Estimating Operations and Airport-Specific Landing & Take-off Cycles at GA Airports

Associate Professor

Chenyu Huang Ph.D. student

PURDUE UNIVERSITY

PURDUE ROAD SCA

2016 Purdue Road School

AVIATION AND TRANSPORTATION TECHNOLOGY

Facts

- The 117 public-use airports, seaplane bases and heliports in Indiana contribute over \$14 billion in annual economic output.
- As of May 29, 2015, FAA policy requires the use of the new integrated model for noise, fuel burn and emissions and air quality impact analysis (AEDT 2b).
- AEDT 2b needs airport-specific information: layout, based aircraft, operations counts and LTO cycle information.
- GA airports and other non-towered airports may have limited resources to develop estimates of operations counts and LTO cycle.

Purpose

- Discuss methods for airports to use to develop more accurate estimates for use in models of exhaust and noise emissions
- The Aviation Emissions Design Tool (AEDT) uses airport information, operations counts and LTO cycle durations in its models. AEDT is the exhaust and noise emissions modeling software for FAA projects.

Overview

- Review operations estimation and sample counting methods for nontowered airports
- Discuss a method for estimating airport-specific *LTO cycles*

Both of these inputs are needed to estimate emissions!

Evaluating Methods for Counting Aircraft Operations at Non-Towered Airports – ACRP Report 129 (2015) by Dr. Maria J. Muia & Dr. Mary E. Johnson

Developed estimates of annual operations based on easy to measure factors such as number of based aircraft and the ratio of instrument flight plans.
Studied mechanisms (camera and acoustic) to get sample counts.
Compared four different statistical methods to extrapolate sample counts to annual counts. What are the number of total operations for this airport?

Instrument flight plans / Total Operations

Others factors such as region, population, and number of flight schools were considered

Operations counting methods for non-towered airports

Based on the study objectives and data -

- There were no practical and consistent OPBAs found or modeled at small, towered airports nationally or by climate region, even when considering the number of flight schools based at the airport.
 - Therefore, the research team cannot recommend an OPBA or OPBA equation for estimating annual operations at non-towered airports.

Operations counting methods for non-towered airports

Based on the study objectives and data -

- No practical and consistent IFPTOs found in the dataset of small towered airports nationally or by climate region.
 - Cannot recommend an IFPTO for estimating annual operations at non-towered airports.

Recommendation: take sample of actual operations and extrapolating into annual operations from the sample

Previous Work Review

Table 3A-9: Summary of the Percent Difference Between Estimates Using Monthly/Seasonal Factors and OPSNET Annual Operations

% Difference from OPSNET Annual Operations	1 Week each Season	2 Weeks each Season	1 Month Spring, Summer, or Fall	1 Month Winter
Average of real values	4%	2%	9%	2%
Average of absolute values	9%	8%	12%	13%
Highest	13%	13%	13%	53%
Lowest	-32%	-26%	-25%	-20%
Range	45%	39%	38%	73% ACRP Report 129, 2015.

The two weeks in each season scenario has a combination of statistics

reported that indicate preference over the others.

Estimating Methods Rely on Sample Counts of Operations

Methods studied in ACRP Report 129.
Automated acoustical counter
Sound-level meter

Security/trail cameras

Video image detection with a transponder receiver

 These methods require post-processing of the counts to get an accurate count.

 Selection of the technology depends on air field layout, fleet mix, budget and other factors.

Overview

- Review operations estimation and sample counting methods for nontowered airports
- Discuss a method for estimating airport-specific *LTO cycles*

Both of these inputs are needed to estimate emissions!

Landing and Take-off Cycles at GA Airports What is an LTO?

Each LTO = Taxi out + Take-off + Climb-out + Approach + Taxi in One operation is either a take-off or a landing. AEDT uses the LTO and cruise in emissions estimates. Landing and Take-off Cycles at GA Airports

Why is LTO important?

Runway expansion? Add a runway? Needed to develop emissions estimates for airports Used to allocate resources and projects to airports Is my exhaust too loud?

To tower or not to tower?

Taxiway expansion?

Upgrade terminal or hangars?

Landing and Take-off Cycles at GA Airports Is LTO for GA airports the same as for commercial airports?

Develop Better Estimates of LTO Parameters by Analyzing Flight Data

7.75 7.75 7.75 7.75 7.75

40.4158					•																														:7.7
40.4158	-86.934	603.4	30.45	588.5	-9.5	0	0 -3.63	1.52	0.18	0	0 14	274.2	25 2	4.3 -6	.6	1.91 87.5	65.17	16.09	1142.6	72.41 8	2.73	81.44 78	8.56 74.	.55 73.54	4 743.71	729.72	765.49 75	58.46 7	36.63 782	.24 476.3	0 GPS	175.8	115.1	115.1	121.9 127.7
40.4158	-86.934	603.4	30.45	588.3	-9.5	0	0 2.54	1.47 (0.18	0	0 14	274.2	25 2	4.3 -6		1.9 87.92	65.02	16.07	1145.3	73.07 8	3.39 8	32.36 79	9.26 75.	.25 74.2	1 770.51	755.96	796.12	789.2 7	64.24 807	1.38 476.1	0 GPS	175.8	115.1	115.1	121.9 127.7
40.4158	-86.934	603.4	30.45	588.7	-9.5	0	0 0.72	1.46 (0.16 0	0.01	0 14	274.2	25 2	4.3 -6	.6	1.89 88.24	64.63	16.25	1126.3	73.77 8	4.07	\$3.3 \$6	0.01 76.	.03 74.81	7 799.3	781.73	823.73 82	22.24 7	93.15 835	1.33 476.5	0 GPS	175.8	115.1	115.1	121.9 127.7
40.4158	-86.934	602.4			_			1	0.13 -0	0.01	0 14	274.2	25 2	4.3 -6	.6	1.89 88.51	64.25	16.37	1111.5	74.47 8	4.79	84.17 80	0.77 76.	.75 75.55	5 822.58	802.59	857.83 8	51.88 8 70.20 0	23.67 863	.82 476.7	0 GPS	175.8	115.1	115.1	121.9 127.7
40.4158	-86.934	605.4	- F			- •			0.16	0.01 -0.0	0 14	274.2	25 2	4.5 -6		1.88 88.19	64.1	16.38	1113.7	19.11 8	\$9.91 3	\$9.04 81	1.92 11.	.92 16.24	2 843.49	823.09	886.94 81	19.29 8	49.44 885	.98 416.1	0 GPS	119.8	115.1	115.1	121.9 127.7
40.4158	-86.934	604.4	-							9.01 -0.0	01 14.1	274.2	25.4 2	4.9	0																	-	115.1	115.1	121.9 127.7
40.4158	-86.934	605.4	30.45	h						.01	0 14.1	274.2	25.6 2	5.2	20							I _		A 10 0	l								115.1	115.1	121.9 127.7
40.4158	-86.934	605.4	30.45	F		<u>^</u>	·	<u> </u>			0 14.1	274.2	25.8 2	5.4								LI	I U F	Ana	IVSIS	5							115.1	115.1	121.9 127.7
40.4158	-86.934	606.4	30.45	5						0.0	14.1	274.2	26 2	5.6											/								115.1	115.1	121.9 127.7
40.4158	-86.934	606.4	30.45	9	H						0 14.1	274.2	26.1 2	5.9 1	8																		115.1	115.1	121.9 127.7
40.4158	-86.934	606.4	30.45		╵│┏╴		<u> </u>		<u> </u>	0	14.2	274.2	26.3 2	26.1	10																		115.1	115.1	121.9 127.7
40.4158	-86.934	606.4	30.45						_	-	14.1	274.2	26.5 2	6.3																			115.1	115.1	121.9 127.7
40.4158	-86.934	605.4	30.45		F	FDN	Λ ςνς	stem	Da	ta	14.2	274.2	26.6 2	6.5																		_	115.1	115.1	121.9 127.7
40.4150	-26.934	606.4	30.45		-9.5		. 3,3	/tem	Du	^{ca}	14.2	274.2	20.0 2	6.8	16																		115.1	115.1	121.9 127.1
40.4158	-86,934	605.4	30.45	F	-9.5	0	0 -2.58	1.34	0.08	0 -0.0	14.2	274.2	27.1	27																			115.1	115.1	121.9 127.7
40.4158	-86.934	606.4	30.45		-9.5	0	0 -3.43	1.34	0.1 -0	0.01	0 14.2	274.2	27.3 2	7.2																			115.1	115.1	121.9 127.7
40.4158	-86.934	605.4	30.45		-9.5	0	0 -0.14	1.34	0.1 -0	0.01	0 14.2	274.2	27.4 2	7.3 1	1																		115.1	115.1	121.9 127.7
40.4158	-86.934	605.4	30.45		-9.5	0	0 -18.73	1.33 (0.07	0	0 14.2	274.2	27.5 2	7.4	14																		115.1	115.1	121.9 127.7
40.4158	-86.934	606.4	30.45		-9.5	0	0 2.22	1.34 (0.09	0 -0.0	14.2	274.2	27.6 2	7.5																		_	115.1	115.1	121.9 127.7
40.4158	-86.934	606.4	30.45		-9.5	0	0 11.59	1.31 /	0.12	0 -0.0	14.3	274.2	27.6 2	7.5	_																		115.1	115.1	121.9 127.7
40.4158	-86.934	606.4	30.45		-9.5	0	0 5.47	1.32	0.1	0 04	0 14.2	274.2	27.7 2	7.8 1	L2																		115.1	115.1	121.9 127.7
40.4158	-86.934	606.4	30.45	58	-9.5	0	0 -0.46	127 (0.07	0 0.0	14.3	274.2	27.8 2	7.7																			115.1	115.1	121.9 127.1
40.4158	-86.934	606.4	30.45	58	-9.5	0	0 2.41	1.3 /	0.09 -0	0.01 -0.0	14.2	274.2	27.8 2	7.7																			115.1	115.1	121.9 127.7
40.4158	-86.934	605.4	30.45	585.7	-9.5	0	0 -14.84	1.29	0.1	0 0.0	14.3	274.2	27.8 2	7.7 1																			115.1	115.1	121.9 127.7
40.4158	-86.934	605.4	30.45	586	9.5	0	0 -12.08	1.3 (0.08 -0	0.01	0 14.3	274.2	27.8 2	7.7	LU																		115.1	115.1	121.9 127.7
40.4158	-86.934	605.4	30.45	586.2	5	0	0 -1.08	1.3 (0.08 0	0.01 -0.0)1 14.2	274.2	27.8 2	7.6																			115.1	115.1	121.9 127.7
40.4158	-86.934	605.4	30.45	587.5		0	0 3.19	1.31 0	0.08 -0	0.01	0 14.2	274.2	27.8 2	7.6																		_	115.1	115.1	121.9 127.7
40.4158	-86.934	605.4	30.45	587.1	-9	0	0 3.44	1.29 0	0.08 0	0.01	0 14.2	274.2	27.8 2	7.6	8																		115.1	115.1	121.9 127.7
40.4158	-86.934	605.4	30.45	587.5	-9.5	0	0 -1.2	1.3 0	0.08	0	0 14.2	274.2	27.8 2	7.6	0																		115.1	115.1	121.9 127.7
40.4158	-86.934	605.4	30.45	588.4	-9.5	ů	0 -1.38	1.27	0.11 -0	0.01	0 14.3	274.2	27.8 2	7.6																			115.1	115.1	121.9 127.7
40.4158	-86.934	604.4	30.45	587.5	-9.5	0	0 -17.72	1.3	0.11 0	0.01 -0.0	14.3	274.2	27.8 2	7.6	C																		115.1	115.1	121.9 127.7
40.4158	-86.934	604.4	30.45	589.1	-9.5	0	0 -22.7	1.27	0.1 -0	0.01 0.0	14.3	274.2	27.8 2	7.6	6																•		115.1	115.1	121.9 127.7
40.4158	-86.934	605.4	30.45	589.3	-9.5	0	-2.26	1.3 (0.09 0	0.01	0 14.2	274.2	27.8 2	7.6																			115.1	115.1	121.9 127.7
40.4158	-86.934	605.4	30.45	589.1	-9.5	0	0 12.75	1.3	0.1 -0	0.01 0.0	1 -14 3	274.2	27.8 2	7.5																		_	115.1	115.1	121.9 127.7
40.4158	-86.934	604.4	30.45	589.1	-9.5	0	0	1.27	0.12 -0	0.01	0		27.8 2	7.5	4																		115.1	115.1	121.9 127.7
40.4158	-86.934	605.4	20.45	588.9	-9.5	0	0 12.95		0.11	0	0		21.8 2	7.5																		_	115.1	115.1	121.9 127.7
40.4158	-86.934	605.4	30.45	587.8	-9.5	0	0 14.07	13				4	27.8 2	7.4																			115.1	115.1	121.9 127.1
40.4158	-86.934	605.4	30.45	586.7	-9.5	0	0 12.72	1.32	0.1			274.2	27.8 2	7.5	2																	_	115.1	115.1	121.9 127.7
40.4158	-86.934	605.4	30.45	595	-9.5	0	0 -3.81	1.32	0.11	0	0 14.2	274.2	27.8 2	7.5	2																		115.1	115.1	121.9 127.7
40.4158	-86.934	605.4	30.45	595	-9.5	0	0 3.48	1.33 (0.09	0 0.0	14.2	274.2	27.9 2	7.5																			115.1	115.1	121.9 127.7
40.4158	-86.934	605.4	30.45	594.8	-9.5	0	0 -8.2	1.34 (0.09	0	0 14.2	274.2	27.9 2	7.5																			115.1	115.1	121.9 127.7
40.4158	-86.934	605.4	30.45	594.6	-9.5	0	0 -0.47	1.32 0	0.08 -0	0.01 0.0	14.2	274.2	27.9 2	7.6	0																		115.1	115.1	121.9 127.7
40.4158	-86.934	605.4	30.45	595.3 EAC E	-9.5	0	0 -0.01	1.37 0	0.08	0	0 14.1	274.2	27.9 2	7.6	0																		115.1	115.1	121.9 127.1
40.4158	-26.934	605.4 605.4	30.45	596.5	-9.5	0	0 -6 37	1.35 0	0.09 -0	0.02	0 14.2	274.2	27.9 2	7.7			Take	-off			C	limh_(out			Δnnr	nach			Tavi-in	and out	_	115.1	115.1	121.9 127.1
40.4158	-86.934	605.4	30.45	596.5	-9.5	0	0 -4.61	1.36 /	0.09 -0	0.01 -0.0	0 14.2	274.2	27.9 2	7.7			Turce	. 011					out			дррі	ouch				una out	_	115.1	115.1	121.9 127.7
40.4158	-86.934	605.4	30.45	596.4	-9.5	0	0 5.76	1.34	0.1	0	0 14.2	274.2	27.9 2	7.7																			115.1	115.1	121.9 127.7
40.4158	-86.934	605.4	30.45	597.2	-9.5	0	0 10.77	1.35 (0.09	0	0 14.2	274.2	27.9 2	7.7																			115.1	115.1	121.9 127.7
40.4158	-86.934	605.4	30.45	596.5	-9.5	0	0 0.51	1.34 (0.07 -0	0.01	0 14.2	274.2	27.9 2	7.7																			115.1	115.1	121.9 127.7
40.4158	-86.934	605.4	30.45	595.5	-9.5	0	0 3.41	1.35	0.1 -0	0.01 0.0	14.2	274.2	27.9 2	7.7						_		EED	¬	Timo		Colur	nn1						115.1	115.1	121.9 127.7
40.4158	-86.934	605.4	30.45	595.6	-9.5	0	0 4.1	1.37 0	0.07	0	0 14.1	274.2	27.9 2	7.7								FEN		IIIIIe		Colui	1111T					_	115.1	115.1	121.9 127.7
40.4158	-06.934	604.4	30.45	595.6	-9.5	0	0 -19.51	1.35 0	0.00 -0	0.01	0 14.2	274.2	27.9 2	7.8																			115.1	115.1	121.9 127.1
40.4158	-86,934	606.4	30.45	594.6	-9.5	ů.	0 10.32	1.36 /	0.09 -0	0.01	0 14.1	274.2	27.9 2	7.8 4	14	1.97 89.63	62.79	16.36	1159	122.4 13	3.04 1	38,18 129	9.85 128.	.33 124.33	3 1160.75	1076.47	1168.55 11	53.16 11	42.56 1128	.34 482.4	0 GPS	175.8	115.1	115.1	121.9 127.7
40.4158	-86.934	606.4	30.45	595.2	-9.5	0	0 26.76	1.36 (0.08 -0	0.01 0.0	14.1	274.2	27.9 2	7.8 4	1.5	1.96 89.63	62.84	16.36	1158.1	123.33 13	3.95 1	39.14 130	0.75 129.	.34 125.24	4 1166.17	1076.13	1171.05 11	154.15 11	42.82 1127	.98 483	0 GPS	175.8	115.1	115.1	121.9 127.7
40.4158	-86.934	606.4	30.45	595.7	-9.5	0	0 16.65	1.35 (0.07 0	0.01	0 14.1	274.2	27.9 2	7.8 4	1.3	1.97 89.63	62.76	16.42	1150.8	124.24 13	4.84 14	40.09 131	1.66 130.	.37 126.19	5 1166.26	1080.2	1171.28 119	56.09 11	49.67 1131	1.29 483.4	0 GPS	175.8	115.1	115.1	121.9 127.7
40.4158	-86.934	606.4	30.45	595.5	-9.5	0	0 3.63	1.35 (0.08	0	0 14.1	274.2	27.9 2	7.8 4	1.3	1.97 89.64	62.65	16.46	1149.2	125.27 13	5.77 1	41.04 132	2.57 131.	.49 127.09	5 1170.77	1081.99	1174.32 119	57.58 11	53.86 1133	.79 483.3	0 GPS	175.8	115.1	115.1	121.9 127.7
40,4158	-86.934	606.4	30.45	595.6	-9.5	0	0 0.25	1.36 (0.07 -0	0.01	0 14.1	274.2	27.9 2	7.8 4	1.3	1.98 89.66	62.76	16.4	1158	126.12 13	6.65 1	41.97 133	3.45 132.	34 127.90	6 1173.96	1080.28	1176.5 119	56.58 11	158.16 1132	.67 483.3	0 GPS	175.8	115.1	115.1	1.9 127.7
40.																																			127.7
40.	\sim	anı	laL		Δu	tom	ated	Pha	Se	Rre a	aks	Δ	utor	nat	ed	Pha	se a	nd	Par	ame	ate	r Fs	fim	ates	5	G	ane	ral	M_{0}	del fo	or AND	Air	nor	rr _	27.1
40	1.11	ente	adi		710	ito ili	arcu			BICC				Hat	ea	THU	sc a	TIC	1 al	anno			CITI	acc		0	enc	run_		acric			poi	C _	127.1
40.4158	-06.934	606.4	30.45	575.1	-9.5	V	0 15.30	1.24	0.011 0	0.01 0.0	19.1	219.2	60 E	6.7 9		1.70 07.0	66.76	16.35	1166.11	130.81 1	41.14 14	16.11 131		23 132.4.	a 1119.94	1080.66	1102.30 115	56.15 11	10.20 1140	.74 482.7	V GPS	115.0	119.1	119.1	
40.4158	-86.934	606.4	30.45	595.5	-9.5	0	0 8.14	1.36 (0.07 -0	0.01 -0.0	14.1	274.2	28 2	7.9 4	4.1	1.97 89.83	62.64	16.4	1162.1	131.66 14	2.02 14	47.74 138	8.74 138.	.06 133.33	3 1179.16	1083.38	1180.96 11	158.17 11	69.78 1141	1.57 483.3	0 GPS	175.8	115.1	115.1	121.9 127.7
40.4158	-86.934	606.4	30.45	595.6	-9.5	0	0 7.23	1.37 (0.05 -0	0.01 0.0	14.1	274.2	28 2	7.9 4	4.1	1.95 89.91	62.66	16.45	1156.5	132.59 14	12.91 14	48.68 139	9.62 138.	.98 134.2	2 1188.9	1085.29	1180.53 11	161.53 1	169.7 1141	1.72 483.3	0 GPS	175.8	115.1	115.1	121.9 127.7
40.4158	-86.934	606.4	30.45	596.2	-9.5	0	0 3.65	1.35 (0.05 0	0.01	0 14.1	274.2	28 2	7.9	4	1.97 89.93	62.81	16.3	1177.1	133.49 14	3.78 14	19.62 14	40.5 139.	.92 135.04	\$ 1187.54	1085.75	1179.21 116	62.34 11	68.42 1144	1.69 484	0 GPS	175.8	115.1	115.1	121.9 127.7
140 d152	-VE 874	A DE AL	20.45	597	-95		n d 12	1 76 /	0.071 0	1.021	ni 1d 1	274.2	72	7XI 6	a 11 - Y	1921 29.99	6.Z.75	16.29	1175 7	n≪a aa i 1a	10 K 7 1	150 KL 14	ana: 140 :	×41 135 64	x) 1122 22	1026 51 Y	117× adi 116	ысый 11	NN NN 11dd	NZ 424.2	IL GPS	175 2	115 1	116 1	121 H 127 7

Landing and Take-off Cycles at GA Airports

Developed and tested a software program to do automated analysis of FDM data from GA piston-engine aircraft at one Indiana airport identified

Duration of each phase of flight (DUR)
 Average fuel flow rate in each phase of flight (FFR)

Found Statistically Significant Results

NEXT: Expand the number of airports and aircraft types in the study to develop a general model

Questions?

