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Microperforated Films

 Introduction and Review

― Perforated Films

― Computational Fluid Dynamics (CFD) vs. Acoustic Modeling

 Rigid Film

― Viscous Effects

― Thermal Effects – Turn out to be small

― Frequency-dependant Velocity Profiles

 Fluid-Structure Interaction (FSI) Models – Limp Films

― Mass Law for a Solid Film

― Microperforated Limp Films – Solid and fluid impedance add in parallel

 Summary and Conclusions
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Microperforated Films

 Suggested by Maa in 1975

― Used for sound absorption 

― Proposed different formulas for thermally
conducting and non-conducting boundaries

 Models needed for design and prediction

― Film transfer impedance needed for 
transmission matrix calculations

― Need to model non-cylindrical pores

Top view of a microperforated film

Cross-section of a microperforated film Installed microperforated panels in the Great

Ape House of the Smithsonian National Zoo
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Model Comparison – Model Setup

 CFD Models – InterNoise 2011

― Time domain

― Incompressible

― Isothermal

― 2D axisymmetric

― Inlet: Hann-windowed, 5 kHz half-sine

― Maximum velocity of 1 mm/s

― Outlet pressure set of 0 Pa

― Run for at least 0.5 ms

 Acoustic Models – NoiseCon 2014

― Frequency domain, harmonic waves

― Compressible

― Including energy equation

― 2D axisymmetric

― Non-reflecting inlet with 1 Pa incident

― Resulting face velocity up to 2.4 mm/s

― Anechoic outlet

― Run from 50 to 10,000 Hz

Inlet velocity profile

Typical

mesh
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Model Comparison – Model Equations

 CFD Models – InterNoise 2011

― Incompressible Navier-Stokes 

equations

• Momentum and Continuity

p pressure

u velocity

ρ density (constant)

µ dynamic viscosity

I unit vector

• At the surface of the film: 

 Acoustic Models – NoiseCon 2014

― Linearized, harmonic Navier-Stokes

equations

• Momentum, Continuity, and Energy

p pressure

u velocity

T temperature

ρ density

k thermal conductivity

µ dynamic viscosity

CP specific heat at constant pressure

I unit vector

• At the surface of the film: 
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Model Comparison – Transfer Impedance Calculation

 CFD Models – InterNoise 2011

― Pressure taken at inlet and outlet

• 1.7 mm and 5.0 mm away from film

― Fourier transform for impedance

 Acoustic Models – NoiseCon 2014

― Pressure probes spaced away from film

• 2.50 mm and 3.75 mm up- and down- stream

― Already in Fourier space

― Pressure and Velocity on front and back 

surfaces of film were determined from 

incident, reflected, and transmitted 

waves

― Transfer impedance computed using the 

4-probe method from ASTM E2611-09
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Model Comparison – Four-Probe Method

 Analogous to ASTM E2611-09 with a single load

k wave number

rin radius upstream

rout radius downstream

A incoming wave

B reflected wave

C transmitted wave

D reflected from termination = 0 for anechoic

p* pressure measured at points 1-4

x* position of points 1-4 from left side of film

L thickness of film

I* intensity of waves A, B, C, or D

ρair density of air

c speed of sound

r reflection coefficient

τ transmission coefficient

α absorption coefficient

P* pressure at film surfaces

V* velocity at film surfaces

Ztrans transfer impedance
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Rigid Film – Transfer Impedance

 Thermal losses affect the Resistance only

― There are no thermal losses at an adiabatic boundary

― Acoustic and CFD models match when adiabatic boundary conditions are applied

 CFD calculations require additional correction

― Need to account for the reactance of the air in the inlet and outlet regions

 outinairCFDTrans LLjZZ  

Resistance vs. frequency Reactance vs. frequency

Film Properties
• Film Thickness 400 µm

• Hole Diameter 170 µm

• Porosity 1%
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Rigid Film – Velocity Profiles

 Low frequency velocity profile is like Poiseuille flow

― Parabolic in shape

 High frequencies may deviate significantly from parabolic

― Velocity vectors every 30º of phase (symmetry axis on the left, wall on the right),10 kHz

 Velocity distribution also changes with frequency (not on equal color scales)

50 Hz, Vmax = 16 cm/s 1 kHz, Vmax = 15 cm/s 10 kHz, Vmax = 4 cm/s

Symmetry Axis

(Hole Center)

Perforation

Sidewall

Incident pressure 

wave from below
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Rigid Film – Viscous Losses

 Viscous energy losses are proportional to the shear rate squared
― Losses are concentrated along perforation walls and at the inlet/outlet (resistive end correction)

― Losses are symmetric front-to-back in linear regime (acoustic wave is incident from below)

― Losses decrease as the frequency increases

500 Hz 2,000 Hz 5,000 Hz 10,000 Hz
Plots of the square root of viscous losses on a scale from 0 to 15

2
uEloss  



3mW
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 Thermal energy losses are proportional to the temperature gradient squared
― Losses are concentrated over whole front surface, and only a little within the perforation

(unlike Maa who modeled thermal losses occurring within the perforation)

― Losses are asymmetric front-to-back (acoustic wave is incident from below)

― Losses increase with the frequency (Scale is 1/30th of viscous plots, so 1/900th the energy loss)

Rigid Film – Thermal Losses 2
T

T

k
E

kloss 

500 Hz 2,000 Hz 5,000 Hz 10,000 Hz
Plots of the square root of thermal losses on a scale from 0 to 0.5

3mW
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Rigid Film – Losses Compared and Effective Absorption

 Thermal losses are significantly smaller than viscous losses ( < 5% up to 10 kHz)

 Thermal boundary conditions

(adiabatic vs. isothermal)

are not significant for

absorption
― Infinite film in free space

― Film in impedance tube with
anechoic termination

Absorption vs. frequency

Thermal Loss – Percent of Total

Viscous and Thermal Losses

  r1


r

1

Absorption is the fraction of 

normally incident acoustic 

intensity not reflected or 

transmitted by the film.
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Solid Limp Film – Mass Law

 Impedance for an (acoustically) thin impermeable layer 

is determined from its mass

 Transmission loss and Reflection coefficient increase with the mass

― Exact agreement with numerical

model (Markers on plots)
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Solid Limp Film – Model Details

 Velocity of the film depends on the film’s mass / density

― Film moves as one solid block, in unison

― Film was modeled as an elastic solid

 Negligible thermal absorption ( < 0.3%)

― Prediction by Pierce for normal-incidence absorption at a rigid surface (markers on plot)

 Allen D. Pierce, “Acoustics: An Introduction to Its Physical Principles and Applications”, ASA, 1989.

Film Velocity Absorption from Thermal Losses

Film Properties
• Film Thickness 400 µm

• Elastic Modulus 109 Pa

• Poisson’s Ratio 0.4
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Limp Perforated Film – Velocity magnitude

 Film velocities are reduced, compared to a solid film

― Airflow through the perforations reduces the surface pressure

― For example at 1 kHz, film velocities dropped by about 35%

 Air velocities through the perforations are reduced, compared to a rigid film

― Due to the film moving with the air

― Peak air velocity shifts to higher frequencies as the film mass decreases

― Air velocities are typically two orders of magnitude greater than film velocity
Film Velocity Air Velocity within perforation 

Film Properties
• Film Thickness 400 µm

• Hole Diameter 170 µm

• Porosity 1%

• Elastic Modulus 109 Pa

• Poisson’s Ratio 0.4
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Limp Perforated Film – Velocity and Phase

 Relative motion

― Most significant for light films at low frequency

― Shown here for a density of 50 kg/m3 at 150 Hz

Film                             Air                               Film

Fluid-structure interaction

Film and air velocity shown every 30º of phase
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Limp Perforated Film – Impedance

 Mass Law impedance for limp impervious sheet added in parallel to the 

impedance of a rigid perforated plate predicts response very well (markers)

― Resistance drops as mass decreases

― Reactance changes in non-intuitive manner

• Low-frequency has an increase of reactance with mass

• High-frequency approaches rigid results more directly
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Film Reactance – FSI models compared to formulaFilm Resistance – FSI models compared to formula

Coupling effects neglected
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Limp Perforated Film – Transmission Loss

 Transmission loss decreases for lighter films, as expected

 Transmission loss for perforated film is significantly less than for solid film

 Parallel impedance formula (markers) predicts response very well

c

Z
TL

air

Film

2
1log20 10 

Transmission Loss from FSI models compared to equation Transmission Loss for 900 kg/m3 with and without perforations 
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Perforated Film with Relative Motion – Reflection & Transmission

 Reflection and Transmission coefficients can similarly be calculated

 Parallel impedance formula (markers) predicts response very well (anechoic term.)

― Reflection increases with the film mass, limited by that for a rigid film

― Transmission decreases with the film mass, limited by that for a rigid film
2

2 cZ

Z
r

airFilm

Film




Reflection from FSI models compared to equation Transmission from FSI models compared to equation

2

2

2

cZ

c

airFilm

air











NoiseCon 2014 September 8-10, 2014

Film Perforated Film – Dissipation of Energy

 Total energy absorption coefficient

― Calculated from the reflection and transmission:

 Parallel impedance formula (markers) predicts response very well

 The difference between the FSI model and the approximate equation < 0.30%

― The maximum difference occurs at about half the frequency for peak absorption 

  r1

Absorption from FSI models compared to equation Difference between FSI model and equation


r

1

Absorption is the fraction of 

normally incident acoustic 

intensity not reflected or 

transmitted by the film.
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Limp Perforated Film – Energy Loss

 Thermal losses are much less than viscous losses, again < 5% even at 10kHz

 For a film (shown at 450 Hz), thermal losses can occur on both sides of the film (total < rigid)

50                                200 500                                    900                          1,500                          Rigid
Film density given in kg/m3; color scale is from 0 to 0.1                  .

Viscous Losses

mW/m2

Thermal Losses

µW/m2

3mW
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Summary and Conclusions

 Fluid-Structure-Interaction (FSI) acoustic models were created

― 2D axisymmetric models of one hole of a microperforated film

― Viscous and thermal losses were investigated as well as their effect on absorption

 Thermal losses:

― Increase with frequency

― Occur over the full incident face of the film

• Contributions from within the perforations are negligible

• For moving films, losses occur on both sides of the film
but the total thermal loss is almost identical to that of a rigid wall

― Contribute to the acoustic resistance, but not the reactance

― Are less than 5% of the total energy loss for practical films below 10 kHz

• Have no significant affect on the predicted absorption

 Relative motion

― Air velocity through the perforations  are much greater than the film velocity 

• Only comparable at low frequencies for light films, but absorption is very low under these conditions anyway

― Transfer impedance of a flexible microperforated film can be determined by 
adding in parallel that of a rigid perforated plate and a limp impervious sheet
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