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The primate visual system efficiently and effectively solves a multitude of tasks from orientation discrimination to 

motion detection. Computer vision approaches to the same tasks often outperform biological visual systems. 

However, computer vision algorithms designed for a specific task rarely generalize to other tasks. Thus, integrating 

multiple computer vision algorithms to perform multiple tasks is a bulky and inelegant solution. The Computer 

Vision community is therefore beginning to implement algorithms that mimic the processing hierarchies present in 

the primate visual system in the hope of achieving more flexible and robust artificial vision systems [Kruger et al., 

2013]. Here, we reappropriate the neuroscience “borrowed” by the Computer Vision community and ask whether 

neuromorphic computer vision solutions may give us insight into the functioning of the primate visual system. 

Specifically, we implement a neuromorphic algorithm for disparity estimation and compare its performance against 

that of human observers.  

The proposed algorithm mimics the processing stages occurring in primary 

visual cortex that feed into the ventral and dorsal pathways of the visual 

system. The input images to the two eyes are linearly filtered by a population 

of oriented Gabor filters, which approximate the simple cells of area V1 

under the phase-shift model of disparity tuning [Fleet et al. 1996]. The 

squared responses of quadrature pairs of binocular simple cells approximate 

complex cells following the binocular energy model [Ohzawa et al., 1990]. 

The invariance of the responses of the complex cells with respect to the 

contrast of the input images is obtained via divisive normalization [Heeger, 

1992]. Finally, a center of mass decoding strategy provides both the magnitude and the direction of disparity at each 

image location. Pyramidal decomposition [Burt & Adelson, 1983] is employed to mimic how the primate visual 

system processes multiple spatial scales. The algorithm can further mimic a foveated observer when the input 

images are log-polar transformed into a cortical-like representation of the visual signal to the retina [Solari et al., 

2012].  

We test the algorithm on the same stimuli (Fig. 1) and task as those employed by [Reynaud et al. 2015] who provide 

a normative dataset on human global stereopsis as a function of spatial frequency. We investigate how the 

algorithm’s performance deviates from that of human observers as a function of its tuning parameters. The algorithm 

greatly outperforms human subjects when tuned with parameters to compete with non-neural approaches to disparity 

estimation on benchmarking stereo image datasets (Figure 2, left). Conversely, when the algorithm is implemented 

with biologically plausible receptive field sizes, spatial selectivity, phase tuning, and neural noise (Fig. 2, center), its 

performance is directly relatable to that of human observers. The receptive field size and the number of spatial scales 

sensibly determine the range of spatial frequencies in which the algorithm successfully operates. The algorithm’s 

phase tuning and neural noise in turn determine the algorithm’s peak disparity sensitivity. When included, the log 

polar transform strongly degrades disparity estimation in the model’s periphery (Fig. 2, right), further closening 

human and algorithm performance. Hence, a 

neuromorphic computer vision algorithm can be 

reappropriated to model human behavior, and 

can provide interesting insights into which 

aspects of human visual perception have been or 

are yet to be explained by vision science.  

Figure 1: Example stimuli. Cross-fuse to 
view disparity corrugation. 

Figure 2: Disparity maps computed for the stimulus in Figure 1 by: the 
Computer Vision tuned algorithm (left); a non-foveated, biologically 
plausible tuned algorithm (center); and a foveated, biologically 
plausible algorithm implementation (right). Disparity range [-15:15] 
arcmin, mapped onto a red-green-blue colormap.  
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