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Many models of visual attention exist, but only a few have been shown with real-world scenes. Beuth, F. and
F. H. Hamker, 2015, NCNC proposed such a model, which is a succeeding model of Hamker, F. H., 2005,
Cerebral Cortex . We show how the object representations in this model (Fig. 1) have been learned in a bio-
logical plausible way. To learn the representations, we use the principle of temporal continuity as it has been
hypothesized that the primate brain uses temporal continuity for the development of invariant objects representa-
tions (Földiák, P., 1991, Neural Computation). The idea is that on the short time scale of stimuli presentation,
the visual input is more likely to originate from the same object, rather than a different one. However, tempo-
ral continuity models have been typically used in simple scenes composed of bars, but not in a real-world task.

Figure 1: Schematic layout of the
model. The image is filtered in V1,
and the connection between V1 and
HVA will be learned. A feature-based
attention signal is send from pre-
frontal cortex (PFC) to the object-
view specific cells in a higher visual
area (comparable to IT), altering the
strength of their response. The loop
to the frontal eye field (FEF) will
then find the correct location of the
given object and propagate it back to
the corresponding location in HVA.
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Testing a learning rule (Eq. 1), based on Földiák, P., 1991, Neural Computation,
with real-world objects, we observed that the HVA cells learn very unspecific object
representations. A cell learns whenever its activity exceeds the postsynaptic thresh-
old (θHVA), which is traditionally the population mean. As this value is relatively
low, the cells learn not only for their preferred stimuli, but also for partially pre-
ferred ones. We solve this problem by introducing a high postsynaptic threshold:
θHVA = Ψ · max rHVA. The parameter Ψ controls how similar a stimulus has to be,
compared to the preferred one, to get learned. With the new threshold method, the
cells react more specific for their preferred object than without the threshold (Fig. 2
upper vs. lower row).
However, the novel object representations still learn the background along with the
object, whereas an object representation independent of the background would be de-
sirable. It is currently unclear how the human brain learns background invariant ob-
ject representations. Suggestions cover the usage of disparities or motion, whereas we
propose that temporal continuity alone is powerful enough: The background changes
much more often than the object, thus the learning rule should not learn connections
from the background region. Yet, we observed that inhibitory weights were learned
mistakenly. We found that the reason is an difference in the learning speed for weights
with positive or negative weight changes. Due to this, we introduce a normalization of τ to ensure that the speed for
both cases is balanced. With this novelty, the rule learns zero weights for V1 neurons representing background regions
as shown in a miniature model (Fig. 3 a vs. b).

Figure 2: Excitation of 5 chosen HVA cells, screening a given image. It is visible that in the threshold condition (Ψ = 0.9),
each cell responds highest to its preferred object in the scene (green circle), and respond much less to other objects and the
background. In the condition without threshold, the cells react weaker to its preferred object and much broader in the scene,
indicating a less meaningful object representation.

Figure 3: Responses of a miniature version of the model. It visualizes three V1 cells, two HVA cells and the synaptic weights
towards the first (upper) HVA cell for the complete learning time. The first two V1 cells encode the features of two alternating-
presented objects, while the third cell represents a changing background. a) With normalization of τ , the HVA cell responds
correctly every time when its preferred stimulus is active because the synaptic weight from the background cell is zero (yellow
line). b) Whilst without normalization, the HVA cell is inhibited whenever the background is active as this weight is negative.
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