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ABSTRACT: 

Topologically interlocked material systems are two-dimensional granular crystals created as ordered and 

adhesion-less assemblies of unit elements of the shape of platonic solids. The assembly resists transverse 

forces due to the interlocking geometric arrangement of the unit elements. Topologically interlocked 

material systems yet require an external constraint to provide resistance under the action of external load. 

Past work considered fixed and passive constraints only. The objective of the present study is to consider 

active and adaptive external constraints with the goal to achieve variable stiffness and energy absorption 

characteristics of the topologically interlocked material system through an active control of the in-plane 

constraint conditions. Experiments and corresponding model analysis are used to demonstrate control of 

system stiffness over a wide range, including negative stiffness, and energy absorption characteristics. 

The adaptive characteristics of the topologically interlocked material system are shown to solve 

conflicting requirements of simultaneously providing energy absorption while keeping loads controlled. 

Potential applications can be envisioned in smart structure enhanced response characteristics as desired in 

shock absorption, protective packaging and catching mechanisms. 

 

Keywords: Topologically Interlocked Material Systems, Granular Crystals, Adaptive Energy Absorption, 

Adaptive Stiffness, Smart Material Systems.  
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1. INTRODUCTION 

Hybrid material systems combine the attributes of the three main pillars of materials engineering - 

chemistry to create new compounds, microstructure design, and microarchitecture ([1]-[5]) – with the 

goal to achieve new performance profiles. Active material concepts further expand the space of accessible 

response characteristics ([6]-[10]). Active material concepts also enable the response to external stimuli 

and a given material system thus can occupy separate locations in the material property space at different 

times. The selection of the specific strategy for designing materials is primarily determined by the 

required functional performance ([11], [12]). Here, the focus is on a novel material system concept with 

adaptive control of stiffness and energy absorption. 

The ability of to prevent damage to life and property is an important performance consideration in 

designing protective structures. Two potentially conflicting characteristics have thereby to be fulfilled, i.e. 

that of large energy absorption and low stress levels. Consequently, a protective structure ideally allows a 

large amount of deformations under a limited level of stress. Typically, such characteristics have been 

achieved utilizing structural plastic collapse mechanisms of thin walled metallic structures and structural 

crushing of composite structures, as well as microstructure level plastic collapse or crushing in 

honeycombs and foams ([13]-[20]). However, these systems are passive. Therefore, the systems are used 

either in a non-optimal context, or to optimally response to given target stress and energy absorption 

levels have to be created individually for each loading condition. In order to alleviate such restrictions, 

adaptive energy absorbers have been considered.  

Relevant concepts of adaptive energy absorbers have been based on hydraulic damper elements 

controlling the different segments of an energy absorbing structure ([21], [22]), the use of shape memory 

alloy (SMA) elements ([23], [24]) and the use of magneto-rheological (MR) fluids ([25], [26]).  Holnicki-

Szulc et al. [24] conceptually modeled and analyzed an adaptive energy absorption system with variable 

yield strength using sequentially collapsing micro-trusses connected with SMA based micro-fuses.  

Deshmukh and McKinley [27] created and analyzed adaptive energy absorbing cellular solids whose 

mechanical properties were modulated by impregnating them with MR fluids that change their stiffness 

by shear thickening upon application of the magnetic field. The energy absorption capacity for the 

proposed material was seen to vary 50 fold by changing the magnetic field. A scaling model was also 

proposed to model the fluid-solid composite behavior. The model was then used to optimize the material 

system properties based on application requirements such as headrest with no whiplash. In [28] a 

theoretical analysis of MR based energy absorbers was conducted with the objective to obtain the optimal 

system parameters for achieving a soft landing i.e. where the payload comes to rest at the end of the 

stroke with no large crushing forces as obtained for foams. The optimal Bingham number minimizing 
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drop-induced shock loads utilizing large damper strokes was obtained for the MR fluid based smart 

material system. 

In this study an alternative strategy for creating material systems with adaptive response characteristics is 

pursued. The concept of Topologically Interlocking Material (TIM) systems is followed. TIM systems are 

2D granular crystals created as assemblies of unit elements of the shape of platonic solids. The assembly 

resists transverse forces due to the interlocking geometric arrangement of the unit elements. As 

adhesionless granular system, TIMs require an external constraint to provide resistance under the action 

of external load. TIM systems have already been shown to possess attractive mechanical properties 

including: (i) high damage tolerance ([29]-[31]), (ii) negative stiffness characteristics under certain 

loading conditions ([32], [33]), (iii) a quasi-ductile mechanical response response even if constituent 

materials are brittle ([29], [34]-[36]), (iv) remanufacturability [37], and (v) advantageous dependence of 

stiffness, strength and toughness with variation in relative density if cellular unit elements are considered 

[38]. Past work has demonstrated the effect of change of the initial constraint conditions on the TIM 

system stiffness and load carrying capacity. Schaare et al. [33] – employing finite element (FE) 

simulations -- showed that the mechanical resistance of a simulated TIM system was proportional to the 

constraint conditions.  TIM assemblies can be seen as a special class of granular materials. These material 

systems are well known to possess pressure dependent characteristics [39]. This insight has been used to 

create adaptive response characteristics for robotic grippers [40] or malleable and shape-changing devices 

[41]. Load transfer in granular media can be analyzed via force chains ([42], [43]).  Extending concept of 

the force chain analysis, in [38] and [44] the mechanical properties of TIM assemblies were analyzed. 

The present study is concerned with the adaptive response of TIM assemblies under quasi-static loading. 

The active control of the resistance to out-of- loading is demonstrated, and adaptive changes to the energy 

absorption capacity are demonstrated.  Experiments were performed to simultaneously measure the 

transverse force in response to an applied displacement, and in-plane confinement force while 

maintaining a predetermined stiffness over large deformations. Positive, zero and negative stiffness 

responses are demonstrated. An analytical model capturing the deformation characteristics of TIM 

assemblies based on earlier work ([38], [44]) was established to incorporate active control. The 

computational code for this model was used to calculate the TIM system response, and model results are 

compared with experiments. 
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2. MATERIAL and METHODS 

Topologically interlocked material assemblies were created from regular tetrahedral unit elements. The 

edge length of the tetrahedral elements was a0 = 25.00 mm . Unit elements, as well as the abutments used 

for confining the assembly, were manufactured in a 3D printer, Dimension SST 1200 (Stratasys Inc.), by 

fused deposition processing of a polymer (ABS P400) with a print layer thickness of 0.25 mm. The room 

temperature elastic modulus of the printed polymer is ES =1827.0MPa. All experiments were conducted 

at room temperature, significantly below the glass transition temperature of the polymer, and time 

dependent deformation processes were negligible. 

Monolayers of the topologically interlocked material assembly consisted of 49 identical tetrahedra in a 

dense 2D packing in the shape of a square lattice pattern [45]. Each tetrahedron was supported by four 

surrounding tetrahedra, two in each lateral direction preventing motion in either transverse direction, 

Figure 1(a). The assembled monolayer specimens possessed an edge length at the top and bottom surfaces 

of LU = (N +1)a0 / 2 = 100.00 mm. The mid-plane section was a square of edge-length L0 = Na0 / 2 =  

87.50 mm. The effective thickness of the monolayer was h = a0 / 2 = 17.68 mm equal to the edge-to-

edge distance in the unit tetrahedron. The assembly process was facilitated by the use of a template 

consisting of 8 × 8  square pyramids arranged on a square grid. Subsequently, the assembled monolayer 

was confined by the use of abutments placed along its edges, Figure 1(b). The abutments were of 

prismatic shape and possessed a wedge shape cross-section enabling the engagement of the abutment with 

the monolayer, Figure 1(c). 

TIM assemblies were placed into a rigid test frame, Figure 1(b).  Two adjacent abutments were fixed in 

space while the two opposing abutments possess a degree of freedom in the assembly plane in the 

direction orthogonal to the axis of the respective abutments. The in-plane actuation enables the control of 

the confinement of the TIM assemblies. Actuation was achieved by the use of a pair of screws (Zinc-

Plated alloy steel socket head cap screw 3/8"-16 thread, 2" length) per movable abutment. These screws 

acted onto steel shims inserted between the movable abutments and the rigid test frame. The in-plane 

confinement forces were measured by using thin film force sensors (FlexiForce Model A201) placed 

between the fixed abutments and the test frame. These abutments possessed two cylindrical extrusions on 

the back face, each of diameter equal to that of the force sensor. Each sensor possessed a maximum load 

rating of 50.00 N such that a maximum in-plane confinement force of 100.00 N was possible.  The in-

plane force FH  was reported as the average of the force readings measured in the two in-plane directions.  
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(a)  

(b)  

(c)  

Figure 1: (a) Interlocking arrangement of individual elements, (b) Top view of topologically interlocked 
material assembly in test frame, and (c) Schematic of the test set-up. Double-headed arrows show the 

direction of motion of actuation. 
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All experiments consider an initial condition with a small in-plane preload, FH0 = 8.00 N . Once the 

constraint was set, specimens were placed in the test system, Figure 1(c), such that a transverse 

displacement was applied to the three centrally located tetrahedra, Figure 1(b). The mechanical test 

system was assembled using a manually actuated translation stage, a load cell (range: 50.00 N, sensitivity: 

0.002 N, PASCO scientific) and a displacement gauge (range: 0.00 mm – 50.00 mm, sensitivity: 0.001 

mm, PASCO scientific). Transverse force, applied displacement, and in-plane forces were recorded 

concurrently at a frequency of 5.00 Hz. 

The transverse load is applied in displacement control via an indenter type load applied to the center of 

the assembly. Under initially fixed in-plane constraint the TIM assemblies were loaded until the 

corresponding out-of-plane force reached a specified value Fc  at displacement δ ⊥ . Upon loading beyond 

Fc , the in-plane constraint was reduced such that the desired transverse stiffness response KT  was 

obtained. For a desired stiffness response   KT , one obtains a target force response   FT  at a given applied 

displacement δ  as   FT = Fc + KT (δ −δ ⊥ ) . If the actual out-of-plane force F differed from the desired 

target response FT  by more than the defined tolerance   ΔF = ±5.00 N , the in-plane load constraint was 

altered by further displacement of the abutments so as to obtain the required force response.  

Experiments considered positive stiffness (KT = KT
+ = +1.50 N/mm, zero stiffness ( KT = KT

0 = 0.0 N/mm), 

and negative stiffness (KT = KT
− = -2.5 N/mm). Data primarily considered Fc = 30.00 N . Results for KT

0  

are also shown for Fc = 20.00 N . For each load cases considered, four repeat experiments were 

performed.  

 

3. MODEL 

In an ordered granular system, such as in a TIM assembly, the geometry of the force chains (or thrust 

lines) can be established deterministically. Recognizing the static indeterminacy of the problem at hand, a 

framework for the predictions of the mechanical properties of TIM assemblies was developed in [38]. 

Here this concept is expanded to TIM assemblies with active control. 

Figure 2(a) shows the TIM in isometric view. Figure 2(b) shows the section views for the planes of type 1 

and 2 marked in Figure 2(a). A transverse displacement δ  is applied centrally to the TIM in the –Y 
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direction. For section of type P1, tetrahedra adjacent to the abutments are constraint against rotation by the 

constraint imposed by the abutments. Thus, elements located in a section P1 can transfer compressive 

forces to the abutments. As tetrahedra interact with each other and with the abutments by contact only, the 

location of the force chain can be established.  Force chains are established between the central 

tetrahedron (the point of load application) and the point of contact between abutment and adjacent 

tetrahedra. Force chains are orthogonal to the tetrahedra-to-tetrahedra contact. For section of type P2, the 

abutments do not restrict the rotation of tetrahedra adjacent to the abutments and no loads are transferred 

for loading in the -Y direction.  The situation between P1 and P2 is reversed for loads applied in the +Y 

direction. P1 and P2 are called thrust planes. 

This model is captured in Figure 3, which shows the conditions for a thrust plane of the type section 1 for 

external loads in -Y. It is assumed that thrust lines can be modeled as trusses connected by hinges. The 

final model consists of three trusses. The first truss extents from the contact point between abutment and 

tetrahedron (X1) to the center tetrahedron (X2), a second truss represents the center tetrahedron (X2 to X3), 

and a third truss is located between the center tetrahedron and the abutment (X3 to X4). Since there are 

several planes of type P1, each such thrust plane contributes additively to the overall force as reaction to 

the applied displacement.  Further details of the model are documented in [38].  

In the experiment the applied in-plane displacement UB, is non-symmetric with regards to the TIM 

assembly center.  In the model, in order to solve the model efficiently and since UB is much smaller than 

L0, a symmetric configuration is considered, Figure 3. Then, the in-plane displacement to change the 

constraint is applied as uB =UB / 2  at location X1, and simultaneously as −uB  at location X4.  
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(a)  

(b)  

Figure 2: (a) A representative TIM with the two alternating cross-section planes marked. (b) The two 
characteristic and alternating cross-sections present in the TIM assembly. 
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Figure 3: Thrust lines for TIM assemblies and change in in-plane constraint and increase in applied 
displacement: From configuration (i) at high constraint and before increase in applied displacement to 

configuration (i+1/2) with a reduced constraint and (i+1) with new displacement increment applied to the 
new constraint situation.   

Consider a thrust plane of type P1 where an increment of displacement  Δ δ
i
 is prescribed at the center in 

increment (i), Figure 3.  The force response is obtained as: 

 

 

ΔfH
i

EA
= x0

i

x0
i( )2 + y0

i( )2
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⎣

⎢
⎢
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⎤
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⎥
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⎥
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ΔfV
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i
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⎥
⎥
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⎢
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⎥
⎥
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⎟ , fV

i = ΔfV
0

i

∑  (1b) 

where   f
H
i  and   f

V
i  are the in-plane and out-of-plane forces, respectively, generated in the thrust plane, and 

β i  is the inclination of truss X1X2  (and similarly, X3X4 ) with regard to the assembly plane. 

Furthermore, (x0
i , y0

i )  are the co-ordinates of X2 , A is an equivalent cross-section area of the truss 

representing the thrust line and E is the Young’s modulus of the material of which the unit elements in the 

assembly are made. At increment (i) the out-of-plane force for the overall assembly F i  is obtained as 

 F i

EA
= 2

fV
i P1( )
EA

+ 4
fV
i Pm( )
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∑  (2) 

i

i+1

iX

iY

i+1X

i+1Y

Bu Bu

iX

iY

i+1X

i+1Y

i+1
Hf

i+1
Vf

i
3X

i i i
2X x ,y

i

i
Hf

i
Vf

i

ii
1X

i
4X

i
Hf

i
Vf

iX

iY

i+1
Hf

i+1
Vf

i+1

i+1

i+1 2

i

Page 9 of 22 CONFIDENTIAL - FOR REVIEW ONLY  SMS-101211.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Adaptive Mechanical Properties of Topologically Interlocking Material Systems 

12/26/2014 10 Siegmund 

where fV
i (Pm)  and fH

i (Pm)  denote respectively the out-of-plane and in-plane force generated in the  mth  

thrust plane Pm . In a TIM assembly made of  N × N  unit elements one defines    m = 1,2,…,(N −1) / 2  with 

m =1 being the central plane and   m = (N −1) / 2  being the outermost plane. The displacement    
δ (Pm )  of 

the central tetrahedron in each plane Pm  relates to the applied displacement δ  as: 

 

   

δ (Pm ) =

(N +1)
2

− (m−1)

(N +1)
2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

δ . (3) 

At any given increment (i) the transverse stiffness   K = dF / dδ  of the TIM assembly is obtained by 

backward numerical differentiation: 

 
  
K i = F i − F i-1

δ i −δ i-1 . (4) 

Considering active control of a target force FT, the in-plane displacement uB
i+1  at increment (i+1) is 

updated using the following rule: 

 

   

uB
i+1 δ + Δ δ( ) =

uB
i δ( )− ΔuB    if      F i

FT

>∈K

uB
i δ( )              if      F i

FT

<∈K

⎧

⎨

⎪
⎪

⎩

⎪
⎪

   (5) 

where ∈K>1.00  is a tolerance on the target force FT . If the force iF  is greater than the target force, FT , 

by a tolerance of ∈K , then the constraint is relaxed and abutments are displaced by ΔuB .  Here, cases 

with increasing system stiffness were not considered.  

The model was solved explicitly with the in-plane constraint updated before the forces at increment (i+1) 

were obtained. This can be thought of as being a computation is two half-steps, Figure 3, such that at 

(i+1/2) the truss end points were displaced by ΔuB  and subsequently kept fixed at (i+1).  At increment 

(i+1) one thus obtains 

 x0
i+1 Xi+1,Yi+1( ), y0i+1 Xi+1,Yi+1( )⎡⎣ ⎤⎦ = x i Xi ,Yi( )+ ΔuB, y

i Xi+1,Yi+1( )⎡⎣ ⎤⎦ . (6) 
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The updated (x0
i+1, y0

i+1)  were then incorporated in Eqs. (1a,b) and the total out-of-plane force response 

was subsequently obtained using Eq. (2). This process was repeated until the final collapse of the 

assembly (  F = 0  at a displacement δ = δ f ). The in-plane constraint force FH  was not restricted to reach 

zero at this instance.    The model provides normalized force response,   FV / EA  and   FH / EA  as output 

and was calibrated with a physical experiment with EA=1.52 N. This calibration is based on data 

documented in [38] where all experiments considered a fixed constraint with zero in-plane preload. 

Computations were conducted with numerical parameters ∈K=1.05  and ΔuB = 0.02 mm . The system 

was controlled within a tolerance of 5.00 N±  from the desired force level. 

 

4. RESULTS 

A representative F −δ  response curves are depicted in Figure 4.  The response of a TIM under fixed 

constraint conditions, data from [38], demonstrates a characteristic parabolic response with the TIM 

exhibiting a gradual decay in load carrying capacity until final collapse.  

 

Figure 4: Measured F −δ  response for the physical experiments with controlled constraints. Response 

obtained from material with fixed constraints [38] gives the envelope of available  F −δ  space. 

For each of adaptively controlled load cases considered in the present study on representative result is 

shown in Figure 5. These data demonstrate that the proposed adaptive control of the TIM response can 

indeed be realized experimentally.  For the adaptively controlled samples, the adjustment of the in-plane 

constraint was initiated once Fc  was reached. The subsequent F −δ  response exhibits two characteristic 
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points.  It was found that past a critical deflection δc  (its value dependent on   Fc  and KT ) the load 

carrying capacity of the TIMs could not be maintained at the desired value, and that all load carrying 

capacity vanishes at δ f . For TIMs with variable constraints the values of deflection δ f  were found to be 

less than that observed for the experiment with fixed constraints. The lower the average constraint the 

larger is that deviation, therefore this observation is contributed to slip between unit elements which is 

enabled more significantly under low confinement.  Four repeats of each experimental condition               

( KT
+ ,  KT

0  and KT
− ) were conducted. Figure 5 shows both out-of-plane and corresponding in-plane forces in 

dependence of the applied displacement. Figure 5(a) also indicates the two characteristic deflection values 

δc  and δ f in a general sense. For experiments with   KT
0

 , the in-plane constraint forces required to 

maintain a constant transverse load initially rise only marginally, but towards higher applied displacement 

an increase in constraint is required to maintain the desired response. Maintaining   KT
+

 requires a 

continuous increase in the in-plane constraint, yet the rate of increase in constraint clearly is lower than 

during the stage where the abutments are fixed in the initial position.  The most readily controllable case 

is the one of KT
−  for which in-plane confinement forces actually decline with increase in applied 

displacement. 
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(a)   

(b)  

(c)  

Figure 5: Repeatability of experiments for the three load cases discussed in the study, (a) K = 0.00 N/mm , 
(b) KT = KT

+ , (c)   KT = KT
− . In (a) to (c) each pair of graphs depicts out-of-plane force F and 

corresponding in-plane force FH, respectively. In-plane force sensors failed during Run 4 for KT = KT
+ . 
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Figure 6 compares experimental data and model predictions for KT
0  and Fc = 20.00 N and 30.00 N with 

(a) – (b) depicting corresponding out-of-plane force data and (c) – (d) depicting respective in-plane force 

data.  Overall, experiment and model are in good agreement, especially up to deflection δc . This is 

however not the case for the late stages of the load history. In the experiment, final failure is at               

 δ f ~22.0 mm. The model, however, predicts  δ f =35.0 mm corresponding to δ f = 2h  [38]. Conversely, the 

predicted in-plane force response continues to increase to larger values than measured and the final break 

down is shifted to larger applied displacements. Again, the difference is contributed to slip between 

tetrahedra which is not accounted in the model. Yet, qualitative predictions are in excellent agreement.  

(a)  (b)  

(c)  (d)  
Figure 6: Experimental results and analytical model predictions for   KT

0 , Fc = 20.00 N and 30.00 N  Shown 
are response for out-of-plane force from (a) experiments, (b) model, and in-plane force from (c) 

experiments, (d) model in dependence of applied displacement. 
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Figure 7 compares experimental data and model predictions for KT
+

 and   KT
− , again in terms of out-of-

plane and in-plane forces. For the case KT
+  the agreement of experiment and model is again very good for 

 δ < δc , but a stronger difference between model and experiment is present for δ > δc .  For   KT
−  predicted 

out-of-plane forces are in quantitative agreement with model data throughout.  

 (a)  (b)  

(c)  (d)  
Figure 7: Experimental results and analytical model predictions for KT

+  and KT
−  with Fc =30.0 N.  

Response for out-of-plane force from (a) experiments, (b) model, and, in-plane force from (c) 
experiments, (d) model with increasing applied displacement. 

Model predictions of the F −δ  response for various assumed combinations of values of KT  and Fc  are 

depicted in Figure 8.  All possible F −δ  responses fall within the envelope given by the F −δ   curve for 

the case where the initial constraint are maintained throughout. It is also observed that cδ  decreases with 
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increase in Fc  approaching the displacement δ *  at which maximum force F *  is obtained for the case 

with the fixed constraint.  

Figure 9 depicts the overall energy absorption diagram in a format parallel to that developed for cellular 

solids in [16] for cases KT
0  and a range of values for   Fc .  The energy values W are computed as the 

integrals of F −δ  curves depicted in Figure 8.  

 

Figure 8: Predicted  F −δ response for different KT and Fc from the analytical model. The dotted line 
connects values of δc . 

 

Figure 9: Energy absorption diagram for   KT
0 . The dotted line shows maximum W  for a given Fc . 
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The model enables the detailed analysis on the development of the forces in the individual thrust planes. 

Such analysis allows one to develop an understanding of why and how load transfer in the TIM occurs as 

the applied displacement increases. Figure 10 shows the out-of-plane components   fV  of the thrust forces 

in planes P1 to P3 for KT
0  and Fc =30.0 N.  The overall response of the TIM emerges from the sum of these 

forces, Eq. 1(b). The three distinct zones emerge from the temporal evolution of the thrust forces in the 

individual planes.  For P1 the force-deflection response follows the distinct shape of the TIM system 

under fixed constrains.  This is, however, not the case for the forces in thrust planes P2 and P3.  In these 

planes the magnitudes of the thrust forces are significantly influenced by the external control of the 

constraint. In particular forces in P3 develop non-monotonically.  

 
Figure 10: Predicted out-of-plane components fV  of the thrust forces for  KT

0 , Fc = 30.00 N , together with 
the overall force-deflection response. 

 
 

5. DISCUSSION 

Optimal energy dissipating structures solve the conflicting requirements of large deformation at low 

transmitted forces. TIM assemblies provide a means to create such material systems. The present study 

demonstrates that TIMs can dissipate energy at varying force and stiffness levels, all over large 

deformations. In contrast, conventional energy dissipating material systems, such as foams, possess each 

a single response characteristic of plateau stress and densification strain, making it necessary to produce 

multiple foams materials each acting as an ideal foam for a given load requirement. Using a material like 

TIM assemblies that can be controlled for the force level under varying load requirements will thus save 

materials and manufacturing costs. Another main differences that merges between foams and TIMs is the 
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characteristic of the energy absorption curves, Figure 9. For foams [16], in the late stages of deformation 

densification leads to a rapid rise in the stress level and thus limits the amount of deformation that can be 

applied. For TIM assemblies on the other hand, the progressive internal collapse lead to a decline in the 

transmitted force, still with energy absorption is significantly increasing. Due to this property, TIM 

assemblies appear as an attractive solution for applications where an increase in transmitted forces cannot 

be allowed, under any circumstance, to go beyond a critical value while energy dissipation capacity needs 

to be maintained. In order to make such engineering design selection, however, it is important to gain an 

understanding of the unique energy dissipation mechanism in TIMs. To this end, a model based on the 

thrust line analysis approach is presented. The model can be used to compute the TIM response under 

transverse loading conditions under the consideration of variable constraint. In addition, the conditions of 

the internal load transfer process can be obtained. Once the model is calibrated, its predictions are found 

to be in good agreement with the experimental data. Such agreement was seen as particularly good in the 

early stages of loading but less so in the late stages and during final loss of load carrying capacity. Such 

differences are contributed to the fact that in experiments friction and slip between unit elements plays a 

role, but such contributions were neglected in the model. What emerges from the analysis of TIMs is that 

the internal load transfer is very much alike to the processes during a snap through in a truss system. Yet 

the key differences between the TIM and a truss system are that in the TIM no tensile stress is present and 

the internal instability progresses only up to the point where the thrust line are orthogonal to the applied 

load, and that the topological interlocking between the unit elements prevents the immediate collapse at 

that instance. The control of the constraint through the adaptive adjustment of boundary conditions 

enables the control of the load response and the collapse. For the no-slip conditions, as considered in the 

model,, the mechanical response (stiffness, load carrying capacity, and toughness) of a given TIM (i.e. 

fixed a0  and N ) under quasi-static loading are uniquely determined by the in-plane constraint force HF  
and the applied displacement δ . The model thus provides an algorithm based on which a smart material 

system composed of a TIM assembly, a force and actuator components can function. 

 

6. CONCLUSION 

Topologically interlocked material systems are considered as energy dissipating systems with controllable 

and adaptive mechanical response. A series of experiments were performed to demonstrate the ability of 

TIM assemblies to provide a desired out-of-plane stiffness lower than the stiffness that might be achieved 

for the same TIM with fixed abutments. This lower stiffness can be positive, zero or even negative. The 

maximum force and displacement for adaptive TIM assemblies was found to be limited by the response 

of the TIM assemblies with fixed constraints. TIM assemblies were shown to possess the ability to 
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provide constant force over large deformations. Such a material is useful in adaptive energy absorption 

while keeping low stress levels. The experimental results were replicated using a thrust line based 

analytical model, similar to the force chain analysis used for 2D granular materials, wherein the in-plane 

force is controlled by changing the location of boundary and hence truss lengths actively. The model 

analysis results imply that the force response of the TIMs, for an ideal no-slip condition between unit 

elements, is directly dependent on the in-plane force and amount of applied transverse displacement. 

Based on the model a control algorithm for in-plane force actuation in a smart TIM system can be 

developed. The current model is limited in that slip and frictional energy dissipation can play an 

additional role in the TIM system response and that such effects will have to be taken into account in 

further modeling approaches. The present study presents novel strategy to design adaptive energy 

absorption structures and verifies the concept with experiments and model analysis. 
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