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Motivation The principles behind the connectivity be-
tween LGN and V1 are not well understood. Models have
to explain two basic experimental trends: (i) the combina-
tion of thalamic responses is local and it gives rise to a vari-
ety of oriented Gabor-like receptive fields in V1 [1], and (ii)
these filters are spatially organized in orientation maps [2].
Competing explanations of orientation maps use purely geo-
metrical arguments such as optimal wiring or packing from
LGN [3–5], but they make no explicit reference to visual
function. On the other hand, explanations based on func-
tional arguments such as maximum information transfer-
ence (infomax) [6,7] usually neglect a potential contribution
from LGN local circuitry. In this work we explore the abil-
ity of the conventional functional arguments (infomax and
variants), to derive both trends simultaneously assuming a
plausible sampling model linking the retina to the LGN [8],
as opposed to previous attempts operating from the retina.

Methods Here we take a purely linear approach [8]. In
this setting, the response of a population of simple V1 cells
rV 1, is related to the set of responses of antecedents LGN
cells, rLGN , and to the retinal image, x, through a cou-
ple of matrices: rV 1 = K · rLGN = K · MLGN · x, with
rLGN = MLGN · x, where the rows of MLGN contain the
(vectorized) center-surround receptive fields of LGN cells
tuned to random locations in the visual field. MLGN may
be a rectangular matrix reflecting the undersampling in the
retina-to-LGN pathway. In this formulation, the rows of the
matrix MV 1 = K · MLGN should contain (vectorized) the
experimental Gabor-like receptive fields and the rows of K
would describe the way LGN responses are pooled to form
the V1 sensors. Here we assume that the goal of K is the
maximization of the transmitted information from LGN to
V1. In the low noise limit, this is equivalent to looking for K

that minimizes the redundancy in rV 1. In our specific case
we minimized this given a set of rLGN responses for natural
images. This can be done through linear Independent Com-
ponent Analysis [9]: K = R · (Λ−1/2 · BT ), where B and Λ
respectively contain the eigenvectors and eigenvalues of the
covariance matrix of the LGN responses to remove 2nd order
relations in rLGN , and R is an extra rotation (orthonormal
matrix) that maximizes the sparsity of the final responses.
We also explored extensions of ICA that consider residual
dependence between the responses [6,7]. In the simulations
we used a definition of orientation maps more consistent
with the experimental literature.

Reproducible results1 When taking into account LGN,
linear infomax does not fully account for all the facts listed
above. On the positive side, it explains the first trend: we
obtain local pooling regions in K (novel result) and Gabor-
like receptive fields in MV 1 (consistently with [10–12]). In-
terestingly, the Gabors obtained from LGN are shifted to
high frequencies with regard to previous work using ICA on
retinal images. On the negative side, both linear ICA and
even topographic ICA lead to random-like spatial distribu-
tion of sensors. This is ok for some animals like rodents [2],
but it is not satisfactory for others like cats or humans [13].

Conclusion Consistently with other aspects of human vi-
sion [14–16], additional constraints should be added to plain
infomax to understand the second trend of the LGN-V1 con-
nectivity. Possibilities include energy budget [11], wiring
constraints [8], or error minimization in noisy systems, ei-
ther linear [16] or nonlinear [14, 15]. In particular, con-
sideration of high noise (neglected here) would favor the
redundancy in the prediction (which would be required to
match the relations between spatially neighbor neurons in
the same orientation domain).
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