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Mapping marginal croplands suitable for cellulosic
feedstock crops in the Great Plains, United States
Y INGX IN GU1 and BRUCE K. WYLIE2

1ASRC InuTeq, Contractor to U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center, Sioux

Falls, SD 57198, USA, 2USGS EROS, Sioux Falls, SD 57198, USA

Abstract

Growing cellulosic feedstock crops (e.g., switchgrass) for biofuel is more environmentally sustainable than corn-

based ethanol. Specifically, this practice can reduce soil erosion and water quality impairment from pesticides

and fertilizer, improve ecosystem services and sustainability (e.g., serve as carbon sinks), and minimize impacts

on global food supplies. The main goal of this study was to identify high-risk marginal croplands that are poten-

tially suitable for growing cellulosic feedstock crops (e.g., switchgrass) in the US Great Plains (GP). Satellite-
derived growing season Normalized Difference Vegetation Index, a switchgrass biomass productivity map

obtained from a previous study, US Geological Survey (USGS) irrigation and crop masks, and US Department of

Agriculture (USDA) crop indemnity maps for the GP were used in this study. Our hypothesis was that crop-

lands with relatively low crop yield but high productivity potential for switchgrass may be suitable for convert-

ing to switchgrass. Areas with relatively low crop indemnity (crop indemnity <$2 157 068) were excluded from

the suitable areas based on low probability of crop failures. Results show that approximately 650 000 ha of mar-

ginal croplands in the GP are potentially suitable for switchgrass development. The total estimated switchgrass

biomass productivity gain from these suitable areas is about 5.9 million metric tons. Switchgrass can be culti-
vated in either lowland or upland regions in the GP depending on the local soil and environmental conditions.

This study improves our understanding of ecosystem services and the sustainability of cropland systems in the

GP. Results from this study provide useful information to land managers for making informed decisions regard-

ing switchgrass development in the GP.

Keywords: cellulosic biofuel feedstock, crop indemnity, Great Plains, growing season average NDVI (GSN), land management,

marginal croplands, satellite remote sensing, switchgrass productivity
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Introduction

Ethanol produced from Midwest corn (Zea mays) is the

most common biofuel product in the United States (Yaco-

bucci & Capehart, 2008; Simpson, 2009; Schnepf & Yaco-

bucci, 2013; DeLucia, 2015). However, corn-based ethanol

development presents concerns about world food short-

ages and negative environmental effects such as soil ero-

sion and water quality impairment (Searchinger et al.,

2008; Trostle, 2008; Yacobucci & Capehart, 2008; Gelfand

et al., 2010; Pala, 2010; Pimentel, 2010; Schnepf & Yaco-

bucci 2013; Buyx & Tait, 2011). Biofuels produced from

cellulosic feedstocks such as grasses and agricultural

wastes have lagged behind corn-based ethanol produc-

tion because the biochemistry of conversion is more com-

plex. As the technical challenges are met and the

bioenergy infrastructures and refineries are further devel-

oped, demand for cellulosic feedstock is expected to

increase in the future (Yacobucci & Capehart, 2008; Brac-

mort, 2010; Bracmort et al., 2011; Mitchell et al., 2012).

Previous studies suggest that switchgrass (Panicum

virgatum) is one potential source for cellulosic biofuel

feedstocks (Mclaughlin & Kszos, 2005; Liebig, 2006; San-

derson et al., 2006; Schmer et al., 2008, 2010; Vadas et al.,

2008; Bracmort, 2010; Guretzky et al., 2010; Bracmort

et al., 2011; Davis et al., 2011; Monti et al., 2011; Qin

et al., 2011). The advantages of planting switchgrass for

biofuel include (i) reducing soil erosion and improving

water quality due to the lower amounts of fertilizer and

pesticides required (Bransby et al., 1998; Liebig, 2006),

(ii) decreasing drought impacts on production as

switchgrass is tolerant to drought and needs less water

during its growing season (Lewandowski et al., 2003;

Mclaughlin & Kszos, 2005; William et al., 2012), (iii)

reducing greenhouse gas (GHG) emissions to the atmo-

sphere (Gelfand et al., 2013; Dwivedi et al., 2015; Hudi-

burg et al., 2016), and (iv) improving regional ecosystem
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function and service and retaining environmental sus-

tainability (i.e., serves as a carbon sink) (Ma et al., 2000;

Frank et al., 2004; Perrin et al., 2008; Gelfand et al., 2011;

Werling et al., 2014).

The US Great Plains (GP) has a diversity of vegetation

cover types but is mainly dominated by grasslands and

croplands (Homer et al., 2015). The main goal of this

study was to identify high-risk marginal croplands in

the GP that are potentially suitable for cellulosic feed-

stock crop development (Gelfand et al., 2013; Smith

et al., 2013). In this study, the biofuel potential areas

were defined as nonirrigated croplands with (i) rela-

tively low productivity for crop but high productivity

potential for switchgrass and (ii) high probability of

crop failures. Satellite-derived vegetation index, a

switchgrass biomass productivity map obtained from a

previous study (Gu et al., 2015), and crop indemnity

information from the USDA were used in this research.

Results from this study will improve our understanding

of ecosystem function and service of cropland systems

in the GP and provide useful information regarding

switchgrass cellulosic feedstock development in the GP.

Materials and methods

Study area

The study area is the US Great Plains (Fig. 1, within the black

boundary). The GP covers 14 states and contains 17 ecoregions

(Omernik, 1987). Two main vegetation cover types in the GP

are grassland (~36%) and cultivated crops (~30%) (Homer et al.,

2015) (Fig. 1). The GP has a broad range of climate and envi-

ronmental conditions and plant productivities. The average

annual precipitation increases from the western GP (less than

200 mm) to the eastern GP (over 1100 mm) (http://

www.prismclimate.org; Gu et al., 2012b). Vegetation biomass

productivity generally increases from the western GP to the

eastern GP because of different vegetation growth conditions

(e.g., precipitation, elevation, and soil conditions) (Tieszen

et al., 1997; Joyce, et al., 2001; Gu et al., 2015).

Criteria for marginal croplands suitable for cellulosic
feedstock development

In this study, we identify high-risk farmland marginal crop-

lands that are potentially suitable to convert to cellulosic feed-

stock crops in the GP. This approach is based on both

Fig. 1 Land cover type (NLCD 2011) with ecoregion map for the GP.

© 2016 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12388
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biophysical and risk conditions of croplands and switchgrass

(i.e., productivity, crop indemnity) in the GP. Here, we pre-

sumed that croplands with relatively low productivity for crop

but high productivity potential for switchgrass are potentially

suitable for converting to switchgrass. Irrigated croplands or

areas with relatively low crop indemnity (based on the USDA

county-level crop indemnity map, which reflects crop failure

conditions of each US county, http://www.rma.usda.

gov/data/indemnity/archive.html) were excluded from the

suitable switchgrass biofuel consideration to minimize the

impacts on local economies and livelihoods. To avoid any

undesirable land-use changes, areas with high vulnerability to

erosion (e.g., the Sand Hills ecoregion in Nebraska where

removal of biomass may lead to sand dune activation) (Gu

et al., 2012a) were also excluded from the suitable switchgrass

biofuel areas.

Datasets for mapping marginal croplands and
evaluating the environmental conditions of the
identified biofuel potential areas in the GP

Two major datasets used in this investigation are cropland and

switchgrass productivities. Previous studies suggested that

satellite-derived growing season Normalized Difference Vege-

tation Index (NDVI) can be used as a proxy for aboveground

vegetation biomass productivity (Wylie et al., 1995; Tieszen

et al., 1997; Wang et al., 2004; Gu et al., 2013a,b) because it cap-

tures the seasonal dynamics throughout the growing season.

The recent 3-year (2010-2012) averaged growing season NDVI

(GSN) was used as a proxy for cropland productivity in this

study. The 3-year GSNs were calculated from the 7-day com-

posite 250-m eMODIS (expedited Moderate Resolution Imaging

Spectroradiometer) (Jenkerson et al., 2010) NDVI data (https://

lta.cr.usgs.gov/emodis). The switchgrass biomass productivity

(using GSN as a proxy) map for the GP region was derived

from a previous study (Gu et al., 2015), which was based on

site environmental and climate conditions and a switchgrass

productivity model.

Other datasets used for mapping marginal croplands for cel-

lulosic feedstock development in the GP include (i) the USDA

crop indemnity map (http://www.rma.usda.gov/data/indem-

nity/archive.html), which reflects crop failures (drought, hail,

insects, etc.) and low yield conditions of cropland systems in

the GP; (ii) the USGS crop mask, which was derived from the

USDA National Agricultural Statistics Service Cropland Data

Layer (Howard et al., 2012) and was used for identifying crop-

land pixels; (iii) the USGS irrigation map (http://earlywar

ning.usgs.gov/USirrigation) (Brown & Pervez, 2014), which

was used to exclude irrigated cropland pixels from the identi-

fied biofuel potential areas and to avoid intensively managed

croplands with high recurrent costs (e.g., center pivot irrigation

system); and (iv) the U.S ecoregion map for the GP, which was

used to exclude the erosion-prone Sand Hills ecoregion from

the biofuel potential areas.

In addition, climate and environment variables, which play

important roles in the switchgrass productivity model

(Gu et al., 2015), were used to evaluate the resulting biofuel

potential areas. These environment and climate variables

include (i) soil available water capacity (AWC) derived from

the USDA Natural Resources Conservation Service (NRCS) Soil

Survey Geographic (SSURGO) Database (http://

www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?-

cid=nrcs142p2_053627); (ii) elevation (digital elevation model,

DEM) obtained from the USGS National Elevation Dataset

(http://nationalmap.gov/elevation.html); (iii) compound topo-

graphic index (CTI) (http://edna.usgs.gov/Edna/datalayers/

cti.asp); and (iv) 30-year (1981–2010) averaged annual precipita-

tion derived from the PRISM (Parameter-elevation Regressions

on Independent Slopes Model) database (PRISM Climate

Group, http://www.prismclimate.org). AWC is an important

soil feature index, which represents the amount of water that

can potentially be stored in soil and is available for use by

plants. DEM and CTI are related to site topographical features

and hydrological (steady-state wetness) conditions.

Furthermore, the long-term (9-year) averaged net ecosystem

production (NEP) data were also used to evaluate carbon

sequestration of the biofuel potential areas. NEP is an impor-

tant ecosystem-scale characteristic for assessing terrestrial car-

bon cycles, ecosystem services, and global climate changes

(Randerson et al., 2002; Law, 2005; Xiao et al., 2008). The NEP

data were developed by Zhang et al. (2011) (http://lca.usgs.

gov/lca/cflux_gplains/dataproducts.php).

Processing procedures for identifying marginal
croplands suitable for biofuel crop development in the
GP

The main procedures used for mapping marginal croplands for

cellulosic feedstock crop development in the GP included the

following steps:

1 Calculate the 3-year (2010–2012) averaged GSN based on the

quality-improved 250-m eMODIS NDVI data (https://

lta.cr.usgs.gov/emodis). Here, we used start of season time

as early April (Julian date 100) and end of season time as late

October (Julian date 300). This 3-year averaged GSN was

used as a proxy for cropland productivity (Fig. 2a).

2 Obtain switchgrass GSN (Fig. 2b), USDA crop indemnity

(Fig. 2c), USGS crop mask, USGS irrigation map, and USGS

ecoregion map for the GP. To make these maps more reli-

able, areas with large uncertainty estimation of switchgrass

productivity in the GP (Fig. 2b, white color within the GP)

(Gu et al., 2015) were excluded from the suitable areas in this

study. Explanation and further discussion on this can be

found in the ‘Discussion’ section.

3 Generate a nonirrigated GSN map for cropland pixels in the

GP region. The GSN map was then classified into three pro-

ductivity classes (low, medium, and high, with each class

having an equal amount of pixels) based on the GSN values.

4 Select ~900 randomly stratified samples for the GP region

based on the above three productivity classes (i.e., each pro-

ductivity category had ~300 random samples).

5 Extract switchgrass GSN and 3-year averaged eMODIS GSN

(i.e., cropland productivity) for the selected samples (pixels)

and converted them to switchgrass productivity (Gu et al.,

2013a; see the ‘Estimation of switchgrass biomass

© 2016 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12388
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productivity gain from the suitable area’ section) and corn

yield equivalents (Gu et al., 2013b). A regression analysis

was performed on the two datasets (Fig. 3).

6 Identify areas (pixels) that have relatively low corn yield and

high productivity potential for switchgrass in the GP (i.e.,

switchgrass productivity is relatively higher than crop pro-

ductivity at 80% confidence level). These areas are poten-

tially suitable for switchgrass development (e.g., blue points

in Fig. 3).

7 Divide the crop indemnity map into three equal numbers of

pixel groups based on the indemnity values (from low to

high: low: <$2 157 068; medium: between $2 157 068 and

$7 277 861; and high: >$7 277 861) and exclude those pixels

with low crop indemnities (i.e., crop indemnity <$2 157 068)

from the identified suitable areas based on a low crop risk

factor.

8 Exclude the Sand Hills ecoregion from the suitable areas to

avoid any undesirable land-use changes (e.g., removal of

biomass may lead to sand dune activation).

The flowchart in Fig. 4 summarizes how the biofuel potential

areas were identified and mapped in this study.

Evaluation of the resulting biofuel potential areas
using climate and environment variables

About 3000 samples were randomly selected to represent the

environmental envelope of the GP. These samples illustrate the

climate and environmental conditions that the identified bio-

fuel potential areas represented. Climate and environment vari-

ables related to switchgrass productivity (i.e., AWC, DEM, CTI,

and long-term annual precipitation) (Gu et al., 2015) and

switchgrass GSN were extracted for these random pixels. Scat-

terplots between the environment variables and switchgrass

GSN for all the samples and the biofuel potential pixels were

generated. The specific climate and environmental features of

the biofuel potential areas were evaluated. In addition, the

long-term averaged NEP data were also extracted for these ran-

dom pixels to assess the environmental sustainability of the

identified biofuel potential areas. The carbon sequestration con-

ditions for the biofuel potential areas were evaluated and are

discussed below.

Estimation of switchgrass biomass productivity gain
from the suitable area

The total grassland biomass productivity for the biofuel poten-

tial areas in the GP was estimated based on the GSN and an

empirical equation Eqn (1) developed by Gu et al., (2013a):

Grassland biomass productivityðkg ha�1yr�1Þ
¼ 9936:5�GSN� 1554

ð1Þ

Based on the previous study results, switchgrass has higher

biomass production than most grassland species; therefore, the

total estimated switchgrass biomass productivity gain from the

identified biofuel potential areas in the GP was assumed to be

(a) (c)(b)

Fig. 2 (a) Cropland productivity (GSN), (b) switchgrass biomass productivity (GSN); white represents high uncertainty areas, and

(c) USDA crop indemnity map for the GP.

Fig. 3 Scatterplot between switchgrass biomass productivity

and corn yield for the randomly selected samples (~900) in the

GP. Blue points represent biofuel potential pixels (i.e., switch-

grass productivity is relatively higher than crop productivity at

80% confidence level). Red points represents biofuel unsuitable

pixels (i.e., switchgrass productivity is relatively lower than

crop productivity at 80% confidence level).

© 2016 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12388
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double that of the total estimated grassland biomass productiv-

ity (Vogel et al., 2002; Fike et al., 2006; Mclaughlin et al., 2006;

Kiniry et al., 2008; Jager et al., 2010; Schmer et al., 2010; Wulls-

chleger et al., 2010; Anderson-Teixeira et al., 2012; Behrman et al.,

2012; Tulbure et al., 2012; Bonin & Lal, 2014; Gu & Wylie, 2016).

Results

Map of marginal croplands suitable for switchgrass
development in the GP

Figure 5 shows marginal croplands that are potentially

suitable for switchgrass development in the GP. The

biofuel potential areas are mainly located in the central

and eastern parts of the GP (blue pixels in Fig. 5). Areas

with large uncertainty of switchgrass productivity esti-

mation in the GP (Fig. 2b, white color within the GP)

were excluded from the suitable areas. In order to pro-

vide a detailed view of the biofuel potential areas, two

close-up images (Fig. 5 zoom box 1 and zoom box 2)

were selected for illustration. Zoom box 1 is located

within the Missouri River flood plain and zoom box 2 is

in the central part of Iowa.

In zoom box 1, most biofuel potential areas (blue

color) are mainly located in the historic flood plain of

the Missouri River. These lowland areas can have

locally diverse clay or sandy alluvial-deposited soils

with low to moderate AWC values (<15 cm; zoom box

1); consequently, these soils may not retain moisture or

nutrients well. As a result, localized areas of these

diverse alluvial-deposited soils may not be favorable for

crop growth, but may favor switchgrass production.

The common expectation is that most of the biofuel

potential areas (blue color in zoom box 2) would be

located in the upland areas with relatively low CTI val-

ues. Uplands are generally expected to be less optimal

for crop production because of relatively low soil car-

bon and fertility and vulnerability to water erosion

(http://www.blm.gov/nstc/library/pdf/TN438.pdf,

Grieve et al., 1995; Leithold et al., 2006; Yoo et al., 2005).

The results of this study indicate that switchgrass may

be preferential over crops in either lowlands or uplands

in the GP depending on the regional soil and environ-

mental conditions.

There are approximately 650 000 ha (6500 km2) of

marginal croplands in the GP that are potentially prefer-

ential for sustainability through switchgrass production.

The total estimated switchgrass biomass productivity

gain from these biofuel potential areas is about 5.9 mil-

lion metric tons.

Environmental and climate conditions for the biofuel
potential areas

Figure 6(a–d) presents scatterplots associated with envi-

ronment variables (i.e., AWC, DEM, CTI, and annual

precipitation) and switchgrass GSN for study area ran-

dom samples (green) and the biofuel potential pixels

(red). The general climate and environmental conditions

for the biofuel potential areas can be inferred from these

scatterplots. Most of the environmental condition plots

for favorable switchgrass areas are fairly concise with

concentrated high density groupings, except CTI, which

ranges from 10 to 20 (Fig. 6). Overall, most of the bio-

fuel potential pixels (red) have high switchgrass pro-

ductivity (GSN) relative to the random samples (green).

A large portion of the biofuel potential areas have mod-

erate to high AWC (Fig. 6a, red), except those areas

Crop mask
3-year

averaged GSN 
Irrigation 

mask
Switchgrass 

GSN 

Extract switchgrass and crop GSN for nonirrigated cropland pixels, perform regression analysis

Determine switchgrass and crop GSN difference threshold (80% confidence level) for unproductive croplands

Marginal cropland Sand Hills 
ecoregions

USDA crop 
indemnity 

Map the final biofuel potential areas with exclusions of low indemnity and Sand Hills ecoregion 

Croplands suitable
for biofuel in the GP

Fig. 4 Flowchart for mapping high cost marginal croplands that are suitable for switchgrass biofuel development in the GP.

© 2016 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12388
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located within the Missouri River flood plain (Fig. 5 box

1), discussed in the previous section. The identified bio-

fuel potential areas are mainly located at the low-eleva-

tion regions (elevation <500 m) and are distant from

mountain areas (Fig. 5, blue pixels, and Fig. 6b, red pix-

els). Annual precipitation for the biofuel potential areas

ranges from 400 to 1200 mm (Fig. 6d, red), indicating

that switchgrass is a drought-tolerant species that needs

less water for growth than crops. Moreover, the NEP

values for the biofuel potential areas are generally in

the range of -50 to 50 g C m�2 yr�1 (Fig. 7, red pixels),

indicating a weak carbon source or a weak carbon sink

(near equilibrium, carbon emitted is nearly equal to car-

bon absorbed) in these areas.

Discussion

In this study, areas with large uncertainty estimation of

switchgrass productivity (Fig. 2b, white color within the

GP) were excluded from the biofuel potential areas to

ensure quality and reliability of the resulting biofuel

potential map. Therefore, the actual biofuel potential

Fig. 5 Biofuel potential areas (blue) and biofuel unsuitable areas (red) in the GP (dark black outline). Zoom box 1 is an example of

the lowland biofuel potential pixels overlaid on the AWC map. Zoom box 2 is an example of the upland biofuel potential pixels over-

laid on the CTI map.

© 2016 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12388
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areas in the GP should be larger than the total areas

estimated from this study (i.e., ~650 000 ha) and the

total estimated switchgrass biomass productivity gain

from the GP is also expected to be more than the esti-

mated productivity gain (i.e., ~5.9 million metric tons)

from this study. In addition, very small isolated areas,

which are not large enough (e.g., ≥5 hectares) to support

a cellulosic harvest and transportation costs, should be

excluded from the identified biofuel potential areas

based on economic considerations.

Results show that most identified biofuel potential

areas have near equilibrium NEP values (i.e., carbon

emitted is nearly equal to carbon absorbed) (Fig. 7,

mean NEP for the biofuel potential pixels is 24). Previ-

ous studies indicate that planting switchgrass can lead

to a carbon sink and can improve ecosystem function

(Bransby et al., 1998; Ma et al., 2000; Frank et al., 2004;

Liebig et al., 2005, 2008; Dwivedi et al., 2015). Therefore,

converting these high-risk marginal croplands to

switchgrass in the GP can improve regional carbon

sequestration (served as carbon sink) and help to retain

future environmental sustainability.

Cultivating switchgrass in the flood plains of the Mis-

souri River (Fig. 5 zoom box 1) and upland croplands

(Fig. 5 zoom box 2) can improve local soil nutrient

retention through increased soil organic matter and

reduce vulnerability to wind and water erosion. The

specific advantages of this land-use change include (i)

improved water quality due to lower fertilizer and

Fig. 6 Scatterplots between environment variables and switchgrass GSN for all the random samples (green) and biofuel potential

(red) pixels. (a) AWC, (b) DEM, (c) CTI, (d) annual precipitation.

Fig. 7 Scatterplots between annual NEP and switchgrass GSN

for all the random samples (green) and biofuel potential (red)

pixels.

© 2016 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12388
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pesticide usage for switchgrass as compared to crops,

(ii) reduced soil erosion as switchgrass provides year-

round minimization of exposed bare ground, (iii)

reduced runoff and stabilized stream banks because of

the well-developed rhizome and root systems of switch-

grass (Gyssels & Poesen, 2003), and (iv) improved wild-

life habitat (e.g., providing cover during critical nesting

periods for grassland birds) (Murray et al., 2003; Robert-

son et al., 2012) as switchgrass has a longer growing sea-

son and a late, postsenescence harvesting time

(Garland, 2010). Encouragement of future switchgrass

land use could augment these regional ecosystem ser-

vices as well as carbon sequestration in the GP.
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