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Motivation: The association of a linear transform and a
saturating nonlinear transform is ubiquitous in vision mod-
els, either psychophysical [1–3] or physiological [4,5]. There-
fore, an appropriate mathematical formulation of these
linear-nonlinear units is extremely convenient.

The consideration of the linear-nonlinear units as mul-
tidimensional transforms in vector spaces allows to under-
stand the visual system in the same (abstract/geometrical)
terms used in current machine learning. This abstract for-
mulation also has relevant consequences in vision science
experimentation. For example, the derivatives of the model
(or Jacobian matrices) determine the discrimination regions
(JNDs) and the subjective metric in the stimulus space
[6,7]. Point-dependence of such matrices would be related to
masking/adaptation. Applications involving the optimiza-
tion of subjective distortion will critically depend on the Ja-
cobian (e.g. to implement gradient descent). This includes
engineering applications, but also psychophysical techniques
such as Maximum Differentiation (MAD), in which the stim-
uli are designed to maximize/minimize the perceived dis-
tortion [7–9]. Note also that the Jacobian describes the
deformation of the response space. This deformation deter-
mines the change of the redundancy in the signal [10, 11]
and this will have an impact in interpretations of the visual
function from the efficient coding perspective. On the other
hand, the inverse of the model is key to define the features
the system is tuned to. Applications of the inverse range
from designing stimuli that isolate the response of a spe-
cific sensor, to methods to recover the input from a set of
responses [12].

Given the above, the aim of this work is providing a full
report of the the d-dimensional formulation of an illustrative
model consisting on a cascade of standard linear-nonlinear
units. The interest of these analytic results and the required
numerical tricks transcend the particular model because of
the ubiquity of this architecture.

The linear-nonlinear multi-layer model: The model
considered for this illustration was originally intended to

provide a psychophysically meaningful alternative to the
modular concept in Structural Similarity measures (SSIM)
[13]. Its authors suggest a separate consideration of lumi-
nance, contrast and structure (which is a sensible approach),
but the definition of such factors has no obvious perceptual
meaning in SSIM. The idea for a more perceptual alterna-
tive in [7] was addressing one psychophysical factor at a time
(i.e. modular), by using a cascade of linear-nonlinear trans-
forms. Here we extend [7] by considering 4 layers: (1) linear
spectral integration and nonlinear brightness response, (2)
definition of local contrast by using linear filters and divisive
normalization, (3) linear CSF filter and nonlinear local con-
trast masking, and (4) linear wavelet-like decomposition and
nonlinear divisive normalization to account for orientation
and scale-dependent masking. On top of its interpretability,
the modular structure simplifies the use of MAD to set the
free parameters by determining only one layer at a time.

Reproducible results 1 We list all the analytic expres-
sions for (1) every linear-nonlinear layer, (2) the Jacobian
matrices, (3) the inverses, and (4) the gradient of the per-
ceptual distance. When the analytic result is not available
or a naive implementation is not feasible we discuss the
tricks to face these problems. We provide a Matlab tool-
box to apply the presented theory to actual image patches.
The analytic Jacobian matrices are numerically checked us-
ing finite differences. Conditions for the existence of the
inverses are given, and it is straightforward to check the
convergence of the inversion methods using the toolbox. In
summary, the formulation and toolbox are ready to explore
the issues addressed in the introductory section (giving all
the information that was missing in [7]).

Conclusion We studied the mathematical issues found
in perceptually meaningful linear-nonlinear units (e.g. huge
kernels and divisive normalization). The proposed analytic
and numeric solutions may be applicable (or inspiring) in
similar models, having impact in psychophysics and in sta-
tistical/geometrical interpretation of models.
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