	edge of field	Pewamo silty clay Glynwood loam Morley silty clay loam	100% Agriculture	CLG	1380	watershed	Blount silt loam Pewamo silty clay Glynwood loam Morley silty clay loam	73% Agriculture 17% Grass/Pasture 5% Forest
AS2	2.71	edge of field	Glynwood loam Blount silt loam	100% Agriculture	CME2	308	watershed	Blount silt loam Pewamo silty clay Morley silty clay-loam Glenwood loam	60% Agriculture 40% CRP/non Ag or low density Residential
ADE	4.88	edge of field	Pewamo silty clay Glynwood loam Morley silty clay loam Wallkill silt loam	100% Agriculture	CME2b	80	watershed	Blount silt loam Pewamo silty clay Morley silty clay-loam Glenwood loam	93% Agriculture 7% Forest
ADW	4	edge of field	Pewamo silty clay Glynwood loam Morley silty clay loam Wallkill silt loam	100% Agriculture	F34	19259	watershed	Blount silt loam Pewamo silty clay Glynwood loam Rawson sandy loam Rensselaer loam Sebewa sandy loam	74% Agriculture 14% Grass/Pasture 8% Forest 3% developed
ADWT	2	edge of field	Pewamo silty clay Glenwood loam	100% Agriculture	D05, D10, D20, D14	NA	Weather/Soil only	NA	NA

Table 1. Monitoring station descriptions.

References

- Maresch, W., M.R. Walbridge, and D. Kugler. 2008. Enhancing conservation on agricultural landscapes: A new direction for the Conservation Effects Assessment Project. JSWC 63(6): 198A-203A.
- NASA-JPL. 2016. SMAP Soil Moisture Active Passive Cal/Val Activities. NASA, Jet Propulsion Laboratory, California Institute of Technology. Available at: http://smap.jpl.nasa.gov/science/validation/. (Accessed 24 March 2016)
- Smith, D.R., and S.J. Livingston. 2013. Managing farmed closed depressional areas using blind inlets to minimize phosphorus and nitrogen losses. Soil Use & Mgmt. 29(s1): 94-102.
- Walbridge, M.R, and S.R. Shafer. 2011. A long-term agro-ecosystem research (LTAR) network for agriculture. Conference Program, Fourth Interagency Conference on Research in the Watersheds, 26–30 September 2011, Fairbanks, AK. pp. 44-45.