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ABSTRACT  

Air-to-refrigerant heat exchangers used in heating, ventilation, air-conditioning, and refrigeration systems routinely 

experience air-side fouling due to the presence of particulates in outdoor and indoor environments. The influence on 

the performance of the heat exchanger, in terms of heat transfer efficiency and pressure drop imposed, depends on 

the extent of air-side fouling. Fouling of a heat exchanger is determined by a variety of parameters such as the 

dimensions of the heat exchanger, physical properties of the airborne particulates, and airflow conditions over the 

heat exchange surfaces. A comprehensive model is developed to deterministically calculate the extent of fouling of a 

heat exchanger as a function of these parameters by accounting for each of the possible deposition mechanisms. The 

study enhances modeling approaches previously employed in the literature by accounting for time-dependent 

accumulation of particles as well as the effects of the streamwise distribution of accumulated dust on subsequent 

fouling; the calculations for the deposition due to several of the mechanisms are also refined to improve prediction 

accuracy. Particulate matter deposits already present on the surface are found to accelerate the process of fouling by 

decreasing available area for airflow; an existing deposit layer effectively decreases the distance that a particle must 

travel to collide with a surface and increases the surface area available for deposition. The modified model 

predictions are compared against extant experimental deposition fraction data; an improved agreement is observed 

compared to previous models in the literature.  

Keywords: particulate matter, heat exchanger, air-side fouling, HVAC&R 

 

1. INTRODUCTION  

Fouling of heat exchangers can have serious detrimental effects and has been investigated extensively. A majority of 

this effort has focused on understanding the phenomenon of tube-side fouling (fouling on the inside surfaces of 

tubes) [1]. Air-side fouling of heat exchangers (fouling on the outside surfaces of tubes) occurs as a result of 

sedimentation and deposition of particulate matter suspended in air. This particulate matter is usually composed of 

coarse and fine dust, fibers, and other pollutants present in the air [2]. Compared to tube-side fouling, prediction and 

assessment of air-side fouling is complicated by the variety of particulate types potentially present in the air stream, 

the irregular outer fin and tube surface geometries, and the dependence of the deposition mechanisms on these 

factors. Prediction of air-side fouling must thus account for the influences of a large number of parameters including 

the heat exchanger geometry, thermodynamic and transport characteristics of the airflow, and properties of the 

particulates suspended in the air stream.  

2. LITERATURE REVIEW  

One of the earliest attempts to experimentally characterize air-side fouling of heat exchangers with complex fin and 

tube surface geometries was reported by Bott and Bemrose [3], who experimentally fouled a four-row, four-pass, 

spiral-wound finned tube heat exchanger using precipitated calcium carbonate dust. The tests performed indicated 

that the Colburn-j factor and friction factor of the heat exchanger were influenced by fouling. The ratio of the 

instantaneous friction factor to its initial value asymptotically reached a constant value with progressive fouling. The 
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difficulty in predictive modeling of such air-side fouling behavior, specifically at the scale of a complete heat 

exchanger, has hindered the development of universal models. Instead, heat exchanger fouling models are developed 

based on related studies that investigate fouling of representative heat transfer surfaces, and focus on one or two 

selected deposition mechanisms. Thus, reasonable accuracy can only be expected when modeling fouling of these 

specific surfaces under certain operating conditions for which the predominant deposition mechanisms are captured.  

Waldmann and Schmitt [4] modeled the thermophoresis and diffusiophoresis of aerosols and provided analytical 

expressions for the corresponding particle velocities. Goldsmith and May [5] experimentally measured particle 

deposition due to these mechanisms on flat plates. A test section was constructed out of two parallel plates between 

which a temperature or water-vapor gradient was maintained as necessary. Derjaguin et al. [6] also modeled 

diffusiophoresis and thermophoresis of aerosol particles. These analyses were valid both for small particles (particle 

radius smaller than the mean free path of gas molecules) which were assumed to not affect the flow field in their 

vicinity, and for large particles (particle radius much larger than the mean free path) which do affect the gas flow 

field around them. Annis et al. [7] extended the range of applicability of earlier diffusiophoresis models specifically 

for particle radii on the same order of magnitude as the mean free path of the gas molecules. Pilat and Prem [8] used 

the models developed by Waldmann and Schmitt [4] to analyze particle collection efficiency of a water droplet due 

to thermophoresis and diffusiophoresis, in addition to the effects of inertial impaction and Brownian diffusion.  

Davies [9] first analyzed particle deposition due to turbulence by modeling particle transport from the bulk fluid to 

the boundary layer by turbulent diffusion followed by deposition in the laminar sublayer under free flight. Sehmel 

[10, 11, 12] modeled turbulent deposition of particles from boundary layers adjacent to the surface. An important 

contribution was the inclusion of particle eddy diffusivities; it was found from experimental data that particle eddy 

diffusivity was greater than the fluid eddy diffusivity due to turbulence. Cleaver and Yates [13] analyzed the 

deposition of particles by modeling their transport across the viscous sub-layer in a turbulent boundary layer. They 

also accounted for re-entrainment of particles by analyzing the local wall shear stress and turbulent bursts, and 

analyzed the limiting cases of gravity-dominated and inertia-dominated deposition. Later advances leveraged 

numerical modeling approaches, such as the study by Kallio and Reeks [14] who calculated particle trajectories in 

turbulent boundary layers to calculate particle deposition velocities in pipe flow.  

Based on the foundational models discussed above that considered deposition due to individual mechanisms, 

comprehensive fouling models were developed for more realistic situations and flow geometries. Epstein [15] 

modeled the phenomenon of particulate fouling of flat heat transfer surfaces due to various individual particle 

deposition mechanisms. The paper reviewed the different mechanisms of particle deposition driven by diffusion, 

inertia, impaction, gravitational settling, and thermophoresis, and presented analytical models to calculate the 

deposition velocity of particles for each mechanism. Bott [16] used a deposition velocity to model fouling of heat 

exchangers, with this velocity being defined as the mass flux of particles from the bulk flow to the surface on which 

deposition is being analyzed for fouling, normalized by the aerosol concentration. The transport of particles was 

separated into two types of phenomena: transport across the bulk flow region toward the boundary layer and surface 

(Brownian motion, eddy diffusion, and thermophoresis), and transport across the boundary layer to adhere to the 

surface (particle diffusion, inertial impaction, and thermophoresis). The lack of good-quality experimental data was 

identified as a limitation for assessment of the model accuracy and simplifying assumptions made.  

Siegel and Nazaroff [17] accounted for the individual mechanisms described above and developed a model to 

predict deposition of particles in a diameter range of 0.01 to 100 μm on wavy fin-tube heat exchangers. The 

contribution of each deposition mechanism to the overall deposition fraction was deterministically calculated, except 

in the case of deposition due to turbulence, where a Monte Carlo simulation method was utilized. Experiments were 

conducted to measure the deposition fractions of monodisperse oil particles at different air velocities. The model 

predicted Brownian motion to be the dominant deposition mechanism for particles in the diameter range of 0.01-1 

μm, while impaction on the leading edge of fins was predicted to be dominant in the 1-10 μm range. For the range of 

10-100 μm, gravitational settling, impaction on tubes, and deposition due to turbulence were all contributing factors. 

The model showed qualitative agreement with experimental data, but underpredicted the extent of fouling at higher 

velocities and for larger particles.  

The current work extends previous modeling approaches to include additional deposition characteristics in order to 

better represent the physical situation and improve prediction accuracy. In particular, the modeling enhancements 

include superimposition of the different fouling mechanisms, prediction of the distribution of deposits on the heat 
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exchanger surface along the streamwise direction, analysis of the effects of accumulated deposits on subsequent 

fouling, and adaption of the previous modeling approach to different heat exchanger geometries. A comparison of 

model predictions with published experimental data is presented.   

3. MODEL DESCRIPTION 

The current modeling approach builds upon the deposition mechanisms considered by Siegel and Nazaroff [17]. The 

Siegel and Nazaroff [17] (SN) model accounted for fouling of heat exchangers through inertial impaction on fins 

and tubes, gravitational settling, and deposition due to Brownian motion, turbophoresis, thermophoresis, and 

diffusiophoresis as described below: 

i. Inertial impaction on fins and tubes represents the deposition that occurs when particulate matter in air 

flows around obstacles such as fins and tubes. If the inertia of a particle is high, it may not perfectly follow 

streamlines of air. The path that the particle moves along may lead to a collision with the obstacle, leading 

to deposition.  

ii. Gravitational settling accounts for deposition of particles under gravity. The larger the mass of a particle, 

the greater is the displacement due to gravity. If this displacement is large enough, the particle will settle 

onto the floor of the airflow passage.  

iii. Deposition due to Brownian motion accounts for the collision with, and subsequent deposition of, particles 

on heat exchanger surfaces due to random motion. This random motion, caused by momentum transferred 

to these particles by collisions with air molecules, is dominant at small particle sizes.  

iv. The presence of turbulence in the airflow causes movement of particles away from high-turbulence zones. 

This is due to a gradient in the momentum transferred to the particles from collisions with air molecules. As 

the particles move in directions orthogonal to the airflow, they may encounter heat exchanger surfaces and 

deposit. 

v. Thermophoretic deposition also occurs due to a gradient in the momentum transferred to particles due to 

collisions with air molecules. However, this gradient in the transferred momentum is explained by a 

temperature gradient present in the airflow as a result of operation of the heat exchanger itself.  

vi. Diffusiophoretic deposition occurs due to the motion of particles under the action of diffusive forces. These 

diffusive forces result from moisture concentration gradients present in the air. As air is heated or cooled, 

its moisture-bearing capacity changes, causing a change in the moisture concentration. Diffusive fluxes of 

moisture and air lead to lateral particle motion toward surfaces.  

In the SN model, fouling of the tubes and fins of a heat exchanger was modeled for a finite number of distinct 

particle sizes, and the aggregate particulate deposition was calculated based on the particulate matter composition in 

the air stream. Using the detailed description of the model published by Siegel [24], the SN model was first 

replicated to ensure consistency with past efforts. The model was then modified as described in Section 3.3.  

3.1 Modeling Assumptions 

The following assumptions are applicable to all the fouling mechanisms considered in this model:  

i. Dust particles suspended in the air are perfectly spherical solid particles with a known size distribution 

based on mass;   

ii. The effective particle density of the particulate suspension in the air stream can be represented by a 

weighted mean of the constituent particle densities based on the mixture composition;   

iii. The bulk density of the aggregate deposited particulate matter differs from the particle density; neither is a 

function of operating conditions such as air velocity, air humidity, air temperature, or suspended particulate 

matter concentration;   

iv. Every collision between particles and heat exchanger surfaces is assumed to be perfectly inelastic, i.e., 

every collision results in adhesion of the particle to the surface, and a separate model for particle adhesion 

is not implemented;   

v. There is no re-entrainment of particles into the air stream after initial deposition;   

vi. Deposition occurs on the lateral surfaces of the fins, as well as on the front edges, while the trailing one-

quarter area of the tube surfaces remains free of fouling;   

vii. No fouling mechanism causes the transport of particles transverse to the bulk streamwise direction in a 

direction opposite to gravity; and   
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viii. The particulate suspension in the air stream maintains a uniform spatial distribution as it flows through the 

heat exchanger, i.e., no spatial gradients exist in the suspended particle concentration.  

3.2 Deposition Fraction  

Deposition fraction is used to quantitatively evaluate the extent of fouling of the heat exchanger surface. It is a mass-

based, non-dimensional number defined as:  

       
 

           

mass of dust deposited on the heat exchanger
deposition fraction

total mass of dust entering the front face of the heat exchanger
  (1) 

Conversely, the penetration fraction is a quantity used to evaluate the fraction of particles which are able to pass 

through the heat exchanger without depositing:  

 1  penetration fraction deposition fraction    (2) 

3.3 Motivation and Description of Modifications to the Siegel-Nazaroff (SN) Model 

A flow chart of the analytical model developed to predict fouling of HVAC&R heat exchangers is presented in 

Figure 1. The model, implemented in MATLAB, consists of simplified mathematical, deterministic calculations of 

the deposition fractions for particles of a specific size due to each deposition mechanism (except deposition due to 

turbulence, which needs a probabilistic calculation). The penetration fractions for each particle size are then 

calculated and multiplied to find the aggregate penetration fraction for a given particle size. This is possible because 

all deposition mechanisms (except thermophoresis and diffusiophoresis) are assumed to be independent of one other, 

which can be justified by the observation that each of the specific mechanisms dominates in unique and discrete 

ranges of particle size. Figure 2 describes the naming convention used to denote directions relative to the duct. Table 

1 lists some of the key equations used in the model to analyze the deposition mechanisms.   

3.3.1 Drag force on a particle: We use a correlation for the drag force acting on a particle, given by Haider and 

Levenspiel [25], that is valid for particle Reynolds numbers up to 2.6 × 10
5
 and also for non-spherical particles. The 

current model may thus be expanded to account for the deposition of fibers. The SN model used a correlation given 

by Seinfeld and Pandis [26]. The analysis of flow in the Stokes and Newtonian regimes assumes that the relative 

velocity of the fluid medium at the surface of the particle is zero, i.e., a no-slip boundary condition. However, for 

particles whose size approaches the mean free path in the fluid medium, there is slip between the particle and fluid 

molecules at this surface which reduces the drag force acting on the particle. The Cunningham correction factor is 

used to account for this slip [27]. The value of the slip correction factor reduces to 1 as the particle size increases. 

The mean free path in air has been calculated as given by Jennings [27]. The new correlation used to calculate drag 

force is reflected in equations (7.2) and (8.2) in Table 1.  

3.3.2 Zone-based modeling of gravitational settling: Deposition due to gravitational settling is typically accounted 

for in most prior models, but usually for channels of constant streamwise cross-section. For wavy finned tube heat 

exchangers, on the other hand, the air is split into paths that flow either through the fin corrugations or through the 

open spaces between fins. These regions offer different distances for the particle to travel before settling. The 

settling surface orientations also differ, and hence the two regions must be analyzed separately, as shown in Figure 

3. Particulate matter in the open zone (filled in with a cross-hatched pattern) will deposit on the floor of the heat 

exchanger by gravitational settling after traveling a distance much larger than the pitch of the wavy fins. On the 

other hand, particulate matter in the fin corrugation zone (shaded solid gray) will deposit on the wavy fins. The 

maximum distance a particle would travel as it settles under gravity before encountering a surface is on the order of 

the pitch of the wavy fins. The total deposition by gravitational settling is the sum of the deposition in the two zones. 

Equations (5.1) and (5.2) in Table 1 describe the procedure followed in the model to analyze deposition by 

gravitation settling.   

3.3.3 Deposition due to the combined effect of thermophoresis and diffusiophoresis: Thermophoresis, the 

motion of dispersed particles in a fluid medium due to a temperature gradient, occurs in a direction towards regions 

of lower temperature. Diffusiophoresis, the motion of dispersed particles due to a dissolved-component 

concentration gradient in a fluid medium, occurs in a direction towards a lower-concentration region. For a heat 

exchanger surface that is rejecting heat to the air stream, the temperature gradient established in the air would repel 

particles away from the heat exchanger surface; there would be no appreciable concentration gradient for any water 

vapor present in the air. Conversely, for a heat exchanger surface that is absorbing heat from the air stream, the 



5 

temperature gradient would attract particles to the heat exchanger surface. Water vapor present in the air may 

condense on the surface to establish a concentration gradient that also attracts particles to the surface. The 

thermophoretic and diffusiophoretic forces would act on suspended particulates in the same size range in the same 

direction and tend to be of the same order of magnitude [8]. Goldsmith and May [5] performed experiments to test 

whether thermophoresis and diffusiophoresis could be analyzed independently in this scenario, and reported that the 

forces acting on particles due to these two effects could be superimposed for aerosol deposition in helium or air. 

Assuming mutual independence between thermophoresis and diffusiophoresis may lead to an overprediction in the 

deposition rate because a certain particle could deposit under the combined action of both thermophoresis and 

diffusiophoresis. 

Prediction of deposition due to thermophoresis (according to Talbot et al. [22]) and diffusiophoresis (according to 

Goldsmith and May [5]) is combined by superimposing the thermophoretic and diffusiophoretic forces. The net 

force acting on a particle in the direction of the surface is calculated, from which the net deposition velocity towards 

that surface is obtained. This velocity is used to calculate the deposition fraction of particles due to the net action of 

these two mechanisms. Equations (8.1) and (8.2) in Table 1 describe the calculation procedure employed in the 

model to find deposition due to net action of thermophoresis and diffusiophoresis.   

3.3.4 Deposition due to turbulence: Particle transport due to turbulence is assumed to occur in two distinct ways – 

first due to entrainment occurring in turbulent flow, and second due to turbophoresis. In the first mechanism, dust 

particles are assumed to be entrained in secondary flows (in directions other than the bulk streamwise flow) resulting 

from formation of eddies, and in flows caused by random bursts of turbulent fluctuation velocity. Turbophoresis, the 

motion of dispersed particles in a fluid medium due to a difference in the local turbulence intensities, transports 

particles from regions of high to low turbulence. The analysis of deposition due to turbulence in the SN model used 

turbulence statistics from a direct numerical simulation of fully developed turbulent flow between parallel plates 

published by Moser et al. [28]. To better match operating conditions of field-installed heat exchangers and 

experiments, data should be extracted from simulation of representative duct geometries. The SN model considered 

deposition by turbulence as a two-dimensional phenomenon: deposition on fins from random velocity bursts in the 

horizontal spanwise direction and turbophoretic deposition on tubes in the streamwise direction for a heat exchanger 

installed in a duct with horizontal airflow. Turbulence in the vertical spanwise direction was assumed to not cause 

significant deposition. This assumption is logical for plain plate-finned-tube heat exchangers on account of the much 

smaller area available for deposition in the vertical spanwise direction as compared to that available in the horizontal 

spanwise direction. However, the fin corrugations in wavy finned tube heat exchangers could potentially provide 

surface area for particle deposition. The SN model assumed that turbulence from bulk flow in the duct does not 

persist into the airflow in the channels between the fins. Thus, deposition due to turbulence was only due to 

entrainment in random velocity bursts. For purposes of assessing the effect of the persistence of turbulence, 

turbulence from the upstream duct was alternatively assumed to persist through the entire depth of the heat 

exchanger; calculation of deposition with this turbophoresis was reported as an upper limit on deposition from 

turbulence-related mechanisms. While the narrow airflow channels could lead to some laminarization of the airflow, 

an absence of detailed turbulence data for airflow inside heat exchangers prevents the analysis of deposition due to 

turbulence induced by roughness elements and fin discontinuities within the heat exchanger itself (distinct from duct 

turbulence persisting inside the heat exchanger). 

Figure 4 is a flow chart of the subroutine developed to predict particle deposition due to turbulence. Table 2 presents 

key equations used in the subroutine. The general approach for predicting deposition due to turbulence in the current 

study is similar to that of Siegel and Nazaroff [17] and uses a Monte Carlo simulation. However, because turbulence 

is a three-dimensional phenomenon, the modeling of deposition due to turbulence is extended to three dimensions 

for both mechanisms, as opposed to the two-dimensional approximation used in the SN model. Turbulence causes 

large deposition fractions for large particle sizes, and the extension of the analysis of deposition due to turbulence to 

three dimensions has a measureable influence on the total deposition fraction predicted. Turbulence statistics were 

reported by Gavrilakis [29] and Huser and Biringen [30] in all directions, and provided the numerical data necessary 

to perform this analysis. Regression curves were fitted to reported turbulence statistics such as primary and 

secondary velocity profiles, rms values of turbulent fluctuation velocities in all directions, and Reynolds stress 

profiles in all directions. Instantaneous turbulent fluctuation velocity was randomly sampled from a normal 

distribution about a mean of 0 and a standard deviation equal to the rms value of turbulent fluctuation velocity. 

Deposition due to turbulence in the additional vertical spanwise direction is modeled similarly to that in the 

horizontal spanwise and streamwise directions. The turbophoretic deposition is not used to define an upper limit on 
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deposition due to turbulence-related mechanisms as was done in the SN model; instead, its contribution is included 

in the prediction of actual deposition, instead of as an uncertainty estimate. The model approximates the 

hydrodynamic entrance length to be the length over which the duct turbulence persists inside the heat exchanger 

core. If the entrance length is greater than the depth of the first tube bank in the heat exchanger, then duct turbulence 

is assumed to persist inside the heat exchanger for the entire depth of the tube bank. The entrance length is 

approximated by the expression applicable for flow through rectangular ducts from McComas [31]. This persistence 

length is then used in the analysis of deposition due to turbophoresis. Equations (7.1), (7.2), (9), (10), and (11) in 

Tables 1 and 2 describe the computation procedure used to estimate deposition due to turbulence-related 

mechanisms. 

3.3.5 Time-stepping to account for the effect of previously deposited dust on subsequent fouling: Based on 

fouling experiments with saw dust performed on a compact heat exchanger, Mason et al. [32] proposed distinct 

temporal regimes in the process of fouling. The increase in pressure drop across the heat exchanger as a function of 

time was divided into three phases. In the first nucleation fouling stage, the pressure drop increased gradually, and 

was followed by a second transition fouling stage, and finally with a bulk fouling stage during which the pressure 

drop increased very rapidly. Since saw dust was continuously injected into the air stream passing through the heat 

exchanger, this dependence on time reflects a dependence of the fouling rate on the extent to which the heat 

exchanger had been previously fouled. It was proposed that larger particles were deposited preferentially in the 

nucleation fouling stage. These deposits then acted as nucleation sites to trap smaller particles that would have 

otherwise passed through a clean heat exchanger.  

House dust is a heterogeneous mixture of organic and inorganic particles and fibers of different sizes. Common 

sources of fibers in the air are paper, glass wool, wood, textiles [33], human hair and animal fur. Moore [34] studied 

the accumulation of fibrous dust on high-fin-density heat sinks. Due to the small fin pitches, the fibers formed 

bridges between adjacent fins. The resultant webbed structures were able to trap progressively finer particles, thus 

accelerating the process of fouling. In the case of compact finned heat exchangers increasingly common in 

HVAC&R applications, a similar phenomenon could lead to a progressive increase in the rates of fouling as a 

function of dust already present on the heat exchangers. Ahn and Lee [35] reported similar findings in prefilters; 

accumulated fibers formed dust-cake layers that acted as a secondary filtration medium and collected particles 

smaller than the filter pore sizes. Photographs of fouled condenser and evaporator heat exchangers which had been 

in service for periods between 3 to 14 years showed a significant presence of fiber and particulate agglomeration 

between the fins.  

There are several other potential particulate-agglomeration-dependent deposition mechanisms. As air passages 

inside the heat exchanger become blocked by deposited dust, the distance that particles need to travel to impact upon 

the heat exchanger surface decreases. Surface deposits may also increase the turbulence inside the heat exchanger 

(Yang et al. [36]). These factors may contribute to progressively faster fouling of the heat exchanger over time. Bott 

and Bemrose [3] also asserted that the rate of deposit buildup is a function of the thickness of the fouling layer, 

which causes a change in the flow area and pattern through the heat exchanger, thus affecting the individual 

deposition phenomena. Hence the pressure drop across a fouled spiral wound finned tube heat exchanger increased 

at different rates depending on the dust concentration in the air stream (which influences the actual thickness of the 

deposited layer at the same deposition fraction). This deposit buildup mechanism is easily adapted into the 

deposition model, as done in the present work.  

While there is no formal testing standard, experiments typically evaluate the fouling of heat exchangers by injecting 

dust into an air stream flowing through the heat exchanger at a set rate and duration. The injection of dust is then 

stopped and steady-state performance is measured in a fouled condition [3, 24, 36, 37, 38, 39, 40, 41]. Bott and 

Bemrose [3] claimed that the periodic nature of this testing approach does not affect the phenomenon of fouling. The 

deposition of dust on the heat exchanger is also evaluated by stopping air flow through the heat exchanger and 

measuring the mass of dust deposited. Continuous heat exchanger performance may also be measured to obtain 

transient behavior data as the surfaces are progressively fouled during testing [3, 42].  

To mimic this experimental procedure for which data are available for comparison, dust deposition is modeled in 

discrete time periods corresponding to the periods of dust injection in the current approach. The modeling procedure 

approximates integral accumulation of dust by summing the deposition after each time step. When one time period 

ends, the total additional mass of dust deposited on the heat exchanger is calculated, and heat exchanger flow path 
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dimensions are modified to reflect the contraction due to fouling. This is achieved by artificially increasing the fin 

thickness and tube diameter of the heat exchanger based on the distribution of dust. The parameters dependent on 

the dimensions of the heat exchanger for flow past fins and tubes are recalculated based on the new dimensions. The 

model also checks for total blockage of flow passage due to fouling after a time step and returns a notification if this 

condition is reached.  

3.3.6 Streamwise distribution of deposited dust: Large variations in the local streamwise distribution of deposited 

dust have been observed experimentally in the literature. Yang et al. [36] and Bell and Groll [37] observed that a 

majority of the fouled dust was deposited on the front face of the coil, and photographs showed that rear faces 

remained clean. Pak et al. [39] reported that dust accumulated more at the leading edges of fins, and that dust 

particles formed bridged shapes which reduced the front-facing open flow area. Ahn and Lee [35] reported that the 

fouling deposits were observed to have formed within 5 mm of the frontal air inlet to the heat exchanger surface, 

while the rear faces were fairly clean. Other experimental observations of concentrated fouling at the front face of 

the heat exchanger have been reported by Sun et al. [42] and Ali and Ismail [43]. 

The increase in pressure drop across the heat exchanger due to fouling is likely determined by deposition in the 

frontal region due to the greater local intensity of fouling. Similarly, if the front rows of the heat exchanger are 

heavily blocked due to dust deposition, the remaining rows of the heat exchanger could potentially remain clean 

even though the heat exchanger would not function properly. It is evident that modeling the distribution of the dust 

deposition inside a heat exchanger is important to predict the extent of fouling and its effect on performance, and the 

model results should reflect these experimental observations. 

 The SN model calculated the overall deposition fraction for the entire heat exchanger without considering its spatial 

distribution. In the current model, deposition due to each different mechanism is calculated in the streamwise 

direction in a discretized manner. Thus, the heat exchanger is divided into distinct sections; each section is 

composed of a tube row and a finned surface whose length is equal to the longitudinal tube pitch and which covers 

the entire height of the heat exchanger. This allows the mechanisms to naturally determine the distribution of 

deposition as a function of streamwise location along the heat exchanger. Such discretization of the calculation of 

deposition fraction due to each fouling mechanism in the streamwise length of air flow may possibly lead to a more 

accurate model for the distribution of deposited particulate matter.  

To implement this streamwise distribution calculation in the model, once particulate matter is predicted to deposit in 

a particular section of the heat exchanger, the dust composition (both particle size and number of particles) in the air 

flowing through to the downstream section of the heat exchanger is updated. Thus, this discretization scheme not 

only yields information about the location of the deposition, but also affects the calculation of deposition fraction. 

Some mechanisms are governed by phenomena that behave nonuniformly over the cross section of the heat 

exchanger (e.g., deposition due to turbulence is determined by local turbulence parameters). While these local 

phenomena are considered in calculating the total deposition fraction, the non-uniformity of the deposited layer is 

neither tracked nor considered in subsequent calculations. Assessment of the bulk density of the deposited dust layer 

(compared to the particle material density) is critical for accurate alteration of the heat exchanger dimensions as a 

result of its fouling in the time-stepping model. The particle density of the dust is obtained from the manufacturer 

data [44]. The bulk density of the deposited dust, however, could vary from the particle material density. The value 

currently used in the model is the bulk density of the test dust measured as received from the manufacturer (550 

kg/m
3
).   

3.3.7 Effect of surface orientation on deposition mechanisms: The orientations of the heat exchanger surface 

geometries (with respect to gravity and the flow direction) uniquely influence each of the deposition mechanisms, 

and are also accounted for in the current model. Calculation of the inertial impaction on tubes and fins only 

considers the front halves of the tubes, whereas gravitational deposition only considers the top halves of tubes. It 

may be safely assumed that the lower halves of tubes need not be considered for the remaining mechanisms as a 

consequence of assumption vii (see Section 3.1). Thus, the region between the lowermost point of the tube and the 

trailing edge does not influence the calculation of any deposition mechanisms.  

This approach is supported by prior experimental investigations. Abd-Elhady et al. [45] observed the build-up of 

fouling layers on heat exchanger tubes as a function of the direction of airflow with respect to gravity. They 

observed that fouling layers were thicker at the bottom rows of heat exchangers than at the top rows for all cases 
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(suggesting the influence of gravity). Fouling layers began at different locations on the tubes of heat exchangers and 

grew in different directions along the tubes depending on the direction of air flow and gravity. For all cases, fouling 

deposits were most likely to begin to grow at the stagnation point of airflow and the point on the top of the tube 

exactly in line with gravity. These layers then grew towards each other and merged.   

Based on these experimental observations, the deposition fractions on the other radial locations were calculated 

according to the different mechanisms, taking into consideration the surface area on which deposition was likely in 

each case. Figure 5 shows the region of each fin and tube that was assumed to affect fouling by each individual 

deposition mechanism. The entire transverse surface areas of fins were assumed to be susceptible to fouling by all 

possible mechanisms. The front edges of fins were also assumed to be fouled as a result of inertial impaction of 

particles. While these surface-orientation-dependent regions of fouling are considered in calculation of the 

deposition fraction by each mechanism, the deposited dust is assumed to be uniform over the surface cross section 

for purposes of calculating the deposition layer thickness.  

3.3.8 Streamwise changes in airflow dust composition: As a heat exchanger is fouled, the characteristics of the 

suspended particulates in the airflow change due to deposition. Not only does the total particulate concentration 

decrease due to fouling, but the particle sizes redistribute based on the size-dependent deposition mechanisms. This 

change affects the local deposition fraction at each individual tube row, and thereby alters the total overall 

deposition fraction for the heat exchanger. Consideration of the spatial variation of suspended particulate 

composition in the air stream is a logical extension of modeling the streamwise distribution of deposited dust, which 

also requires modeling the deposition in a discretized manner. The current model removes particulate matter from 

the air stream that is deposited on upstream heat exchanger sections and updates incident particulate dust 

composition for each discretized heat exchanger section.   

4. RESULTS AND DISCUSSION 

4.1 Experimental Results Used for Model Comparison  

The experimental results of Pak et al. [39] and Yang et al. [36] are used for validating the model predictions; inputs 

required for the model regarding the heat exchanger geometry, such as the tube pitches in transverse and streamwise 

directions of airflow, fin pitches, and fin thickness, are available from these studies. In both sets of experiments, the 

heat exchangers to be tested were installed in a wind tunnel and connected to hot water loops for measuring the heat 

transfer performance. The inlet air temperature and inlet water temperature to the coils were both fixed and 

maintained constant for all tests. A commercially available dust injector (LMS Technologies, Inc.) was used to 

introduce dust into the wind tunnel at a constant rate. The injector aspirated the dust into a nozzle and sprayed it into 

the air stream by passing it through a perforated disc. The disk ensured that the dust was well-mixed and sprayed 

uniformly over the entire cross-section of the duct. The dust used was ASHRAE Standard Test Dust [46]. Each coil 

was loaded with dust for a pre-determined number of hours at 100 grams per hour. Additional details about each test 

are provided in Table 3. All heat exchangers with more than one tube row had a staggered arrangement of tubes.  

In the experiments, filters placed downstream of the heat exchangers were used to catch dust particles that passed 

through the heat exchanger. The filter was weighed before and after each test to determine the amount of dust 

caught. The mass of dust injected into the air stream was known. Thus, the deposition fraction on the heat exchanger 

for the test could be experimentally determined as follows:  

             
 

   

mass of dust injected into the airstream mass of dust caught in the downstream filter
deposition fraction

mass of dust injected into the airstream


 (12) 

The experiments reported overall deposition fractions calculated over the entire duration of each test; the model 

updates the heat exchanger geometry on an hourly basis using on the deposition fraction calculated over each hour 

and then calculates a cumulative deposition fraction for the entire test period for comparison.  

Figure 6 is adapted from data published by Flanders Corporation [47]. It shows the mass-based particle size 

distribution of ASHRAE Standard Test Dust. The particle size distribution that was originally published used 

broader particle diameter bins; for the current model input, these bins were uniformly subdivided to increase the 

resolution of particle sizes on the deposition. These more finely resolved particle size bins are indicated by the 

vertical lines subdividng the bars in Figure 6. The particle size bins with finer resolution are used because the 
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deposition fraction is a strong function of particle size; this approach yields a refined (and potentially more accurate) 

description of the particle sizes in the foulant buildup on the heat exchanger. ASHRAE test dust is a mixture of 72% 

by mass of ISO12103-1 A2 fine test dust, 23% powdered carbon, and 5% by mass of milled cotton linters. The 

particle density of the dust mixture was assumed to be a mass-fraction-weighted mean of the component particles. 

The calculated value of 2430 kg/m
3
 is given here for reference and was used to perform the analysis reported in this 

work.   

4.2 Model Predictions 

To evaluate the contribution of each individual change in the model structure to a change in the predicted overall 

deposition fraction, a test case (2C, Table 3) was evaluated using the model at different intermediate stages of model 

development. The changes made were not reverted between different stages; therefore, each predicted deposition 

fraction reflects the cumulative impact of all prior changes. Figure 7 presents the deposition fraction predicted by 

different versions of the model; Table 4 lists short descriptions of the model enhancements referred to in Figure 7. 

The SN model described in Siegel and Nazaroff [17] was considered as the baseline. The changes listed in Table 4 

are described in greater detail in Section 3.3.   

The experimentally measured overall deposition fraction was approximately 58%. The baseline model (40.6%) 

underpredicted the experimental measurement. A superposition of thermophoresis and diffusiophoresis resulted in 

no significant change in the model prediction. A zone-based modeling of gravitational settling resulted in a minor 

decrease in the predicted overall deposition fraction (39.6%). This small change is probably a consequence of the 

stochastic nature of calculation of deposition from turbulence-related mechanisms. The new correlation used to 

calculate drag force acting on a dust particle resulted in no significant change in the model prediction. It should be 

noted that this change could potentially affect analysis of inertial impaction, gravitational settling, combined thermo- 

and diffusiophoresis, and deposition due to turbulence. However, the correlation is applicable only in the Newtonian 

regime and not in the Stokes regime. Thus, if particle motion did not fall within the Newtonian regime, a change in 

the correlation used to calculate drag force had no impact on the model prediction. For the current conditions 

investigated, the new drag force correlation was not anticipated to have a large impact; the new correlation was 

implemented because it includes the effects of particle shape and therefore can help in predicting the deposition of 

non-spherical particulates. 

The largest change in the predicted deposition fraction occurred when the source of DNS velocity data for turbulent 

flow through a duct was updated to properly reflect flow through a 3D square duct (rather than the 2D channel 

geometry assumed in the SN model). The increase in predicted overall deposition fraction to 64.1% can be explained 

by one important factor. The DNS data used to assess deposition due to turbulence included information about 

secondary flows that exist in the duct. These secondary flow velocities, when added to the random velocity bursts, 

resulted in much higher calculated values for particle velocity towards the heat exchanger surface. Consequently, 

lower estimates were obtained for the time required for a particle to collide and deposit on the heat exchanger 

surface compared to the time required for a particle to pass through the heat exchanger core without collision. The 

extension of turbulent deposition to all directions resulted in a small further increase in the predicted overall 

deposition fraction to 66.5%. The relatively small change from the previous enhancement V can be explained by the 

fact that the calculation method accounted for scenarios that would erroneously double-count deposition of particles. 

That is, if a particle was predicted to deposit on fins due to a random velocity burst in the horizontal spanwise 

direction, deposition on a tube by turbophoresis in the streamwise direction was not counted again as an additional 

deposition event in the Monte Carlo simulation. The sample size of the Monte Carlo simulation was maintained at 

10
7
 cases to match the sample size of the simulation conducted by Siegel and Nazaroff [17].   

Spatial discretization of the fouling model increased the predicted deposition fraction to 70.5%. This could be 

attributed to some additional deposition calculated on downstream tube banks, which is not explicitly accounted for 

in the baseline model. Temporal discretization of the fouling model resulted in a very slight increase in the predicted 

overall deposition fraction to 71%. This lower-than-expected contribution of accumulated deposition on fouling can 

be attributed to the fact that while the fouling agent contained 5% by mass of cotton fibers, the propensity of dust 

particles to be caught in these fibers was not accounted for in the model. In addition, the distribution of deposition 

was assumed to be completely uniform over the entire discretized section of the heat exchanger. However, this 

assumption is difficult to verify experimentally, and may not be applicable. It is possible that some regions in the 

heat exchanger were fouled to a greater degree than other regions in the experiment. Thus, a severely blocked 

airflow passage might aggressively agglomerate dust particles, which the model is not capable of predicting.  
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The progressive growth of deposition layers on the heat exchanger surface is shown in Figure 8 for a selected test 

case (2C, Table 3). The deposition layer for a tube row accounts for the deposition on the section of the heat 

exchanger corresponding to that row of tubes, i.e., the surface area of the tube row and the finned area corresponding 

to the tube row. The model predicts that the front section of the heat exchanger will see a majority of the deposition, 

while the heat exchanger surface further downstream will remain relatively clean. This agrees with experimental 

observations reported in the literature [39, 36, 37, 35]. There is a small increase in the deposition fraction each hour 

as the heat exchanger is progressively fouled, from 70.4% during the first fouling period to 71.4% for the last period. 

This also qualitatively agrees with experimental observations, although the absolute increase in the deposition 

fraction with each hour is smaller than typically observed.  

A comparison between experimental and calculated deposition fractions for the different test cases considered in 

Table 3 is presented in Figure 9. The calculated deposition fractions include predictions using the SN model and the 

model in its current form. The mean absolute error in the predicted deposition fraction decreases from 36.1% to 

30.7% when prediction accuracy of the current model is compared to that of the SN model. In the first two cases, 

deposition due to turbulence was ignored by the model because the hydrodynamic entrance length for airflow 

between the fins was an order of magnitude smaller than the heat exchanger depth. Therefore, deposition due to 

turbulence was not calculated (in contrast to the SN model where turbulence was assumed to be independent of 

entrance length). Enhancements to the analysis of deposition from turbulence could improve prediction accuracy.  

With inclusion of time-stepping in the calculated deposition fraction, in addition to other improvements made to the 

methods that estimate deposition due to each individual mechanism and their interactions, the overall deposition 

fraction predictions from the current model are closer (MAE of 31% compared to 36% for the SN model) to the 

experimental observations than the predictions from the SN model.   

4.3 Sources of Discrepancy between Model and Experiment 

4.3.1 Uncertainty in estimating experimental parameters: A primary potential source of error in the results is that 

some geometric parameters of the modeled heat exchangers have not been specified in the literature [39, 36]. 

Critical parameters including the fin thickness and dimensions of the louvers, lances, and wavy structures of the fins 

were estimated from published photographs or practical experience. The fin thickness for all cases was assumed to 

be 130 microns using measurements made on an outdoor unit for a commercial air conditioning system available in 

the authors’ laboratory. To account for the louvers, the flow area blocked by the front edges of the louvers was 

added to the fin thickness; however, this addition does not accurately account for the increased deposition fraction 

observed experimentally on such surface enhancements. The effect of louvers is apparent in experimental results but 

accounting for the flows developed due to such surface enhancements is beyond the scope of this model.    

4.3.2 Geometric complexity: Accounting for the various nonuniformly shaped structures that are used to increase 

turbulence inside the heat exchanger, such as louvers, in the model is complicated. For example, some of the louvers 

are cut out of the fin surface leaving open slits in the fin surface transverse to the airflow. These slits provide edges 

for deposition of dust; however, this deposition is not captured by the mechanisms included in the current model. 

Fouling of such slits has not been independently investigated in experiments. This is further complicated for 

experimental cases that have fins with both wavy structures as well as louvers, such as experimental cases 1C and 

1D.  

4.3.3 Particulate collisions and re-entrainment: The assumption that every collision of a dust particle with the 

surface results in deposition, as well as of an absence of re-entrainment of dust particles into the air stream, would 

induce some error in the model. To theoretically model these phenomena requires information about the 

intermolecular and electrostatic forces of attraction between dust particles and the metallic surfaces for all of the 

different constituents of the dust. Quantification of these forces would require extensive single-phenomenon data 

collection/validation for a variety of materials, and is outside the scope of the current work.  

4.3.4 Bulk density of dust: The dust is a heterogeneous mixture of different components, and its bulk density is a 

function of the densities of its components weighted by their concentration, in addition to the porosity of the layer, 

which can easily change due to the deposition mixing process or moisture content. Thus, while the bulk density can 

be measured experimentally under controlled conditions, it cannot be deterministically calculated when modeling 

heat exchangers operated in the field, and serves as a potential source of uncertainty in modeling efforts. The bulk 

density of dust used to calculate the thickness of dust layers on the heat exchangers attempts to account for the 

agglomeration of dust particles that may occur due to humidity in the air and the actual physical process of 

impaction on the heat exchanger surface.  
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4.3.5 Distribution of prior fouling on surfaces: While the orientation of the surfaces is considered when 

calculating deposition by each mechanism, the distribution pattern of deposited particles is not known or accounted 

for. Little experimental data exist about the distribution patterns, which confounds modeling efforts. Such data could 

be obtained by collecting and weighing fouling on adjacent rows separately.  

4.3.6 Turbulence inside the heat exchanger: Geometric enhancements on heat exchanger surfaces are meant to 

induce turbulence in the airflow. The internal geometry of heat exchangers where airflow patterns are repeatedly 

broken by tubes would also cause turbulence inside the heat exchanger. This turbulence could then cause deposition 

inside the heat exchanger. However, this information is not readily available in the published literature. It is difficult 

to predict particle deposition due to complex turbulence patterns in a fouling model that primarily uses deterministic 

calculations. A numerical-simulation-based model would be more suited for that purpose. In the present model, it 

was assumed that turbulence from flow inside a duct persists only a certain streamwise length into the heat 

exchanger. Thus, the contribution of this internally induced turbulence to deposition was neglected.  

 

5. CONCLUSIONS  

The model developed in this work is able to predict experimentally measured deposition fractions with improved 

accuracy relative to existing models, and could be used to evaluate fouling of HVAC&R heat exchangers of similar 

geometries as the test cases considered. The modified functionality of the model also enables approximation of the 

streamwise distribution of the deposited dust within the heat exchanger, and the effect of prior particle deposits on 

subsequent fouling (i.e., temporal deposition characteristics). Due to the cumulative and combinatory nature of the 

approximations and assumptions made in the model, and on account of limited experimental data that only provide 

quantitative bulk deposition and qualitative descriptions of the dust distribution, more precise validation is difficult.  

In its current form, this model can be used to obtain reliable trends for the effects of different geometric and 

operating parameters on the fouling of heat exchangers. Rough estimates of the deposition fractions as a function of 

the heat exchanger geometry, thermophysical properties of air, and characteristics of the suspended particulate 

matter could then be used to avoid excessive fouling of fielded heat exchangers.  

NOMENCLATURE 

DC  = coefficient of drag, --   sC  = thermal slip coefficient, --   

tC  = thermal exchange factor, --   corf  = correction factor for wavy fins, --   

D  = momentum diffusion coefficient of air, m
2
/s   

broD  = deposition due to Brownian motion, --   

finD  = deposition due to inertial impaction on fins, --   ,ent iD  = deposition due to random bursts of turbulence 

along direction i , --   

graD  = net deposition due to gravitational settling in 

wavy-finned-tube heat exchangers, --   

,gra corrD  = deposition due to gravitational settling in 

corrugations, --   

,gra openD  = deposition due to gravitational settling in 

open flow areas in the heat exchanger core, --   

,gra plain finsD   = deposition due to gravitational settling 

in plain-finned-tube heat exchangers, --   

tD  = tube diameter, m   tD  = tube diameter corrected for deposition buildup, 

m   

tubeD  = deposition due to inertial impaction on tubes, -

-   
,tur iD  = deposition due to turbophoresis along direction 

i , --   

turbD  = net deposition due to turbulence-related 

mechanisms, --   
,wv airD  = mass diffusion coefficient of water vapor in 

air, m
2
/s   

diffF  = diffusiophoretic force acting on a particle, N   therF  = thermophoretic force acting on a particle, N   

pd  = particle diameter, m   idist  = distance to nearest heat exchanger surface in 

direction i , m   

wH  = height (double the amplitude) of one ‘wave’ in a 

wavy fin structure, m   
,fl iJ  = Lagrangian (or integral) diffusion scale of times 

along direction i , s   
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Kn  = Knudsen number of particle flow, --   
airk  = thermal conductivity of air, W/m-K   

pk  = thermal conductivity of particle, W/m-K   fL  = thickness of deposition layer, m   

airM  = molecular mass of air, kg/kmol   wvM  = molecular mass of water, kg/kmol   

pm  = mass of particle, kg   AN  = Avogadro constant, 1/kmol   

tN  = number of transverse tube rows, --   lP  = longitudinal tube pitch, m   

tP  = transverse tube pitch, m   wP  pitch (trough to trough distance) of one ‘wave’ in a 

wavy fin structure, m   

,p wvp  = partial pressure of water vapor in air, Pa   finS  = fin pitch, m   

finSt  = Stokes number for flow over fins, --   tubeSt  = Stokes number for flow over tubes, --   

airT  = temperature of free stream of air, K   
fint  = fin thickness, m   

fint  = fin thickness adjusted for deposition buildup, m   ductU   = primary (streamwise) air velocity approaching 

heat exchanger, m/s   

hxU   = primary (streamwise) air velocity inside heat 

exchanger corrected for change in flow area, m/s   
iu  = instantaneous airflow velocity along direction i  

(sum of mean and fluctuation velocities), m/s   

,p iu  = instantaneous particle velocity along direction i  

(sum of mean and fluctuation velocities), m/s   

iu   = mean airflow or particle velocity along direction 

i , m/s   

iu   = instantaneous turbulent fluctuation airflow 

velocity along direction i , m/s   
,p iu   = instantaneous turbulent fluctuation particle 

velocity along direction i , m/s   

,rms iu   = rms turbulent fluctuation airflow velocity 

along direction i , m/s   

, ,p rms iu   = rms turbulent fluctuation particle velocity 

along direction i , m/s   

,pho iu  = turbophoretic deposition velocity along 

direction i , m/s   

su  = settling velocity of particle under gravity, m/s   

i ju u   = Reynolds stress in ij  plane due to turbulent 

airflow, N/m
2
   

ther diffv   = net particle velocity under thermophoretic 

and diffusiophoretic forces towards tubes, m/s   

ther diffw   = net particle velocity under thermophoretic 

and diffusiophoretic forces towards fins, m/s   

airx  = mole fraction of air, --   

wvx  = mole fraction of water vapor in air, --    

  

air  = dynamic viscosity of humid air, kg/m-s   air  = kinematic viscosity of humid air, m
2
-s   

,t air  = eddy diffusion coefficient (or eddy viscosity or 

turbulent viscosity), m
2
-s   

air  = density of humid air, kg/m
3
   

p  = particle density, kg/m
3
   , ,imp ent i  = time needed for particle to collide with heat 

exchanger due to entrainment in random velocity 

bursts, s   

, ,imp tur i  = time needed for particle to collide with heat 

exchanger due to turbophoresis, s   

,p i  = relaxation time of particle for motion along 

direction i , m/s   

  

wvn  = gradient of molar concentration of water vapor 

in air, kmol/m
4
   

wvp  = gradient of vapor pressure of water between 

air stream and heat exchanger surface, Pa/m   

airT  = gradient of temperature between air stream 

and heat exchanger surface, K/m   

 = probability, --   

 = logical OR operation    
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Figure 1. Flow chart of analytical model developed to predict fouling of an HVAC&R heat exchangers.   
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Figure 2. Naming convention used to denote directions with respect to the duct.   
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Figure 3. Schematic division of airflow passages into distinct gravitational settling zones.  
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Figure 4. Flow chart of subroutine used to evaluate fouling due to turbulence driven deposition mechanisms.    
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Figure 5. Assumed distribution of deposited dust, based on each deposition mechanism, on a wavy fin (as seen from 

its side (a) and from the front (b)) and on (c) a heat exchanger tube as seen from the side.   
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Figure 6. Mass-based particle size distribution of ASHRAE Standard Test Dust used in the fouling model.   
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Figure 7. Change in predicted deposition fraction due to changes made in the model as listed in Table 4.   
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Figure 8. Thickness of deposition layer formed on the heat exchanger surface as a function of the streamwise depth 

from front face and time (Test 2C).   
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Figure 9. Comparison of experimental and calculated deposition fractions from both models.   
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Table 1. Important equations used to calculate deposition due to each mechanism in the current model.   

Deposition 

Mechanism 
Equation for Deposition Fraction  Definitions  
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on fins [18]   
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Thermo- and 

diffusiophoresis   
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Table 2. Additional equations used in the model to analyze deposition due to turbulence.   

Variable Evaluated Equation  

Turbophoretic velocity [23]  
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Table 3. Summary of operating parameters of experiments used for comparison against model predictions.   

Study 
Test 

Identifier 

Tube 

Parameters  

(mm) 

Number 

of Rows 
Fin Type 

Fin Density 

(fins per 

inch, FPI) 

Dust Type 

Duration 

of Test 

(hr) 

Pak et 

al. [39]  

1A 

Dt = 9.52 

Pt = 30.5 

Pl = 30.5 

1 Plain plate 22 

ASHRAE 

Standard Test 

Dust 

3  

1B 

Dt = 9.52 

Pt = 30.5 

Pl = 30.5 

1 
Louvered 

wavy plate 
22 3 

1C 

Dt = 9.52 

Pt = 30.5 

Pl = 30.5 

2 
Louvered 

wavy plate 
22 3 

1D 

Dt = 9.52 

Pt = 30.5 

Pl = 30.5 

2 
Louvered 

wavy plate 
22 3 

Yang 

et al. 

[36]  

2A 

Dt = 9.52 

Pt = 22 

Pl = 25.4 

2 
Lanced 

plate 
14 6 

2B 

Dt = 12.7 

Pt = 33 

Pl = 38.1 

4 
Lanced 

plate 
12 6 

2C 

Dt = 12.7 

Pt = 33 

Pl = 38.1 

8 Wavy plate 8 6 

2D 

Dt = 12.7  

Pt = 33  

Pl = 38.1 

8 
Lanced 

plate 
8 6 
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Table 4. Description of improvements to the model in stages to assess the impact of each subsequent change relative 

to the SN model.   

Modeling 

Enhancement 
Description  

I  Baseline: SN model replicated  

II  Thermophoretic and diffusiophoretic forces superimposed  

III  Zone-based analysis of gravitational settling implemented  

IV  Correlation used to calculate drag coefficient enhanced  

V  
DNS data updated for turbulent flow through the experimental 

square-duct geometry 

VI  Deposition due to turbulence calculated along all directions  

VII  Heat exchanger discretized spatially  

VIII  Process of fouling discretized temporally  
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