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3-D shape recovery is an ill-posed inverse problem which must be solved by using a priori constraints[1]. We use
symmetry and planarity constraints to recover 3-D shapes from a single image. Once we assume that the object to be
reconstructed is symmetric, all that is left to be done is to estimate the plane of symmetry and establish the symmetry
correspondence between the various parts of the object. The edge map of the image of an object would serve as a
good representation of its 2-D shape and establishing symmetry correspondence would now mean identifying pair of
symmetric curves in the edge map. The first step towards this objective is to estimate the vanishing points in the
image. The vanishing points define the symmetry planes up to a scale factor. In this work, we have assumed that we
know the vanishing points. A pair of curves can be reconstructed in 3-D if we know the symmetry correspondence
and the plane of symmetry[1]. In order to be able to match curves, we should first extract some meaningful curves,
where the word meaningful implies that the curve should make sense to a human observer. Connected components
obtained after canny edge detection are broken down, based on gradient orientation, to get small curve pieces which
can be then combined to form meaningful curves. Figure 1, shows these short curve pieces obtained for the image
of a furniture. In order to obtain longer pieces of curves, we find the shortest paths between all pairs of short
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pieces of curves with a cost function that penalizes spatial separation and large turning angles (see Figure 2). In
the next step, we find the optimal curve matches that minimize the number of planes required to fit the final 3-D
reconstruction while simultaneously ensuring that a substantial portion of the object is reconstructed. To achieve
this, we first assign a score to each pair of curves based on their shape similarity and planarity. To evaluate the
planarity score, we reconstruct the two curves in 3-D, assuming they are corresponding, and then fit planes using
RANSAC. The candidate planes that need to be considered to fit the final reconstruction are also discovered in this
process. The shape similarity is evaluated by computing the polygonal approximation of the curves by sampling the
curve using rays from the vanishing point (as shown in Figure 3) and connecting these points (shown in orange) by
straight line segments. Comparing the turning angles at each of the sampled points will serve as good shape match
metric. Once these scores are evaluated, we solve a constrained optimization problem which can be defined as shown
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X is a vector with binary components which decide whether a curve combination is included in the solution, and
if it is included then which candidate plane it is assigned to. We not only wan to minimize the number of planes
required to fit the final reconstruction but also ensure that the chosen planes are a good fit. Hence, it involves
choosing the correspondences and deciding which candidate plane it goes with. C' is a vector whose components are
a combination of shape match cost and planarity cost (measure of individual curve planarity) of curves involved in
the correspondence, as well as the distance of the 3-D reconstructed curves from the candidate planes. f,(X) is a
function that gives the number of planes used by the correspondences and w is the plane weight that gets added to
the total cost for each plane chosen, thereby discouraging the algorithm from choosing too many planes. The first
constraint requires the optimization framework to reconstruct a substantial portion of the object depending on the
parameter p and the second constraint (D is a matrix and hence multiple individual constraints are used to represent
this overall constraint) ensures that each piece of the object has no more than one match. This optimization problem
can be converted to a binary integer program which can then be solved using the Gurobi optimization framework|[2].
Figure 4, shows one of the results obtained. Symmetry and planarity in many ways represent the simplicity of an
object and by applying these constraints we are attempting to reconstruct a simple 3-D shape that can explain the

image.
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